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Abstract
Recent works have demonstrated that deep learning algorithms were efficient to conduct security evaluations of embedded
systems and had many advantages compared to the other methods. Unfortunately, their hyper-parametrization has often been
kept secret by the authors who only discussed on the main design principles and on the attack efficiencies in some specific
contexts. This is clearly an important limitation of previous works since (1) the latter parametrization is known to be a
challenging question in machine learning and (2) it does not allow for the reproducibility of the presented results and (3) it
does not allow to draw general conclusions. This paper aims to address these limitations in several ways. First, completing
recent works, we propose a study of deep learning algorithms when applied in the context of side-channel analysis and
we discuss the links with the classical template attacks. Secondly, for the first time, we address the question of the choice
of the hyper-parameters for the class convolutional neural networks. Several benchmarks and rationales are given in the
context of the analysis of a challenging masked implementation of the AES algorithm. Interestingly, our work shows that
the approach followed to design the algorithm VGG-16 used for image recognition seems also to be sound when it comes to
fix an architecture for side-channel analysis. To enable perfect reproducibility of our tests, this work also introduces an open
platform including all the sources of the target implementation together with the campaign of electromagnetic measurements
exploited in our benchmarks. This open database, named ASCAD, is the first one in its category and it has been specified to
serve as a common basis for further works on this subject.

Keywords Side-channel analysis · Machine learning · Deep learning

1 Introduction

Side-channel analysis (SCA) is a class of cryptanalytic
attacks that exploit the dependency between the execution
of a cryptosystem implementation and the manipulated data
(e.g. the power consumption or the timing) to recover some
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leakage about its secrets. It is often more efficient than
a cryptanalysis mounted in the so-called black-box model
where no leakage occurs. In particular, continuous side-
channel attacks in which the adversary gets information at
each invocation of the cryptosystem are especially threaten-
ing. Common attacks as those exploiting the running-time,
the power consumption or the electromagnetic radiations
of a cryptographic computation fall into this class. Many
implementations of block ciphers have been practically bro-
ken by continuous side-channel analysis (see for instance
[11,34,45,50]) and securing them has been a long-standing
issue for the embedded systems industry.

Side-channel attacks exploit information which leak from
the physical implementations of cryptographic algorithms.
Since this leakage (e.g. the power consumption or the elec-
tromagnetic emanations) depends on some small part of the
internally used secret key, the adversary may perform an effi-
cient key-recovery attack to reveal this sensitive data. Among
SCA, the family of so-called profiling attacks is actually the
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most powerful one since the underlying adversary is assumed
to priorly use an open copy of the final target to precisely tune
all the parameters of the attack. It includes templates attacks
[14] and Stochastic modelling (a.k.a. linear regression anal-
ysis) [17,58,59]. This attack strategy where the adversary
precedes the attack by a supervised training phase may be
viewed as a classicalMachine Learning problem and a recent
line of works has started to build connections between the
world of side-channel analysis and the world of machine
learning (with a particular focus on deep learning).

1.1 Related works

Several works have investigated the application of Machine
Learning (ML) to defeat both unprotected [5,29,30,41,43]
and protected cryptographic implementations [21,42]. These
contributions focus mainly on two techniques: the Support
Vector Machine (SVM) [16,64] and Random Forest (RF)
[56]. Practical results on several datasets have demonstrated
the ability of these attacks to perform successful key recover-
ies. Besides, authors in [29] have shown that the SVM-based
attack outperforms the template attack when applied on
highly noisy traces while [43] has experimentally argued
that ML (and RF in particular) become(s) interesting if the
amount of observations available for profiling is small while
the dimension of the latter observations is high. Follow-
ing the current trend in the Machine Learning area, more
recent works have started to pay attention to deep learning
(DL) algorithms likemulti-layer perceptron networks (MLP)
[46–48] or convolutional neural networks (CNN) [13,44].
Essentially, the conclusion of theses works is that DL offers
a promising alternative to the state-of-the-art attacks, espe-
cially when the measurement dimension is high and/or the
measured signal suffers from deformation like jittering (for
CNN). However, the application context of these previous
works is too weak or the amount of information on the
involved deep learning techniques is too limited to draw
solid conclusions for challenging contexts (e.g. where the
target implementations include state-of-the-art countermea-
sures) and/or to improve these first attempts. Indeed, on one
side, the series of papers [46–48] give partial information
about the training and architecture of the deep learning mod-
els but it is limited to a comparison of MLP with other more
classical approaches in the context of unprotected implemen-
tations of the AES-128 algorithm running on an old PIC 8-bit
micro-controller.On the other side, papers [44] and [13] show
that the Deep Learning approach may be applied to defeat
classical countermeasures such as masking [44] or clock jit-
tering [13] but they say nothing for the application of DL
when both countermeasures are combined and, more impor-
tantly, they give very limited information about the training
and the models architectures. This last point is an important
limitation which does not allow for the reproducibility of the

analyses and hence hampers the development of deep learn-
ing in the embedded security community. More generally,
a common framework to study and compare the effective-
ness of Machine Learning methods against secure embedded
implementations of cryptographic algorithms is today miss-
ing.

1.2 Contributions

In this paper, our main objective is to conduct an in-depth
study of the application of deep learning theory in the con-
text of side-channel attacks. In particular, for the first time,
we discuss several parametrization options and we present a
large variety of benchmarks which have been used to either
experimentally validate our choices or to help us to take
the adequate decision.1 The methodologies followed for the
hyper-parameters’ selection may be viewed as a proposal to
help researchers to make their own choice for the design of
new deep learningmodels. Formost of the final choicesmade
for the configuration of our models, we were not able to get a
formal explanation and hence we of course do not claim that
they are optimal. Since the current state of machine learn-
ing theory does not yet provide clear foundations to conduct
such analyses, we think that having methodologies (even ad
hoc) is a first necessary step which opens the way for further
research in this domain. Our study also shows that convolu-
tional neural networks are almost as efficient as multi-layer
perceptron networks in the context of perfectly synchronized
observations, and outperform them in presence of desynchro-
nization/jittering. This suggests that CNN models should be
preferred in the context of SCA(even if they aremore difficult
to train). When it comes to choose a base architecture for the
latter models, our study shows that, surprisingly, the 16-layer
network VGG-16 used by the VGG team in the ILSVRC-
2014 competition [60] is a sound starting point (other public
models like ResNet-50 [28] or Inception-v3 [63] are shown
to be inefficient against masked implementations). It allows
us to design architectureswhich, after training, are better than
classical templates attacks even when combined with dimen-
sion reduction techniques like principal component analysis
(PCA) [53]. By training (with 75 epochs) our CNNbest archi-
tecture on a subset of 50,000 700-dimensional traces of
ASCAD database, we outperformed the other tested mod-
els on highly desynchronized traces while we achieved one
of the best performances on small desynchronized traces.

