
Journal of Cryptographic Engineering (2021) 11:119–133
https://doi.org/10.1007/s13389-020-00227-6

REGULAR PAPER

Detecting faults in inner product masking scheme

IPM-FD: IPMwith fault detection (extended version∗)

Wei Cheng1 · Claude Carlet2 · Kouassi Goli1 · Jean-Luc Danger1,3 · Sylvain Guilley1,3,4

Received: 15 November 2019 / Accepted: 28 April 2020 / Published online: 30 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Side-channel analysis and fault injection attacks are two typical threats to cryptographic implementations, especially in
modern embedded devices. Thus, there is an insistent demand for dual side-channel and fault injection protections. As we
know, masking is a kind of provable countermeasure against side-channel attacks. Recently, inner product masking (IPM)
was proposed as a promising higher-order masking scheme against side-channel analysis, but not for fault injection attacks.
In this paper, we devise a new masking scheme named IPM-FD. It is built on IPM, which enables fault detection. This novel
masking scheme has three properties: the security orders in the word-level probing model, bit-level probing model and the
number of detected faults. IPM-FD is proven secure both in the word-level and in the bit-level probing models and allows for
end-to-end fault detection against fault injection attacks. Furthermore, we illustrate its security order by interpreting IPM-FD
as a coding problem and then linking it to one defining parameters of linear code and show its implementation cost by applying
IPM-FD to AES-128.

Keywords Side-channel analysis · Fault injection attacks · Inner product masking · Fault detection

This work is an extension of [8] (PROOFS 2019).

B Wei Cheng
wei.cheng@telecom-paris.fr

Claude Carlet
claude.carlet@univ-paris8.fr

Kouassi Goli
kouassi.goli@polytechnique.edu

Jean-Luc Danger
jean-luc.danger@telecom-paris.fr

Sylvain Guilley
sylvain.guilley@secure-ic.com

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris,
France

2 LAGA, Department of Mathematics, University of Paris 8,
Paris, France

3 Secure-IC S.A.S., Cesson-Sévigné, France

4 Département d’informatique de l’ENS, ENS, CNRS, PSL
Research University, Paris, France

1 Introduction

With the advent of Internet of Things (IoT), more and more
cryptographic libraries are implemented in software. Now,
IoT objects are, most of the time, not made of secure hard-
ware. Therefore, it is important for the software to protect
itself in a sound manner. In this article, we assume that the
implementation is free from configuration and coding bugs.
Still, in this case, attackers can leverage two techniques to
extract information: side-channel and fault injection analy-
ses. Indeed, it is known that a single faulty encryption in
AES can fully disclose 128 bits of the secret key [1]. It can
be noted that some combined side-channel and fault analyses
exist against protected implementations [7,11].

On the one hand, protections against side-channel analy-
sis aim at reducing the signal-to-noise ratio (see definition
in [24, § 4.3.2]) an attacker can get. One option is to bal-
ance the leakage, a technique which is used to linearize the
control flow. For instance, cache-timing attacks can be alle-
viated by removing conditional opcodes whose condition is
sensitive and sensitive pointer dereferencing. Besides, we
assume Meltdown and ZombieLoad attack categories are
irrelevant as the code we are interested in is at the baremetal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-020-00227-6&domain=pdf
http://orcid.org/0000-0001-9433-7576

120 Journal of Cryptographic Engineering (2021) 11:119–133

level. Still, there is the possibility of sensitive value leak-
age, which is properly addressed by randomization (masking
[24, Chap. 9]). Indeed, sensitive values leak through a non-
injective and noisy channel; thence, single trace attacks are
unpractical.

On the other hand, protections against fault injection
attacks boil down to detection of errors, using either spa-
tial, temporal or information redundancy. Other techniques
rely on invariant checking, such as idempotence of encryp-
tion composed by decryption.

In this paper, we present a joint countermeasure to both
attacks, which is more efficient than two countermeasures
piled one on top of each other.

State of the art. In scientific literature, early countermea-
sures against both side-channel and fault injection attacks
have been designed in hardware. Several gate-level logic
styles have been introduced, in particular dual rail with
precharge logic, aiming at balancing the leakage. Namely,
redundant encodings, where each bit a is represented as a
pair of bits (a f , at), such that a f = ¬at = a during com-
putation evaluation phase. Owing to this redundancy, the
total number of bits set to 1 is unchanged (if in addition,
the evaluation phase is interleaved with a precharge phase,
the Hamming distance between two states is also constant,
irrespective of the sensitive data manipulated). Besides, the
redundant encoding a f = ¬at = a allows for computation
checks, as in evaluation phase, a f = at (two configura-
tions, namely (0, 0) and (1, 1), are forbidden). Starting from
wave dynamic differential logic (WDDL [24,Chap. 7]), other
improvements have been successively introduced (MDLP,
iMDPL [21], ParTI [33], etc.) Also, some exotic styles have
been proposed (asynchronous logic [27], adiabatic logic [26],
etc.). All this corpus requires hardware support.

In this paper, we target software-level countermeasures.
We build upon the higher-order side-channel countermeasure
known as IPM [2] to enrich it to detect faults injected during
the computation.

Contributions. We devise an end-to-end fault-detection
scheme which operates from within a provable high-order
multivariate masking scheme. In practice, we enhance IPM
scheme to enable end-to-end side-channel and fault injec-
tion detection, while keeping security proofs in the probing
security model. Furthermore, we quantify the impact of both
side-channel and fault detection on a complete AES-128 to
show the advantages of our new scheme.

This work is an extension of the previous eponymous con-
ference paper [8]. We highlight below the new extensions
incorporated in this paper:

– The generalization of IPM and IPM-FD to (O)DSM is
presented to emphasize the connections and differences
between two schemes. This generalization allows us to
optimize the former by using constructions of the latter in

a coding theoretic approach. For instance, some optimal
codes in (O)DSM would also be applicable in IPM and
IPM-FD.

– We clarify the fault models by showing the essential dif-
ferent assumptions under these models, which determine
the fault detection capability of IPM-FD and (O)DSM.
We insist that our IPM-FD only considers the last two
fault models since we focus on the end-to-end protec-
tions.

– By comparing the IPM-FD and BM-FD (Boolean mask-
ing with fault detection), we demonstrate the advantages
of the former over the latter. Specifically, IPM-FD needs
less shares to achieve the same security order at word
level. Furthermore, the bit-level security order of IPM-
FD can be much higher than BM-FD given the same
number of shares.

– We insist that the systematic construction of optimal
codes for IPM-FD and DSM at both word level and bit
level is still an open problem. In this paper, we only
provide the metrics and some results with small num-
ber of shares by an exhaustive study. Note that another
exhaustive study for optimal linear codes for IPM is also
available in a related specialized paper [10].

Outline. The rest of this paper is organized as follows:
Sect. 2 introduces two typical schemes as the state of the
art of countermeasures. Our novel protection is presented in
Sect. 3, with security analysis and optimal code selection in
Sect. 4. The practical performance evaluation is presented in
Sect. 5. Finally, Sect. 6 concludes the paper and opens some
perspectives.

2 State of the art on side-channel and fault
protection

Side-channel protections considered in this work come in
two flavors:

– Inner product masking (IPM) [2] is a word-oriented (e.g.,
byte-oriented) masking scheme, equipped with univer-
sal operations (namely addition and multiplication). It is
optimized to resist attacks at both the word-level and bit-
level probingmodel [30], which is suitable for computing
cryptographic algorithms that are subject to high-order
side-channel analysis.

– Direct sum masking (DSM) [5] is a masking scheme
which allows for concurrent side-channel and fault injec-
tion protection. It expresses the masking as the two
encodings of the secret in a code C , and masks in a code
D, respectively. This allows us to recover the information
by decoding from C and to check the masks by decoding
from D.

123

Journal of Cryptographic Engineering (2021) 11:119–133 121

These two protections are presented, one after the other, in
this section.