1 Some libraries (such as hyperopt or hyperas, [8]) could have
been tested to automatize the search of accurate hyper-parameters in
pre-defined sets. However, since they often perform a random search of
the best parameters ([7]), they do not allow studying the impact of each
hyper-parameter independently of the others on the side-channel attack
success rate. Moreover, they have been defined to maximize classical
machine learning evaluation metrics and not SCA ranking functions
which require a batch of test traces.
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Clearly, our analysis does not enable to draw strong conclu-
sions on the optimization and selection of optimal networks
in the context of side-channel analysis. It however shows the
impact of each hyper-parameter on the model soundness.

All the benchmarkings have been done with the same
target (and database) which corresponds to an AES imple-
mentation secured against first-order side-channel attacks
and developed in assembly for an ATMega8515 compo-
nent.2 A signal-to-noise characterization has been done to
validate that there is no first-order leakage. This project
has been published in [4]. To enable perfect reproducing of
our experiments and benchmarks, we also chose to publish
the electromagnetic measurements acquired during the pro-
cessing of our target AES implementation (available in [3])
together with example Python scripts to launch some initial
training and attacks based on these traces. We think that this
database may serve as a common basis for researchers will-
ing to compare their new architectures or their improvements
in existing models.

2 Preliminaries and theoretical foundations

2.1 Notations

Throughout this paper, we use calligraphic letters as X to
denote sets, the corresponding upper-case letter X to denote
random variables (random vectors X if with an arrow) over
X , and the corresponding lower-case letter x (resp. x for vec-
tors) to denote realizations of X (resp. X). Matrices will be
denotedwith bold capital letters. The i-th entry of a vectorx is
denoted by x[i], while the i-th observation of a random vari-
able X is denoted by xi . The probability mass function (aka
the probability distribution function, pdf for short) of a dis-
crete random variable X will be denoted by fX. It is defined
for any possible realization x of X by fX(x) = P[X = x].
The symbol E[ ] denotes the expected value, and might be
subscripted by a random variable EX [ ], or by a probability
distribution E fX [ ], to specify under which probability dis-
tribution it is computed. Side-channel traces will be viewed
as discrete realizations of a random column vector L with
values in [0, 2ω − 1]D where D denotes the trace size (or
dimension) and where ω depends on the vertical resolution
of the oscilloscope used for the acquisitions (usually, we have
ω ∈ {8, 10, 12}). During their acquisition, a target sensitive
variable Z = ϕ(P, K ) is handled, where P denotes some
public variable, e.g. a plaintext chunk, and K the part of a
secret key the attacker aims to retrieve. The value assumed by
such a variable is viewed as a realization z of a discrete finite
random variable Z defined over Z (e.g. Z = {0, . . . , 255}).

2 We have validated that the code and the full project can be easily
tested with the Chipwhisperer platform developed by C. O’ Flynn [52].

2.2 Side-channel analysis

Side-channel analysis (SCA) aims at exploiting noisy obser-
vations L of the processing of an algorithm to recover its
secret parameter. When the SCA adversary has the ability to
use an open device (i.e. a device on which he can control,
at least partially, all the inputs of the algorithm, including
the secret parameters), a particular class of attacks named
profiling may be executed.

2.2.1 Profiling SCA

A profiling SCA is composed of two phases: a profiling (or
characterization, or training) phase, and an attack (ormatch-
ing) phase.

During the profiling step, the attacker computes for every
possible k ∈ K an estimation ĝk of the following conditional
probability distribution function:

gk : (�, p) �→ P[L = �|(P, K ) = (p, k)]. (1)

The estimation ĝk is deduced from on a so-called profiling
set which is denoted by Dprofiling and satisfies Dprofiling

.=
{�i , pi , ki }i=1,...,Np where Np denotes the number of traces
�i acquired under known guessable chunks pi and ki of the
cryptographic algorithm inputs. In the rest of this paper, the
profiling set is viewed as the Cartesian product between the
set a traces L and the set of corresponding inputs Y .

Remark 1 In the context of side-channel analysis against
block cipher implementations, it is common to label the
observations/traces by an appropriate functionϕ(p, k) instead
of (p, k) (and both labellings are equivalent when the obser-
vations exactly correspond to the processing of ϕ(·) since p
is assumed to be known). It will be the case for the database
used in the rest of the paper where ϕ(·) corresponds to the
AES sbox. Here the probability in the right-hand side of (1)
may w.l.g. be rewritten P[L = �|ϕ(P, K ) = z] and the pro-
filing set may be rewritten Dprofiling

.= {�i , zi }i=1,...,Np with
L = {�i ; i � Np} and Y = {zi ; i � Np}.

During the attack step, the adversary gets a new attack set
Dattack

.= {�i , pi }i=1,...,Na for which the secret parameter,
say k�, is fixed but unknown. His goal is to recover the latter
key. For such a purpose, it must be decided which of the
pdf estimations ĝk , k ∈ K, is the most likely knowing the
attack set. It is well known that, under realistic assumptions
on the distributions’ nature, the most efficient way to make
such a decision is to follow a Maximum Likelihood strategy
which amounts to estimate the following likelihood dNa [k]
for every key candidate k ∈ K, and then to select the key
candidate that maximizes it:
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dNa [k]=
Na∏

i=1

P[L=�i | (P, K )=(pi , k)]
fL(�i )

× fP,K (pi , k),

(2)

which is obtained under the hypothesis that acquisitions
are independent.3 The estimation of the right-hand term of
(2) is simply done by replacing the probabilities P[L =
�i |(P, K ) = (pi , k)] by their estimations ĝk(�i , pi ). The
vector dNa is called scores vector and its kth coordinate is
the score corresponding to key candidate k.