2.1 Inner product masking

2.1.1 Notations

Computations are carried out in characteristic two finite
fields: F2 for bits andK for larger fields. In practiceK can be
F2l for some l, e.g., l = 8 for AES, and l = 4 for PRESENT.
The elements from K are termed words, and they are also
referred to as bytes when l = 8 and to nibbles when l = 4.
Wedenote+ the addition in characteristic twofieldsK,which
is bitwise XOR. Recall that the subtraction is the same opera-
tion as the addition inK. Elements ofF2 are denoted as {0, 1},
and elements of F2l (as words) are represented as polynomi-
als. In this paper, we use F24

∼= F2[α]/〈α4 + α + 1〉, and
F28

∼= F2[α]/〈α8 + α4 + α3 + α + 1〉 (that of AES).
We recall that linear codes are space vectors, characterized

by their base fieldK, their length n and their dimension k. In
addition, linear codes have parameters traditionally denoted
as [n, k, d], where d is the minimum distance. The dual of a
linear code D is the linear code D⊥ whose code words are
orthogonal to all code words of D. The dual distance d⊥ of a
linear code D happens to be equal to the minimum distance
of D⊥ [23].

Let n be the number of shares in IPM, and the coefficient
vector in IPM is L = (L1, L2, . . . , Ln) where L1 = 1 for
performance reason [2, § 1.2].

Definition 1 (IPM data representation) A word of secret
information X ∈ K is represented in IPM as a tuple of n
field elements:

Z =
(
X +

n∑
i=2

Li Mi , M2, . . . , Mn

)
= XG + MH (1)

where M = (M2, M3, . . . , Mn) is the mask materials, and
G and H are generating matrices of linear codes C and D,
respectively, as shown below:

G = (
1 | 0 0 . . . 0

) ∈ K
1×n, (2)

H =

⎛
⎜⎜⎜⎝
L2 | 1 0 . . . 0
L3 | 0 1 . . . 0
... | 0 0

. . . 0
Ln | 0 0 . . . 1

⎞
⎟⎟⎟⎠ ∈ K

(n−1)×n . (3)

The secret information X can be demasked by inner prod-
uct between two vectors as: X = 〈L,Z〉 = ∑n

i=1 Li Zi .

Finally, we introduce some handy subset notations. Let
Z = (Z1, . . . , Zn) = (Zi)i∈{1,...,n} be a vector. We have:

ZI = (Zi)i∈I for I ⊆ {1, . . . , n}.

For instance, Z{i}∪{k+1,...,n}, for 1 ≤ i ≤ k ≤ n, represents
the (n − k + 1) vector (Zi , Zk+1, Zk+2, . . . , Zn).

2.1.2 Security order regarding side-channel analysis

The security of IPM is stated in the probing model [17]: The
security order is the maximum number of shares which are
independent to masked information. We clarify word-level
and bit-level security orders as follows:

– Word-level (l-bit) security order dw: Since many
devices perform computation on word-level data, byte-
level operations are very common especially on embed-
ded devices. In this paper, we also present instances for
4-bit (nibble) variables for adopting IPMtoprotect imple-
mentation of lightweight cipher like PRESENT, Simon,
Speck, etc.

– Bit-level security order db: In practice, each bit of sen-
sitive variable can be investigated independently and/or
several bits can be evaluated jointly. We consider here
the number of bits that can be probed by attackers in one
time, which is consistent with the bit-level probingmodel
proposed by Poussier et al. [30].

Themain advantage of IPM is the higher bit-level security
order than Boolean masking, which is called “security order
amplification” in [36]. It has been proven in [30] that side-
channel resistance is directly connected to the dual distance
d⊥
D of the code D generated by H. Precisely, the security

order t of IPM is equal to t = d⊥
D − 1 [30].

The dual distance of linear code D is equal to theminimum
distance of the dual code D⊥ [23]. It is easy to see that the
latter has dimension 1 and is generated by a 1 × n matrix:

H⊥ = (
1 L2 L3 . . . Ln

)
. (4)

In order to investigate the bit-level security, the definition of
expansion is introduced as follows.

Definition 2 (Code Expansion) By using subfield represen-
tation, the elements inK = F2l are decomposed into F2, and
we have:

SubfieldRepresentation:

(1, L2, . . . , Ln)2l −→ (Il ,L2, . . . ,Ln)2,
(5)

where Il is the l × l identity matrix in F2 and Li (2 ≤ i ≤ n)
are l × l matrices.

To derive the matrices, we can use that F2l is a field exten-
sion ofF2, and given an irreducible polynomial P overF2 and
denoting each element a ∈ F2l as

∑l−1
i=0 aiα

i [mod P(α)],
replace a by (a0, . . . , al−1). Under the computer algebra sys-
tem Magma [35], P is DefiningPolynomial(F2l) and

123

122 Journal of Cryptographic Engineering (2021) 11:119–133

Fig. 1 Dimensions of (typical) IPM encodings, for n = 2, on l = 8 bits
at byte level

D′ is the representation of D in subfield (SubfieldRepr
esentationCode(D)). If D has parameters [n, k, d]2l ,
then D′ has parameters [nl, kl, d ′]2, where d ′ ≥ d. IPM
opportunistically exploits the fact that this inequality can be
strict, and attempts to maximize the difference d ′ − d.

At word level, we notice that the dual distance of D is
equal to n as long as ∀i, Li �= 0. As a result, the word-level
security order of IPM is dw = n − 1 which is in consistence
with [2]. In addition, security order db at the bit level of
IPM is equal to the dual distance of the code expanded by
D from F2l to F2. A typical example of IPM codes matrices
G = (1, 0) and H = (L2 = α8, 1) in F28 is given in Fig. 1.
The security order at word (byte) level is dw = n−1 = 1 and
at bit level is db = 3 because the dual code of D = span(H)

is generated by (1, L2), which, after projection in F2, has
parameters [16, 8, 4]2.

Moreover, addition and multiplication are proven to be
t = (n − 1)-order secure at word level in [3] using t-SNI
property [4]; thus, theword-level security order ismaintained
by composition. Still, when a variable is reused, cautionmust
be takenwhere a refresh algorithm is always adopted to avoid
dependence. The refresh operation allows us to decorrelate
two copies of a variable that need to be used at two places (to
avoid side-channel flaws as put forward in [14]). However,
IPM cannot detect faults since no redundancy is inserted to
the coding.

2.2 Direct summasking

Direct summasking has been originally introduced as orthog-
onal direct sum masking (ODSM [5]). The secret X is
represented as a bit vector in F

l
2. It is encoded using gen-

erating matrixG (of size l×nl in F2) as a word in Fnl
2 . Some

random masks M, drawn uniformly in F
(n−1)l
2 , are encoded

Fig. 2 Dimensions of (typical) DSM and ODSM encodings (on F2),
for k = 8 bit and n = 16 bit

withmatrixH (of size (n−1)l×nl). After masking the secret
with the mask materials, one gets the protected information:

Z = XG + MH. (6)

The features of the DSM are the following:

– Elements are bits;
– Computation on masked variable Z occurs matricially;
– Side-channel protection is ensured at order d⊥

D − 1;
– Fault detection allows detecting dC − 1 bitflips.

Orthogonal direct sum masking (ODSM) is a particular case
of DSM for which GHT = 0k×(n−k), or said differently, C
and D are mutually dual codes. An illustration of DSM and
ODSM is provided in Fig. 2. In this figure, without loss of
generality, thematricesG andH arewritten in systemic form.
The conditions for C = span(G) and D = span(H) to be
complementary are recalled in the following:

Lemma 1 ([28, Proposition 1]) Let 0 ≤ k ≤ n, and

G = (
Ik P

) ∈ F
k×n
2 and H = (

L In−k
) ∈ F

(n−k)×n
2 .

Then, the following three statements are equivalent:

1.
(
GH

) ∈ F
n×n
2 is invertible;

2. Ik + PLT ∈ F
k×k
2 is invertible;

3. In−k + LPT ∈ F
(n−k)×(n−k)
2 is invertible.

Adetailed comparisonbetweenDSMand IPMis proposed
in Table 1.

123

Journal of Cryptographic Engineering (2021) 11:119–133 123

Table 1 Comparison between (O)DSM and IPM-FD schemes

Features (O)DSM [5] IPM [2] Comments

Objects Bits Words IPM can always be seen as
a DSM scheme by
subfield representation.
Reverse compatibility
only if bit vectors matrix
multiplication can be
promoted in F2l

Operations Matrix product Adapted Ishai-Sahai
-Wagner (ISW) [17]

ISW has been studied
extensively

Side-channel protection d⊥
D − 1 is the protection
order

Same, albeit with two
notions: word and bit
levels

For real-world
(power/electromagnetic)
attacks, bit-level security
is relevant [15]

Fault injection protection dC − 1 bitflips are detected IPM-FD: repetition code
(this paper)

IPM-FD could be
empowered by using a
better or even optimal
code instead of repetition
code

Fig. 3 Commutative diagram of DSM masking scheme with encoding
and decoding

On the contrary to IPM, the matricesG andH do not have
specific form (recall IPM matrices are formatted as Eqn. 2
and Eqn. 3). However, there is no general inverse operation
of “SubfieldRepresentation” (recall Def. 2) for DSM. There-
fore, IPM is a special case ofDSM, but someDSMencodings
(Eqn. 6) cannot be represented as IPM.

ODSM uses orthogonal codes such that recovering M is
straightforward knowing Z: It consists in an orthogonal pro-
jection from space vector Fnl

2 onto D. Actually, the complete
commutative diagram involved in DSM is depicted in Fig. 3.
The operations are explicited below:

– Information vector X is encoded as XG (using linear
application EC), while decoding ofXG intoX is ensured
by the decoding application DC ;

– Similarly, masking random variables M are encoded as
MH (using linear application ED). Decoding ofMH into
M is ensured by the decoding application DD;

– Creating an encoded word Z consists of adding one
code word XG from C to one code word MH from D.
In reverse, projections of Z ∈ F

nl
2 to C (resp. D) are

obtained by linear projection operation ΠC (resp. ΠD).

When C and D are orthogonal, then GHT = 0, the all-
zero l × (n − 1)l matrix. As a result, we have ΠC (Z) =
ZGT(GGT)−1G and ΠD(Z) = ZHT(HHT)−1H as in [5].

This allows for the verification that an attacker who injects
a fault has not corrupted (useless in terms of exploitation) the
masks M. In practice, the attack (addition of a nonzero bit
vector ε ∈ F

nl
2 \{0}) is undetected if andonly if ε ∈ C . Indeed,

otherwise ε has a nonzero component in space vector D, and
the fault injection is detected. The fault detection capability
can be quantified in two models:

1. Assumption 1: The difficulty of the attack is larger if the
number of flipped bits is larger. Thus, undetected faults
ε ∈ C\{0}must have Hamming weights≥ dC , where dC
is the minimum distance of code C .

2. Assumption 2: The attacker can corrupt Z regardless of
the value of ε, but cannot control the value of ε. Said
differently, ε is a random variable uniformly distributed
in F

nl
2 \{0}. This fault is undetected provided ε ∈ C\{0}.

As C has dimension l, the cardinality of C\{0} is 2l − 1.
Therefore, the probability that the fault is not detected

equals 2l−1
2nl−1

≈ 2−l(n−1). This number is independent
from the code C , but depends on code D.

Thus, the probability of undetected faults gets lower as l
and n increase. However, this approach has three drawbacks:

– First of all, the masks used in ODSM remain unchanged
during each call of cipher, which allows fault detection.
But the “static” masks may pose a vulnerability since
masks should be refreshed to avoid unintended depen-
dencies between sensitive variables.

123

124 Journal of Cryptographic Engineering (2021) 11:119–133

– Secondly, it allows only to check errors on states Z, but
not during nonlinear computations (which are tabulated,
i.e., operations on Z consist in lookup table accesses).
From a hardware point of view, this means that ODSM
allows us to detect faults in sequential logic (e.g., register
banks, RAM, etc.), but not in combinational logic (e.g.,
logic gates or ROM).

– Thirdly, during verification, that is, the projection ofZ+ε

in space vector D, the state Z is manipulated; hence,
additional leakage is produced, which must be taken into
account in the security evaluation of ODSM represen-
tation (Eqn. 6). This is the reason we suggest detecting
faults at the very end (end-to-end fault detection), like
after encryption or decryption.

The first two points are structural weaknesses and will be
fixed in Algorithm 1, starting from Sect. 3. For the third one,
some codes suitable for DSM are constructed by Carlet et al.
in [6] by duplicating the masks M, while this solution does
not allow an end-to-end scheme.

3 Novel end-to-end fault detection scheme

3.1 Rationale

The core idea in our new scheme is to duplicate (two or more
times) the secret X , rather than duplicating masks M as in
[6], so that it can be checked at the end (when it is no longer
sensitive–e.g., a ciphertext is a non-sensitive variable, so as
the plaintext).

Our new scheme is a IPM-like masking scheme, called
IPM-FD. Since IPM is a promising high-order masking
scheme, we extend it with fault detection capability so that
it can resist both side-channel analysis and fault injection
attacks simultaneously. Specifically, we represent the infor-
mation as a vector (X1, X2, . . . , Xk) ∈ K

k where K = F2l .
We propose the new encoding as follows. Let us denote:

Definition 3 (IPM-FD data representation) Let Xi ∈ K be
the k copies of secret information; then, the encoding is rep-
resented as a tuple of n elements in K:

Z = (X1, X2, . . . , Xk︸ ︷︷ ︸
secrets

X) G + (Mk+1, . . . , Mn︸ ︷︷ ︸
masks

M) H

= (Z1, Z2, . . . , Zn), (7)

where

G = (Ik || 0) ∈ K
k×n,

H = (L || In−k) ∈ K
(n−k)×n,

Fig. 4 Dimensions (typical) of IPM-FD encodings, for n = 3, k = 2
and l = 8 bits

where Ik is the k × k identity matrix in K, and L is a matrix
of size (n − k) × k, that is,

L has coefficients (Li, j)k<i≤n,1≤ j≤k .

This definition 3 is a generalization of Def. 1. In practice,
we will call Eqn. 7 with redundancy to detect faults in the
information X , i.e., (X1, X2, . . . , Xk) = (X , X , . . . , X), as:

Z = (X , X , . . . , X)G + (Mk+1, . . . , Mn)H. (8)

For the sake of convenience, the IPM-FD encoding used
in this paper is depicted in Fig. 4. It illustrates a protection
using n = 3 shares of l = 8bits, with the following security
features:

– dw = 1 (first-order secure at byte level), because dual
distance of H in F28 is 2;

– db = 3 (third-order secure at bit level), since the dual
distance of the optimal H over F2 is 4—the subfield
representation (by Def. 2) of the dual code H⊥ spawn
by

(
1 L2 L3

)
has parameters [24, 8, 4]2 where we take

L2 = α8 and L3 = α17 as optimal parameters (from an
exhaustive search over all possible candidates of L2 and
L3 over F28) in this case (Fig. 4).

Computation can be carried out on such Z, and when it is
over (e.g., the complete AES is finished), the implementation
can check whether the k copies of the information are the
same. This allows us to detect up to (k−1) errors (there is an
error if the k copies are not equal to each other). It is worth
noting that this model is stronger than the one in ODSM
where only errors ε with Hamming weight wH (ε) > dC are
detected in ODSM.

123

Journal of Cryptographic Engineering (2021) 11:119–133 125

Repeating X k times may increase the signal captured
by the attacker by a factor k; however, it is irrelevant
to security order. Indeed, there is more signal, but it
is correlated; therefore, it has no impact on the amount
of information. Notice that, as a future extension, one
might consider an encoding of information X which is
more efficient in terms of rate than the simple k-times
repetition code X �→ (X , . . . , X). However, such rep-
resentation in Eqn. 8 allows for an end-to-end security
protection against fault injection attacks, as illustrated in
Algorithm 1.

For fault detection, either Algorithm 1 is started from
scratch, or other actions, such as event logging for subse-
quent analysis (aiming at taking proactive actions to plug
this leak), are triggered off. It is obvious that detecting
fault in each intermediate phase can be carried out at
any place in Algorithm 1, especially during step 5. How-
ever, such precaution is superfluous, as an overall check
is done at the end, that is, at line 8. In addition, interme-
diate checks would disclose when the fault occurs (e.g.,
at which round), which delivers precious feedback to the
attacker regarding the accuracy and the reproducibility of
the setups.

Algorithm 1: End-to-end protection of a cryptographic
algorithm (here AES-128) against fault injection attacks
using IPM-FD scheme

input : Plaintext X ∈ F
16
28
, key K ∈ F

16
28
, and number of detected

faults d f = k − 1, number of shares n = dw + 1,
bit-level security order db = d⊥

D − 1
output: Ciphertext, or ⊥ if a fault has been detected

1 The matrices G and H (corresponding to code C and D,
respectively) are determined with respect to the requirements on
side-channel and fault protection dw, db and d f

2 M ←R F
16×(n−k)
28

3 Z ← (X , . . . , X)G + MH // Recall Eqn. 8
4 …
5 Arithmetic operations for the (secure) computation, using
Lagrange interpolation polynomial. This includes additions
(Algorithm 2) and multiplications (Algorithm 4)

6 …
7 (X1, . . . , Xk) ← ΠC (Z) // Recall ΠC (Z) in Fig. 3
8 if X1 = . . . = Xk then
9 return X1

10 else
11 return ⊥

Therefore, the design of IPM-FD scheme for a specific
cryptographic algorithm can be simplified to select good
parametersG andH, which is corresponding to choose good
codes for IPM-FD.We first show how to perform basic oper-
ations in the next subsection.