2.2.2 Leakage dimensionality issue

The potentially huge dimensionality of Lmay make the esti-
mation of (1) a very complex problem. To circumvent it, the
adversary usually priorly exploits some statistical tests (e.g.
SNR or T-Test) and/or dimensionality reduction techniques
(e.g. principal component analysis [53], linear discriminant
analysis [19], kernel discriminant analysis [12]) to select
points of interest or an opportune combination of them. Then,
denoting ε(L) the result of such a dimensionality reduction,
the attack is performed as described previously with the sim-
ple difference thatL and �i are respectively replaced by ε(L)

and ε(�i ) in (1) and (2).

2.2.3 (Gaussian) Template attacks

Until now the most popular way adopted to estimate the
conditional probability (1) is the one that led to the well-
established Gaussian template attack [14]. It assumes that
L | (P, K ) (or equivalently ε(L) | (P, K ) if a dimension-
ality reduction has been priorly applied) has a multivariate
Gaussian distribution, and estimates themean vector ¯ p,k and
the covariance matrix 6p,k for each possible (p, k) ∈ P ×K
(i.e. the so-called templates). In this way, for every (p, k),
the pdf � �→ gk(�, p) defined in (1) is approximated by the
Gaussian pdf f¯ p,k ,6p,k . So, the Gaussian template attack is
a strategy that makes use of a generative model. The same
multivariate Gaussian assumption is the one that is made
in quadratic discriminant analysis (QDA), which is a well-
known generative strategy in theMachine Learning literature
[19] to perform classification.

2.3 Machine learning and deep learning

In machine learning theory, the problem of estimating P[L |
(P, K ) = (p, k)], for some (p, k) ∈ Y with Y .= P × K, is

3 In Templates Attacks the profiling set and the attack set are assumed
to be different, namely the traces �i involved in (2) have not been used
for the profiling.

known as a generation problem4 (a.k.a. prediction problem),
while the estimation of P[(P, K ) = (p, k) | L] is referred to
as a classification problem (see e.g. [9]).

Nowadays, deep neural networks are the privileged tool to
address the classification problem, and they can be exploited
in a discriminative way. In such a case, which corresponds
to our choice, they aim at directly constructing an approxi-
mation ĝ of the function g : �, p �→ (P[(P, K ) = (p, k) |
L = �])k∈K. It may be observed that g is directly linked to
the pdfs in (1) through the following relation which comes
as a direct consequence of Bayes Theorem:

g(�, p) = (
gk(�, p) × fP,K (p, k)/ fL(�)

)
k∈K. (3)

The classification of a new leakage � observed for an input
p is done afterwards by processing y = ĝ(�, p) and by
choosing the key candidate k̂ (or equivalently the label
in the formalism of Machine Learning) such that k̂ =
argmaxk∈K y[k]. If the key-discrimination is done from sev-
eral, say Na , pairs (�i , pi ) then the maximum likelihood
approach is followed as in (2):

dNa [k] =
Na∏

i=1

yi [k], (4)

where yi denotes the output of (the model function) ĝ input
with the pair (�i , pi ). It may be checked that (4) is a simple
rewriting of (2) obtained by using (3).

Remark 2 In cases where the SCA targets a particular pro-
cessing in the form ϕ(P, K ), this leads to search for an
approximation ĝ′ of the function �, p �→ (P[ϕ(P, K ) =
z | L = �, P = p])z∈Z . The output of the model ĝ′ when
input with (�, p) is then a vector y′ indexed by the values
z = ϕ(p, k) for k ranges over K. To build a second vec-
tor y indexed by the key candidates k it suffices to process
y[k] = y′[ϕ(p, k)] for the input p and for every k ∈ K.

Remark 3 Another formulation of the classification problem
could consist in directly looking for an estimation of the pdf
P[K | L, P]: the deep neural networks will here be trained to
classify the key candidates knowing the public input of the
cryptographic primitive and the information leakage. How-
ever, even if this formulation may seem more natural (it
perfectly matches the problemwewant to resolve), it implies
that the deep neural networksmust not only recover the statis-
tical dependency between the values of the manipulated data
and the leakage, but also the function that links it to the key
(e.g. the function ϕ−1(·, P)). Since the latter function may
be complex (e.g. can be affinely equivalent to the inverse of

4 The name generative is due to the fact that it is possible to generate
synthetic traces by sampling from such probability distributions.
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an sbox), this can made the task of the deep neural networks
harder, whereas the function ϕ is often already known by the
adversary.

DeepLearning is a branchofmachine learningwhose charac-
teristic is to avoid anymanual feature extraction step from the
model construction work-flow. For example, in deep learn-
ing the dimensionality issue discussed in Sect. 2.2.2 is not
necessarily tackled out by preprocessing a dimensionality
reduction function ε. As described below, the cascade ofmul-
tiple layers that characterize DL models is indeed in charge
of directly and implicitly extracting interesting features and
of estimating the classifying model ĝ. This approximation is
searched in a family of functions (akamodels in the machine
learning terminology) specified a priori by the data analyst
according to the specificities of the problem which is tackled
out.

We conclude this subsection by recalling some basic defi-
nitions and notions about neural networks and their training.

Neural networks A neural network has an input layer (the
identity over the input datum �), an output layer (the last
function,whose output y is an estimation of the vector of con-
ditional probabilities) and all other layers are called hidden
layers. The so-called neurons, that give the name to the archi-
tecture, are the computational units (also named nodes) of the
network and essentially process a scalar product between the
coordinates of its input and a vector of trainable weights (or
simplyweights) that have to be trained. Each layer processes
some neurons and the outputs of the neuron evaluations will
formnew input vectors for the subsequent layer. The numbers
of layers in the neural networks, the dimension of the ele-
mentary units or the algebraic nature of the nonlinear layers
form the architecture of the network and define the family of
functions/models. The identification of the best approximat-
ing function in this family is made by solving a minimization
problemwith respect to ametricwhich is specific to the appli-
cation.