3.2 Computing with representation of IPM-FD

First of all, we present one instance of IPM-FD with k = 2
to clarify its encoding. We denote X = (X1, X2) ∈ K

2, and
M = (M3, . . . , Mn) ∈ K

n−2. Thus, we have Eqn. 7 such
that,

G =
(

1 0 | 0 0 . . . 0
0 1 | 0 0 . . . 0

)
,

H =

⎛
⎜⎜⎜⎝
L3,1 L3,2 | 1 0 . . . 0
L4,1 L4,2 | 0 1 . . . 0

...
... | 0 0

. . . 0
Ln,1 Ln,2 | 0 0 . . . 1

⎞
⎟⎟⎟⎠ ,

or said differently, we have Z = (Z1, . . . , Zn) ∈ K
n which

is equal to:

Z1 = X1 + L3,1M3 + L4,1M4 + . . . + Ln,1Mn

Z2 = X2 + L3,2M3 + L4,2M4 + . . . + Ln,2Mn

Zi = Mi for 3 ≤ i ≤ n

Here, we can see that (Z1, Z3, . . . , Zn) ∈ K
n−1 and

(Z2, Z3, . . . , Zn) ∈ K
n−1 are two IPM sharings [2]. There-

fore, we have k = 2 ways to demask:

〈L1,Z〉 = X1 = X , and 〈L2,Z〉 = X2 = X ,

where as a convention, L1,1 = L2,2 = 1, L1,2 = L2,1 = 0
and

L1 = (
Li,1

)
1≤i≤n ∈ K

n, and L2 = (
Li,2

)
1≤i≤n ∈ K

n .

It is known that universal computation can be achieved
by Lagrange interpolation, which only requires addition and
multiplication. Hereafter, we present three basic algorithms,
with the most general case (k words of information and
scalable with different k) used to build a complete masked
cryptographic implementation.

3.2.1 Secure addition of IPM-FD

With Eqn. 8, we denote encoding of X and X ′ by Z and Z′,
respectively; thus, the addition is linear and can be calculated
straightforwardly as in Algorithm 2.

3.2.2 Secure refresh algorithm for IPM-FD

As suggested in [31], we need to apply a refresh algorithm
after each squaring operation to keep independence between
masks (Algorithm 4 with Z = Z′). The algorithm for the
refresh of IPM-FD is given in Algorithm 3. Notice that this

123

126 Journal of Cryptographic Engineering (2021) 11:119–133

Algorithm 2: Secure addition in IPM-FD
input : Two sets of scalar tuples X = (X1, . . . , Xk) and

X′ = (X ′
1, . . . , X

′
k) shared as:

– Z = (Z1, . . . , Zn) = (X1 + ∑n
i=k+1 Li,1Mi , . . . , Xk +∑n

i=k+1 Li,kMi , Mk+1, . . . , Mn) ∈ K
n ,

– Z′ = (Z ′
1, . . . , Z

′
n) = (X ′

1 + ∑n
i=k+1 Li,1M ′

i , . . . , X
′
k +∑n

i=k+1 Li,kM ′
i , M

′
k+1, . . . , M

′
n) ∈ K

n .

output: A sharing R = (R1, . . . , Rn) ∈ K
n such that, for all j

(1 ≤ j ≤ k),
〈R{ j}∪{k+1,...,n},L{ j}∪{k+1,...,n}, j 〉 = X j + X ′

j

1 R = (Z1 + Z ′
1, . . . , Zn + Z ′

n)

2 return R

algorithm can be computed in place, meaning that the output
overwrites the input.

Algorithm 3: IPM-FD refresh algorithm
input : Let k < n. One IPM-FD sharing

Z = (X1, . . . , Xk) G + (Mk+1, . . . , Mn) H, as defined
in Eqn. 7

output: An equivalent IPM-FD sharing
Z′ = (X1, . . . , Xk) G + (M ′

k+1, . . . , M
′
n) H, where

(Mk+1, . . . , Mn) is independent from (M ′
k+1, . . . , M

′
n).

1 Z′ ← Z // When computed in-place, Z′ is not
needed.

2 for i ∈ {k + 1, . . . , n} do
3 ε ←R K // Fresh random variable
4 Z ′

i ← Z ′
i + ε

5 for j ∈ {1, . . . , k} do
6 Z ′

j ← Z ′
j + Li, j ε

7 return Z′ ∈ K
n .

3.2.3 Secure multiplication of IPM-FD

Secure multiplication can be achieved by selecting only one
among the k first coordinates, while keeping the (n − k)
masks, andmultiplying (n−k+1) shares byusing the original
IPM multiplication. Therefore, multiplication of IPM-FD is
implemented in Algorithm 4.

Multiplication is repeated k times on shares in K
n−k+1,

and the resulting P[j] ∈ K
n−k+1 for j ∈ {1, . . . , k} are

applied from line 4 to line 6 as in Algorithm 4 to homogenize
masks in (k − 1) sharings with the same masks as P[1].

We refer to line 4 to line 6 of Algorithm 4 as the homog-
enization algorithm used to merge the results P[j] where
1 ≤ j ≤ k. Thus, we have the following lemma, which
applies to non-redundant sharings such as that of Eqn. 1.

Lemma 2 (Homogenization of two sharings) Let Z =
(Z1, . . . , Zn) and Z′ = (Z ′

1, . . . , Z
′
n) be two sharings that

〈L,Z〉 = X and 〈L ′,Z′〉 = X ′. There exists an equivalent

Algorithm 4: Secure multiplication of IPM-FD with k
pieces of information
input : Two sets of scalar tuples X = (X1, . . . , Xk) and

X′ = (X ′
1, . . . , X

′
k) shared as:

– Z = (Z1, . . . , Zn) = (X1 + ∑n
i=k+1 Li,1Mi , . . . , Xk +∑n

i=k+1 Li,kMi , Mk+1, . . . , Mn) ∈ K
n ,

– Z′ = (Z ′
1, . . . , Z

′
n) = (X ′

1 + ∑n
i=k+1 Li,1M ′

i , . . . , X
′
k +∑n

i=k+1 Li,kM ′
i , M

′
k+1, . . . , M

′
n) ∈ K

n .

output: A sharing P = (P1, . . . , Pn) ∈ K
n such that, for all j

(1 ≤ j ≤ k), 〈P{ j}∪{k+1,...,n},L{ j}∪{k+1,...,n}, j 〉 = X j · X ′
j

1 for j ∈ {1, . . . , k} do
2 P[j] ← IPMult(Z{ j}∪{k+1,...,n}, Z ′{ j}∪{k+1,...,n}) // IPMult

is Algorithm 5 of [2]
3 Let us write P[j] as (Pj , Nk+1, j , . . . , Nn, j), where

Pj = X j X ′
j + ∑n

i=k+1 Li, j Ni, j ∈ K

4 for j ∈ {2, . . . , k} do // Masks homogenization
between P[1] and P[j]

5 for i ∈ {k + 1, . . . , n} do
6 Pj ← Pj + Li, j (Ni,1 + Ni, j)

// (Pj , Nk+1,1, . . . , Nn,1) is a sharing of X j X ′
j

by (n − k) masks of P[1]
7 return P = (

P1, . . . , Pk , Nk+1,1, . . . , Nn,1
) ∈ K

n .

sharing Z′′ and an algorithm to transform Z′ into Z′′ such
that Z and Z′′ share all coordinates but the first one.

Proof We apply a pivot technique to Z′′. Let ε ∈ K. We
notice that the new sharing Z′′ = Z′ + (L ′

2ε, ε, 0, . . . , 0)
also represents the same unmasked value as Z′ does. Indeed,
〈L ′, Z ′〉 = X ′, and 〈L ′, (L ′

2ε, ε, 0, . . . , 0)〉 = L ′
2ε + L ′

2ε =
0. By choosing ε = Z′

2 + Z2, we get for Z′′:

Z′′ = (Z ′
1 + L ′

2(Z
′
2 + Z2), Z2, Z

′
3, . . . , Z

′
n).