Training of neural networks In a privileged setting, the train-
ing phase (i.e. the automatic tuning of the weights of the
neurons) is done via an iterative approach which locally
applies the (Stochastic) Gradient Descent algorithm [24] to
minimize a loss function quantifying the classification error
of the function ĝ over a training set which is a part of the
profiling set. The cross-entropy [25,40] metric is a classical
(and often by default) choice in classification problems. It is
smooth and decomposable, and therefore amenable to opti-
mization with standard gradient-based methods. However,
other metrics may be investigated and can potentially lead
to better results [49,61]. A training is said to be full batch
learning if the full training database is processed before one
update. At the opposite, if a single training input is processed
at a time then the approach is named stochastic. In practice,

one often prefers to follow an approach in between, called
mini-batch learning, and to use small batch (aka group) of
training inputs at a time during the learning. The size of the
mini-batch is generally driven by several efficiency/accuracy
factors which are e.g. discussed in [25] (e.g. optimal use
of the multi-core architectures, parallelization with GPUs,
trade-off between regularization effect and stability, etc.).

An iteration over all the training datasets during the
Stochastic Gradient Descent is called an epoch. The number
of epochs is an important parameter to tune because small
values may lead to under-fitting (the number of steps of the
Gradient Descent is not sufficient and the model is too poor
to capture a trend in the training dataset) and high values
may lead to over-fitting (the model is too complex, it per-
fectly fit the training dataset but is not able to generalized its
predictions to other datasets).

Several extensions and variants of the Stochastic Gradient
Descent have been proposed in the context of deep learning.
These variants, called optimizers, aim to adapt the learning
rate (the step size) of the Gradient Descent during the train-
ing process. More details about the specification of neural
networks will be given in the dedicated Sects. 3 and C, but
we will not go further on the optimization approaches and
the interested reader may refer to [24].

Hyper-parameters All the parameters that define an archi-
tecture (called architecture hyper-parameters or simply
architecture parameters), together with some other parame-
ters that govern the training phase (called training hyper-
parameters or simply training parameters), have to be
carefully set by the attacker.5 This point will be discussed
in Sect. 3.3.

2.4 Model assessment and selection

2.4.1 Evaluation methodology

In the machine learning community, several evaluation
frameworks are commonly applied to assess the perfor-
mances of a model or to select the best parameters that suit
to a parametrized family of models. These methods aim to
provide an estimator of the performance of a metric (e.g. the
accuracy) which does not depend on the choice of the train-
ing set Dtrain (on which the model is trained) and of the test
setDtest (on which the model is tested) but only on their size.

The so-called t-fold cross-validation [20] is currently the
preferred evaluation method. Let c be a metric, ĝ a model to
evaluate, and Dprofiling = (L,Y) a dataset with labels, the
outline of the method is the following:

5 When no ambiguity is present we will call simply hyper-parameters
the architecture ones.
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1. [optional] randomize the order of the labelled traces in
Dprofiling,

2. split the samples and their corresponding labels into t
disjoint parts of equal size (L1,Y1), . . . , (Lt ,Yt ). For
each i ∈ [1..t], do:
(a) set Dtest

.= (Li ,Yi ) and Dtrain
.= (

⋃
j �=i L j ,

⋃
j �=i

Y j ),
(b) (re-)train6 the model ĝ on Dtrain,
(c) compute the performance metric by evaluating the

model on Dtest:

ci = c(ĝ,Dtest), (5)

3. return the mean 1
t

∑t
i=1 ci .

It is known that the t-fold cross-validation estimator is
an unbiased estimator of the generalization performance. Its
main drawback is its variance which may be large and dif-
ficult to estimate [6,10]. In this paper (Sects. 3 and C), we
perform a 10-fold cross-validation for each selection of the
model parameters. The choice of t = 10 results in a trade-off
between evaluation complexity and accuracy, since for each
choice of parameters themodel is trained 10 timeswith a sub-
stantial computing time, and the generalization performance
estimator is computed among 10 values on different training
sets, reducing the uncertainty on the evaluation metrics. The
dataset Dprofiling on which is performed the cross-validation
is a fixed subset comprised of 50,000 labelled traces, split at
each iteration into Ntrain = 45, 000 labelled traces for Dtrain

and Ntest = 5, 000 labelled traces for Dtest.

2.4.2 Evaluation metrics

We evaluate the performance of our models with three differ-
ent metrics, which are: the rank function, the accuracy and
the computational time.

The rank function is a commonly used metric in SCA
for assessing the performance of an attack. Let us denote by
k� ∈ K the key that has been used during the acquisition of
the dataset Dprofiling. The rank function corresponding to a
model ĝ trained with the dataset Dtrain and tested with the
dataset Dtest is defined by:

rank(ĝ,Dtrain,Dtest, n) = |{k ∈ K | dn[k] > dn[k�]}|, (6)

where dn[k] is the score for the candidate k as defined in (4)
(replacingDattack byDtest and Na by n) and estimated from a
modelling of the conditional probability done withDtrain and
a test done with the n first traces in Dtest. For example, if k�

6 We insist here on the fact that the model is trained from scratch at
each iteration of the loop over t .

has the highest score (resp. the lowest score), then its rank is
0 (resp. |K|−1). Note that in this definition, the rank function
depends on the choices of the training and test datasets. To
get a better measure of the rank for given cardinalities Ntrain

and Ntest of Dtrain and Dtest respectively, it is therefore more
suitable to estimate its mean over several pairs of datasets:7

RANKNtrain,n(ĝ) = E[rank(ĝ,Dtrain,Dtest, n)], (7)

where the mean is defined over all the datasets Dtrain and
Dtest, respectively, of cardinality Ntrain and Ntest, and where
n is assumed to be bounded above by Ntest. For any pair of
cardinalities, an approximation of the mean can be obtained
by cross-validation as detailed previously just by replacing c
in (5) by the rank function rank(·). This is exactly what has
been done for the benchmarks discussed in Sect(s). 3 and C.
More precisely, the following attackhas been repeated t = 10
times and the average rank of the correct key is plotted: (1)
select a training set of fixed size Ntrain and (2) compute the
evolution of the rank of the correct key when the model is
tested with an increasing number n of traces in Dtest (of size
Ntest).