Therefore, Z′′ now has the same the second share (coordi-
nate at position 2) with Z. The complete homogenization
is thus the repetition of this process for all the coordinates
i ∈ {2, . . . , n}. Notice that this algorithm does leak informa-
tion neither onZ nor onZ′, since it consists only of additions
of masks to a sharing from an independent sharing. It is akin
to a refresh procedure albeitwhere the newmasks are actually
a compensation ofZ′ masks by those ofZ, while keeping the
masking invariant of Eqn. 1. Actually, it is a refresh algorithm
using the masks of the difference Z ⊕ Z′. ��

By using Algorithm 1, one can start with plaintext and key
representation as Eqn. 8 and carry addition/multiplication
(and refresh if needed) to implement any cryptographic algo-
rithms like AES and end up with a ciphertext still with the
form as Eqn. 8. Hence, verification can be done only at the
very end. Another advantage of IPM-FD is its scalability, by
choosing different values of k and n.

123

Journal of Cryptographic Engineering (2021) 11:119–133 127

4 Security analysis of IPM-FD and optimal
codes selection

The security level of IPM-FD can be characterized by three
metrics, namely word-level security order dw, bit-level secu-
rity order db and number of detected faults d f (for instance,
if the number of faulted words is smaller than d f + 1, then
the fault will be detected). In this section, we show the secu-
rity order of IPM-FD and how to choose optimal codes by
interpreting IPM-FD as a coding problem.

4.1 Security of fault detection

We assess the security of IPM-FD against fault injection
attacks in a coding theoretic approach. Assume a code of
parameters [n, k, d]q over Fq ; there are three kinds of attack-
ers in the state of the art:

– An attacker which can corrupt one to d − 1 symbols
(elements of field Fq). We assume here that faulting two
symbols is somehowmoredifficult than faultingone sym-
bol, etc. It is all the more difficult to fault, for the attacker,
as more symbols must be corrupted simultaneously.

– An attacker which can randomly change a code word to
a different one, which may not be a valid code word. We
assume that the attacker has no control over the faulted
value and if the faulted value is a valid code word, then
the fault cannot be detected.

– An attacker which can choose the error ε that best suits
him. In this scenario, the attacker will choose ε which
maximizes her advantage, on replacing all code words z
by z + ε. This model assumes a much stronger attacker,
but it does not always represent a realistic use case as the
requirements (costs) are quite high. This model has been
promoted initially by Mark Karpovsky et al. [18–20],
who also proposed robust codes and algebraic manipula-
tion detection (AMD) codes.

Accordingly, the probabilities to detect a fault in those three
cases are:

– 100% for the first case when the number of faulted sym-
bols < d. But this holds only if the verification can be
done on each and every code word, which is not the case
for us (we check only at the very end). Thus, we cannot
claim any security level when chaining operations.

– 1 − 2k−n for the second case. This detection rate is also
valid end to end (i.e., with verification delayed on the
ciphertext). Indeed, there are two cases: either the fault
replaces a codewordwith a valid codeword, and this will
not be detected, neither by checking right on the targeted
code word nor later on. Same reasoning otherwise: If the
fault replaces a code word by a non-code word, then the

non-code word will keep being a non-code word after
all the operations (and we do not consider double faults
here). Therefore, detection (in code or not) can be carried
out at any point in time after the fault has been injected.

– 1−|C ∩ (C + ε)|/|C | for the third case. Same reasoning
as for the second case—this metric will stay unaltered
throughout the computation.

In our IPM-FD setup, we support the last two models.
Since we use the repetition code in IPM-FD, the minimum
distance of the linear code C is dC = k. Hence, the security
in sense of fault injection attack is now assessed with respect
to number of detected faults as:

d f = k − 1. (9)

It is obvious that any faults can be detected if the k copies of
results are inconsistent.

4.2 Security order of IPM-FD on SCA resistance

The addition and refresh algorithms are secure since there is
no degradation on masks; we focus on multiplication algo-
rithm Algorithm 4, and we have the following Theorem 1.

Theorem 1 The multiplication of IPM-FD in Algorithm 4 is
d⊥
D − 1-order secure.

Proof The k times of IPMult multiplications at line 2 are
secure at (n − k)th order [2]. After their application, the
k shared variables P[j], 1 ≤ j ≤ k, are masked by Ni, j

(k + 1 ≤ i ≤ n, 1 ≤ j ≤ k) that are (n − k) × k uniformly
distributed and i.i.d. random variables.

At step 6, indexed by i (k + 1 ≤ i ≤ n), the contents of
Pj are:

Pj = X j X
′
j +

⎛
⎝ i∑

i ′=k+1

Li ′, j Ni ′,1

⎞
⎠ +

⎛
⎝ n∑

i ′=i+1

Li ′, j Ni ′, j

⎞
⎠ .

(10)

It is easy to see that any combinations of intermediate
variations with mixed variables masked by Ni, j and Ni, j ′ ,
for j �= j ′, require more intermediate values to be probed
than strategies which focus on a given Ni, j (for a given j).

The key-dependent variables which are only in Pi,1 (since
homogenization process consists in turning Ni, j into Ni,1)
are those at:

– line 2: X1X ′
1 + ∑n

i=k+1 Li,1Ni,1, and the (n − k) masks
Ni,1 (k + 1 ≤ i ≤ n);

– line 6: for i = n, Pj = X j X ′
j + ∑n

i=k+1 Li, j Ni,1.

123

128 Journal of Cryptographic Engineering (2021) 11:119–133

Finally, those shares are combined in an orderly manner as
P (line 7). Together, they have the shape:

P = (X1, . . . , Xk)G + NH,

where N = (Nk+1,1, . . . , Nn,1) ∈ K
n−k is a uniformly dis-

tributed tuple of i.i.d randomvariables. Since d⊥
D−1 columns

of H are independent [22, Theorem 10], which means if the
attacker probes up to d ≤ (d⊥

D − 1) variables, the secret X j

encoded as an element of Fn−k+1
2l

is perfectly masked. The

security order of Algorithm 4 is (d⊥
D − 1). ��

In summary, the security order at word-level dw and bit-
level db of IPM-FD corresponds to (d⊥

D −1) at word level and
(d⊥′

D − 1) bit level (by Code Expansion defined in Def. 2),
respectively. In particular, the maximum word-level security
order dw is (n − k), since d⊥

D ≤ (n − k + 1) from singleton
bound [34], with equal if and only if d⊥

D is maximized.

4.3 Choosing optimal codes for IPM-FD

Two security orders dw and db are connected to dual distance
of D at word level and bit level, by encoding Eqn. 7 and
Eqn. 8. Thus, we can search for minimal n satisfying the
given requirements on the three parameters d f , dw and db.
Since the best db is very difficult to obtain, we first search for
codes given d f and dw and then find the best one with respect
to optimal db. For the first step, Algorithm 5 is adopted for
selecting codes with minimal n given d f and dw. In this
algorithm, BKLC is short for “best known linear code.”

Algorithm 5: Selecting codes given d f and dw.
input : l for K = F2l , d f for number of detected faults and dw

for word-level side-channel security
output: the minimal n satisfying the requirements

1 n ← dw // n is at least the minimum distance

of the code generated by H⊥
2 while MinimumDistance([BK LC(GF(2l), n, d f + 1)] < dw) 1

do
3 n ← n + 1

4 return n

The second step is to choose the best code with maxi-
mal bit-level security order db. We propose Algorithm 6 to
select optimal codes with maximized db. Notice that this
algorithm 6 is conceptual, as in line 3, it is not possible in
practice to enumerate all codes. This line is to be understood
according to either some algebraic code construction (para-
metric design pattern, greedy algorithm, etc.) or code random

1 BKLC is the short of the best known linear code in Magma [35].

choice (using genetic algorithms, random generating matri-
ces, etc.).