A second metric which is commonly used in machine
learning is the accuracy. With the same previous notations,
we can define it as:

acc(ĝ,Dtrain,Dtest)

= |{(�i , pi , k�) ∈ Dtest | k� = argmaxk∈K yi [k]}|
|Dtest| , (8)

where we recall that yi denotes the |K|-dimensional output
ĝ(�i , pi ). Then, similarly as for the rank function but for
possibly unbounded size of Dtest, we can define from (8) an
Expected Accuracy of the model (ACC) by:

ACCNtrain(ĝ) = E[acc(ĝ,Dtrain,Dtest)],

where the mean is defined over all the datasets Dtrain of size
Ntrain and all the datasets Dtest (with unbounded size).8

Finally, our selection of parameters is also guided by the
computational time of the model training. The mean of the
training time is computed in the same manner as the other
evaluation metrics during the 10-fold cross-validation.

2.4.3 About the profiling set-up

Our implementations of machine learning algorithms have
been developed with Keras library [15] (version 2.1.1) or

7 and also different values of k� if this is relevant for the attacked algo-
rithm.
8 Another metric, the prediction error (PE), is sometimes used in com-
bination with the accuracy: it is defined as the expected error of the
model over the training sets; PENtrain (ĝ) = 1 − ACCNtrain (ĝ).
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(a)

(b)

Fig. 1 SNR characterization for the third sbox output manipulation

directly with Tensorflow library [1] (version 1.4.0). We run
the trainings over ordinary computers equipped with 16 GB
of RAM and gamer market GPUs Nvidia GTX 1080 Ti. The
computation of all the benchmarks took approximately 12
days by using 3 GPU cards.

2.5 Target of the attacks experiments and leakage
characterization

For our attack experiments, we targeted a Software protected
AES implementation running over an 8-bit AVR architecture.
More precisely, the device is an ATMega8515.

2.5.1 About the implementation

To maximize our control on the code executed by the device,
we choose to implement the AES in assembly language.
We developed two versions which merely aim at defeating
first-order SCA attacks (i.e. attacks exploiting a single tem-
poral leakage without (re-)combining of temporal points).
The first one makes use of the classical table re-computation
method (see e.g. [2,34,55] for a detailed description). The
AES state is secured with 16 different masks for the lin-
ear parts and, for the SubBytes processing, the same pair of
input and output masks is used for each state element. The
outlines of the implementation are summed up in Algorithm
1 in “AppendixB”.ASignal-to-Noise Ratio (SNR)9 has been
done (1) to validate that there is no first-order leakage (snr1
in Fig. 1b) and (2) to identify where the target values and the
masks are leaking (snr2 − snr5 in Fig. 1b). To help evalua-
tors to perform elementary attacks against the first two bytes
of the AES state during the first round, the corresponding
masks of the linear parts (r [1] and r [2] in Algorithm 1) have
been fixed to 0.

Attack experiments reported in the rest of the paper only
target the output of the third sbox processing during the first

9 The SNR is sometimes named F-Test to refer to its original introduc-
tion by Fischer [18]. For a noisy observation Lt at time sample t of an
event Z , it is defined as Var[E[Lt | Z ]]/E[Var[Lt | Z ]].

round (namely sbox�[state0[3]] .= sbox(p[3] ⊕ k[3]) ⊕ rout
with i = 3 in Algorithm 1).10

SCA acquisition setup

ATMega8515
(target under attack)

Scope
EM probe

2.5.2 About the acquisition phase

The side-channel observations were obtained by measuring
the electromagnetic (EM) radiations emitted by the device.
To this aim, a sensor made of several coils of copper was
plugged into a low-noise amplifier. To samplemeasurements,
a digital oscilloscope was used with a sampling rate of 2G
samples per second. We insist on the fact that the temporal
acquisition window was set to record the first round of the
AES only. As theMCUclockwas quite stable, the resynchro-
nization of themeasurements was not difficult and resulted in
a campaignof 100,000 traces composedof 100,000 time sam-
ples. Among them, we chose to finally extract only 60,000
traces after validating that it was sufficient to accurately
realize all our benchmarks (see e.g. Sect. C.2). To iden-
tify the leakage samples related to the secure processing of
sbox(p[3]⊕ k[3]), several SNRs have been processed. Their
definition is given in Table 1a.

10 Another possibility would have been to target state0[3] =
sbox(p[3] ⊕ k[3]) ⊕ r [3] which is manipulated at the end of Step 8] in
Algorithm 1.
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It may be observed in Fig. 1b that snr1 (in grey) is very
low, which essentially shows that there is no first-order leak-
age on the unmasked sbox output sbox(p[3] ⊕ k[3]). The
leakages on the sbox output masked with r [3] and on the
mask r [3] itself are relatively high (snr4 and snr5 respec-
tively). The SNR snr4 shows three peaks because the sbox
output with mask r [3] is not only manipulated during the
SubBytes step but also during the ShiftRows and the Mix-
Columns. Eventually, one can also observe a leakage on the
sbox outputmaskedwith rout and on themask rout itself (snr2
and snr3). Since this leakage is smaller than that for the sbox
with mask r [3], we found it more challenging and preferred
to focus on it in our attack experiments.

For the reasons explained in previous paragraph, we chose
to enshorten the initial traces (composed of 100,000 sam-
ples) and to only keep, for each trace, the 700 samples
in the interval [45400..46100] which contains information
on the two pairs of (sbox(p[3] ⊕ k[3]) ⊕ r [3], r [3]) and
(sbox(p[3] ⊕ k[3]) ⊕ rout, rout)) (see Fig. 15 in “Appendix
A” for a zoom on the SNRs in the target intervals11).

To enable perfect reproducing of our experiments and
benchmarks, we published the electromagnetic measure-
ments acquired during the processing of our target AES
implementation (available in [3]) together with example
Python scripts to launch some initial training and attacks
based on these traces. See Section B for details about this
open database.