Algorithm 6:Choosing optimal codes with maximal db.
input : l for K = F2l , d f for number of detected faults, dw for

word-level side-channel security and number of shares n
output: the maximal db and optimal code D

1 db ← dw // Security order at bit-level is
greater than word-level

2 Dopt ← null
3 forall the code D = [n, d f + 1, dw + 1]2l do // Conceptual
4 D2 ← SubfieldRespresentation(D,GF(2))
5 if db < MinimumDistance(D2) then
6 db ← MinimumDistance(D2)
7 Dopt ← D

8 return db, Dopt

We present some examples for codes in F28 in Table 2 (for
F24 in Table 5, resp) calculated by Magma for small k and n.
Interestingly, we compare the original IPMand IPM-FDwith
n and n+1 shares, respectively, since in IPM-FD redundancy
is needed for fault detection. For IPM with n = 3, we have
optimal parameters dw = 2 and db = 5, while for IPM-FD
with n = 4, k = 2, the optimal dw and db are dw = 2 and
db = 4. Hence, there is a trade-off for fault detection, which
sacrifices the bit-level side-channel resistance. For instance,
for k = 2, we can detect one error.

We recall that the security order of IPM at bit level is given
by the minimum distance of the code generated by H⊥ =
(1, L2, . . . , Ln) (projected from K = F2l to the binary
ground field F

l
2). Now, adding fault detection capability, the

security order of IPM-FD becomes that of the minimum
distance of the code generated by Eqn. 11. However, the

Table 2 Instances of codes with X ∈ K = F28 , db in IPM entries are
consistent with results provided in [30]

Inputs Outputs of Algorithms 5 and 6

#faults d f dw n db Setting

IPM 0 0 1 0 H⊥ = (
1
)

0 1 2 3 H⊥ = (
1 α8

)
0 2 3 7 H⊥ = (

1 α8 α26
)

0 3 4 102 H⊥ = (
1 α8 α26 α17

)
IPM-FD 1 0 2 0 H⊥ =

(
1 0
0 1

)

1 1 3 3 H⊥ =
(
1 0 α8

0 1 α17

)

1 2 4 6 H⊥ =
(
1 0 α8 α20

0 1 α27 α7

)

In Table 2, the maximal db for IPM codes with n = 4 shares in F28 is
only 10 (d⊥

D = 11), not 11 as shown in [30]

123

Journal of Cryptographic Engineering (2021) 11:119–133 129

minimum distance of this code is less than that generated by
either (1, L3,1, L4,1, . . . , Ln,1) or (1, L3,2, L4,2, . . . , Ln,2).

H′⊥ =
(
1 0 L3,1 L4,1 . . . Ln,1

0 1 L3,2 L4,2 . . . Ln,2

)
. (11)

4.4 Comparison between IPM-FD and Boolean
masking with fault detection

We recall that, in the state of the art about masking counter-
measures, Boolean masking (BM, [25, §4]) is presented as a
particularly convenient masking scheme, since sharing and
demasking only involve XOR operations. In contrast, IPM,
in addition to field additions (XORs), is furthermore encum-
bered with field multiplication with constants (the Li ∈ K

values). This makes implementations more complex on pro-
gramming (code size) and less efficient to implement. In
practice, BM is thus a particular case of IPM, where all coef-
ficients Li = 1 ∈ K.

Still, one historical advantage of IPM over BM, which ini-
tially justified for the scheme, is that, at a given side-channel
security order at word level, IPM is more efficient at bit level
(e.g., when the leakage model is the Hamming weight or the
Hamming distance).

Now, in this paper, we put forward a second advantage of
IPM, in the context of fault detection (FD). Table 3 compares
IPM-FD with BM-FD in this respect. It clearly appears that
fault detection is not straightforward in BM-FD, whereas it is
for IPM-FD. As an example, when detecting one single fault
(d f = 1), and targeting a second-order protection in terms of
word-level side-channel, IPM-FD manages to reach dw = 2
with only n = 4 shares, thanks to:

H⊥ =
(
1 0 α8 α20

0 1 α27 α7

)
∈ F

2×4
28

.

However in Boolean masking scheme counterpart (i.e., in
BM-FD), it is not possible to reach a minimum distance for
H⊥ of value = 3 with a code length n = 4. Indeed, in
systematic form, it would look as:

H⊥ =
(
1 0 ? ?
0 1 ? ?

)
.

Now, as the minimum distance is 3, the weight of each line
must be 3. Therefore, all 2+ 2 question marks (“?” symbol)
must be nonzero, that is, equal to 1 (in the case ofBM).Hence,
the difference between the two lines is equal to

(
1 1 0 0

)
,

which has a weight = 2, therefore a contradiction. However,
let us notice that the problem can be solved by considering a
length extended by one, that is:

H⊥ =
(
1 0 ? ? ?
0 1 ? ? ?

)
,

Table 3 Comparison of dw , db
between IPM-FD and BM-FD
(Boolean masking with fault
detection) for X ∈ K = F28 , and
for dw ∈ {1, 2, 3}. Note that
here we set d f = 1 (meaning
k = 2) for a fair comparison

dw IPM-FD BM-FD

n db n db

0 2 0 2 0

1 3 3 3 1

2 4 6 5 2

where among the three question marks in one line, at least
two are nonzero (= 1). Knowing that the constraint is not
only to have the number of ones ≥ 3 in each line, but also in
the sum of the two lines, we can use:

H⊥ =
(
1 0 0 1 1
0 1 1 1 1

)
∈ F

2×5
28

.

But its length is n = 5, i.e., larger by one unit compared to
IPM case, where constants can be chosen arbitrarily in the
whole F256 and not only in {0, 1} ⊂ F256.

Summarizing up, as shown in Table 3, the IPM-FD is bet-
ter than BM-FD in two aspects given the same d f . Firstly,
IPM-FD needs less shares than BM-FD when achieving the
same word-level security order (denoted in red bold font in
Table 3). Secondly, the bit-level security order in IPM-FD
is much higher than in BM-FD given the same dw (denoted
in black bold font in Table 3). It is worthy noting that the
advantages of IPM-FD over BM-FD become much larger
when the number of shares increases. However, in order to
find the good or even optimal codes for IPM-FD, it is neces-
sary to turn to DSM scheme.

5 Practical implementation and
performances

We implement IPM-FD scheme on AES-128 based on
(thanks to) open-source implementation of masked AES by
Coron et al. [12,13]. All the computations are made with
additions,multiplications and lookups in somepre-computed
tables. The randomnumber generator comes from the https://
libsodium.gitbook.io/ Sodium library [16]. Each sensitive
variable (16×(10+1) subkeys from theKey Schedule routine
and 16 bytes in state array) ismasked into n shares using n−k
random bytes. In particular, regarding nonlinear operations,
the S-box of amasked value is computed online instead of the
256-sized table, where its polynomial expression obtained
via Lagrange interpolation is:

x ∈ F28 �→ 63 + 8fx127 + b5x191 + 01x223 + f4x239

+ 25x247 + f9x251 + 09x253 + 05x254.

After demasking a shared variable, we check that the data
have no faults injected by comparing the k copies and raising

123

https://libsodium.gitbook.io/
https://libsodium.gitbook.io/

130 Journal of Cryptographic Engineering (2021) 11:119–133

Table 4 Performance
comparison of IPM-FD with and
without fault detection. Speed is
the runtime in milliseconds
averaged over 1000 runs on a PC
with 2.8GHz 6-core processor,
and random is the number of
generated random bytes when
masking and refreshing

Security order IPM (baseline) Two consecutive executions of IPM IPM-FD k = 2

dw = 1 n = 2 (db = 3), n = 2 (db = 3), n = 3 (db = 3),

speed = 1.52, speed = 3.04, speed = 2.93,

random = 1936 random = 3872 random = 3856

dw = 2 n = 3 (db = 7), n = 3 (db = 7), n = 4 (db = 6),

speed = 2.25, speed = 4.50, speed = 4.31,

random = 5152 random = 10304 random = 10272

an alarm if any fault is detected. Our implementation works
for any n ≥ k. Specially, for n < 5 and k < 3 we choose the
best known linear code (BKLC) D obtained with Magma;
otherwise, we randomly generate a matrix for masking.

Our implementation of IPM-FD on AES (in C) is publicly
available [9]. Furthermore, the optimal linear codes for IPM
by an exhaustive study are available [10].

5.1 Performance evaluation

We make a comparison for the same security order at word
level, between:

– No fault detection (classic IPM, k = 1)—this is our ref-
erence

– Single fault detection by temporal redundancy (repeat
twice the IPM computation)

– Single fault detection embedded into IPM (so-called
IPM-FD for k = 2)

Performance-wise, Table 4 shows that two fault detection
strategies (temporal repetition and IPM-FD) are at essentially
the same cost.