3 Convolutional neural networks

3.1 Core principles and constructions

Convolutional Neural Networks (CNNs) involved in our
studies are based on 5 types of layers that are briefly recalled
hereafter:

– The Fully-Connected layers (FC for short), denoted by
λ, are expressible as affine functions: denoting x the D-
dimensional input of an FC, its output is given byAx+B,
beingA ∈ R

C×D a matrix of weights and B ∈ R
C a vec-

tor of biases. These weights and biases are the trainable
weights of the FC layer.12

– Convolutional layers (CONV for short) are linear layers,
denoted by γ , that share weights across space. To apply

11 Note that some peaks appearing in Fig. 1b have not been selected.
12 They are called Fully-Connected because each i-th input coordinate
is connected to each j-th output via theA[i, j]weight. FC layers can be
seen as a special case of the linear layers where not all the connections
are necessarily present. The absence of some (i, j) connections can be
formalized as a constraint for the matrix A consisting in forcing to 0 its
(i, j)-th coordinates.

it to an input, nfilter small column vectors, called convo-
lutional filters, of size W (aka kernel size) are slid over
the input by some amount of units, called stride.13 The
column vectors form a window14 which defines a linear
transformation of the W consecutive points of the data
into a new vector x. When the window slides over the last
points, the input trace can be either padded with 0 result-
ing in a vectorxwhich has the samenumber of points than
the input data (same padding) or the data is not padded
and the window only slides over the valid part of the data,
resulting in a vector x smaller than the input trace (valid
padding). The coordinates of the window (viewed as a
matrix) are among the trainable weights which are con-
strained to be unchanged for every input. This constraint
aims to allow the CONV layer to learn shift-invariant fea-
tures. The reason why several filters are applied is that
we expect each filter to extract a different kind of charac-
teristic from the input. As one goes along convolutional
layers, higher-level abstraction features are expected to
be extracted. These high-level features are arranged side-
by-side over an additional data dimension, the so-called
depth.15 This is this geometric characteristic that makes
CNNs robust to temporal deformations [36].

– Pooling layers (POOL for short) are nonlinear layers,
denoted by δ, that reduce the spatial size bymaking some
filters slide across its input. Filters are 1-dimensional,
characterized by a length W and a stride, that is usually
chosen equal toW . They do not contain trainable weights
and only slide across the input to select a segment, then
a pooling function is applied: the most common pooling
functions are the max pooling which outputs the maxi-
mum values within the segment and the average pooling
which outputs the average of the coordinates of the seg-
ment.

– Activation layers (ACT for short) are composed of a sin-
gle nonlinear real function that is applied independently
to each coordinate of its input. Several activation func-
tions have been used in deep learning and currently the
so-called ReLU is preferred. It processes max(0, x) to
each coordinate x . The ACT layer preceded by the Batch
Normalization layer below is denoted α.

– Batch Normalization layers (BN for short) have been
introduced in [31] by Ioffe Szegedy to reduce the so-
called internal covariate shift in neural networks and to
eventually allow for the usage of higher learning rates.
The reasoning behind the soundness of this layer is well
argued in [25].

13 Amount of units by which a filter shifts across the trace.
14 patches in the machine learning language.
15 Ambiguity: Neural networks with many layers are sometimes called
Deep Neural Networks, where the depth corresponds to the number of
layers.
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– The softmax16 layer (SOFT for short), denoted by s,
applies the following processing to each coordinate of

its input x: s(x)[i] = ex[i]∑
j e

x[ j] .

Eventually, the main block of a CNN is a CONV layer γ

directly followed by a BN layer and an ACT layer α. The
former locally extracts information from the input thanks to
filters and the latter increases the complexity of the learned
classification function thanks to its nonlinearity. After some
(α ◦γ ) blocks, a POOL layer δ is usually added to reduce the
number of neurons: δ◦[α◦γ ]nconv . This new block is repeated
nblocks times in the neural network until obtaining an output
of reasonable size. Then, ndense FC layes λ are introduced in
order to obtain a global result which depends on the entire
input. To sum-up, a common convolutional network can be
characterized by the following formula:17

s ◦ [λ]ndense ◦ [δ ◦ [α ◦ γ ]nconv]nblocks . (9)

3.2 A brief overview of current CNN architectures

The first successful CNN network, best known as LeNet,
was developed in the nineties and was mostly applied to
handwritten digit recognition [37,38]. The last version of the
network, LeNet-5 [38], is a small architecture which operates
on images of 32×32 pixels split into 10 classes. The architec-
ture is comprised of 2 convolutional layers with, respectively,
6 and 16 filters of size 5 × 5, and 3 final dense layers of,
respectively, 120, 84 and 10 units. Each convolutional layer
is followed by an average pooling layer and the activation
function is the hyperbolic tangent. The network achieved an
accuracy of nearly 99% on the test dataset.

CNN networks gained popularity with their breakthrough
as a contender in the Imagenet Large Scale Visual Recog-
nition Challenge (ILSVRC, [57]) and since 2012, deep
CNN networks have constantly established new records in
computer vision [28,35,60,62]. ILSVRC is an image classi-
fication challengewhich provides each year a labelled dataset
of roughly 1,000,000 images of 200 × 200 pixels split into
1000 classes. Candidates train and validate their algorithmon
the provided dataset and submit it to the competition. Then
algorithms are evaluated with an (unknown) test dataset and
they are ranked according to two metrics, the top-1 accuracy
and the top-5 accuracy, where the top-5 accuracy is the frac-
tion of the test dataset for which the correct label is among
the best 5 predictions returned by the algorithm.

16 To prevent underflow, the log-softmax is usually preferred if several
classification outputs must be combined.
17 where each layer of the same type appearing in the composition is not
to be intended as exactly the same function (e.g. with same input/output
dimensions), but as a function of the same form.

The first CNN architecture presented at ILSVRC chal-
lenge in 2012 [35] obtained a great success in the competition
by outperforming all the challengers with a top-5 accuracy
rate of 84.7% (against 73.8% for the second-best entry). This
CNN network, well-known as AlexNet, has 8 layers, with 5
convolutional layers dispatched in 3blocks and3dense layers
of 4096 units each. The convolutional layers have 3,96,256
and 384 filters of size 11 × 11, 5 × 5 and 3 × 3. Each block
has a final max pooling layer and ReLU activation func-
tions are used instead of hyperbolic tangents (as in LeNet).
The subsequent winner of ILSVRC challenge, ZFNet [65],
improved the previous architecture by reducing the size of
the first convolutional layer to 7 × 7 and by increasing the
number of filters to 1024 for the last convolutional layers; it
achieved a top-5 accuracy of 85.2%.

The trend of reducing the size of the filters by increasing
the depth of the network was later confirmed to be a success-
ful strategy. The runner-up architecture of the ILSVRC 2014
challenge, VGGNet [60], obtained a 92.7% top-5 accuracy
with an architecture comprised of (up to) 16 convolutional
layers of 512 filters of size 3× 3 distributed in 5 blocks (for
the VGG-19 version).

The winner of ILSVRC 2014, GoogLeNet [62], also used
a deep network architecture with a total of 27 layers, but
managed to decrease the number of parameters to train by
using anewelement in the architecture, the Inceptionmodule,
which is a stack of small size convolutional layers (1 × 1,
3 × 3, 5 × 5) with few parameters. Furthermore, the last
dense layers are replaced by an average pooling layer, which
also decreases the number of parameters to train. GoogLeNet
obtained a top-5 accuracy rate of 93.3% with 12 times fewer
parameters than AlexNet.

Finally, deep residual networks recently grow in popular-
ity with the success of ResNet at ILSVRC 2015 [28]. These
architectures manage to overcome the degradation problem
that occurs when the depth of the network increases. They
rely on residual units that learn for each layer the residual
function F(x) = H(x) − x where x is the input of the layer
and H(x) is the desired function of the layer. The top of the
networks also have an average pooling layer likeGoogLeNet.
ResNet has up to 152 layers and achieves a 96.6% top-5 accu-
racy at ILSVRC 2015, winning the challenge.

3.3 Determining an architecture

Essentially, the strategy we have followed to finalize a choice
of hyper-parameters is composed of three consecutive steps.
First, we perform some ad hoc preliminary tests to select
a base model with fixed architecture parameters, namely a
CNNbase model in the form (9), and then we analyse the
performances we can obtain with such amodel while making
the training hyper-parameters vary. In a third time, and after
fixing the best solutions for the training hyper-parameters,we
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made the network hyper-parameters vary in order to optimize
the architecture, called CNNbest.

This strategy has also been conducted in the context of
multi-layer perceptron networks. The setting process leads
to the MLPbest architecture given in C.

3.3.1 Choice of the CNNbase

To get a first idea about the kind of architectures relevant
in our context, we chose to test some of state-of-the-art
CNNarchitectures listed in previous section:18 VGG-16 [60],
ResNet-50 [28] and Inception-v3 [63]. Our purpose was not
to compare their efficiency after some specific tuning but was
to check whether one of them seems straightforwardly more
adapted to our context than the others. Results are summed
up in Fig. 2 where we have plotted the evolution of the mean
rank of the correct key-hypothesis according to the number of
epochs. Results are obtained with a 10-fold cross-validation.

Clearly, ResNet-50 and Inception-v3 do not seem to
succeed in extracting key-dependent information for the
observations whereas VGG-16 does very well. Based on
these preliminary results, we chose to apply the same design
principles as in VGG-16 architecture and we investigated
the impact on several parameters’ configuration on the side-
channel attack efficiency.

We moreover added the following rules, which are today
classical in literature and enable us to limit the number of
different configurations to test.

Rule 1 CONV layers in the same block have exactly the same
configuration (to keep the global volume constant).

Rule 2 Each pooling has dimension 2 (and hence divides the
size of the input by 2).

Rule 3 The number of filters nfilters,i in a CONV layer of the
i th block (starting from i = 1) satisfies for i ≥ 2:

nfilters,i = min(nfilters,1 × 2i−1, 512).

Remark 4 The core idea behind Rule 3 is to keep the global
amount of information treated by the different layers as con-
stant as possible. Since each pool layer divides the input
dimension by 2, the number of filters is itself multiplied by
2 to compensate it. This idea is inspired by VGG-16.

Rule 4 All the CONV layers have the same kernel size.

An example of the tested CNN architecture CNNbase is
given in Fig. 30 in “AppendixD”. For the initial configuration
of our CNNbase model used to test the impact of the different
hyper-parameters,we select the following values: the number

18 Straightforwardly customized to apply on 1-dimensional inputs of
700 units and outputs of 256 units.

Fig. 2 Mean ranks (y-axis) w.r.t. the number of test traces (x-axis)
obtained for VGG-16, ResNet-50 and Inception-v3 and for different
epochs

of blocks of CONV layers nblocks is equal to 4, there is only
one CONV layer by block (nconv = 1), the number of filters
for the first block n f ilter ,1 is equal to 64, each filter has kernel
size 3 (same padding) with ReLU activation functions and
a max pooling layer for each block (W = 2). CNNbase has
ndense = 2 final dense layers of 4, 096 units.

3.3.2 Choice of the hyper-parameters in SCA context

The goal of the following benchmarks is twofold. First, it is to
study, for the architectureCNNbase presented in previous sec-
tion and for our dataset, the impact of each (hyper)-parameter
on the accuracy and SCA-efficiency. Secondly, it is to choose
the final hyper-parameters for a new CNN model (hope-
fully) better than the original one and hence called CNNbest.
The number of the latter parameters being too large for an
exhaustive test of all the possible configurations, we chose
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Table 1 Benchmarks summary

Parameter Reference Metric Range Choice

Training parameters

Epochs – Rank versus time 10, 25, 50, 60, . . . , 100, 150 Up to 100

Batch size – Rank versus time 50, 100, 200 200

Architecture parameters

Blocks nblocks Rank, accuracy [2..5] 5

CONV layers nconv Rank, accuracy [0..3] 1

Filters nfilters,1 Rank versus time {2i ; i ∈ [4..7]} 64

Kernel size – Rank {3, 6, 11} 11

FC layers ndense Rank, accuracy versus time [0..3] 2

ACT function α Rank ReLU, Sigmoid, Tanh ReLU

Pooling layer – Rank Max, Average, Stride Average

Padding – Rank Same, Valid Same

to arbitrarily follow a predetermined sequence of tests. Note
that the same CNNbase architecture is used for each bench-
marking (which each focuses on a single hyper-parameter).
For completeness, we also validated the soundness of our
choices when the observations are desynchronized.