But if we consider the most time-consuming operation—
the field multiplication: the number of field multiplications
in IPM on n shares (Algorithm 5 of [2]) is 3n2−n. However,
the number of multiplications in IPM-FD on n shares is:

– k(3(n − k + 1)2 − (n − k + 1)) regarding the k IPM
multiplications on n − k + 1 shares,

– (k − 1)(n − k) regarding the (k − 1) homogenizations.

Hence, a total complexity of k(3(n − k + 1)2 − (n − k +
1)) + (k − 1)(n − k) is:

– 3n2 − n for IPM-FD with k = 1,
– 6n2 − 13n + 6 for IPM-FD with k = 2.

Now, we have that 2× (3n2−n) > 6n2−13n+6, which are
shown in Fig. 5. Therefore, it ismore interesting, complexity-
wise, to use IPM-FD for k = 2 than repeating a computation
twice.

Fig. 5 Comparison of number of field multiplications in terms of n,
where k = 1 for IPM and k = 2 for IPM-FD, respectively

Notice that temporal redundancy is prone to fault injection
attacks [29,32],whereby an attackerwould reproduce exactly
the same fault on the repeated executions. Therefore, our
IPM-FD is intrinsically stronger against fault attacks, at the
same cost in terms of execution speed.

6 Conclusion and perspectives

IPM shows an advantageous property—higher security order
at bit level db than at word level—as a promising alterna-
tive to Boolean masking. In this paper, we propose a novel
end-to-end fault detection scheme called IPM-FD, which is
a IPM-like scheme to detect faults by redundancy on secrets
rather than onmasks. The IPM-FD is also a unified scheme to
resist side-channel analysis and fault injection attack simul-
taneously. We also present an example by applying IPM-FD
to AES and provide a comparison on performance with dif-
ferent settings.

As a perspective, we notice that the performances of both
IPM and IPM-FD can be improved by choosing small (or
sparse) values for Li, j ∈ K scalars. This strategy is similar
to that already employed by Rijndael inventors, for instance
when designing the MixColumns operation. This raises the

123

Journal of Cryptographic Engineering (2021) 11:119–133 131

question of finding codes with sparse matrices of high dual
distance.

Secondly, we show in Tables 2, 5 and 6 for results by
an exhaustive study, which is very time-consuming and even
impossible to find the optimal onewhen the number of shares
n gets larger. Hence, a systematic (e.g., algebraic) construc-
tion of better codes than mere repetition codes is much more
preferable and could be leveraged. However, it is still an open
problem to construct optimal or suboptimal codes for IPM-
FD. One possible approach is to convert some constructions
[6] in DSM to IPM-FD which needs further study.

Besides, we notice that our fault detection paradigm
applies also to the case of Boolean masking, i.e., IPM,
where all constants Li, j are equal to 1, which can also
enable enhancements of currently deployed software code
with respect to detection of perturbations.

Acknowledgements This work has been partly financed via the project
TeamPlay (https://teamplay-h2020.eu/), a project from European
Union’s Horizon2020 research and innovation program, under grant
agreementNo. 779882, and also supported bySECODE project (https://
secode.telecom-paristech.fr/) under grant No. ANR-15-CHR2-0007
funded by the CHIST-ERA program and coordinated by ANR.

An optimal codes for IPM-FDwith k = 2

ByusingMagma [35],we present some instances for IPM-
FD with k = 2, in particular K = F24 in Table 5 and
K = F2 in Table 6, respectively. Interestingly, we notice
that for K = F2 the best minimum distance of H⊥ is equal
to BKLC(GF(2), n, 2), where n is the same as in Table 6.

Table 5 Examples with
K = F24 , db and dw are
side-channel security orders at
bit level and word level,
respectively

Inputs Outputs of Algorithms 5 and 6

#faults d f dw n db Setting

IPM 0 0 1 0 H⊥ = (
1
)

0 1 2 2 H⊥ = (
1 α5

)
0 2 3 5 H⊥ = (

1 α5 α10
)

0 3 4 7 H⊥ = (
1 α5 α9 α13

)
0 4 5 9 H⊥ = (

1 α5 α9 α12 α1
)

0 5 6 11 BKLC(GF(2), 4 ∗ 6, 4) � [24, 4, 12]
IPM-FD 1 0 2 0 H⊥ =

(
1 0
0 1

)

1 1 3 2 H⊥ =
(
1 0 α5

0 1 α10

)

1 2 4 4 H⊥ =
(
1 0 α5 α11

0 1 α11 α4

)

123

https://teamplay-h2020.eu/
https://secode.telecom-paristech.fr/
https://secode.telecom-paristech.fr/

132 Journal of Cryptographic Engineering (2021) 11:119–133

Table 6 Examples with
K = F2, dw and db are security
orders at word level and bit
level, respectively. In this case,
the same codes can also be used
in BM-FD, while BM-FD is
defined over K = F2l

Inputs Outputs of Algorithm 5 and Algorithm 6

#faults d f dw n db Setting

IPM 0 0 1 0 H⊥ = (
1
)

0 1 2 1 H⊥ = (
1 1

)
0 2 3 2 H⊥ = (

1 1 1
)

0 3 4 3 H⊥ = (
1 1 1 1

)
0 4 5 4 H⊥ = (

1 1 1 1 1
)

0 5 6 5 H⊥ = (
1 1 1 1 1 1

)
0 6 7 6 H⊥ = (

1 1 1 1 1 1 1
)

0 7 8 7 H⊥ = (
1 1 1 1 1 1 1 1

)
0 8 9 8 H⊥ = (

1 1 1 1 1 1 1 1 1
)

0 9 10 9 H⊥ = (
1 1 1 1 1 1 1 1 1 1

)
IPM-FD (BM-FD) 1 0 2 0 H⊥ =

(
1 0
0 1

)

1 1 3 1 H⊥ =
(
1 0 1
0 1 1

)

1 2 5 2 H⊥ =
(
1 0 1 1 0
0 1 1 1 1

)

1 3 6 3 H⊥ =
(
1 0 1 1 0 1
0 1 1 1 1 0

)

1 4 8 4 H⊥ =
(
1 0 1 1 0 1 0 1
0 1 1 1 1 0 1 0

)

1 5 9 5 H⊥ =
(
1 0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 0 1

)

References

1. Ali, Subidh, Mukhopadhyay, Debdeep, Tunstall, Michael: Differ-
ential fault analysis ofAES: towards reaching its limits. J. Cryptogr.
Eng. 3(2), 73–97 (2013)

2. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revis-
ited. In: Elisabeth, O., Marc F., editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
Lecture Notes in Computer Science, pp 486–510. Springer, (2015)

3. Balasch, J., Faust, S., Gierlichs, B., Paglialonga, C., Standaert, F.-
X.: Consolidating inner product masking. In: Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture
Notes in Computer Science, pp. 724–754. Springer, (2017)

4. Barthe,Gilles, Belaïd, Sonia,Dupressoir, François, Fouque, Pierre-
Alain, Grégoire, Benjamin: Compositional verification of higher-
order masking: application to a verifying masking compiler. IACR
Cryptol. ePrint Arch. 2015, 506 (2015)

5. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.:
Orthogonal direct summasking—asmartcard friendly computation
paradigm in a code,with builtin protection against side-channel and
fault attacks. In: David Naccache and Damien Sauveron, editors,
Information Security Theory and Practice. Securing the Internet of
Things - 8th IFIP WG 11.2 International Workshop, WISTP 2014,
Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings,
volume 8501 of Lecture Notes in Computer Science, pp. 40–56.
Springer, (2014)

6. Carlet, C., Güneri, C., Mesnager, S., Özbudak, F.: Construction
of some codes suitable for both side channel and fault injection
attacks. In: Lilya Budaghyan and Francisco Rodríguez-Henríquez,
editors, Arithmetic of Finite Fields—7th International Workshop,
WAIFI 2018, Bergen, Norway, June 14-16, 2018, Revised Selected
Papers, volume 11321 of Lecture Notes in Computer Science, pp.
95–107. Springer, (2018)

7. Chakraborty, Abhishek, Mazumdar, Bodhisatwa, Mukhopadhyay,
Debdeep: A combined power and fault analysis attack on protected
grain family of stream ciphers. IEEE Trans. CAD Integr. Circuits
Syst. 36(12), 1968–1977 (2017)

8. Cheng, W., Carlet, C., Goli, K., Danger, J.-L., Guilley, S.: Detect-
ing faults in inner product masking scheme—IPM-FD: IPM with
fault detection, August 24 2019. In: 8th International Workshop on
Security Proofs for Embedded Systems (PROOFS). Atlanta, GA,
USA (2019)

9. Cheng, W., Carlet, C., Goli, K., Danger, J.-L., Guilley, S.: Detect-
ing faults in inner product masking scheme—IPM-FD: IPM
with fault detection, August (2019). https://github.com/Qomo-
CHENG/IPM-FD

10. Cheng, W., Guilley, S., Danger, J.-L., Carlet, C., Mesnager, S.:
Optimal LinearCodes for IPM, January (2020). https://github.com/
Qomo-CHENG/OC-IPM

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and
active combined attacks onAES. In:FDTC, pp. 10–18. IEEECom-
puter Society, 21 August 2010. Santa Barbara, CA, USA. (2010)
https://doi.org/10.1109/FDTC.2010.17

12. Coron, J.-S.: HTable countermeasure against side-channel
attacks—reference implementation for the masking scheme pre-
sented in [13]. https://github.com/coron/htable

13. Coron, J.-S.: Higher order masking of look-up tables. In: Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume

123

https://github.com/Qomo-CHENG/IPM-FD
https://github.com/Qomo-CHENG/IPM-FD
https://github.com/Qomo-CHENG/OC-IPM
https://github.com/Qomo-CHENG/OC-IPM
https://doi.org/10.1109/FDTC.2010.17
https://github.com/coron/htable

Journal of Cryptographic Engineering (2021) 11:119–133 133

8441 of Lecture Notes in Computer Science, pp. 441–458. Springer
(2014)

14. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of
a higher order masking scheme. In: Pascal, P., Ingrid, V., editors,
CHES, volume 4727 of LNCS, pp. 28–44. Springer (2007)

15. Danger, Jean-Luc, Guilley, Sylvain, Heuser, Annelie, Legay, Axel,
Tang, Ming: Physical security versus masking schemes. In: Koç,
Çetin Kaya (ed.) Cyber-Physical Systems Security, pp. 269–284.
Springer, Berlin (2018)

16. Denis, F.: The Sodium cryptography library, Jul (2019)
17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hard-

ware against probing attacks. In:CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pp. 463–481. Springer, August 17–21
2003. Santa Barbara, California, USA (2003)

18. Karpovsky, M.G., Kulikowski, K.J., Wang, Z.: Robust error detec-
tion in communication and computation channels. In: in Proceed-
ings of International Workshop on Spectral Techniques (2007)

19. Karpovsky, Mark G., Nagvajara, Prawat: Optimal codes for min-
imax criterion on error detection. IEEE Trans. Inf. Theory 35(6),
1299–1305 (1989)

20. Karpovsky, Mark G., Taubin, Alexander: New class of nonlinear
systematic error detecting codes. IEEE Trans. Inf. Theory 50(8),
1818–1820 (2004)

21. Kirschbaum, M., Popp, T.: Evaluation of a DPA-resistant proto-
type chip. In: ACSAC, pp. 43–50. IEEE Computer Society, 7-11
December 2009. Honolulu, Hawaii (2009)

22. Jessie MacWilliams, F., Sloane, Neil J .A.: The Theory of Error-
Correcting Codes. Elsevier, Amsterdam, North Holland (1977).
ISBN: 978-0-444-85193-2

23. MacWilliams, F.J., Sloane, N.J.A. Neil James A.: The theory
of error correcting codes. North-Holland mathematical library.
North-Holland Pub. Co. New York, Amsterdam, New York, 1977.
Includes index (1977)

24. Mangard, S., Oswald, E., Popp, T.:PowerAnalysis Attacks: Reveal-
ing the Secrets of Smart Cards. Springer, December 2006. ISBN
0-387-30857-1, http://www.dpabook.org/ (2006)

25. Messerges, T.S.: Securing the AES finalists against power analysis
attacks. In: Bruce Schneier, editor, Fast Software Encryption, 7th
International Workshop, FSE 2000, New York, NY, USA, April 10-
12, 2000, Proceedings, volume 1978 of Lecture Notes in Computer
Science, pp. 150–164. Springer (2000)

26. Monteiro, C., Takahashi, Y., Sekine, T.: Low power secure AES
S-box using adiabatic logic circuit. In: 2013 IEEE Faible Tension
Faible Consommation, pp. 1–4, June (2013)

27. Moore, Simon, Anderson, Ross, Mullins, Robert, Taylor, George,
Fournier, Jacques JA: Balanced self-checking asynchronous logic
for smart card applications. J. Microprocess. Microsyst. 27(9),
421–430 (2003)

28. Ngo, X.T., Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: Lin-
ear complementary dual code improvement to strengthen encoded
circuit against hardwareTrojan horses. In: IEEE International Sym-
posium on Hardware Oriented Security and Trust, HOST 2015,
Washington, DC, USA, 5-7 May, 2015, pp. 82–87. IEEE (2015)

29. Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay,
D.: A biased fault attack on the time redundancy countermea-
sure for AES. In: Stefan, M., Axel, Y.P., editors, Constructive
Side-ChannelAnalysis andSecureDesign - 6th InternationalWork-
shop, COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised
Selected Papers, volume 9064 of Lecture Notes in Computer Sci-
ence, pp. 189–203. Springer (2015)

30. Poussier, R., Guo, Q., Standaert, F.-X., Carlet, C., Guilley, S.:
Connecting and improving direct sum masking and inner prod-
uct masking. In: Thomas, E., Yannick, T., editors, Smart Card
Research and Advanced Applications—16th International Confer-
ence, CARDIS 2017, Lugano, Switzerland, November 13-15, 2017,
Revised Selected Papers, volume 10728 of Lecture Notes in Com-
puter Science, pp. 123–141. Springer (2017)

31. Rivain, M., Prouff, E.: Provably secure higher-order masking of
AES. In: Stefan, M., François-Xavier, S., editors, CHES, volume
6225 of LNCS, pp. 413–427. Springer (2010)

32. Saha, S., Jap, D., Breier, J., Bhasin, S., Mukhopadhyay, D.,
Dasgupta, P.: Breaking redundancy-based countermeasures with
random faults and power side channel. In: 2018 Workshop on
Fault Diagnosis and Tolerance inCryptography, FDTC2018, Ams-
terdam, The Netherlands, September 13, 2018, pp. 15–22. IEEE
Computer Society (2018)

33. Schneider, T., Moradi, A., Güneysu, T.: Parti - towards com-
bined hardware countermeasures against side-channel and fault-
injection attacks. In:MatthewRobshaw and JonathanKatz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pp. 302–332. Springer (2016)

34. Singleton, Richard C.: Maximum distance q -nary codes. IEEE
Trans. Inf. Theory 10(2), 116–118 (1964)

35. University of Sydney (Australia). Magma Computational Alge-
bra System. http://magma.maths.usyd.edu.au/magma/, Accessed
on Aug 22, 2014

36. Wang, W., Standaert, F.-X., Yu, Y., Pu, S., Liu, J., Guo, Z., Gu,
D.: Inner product masking for bitslice ciphers and security order
amplification for linear leakages. In: Kerstin, L.-R., Michael, T.,
editors, Smart Card Research and Advanced Applications - 15th
International Conference, CARDIS 2016, Cannes, France, Novem-
ber 7-9, 2016, Revised Selected Papers, volume 10146 of Lecture
Notes in Computer Science, pp. 174–191. Springer (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.dpabook.org/
http://magma.maths.usyd.edu.au/magma/

	Detecting faults in inner product masking scheme
	IPM-FD: IPM with fault detection (extended version*)
	Abstract
	1 Introduction
	2 State of the art on side-channel and fault protection
	2.1 Inner product masking
	2.1.1 Notations
	2.1.2 Security order regarding side-channel analysis

	2.2 Direct sum masking

	3 Novel end-to-end fault detection scheme
	3.1 Rationale
	3.2 Computing with representation of IPM-FD
	3.2.1 Secure addition of IPM-FD
	3.2.2 Secure refresh algorithm for IPM-FD
	3.2.3 Secure multiplication of IPM-FD

	4 Security analysis of IPM-FD and optimal codes selection
	4.1 Security of fault detection
	4.2 Security order of IPM-FD on SCA resistance
	4.3 Choosing optimal codes for IPM-FD
	4.4 Comparison between IPM-FD and Boolean masking with fault detection

	5 Practical implementation and performances
	5.1 Performance evaluation

	6 Conclusion and perspectives
	Acknowledgements
	An optimal codes for IPM-FD with k=2
	References