The desynchronizations of the traces are simulated by gen-
erating for each trace a random number δ in [0..Nmax] and by
shifting the original trace of δ points to the left. The samples
added to a trace by this processing directly come from the cor-
responding full trace in ATMega8515_raw_traces.h5.
For a chosen value Nmax we then generate a new dataset
DNmax from the original one.

Our goal was not to find the optimal configuration/training
strategies but was to identify one of them making sense in
our context and leading to accurate results. Other choices are
certainly possible and we let the question of determining the
most pertinent strategy as an open problem for further studies
on this subject. The roadmap followed for our benchmarks
is summarized in Table 1. Since our goal is to improve the
SCAefficiency, i.e. to have the correct hypothesis ranked first
with the minimum of traces during the matching/test phase,
we always privileged rank-flavoured criteria for parameters
selection.

3.3.3 Training parameters

The tuning of some training parameters is inherited by the
analogous study in MLP context (see “Appendix C”). In
particular we fixed the training set size to 50,000,19 and
chose to use the RMSProp optimizer with a learning rate
of 10−5.

19 Leading to 10 training sets of size 45,000 and 10 test sets of size
5000 to perform the 10-fold cross-validation.

Number of epochs and batch size For our campaigns, we
did not observe any over-fitting (relatively to our rank func-
tion) when the number of epochs is increasing. As a direct
consequence, the quality of the trained model in terms of
our rank function never decreases when the number of
epochs increases. Based on this observation, the following
benchmarks aim to get the best trade-off between the SCA-
efficiency and the training duration/time as a function of the
number of epochs and the training batch size.

The first benchmark series are obtained by training
CNNbase with different values of epoch and batch size. The
results in Fig. 3 show that the SCA-efficiency is enhanced
not only when the number of epochs increases but also when
the batch decreases. We consider that as a natural behaviour
since the number of gradient descents (and thus the num-
ber of steps in the solving of the minimization problem)
increases linearly with the number of epochs and linearly
with (|Dtrain|/batch_si ze). However, as a counterpart, the
training duration linearly increases with the number of gra-
dient descent steps, as well. We selected one of the best
trade-off, namely 100 epochs and a batch size equal to 200.20

This choicewill allowus to test the impact of the other param-
eters in ourCNNexperimentswhile keeping the training time
acceptable.

The following benchmark validates, for a batch size equal
to 200, that the previous observation (namely the fact that the
SCA-efficiency increases with the number of epochs) stays
true when traces are desynchronized.

WithCNNbase andwith 5000 traces,wemanage to obtain a
mean rank close to 20 for amaximal desynchronization value
Nmax = 50, and amean rank close to 40 for amaximal desyn-
chronization value Nmax = 100. These results highlight the

20 Having 50 epochs and a batch size equal to 50 is also a good trade-
off, but between two options that seem equivalent, we chose to prefer
the solution with the highest number of epochs.
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Fig. 3 Mean ranks and training time of CNNbase with different values
of epochs and batch sizes

success of CNN architectures in the context of desynchro-
nized traces, as studied in [13]. Results of Fig. 4 also show
the impact of the epoch parameter on the SCA-efficiency
with the desynchronization amount: an epoch value of 100
is enough without desynchronization, but it does not yield to
the best performance when traces are desynchronized.

Fig. 4 Mean ranks of CNNbase for a desynchronization in {0, 100} and
different numbers of epochs

Fig. 5 Mean ranks (left-hand side) andmean accuracy (right-hand side)
of CNNbase for a desynchronization in {0, 100} and several numbers of
blocks

3.3.4 Architecture parameters

In each case, we study the parameters in the context of 256
classes.

Number of layers The architecture of our CNNbase suggests
to divide the study of the number of layers in two phases:
in a first time we make the number nblocks of blocks vary
where a block is composed of convolutional layers followed
by a single pooling layer. In this phase we consider, for each
block, only nconv = 1 convolutional layer per block (which
is the configuration of our CNNbase model). In a second time,
we look for the optimal number nconv of convolutional layers
per block assuming that this number is fixed to for all the
blocks and that the number of blocks equals 4.

Results of the first phase are plotted in Fig. 5. As expected,
we notice that the SCA-efficiency increases with the number
of blocks. A difference can be observed in the mean rank
between 4 blocks and 5 blocks in presence of desynchro-
nization. This fact can be explained in term of dimension of
the input layer before applying the dense layers. The input
trace has dimension 700, i.e. contains 700 temporal features,
corresponding to its time samples. When 5 blocks are used,
5 max pooling layers of stride 2 are applied, and the tem-
poral input dimension is divided by 25 = 32, resulting in
an input for the first dense layer composed of 21 temporal
features times 512 abstract features (43 temporal features
times 512 abstract ones if only 4 blocks). The temporal fea-
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Fig. 6 Mean ranks (left-hand side) and mean accuracy of CNNbase for
a desynchronization in {0, 100} and different numbers of CONV layers
per block

tures are those which are directly impacted by the temporal
noisy effect of desynchronization. So the less they are the
more the model is robust to desynchronization. This explains
why adding blocks increases the SCA-efficiency in presence
of desynchronization. Thus, we choose nblocks = 5 as best
parameter. However, in our further benchmarks we keep the
value nblocks = 4; choosing this mid range value allows us to
have a better understanding of the impact of the other param-
eters on the SCA-efficiency.

Results of the second phase are plotted in Fig. 6. We
observe that optimal performances are obtained with only
one CONV layer per block, even if the SCA-efficiency seems
to be dimly impacted by nconv. This is probably due to the
fact that increasing number of layers, the number of trainable
weights increases as well. To observe a benefit we should let
models with more weights train longer, but for our bench-
mark we fixed the number of epochs (100 in our experiment).
So not only we do not observe any benefit in augment-
ing the nconv, but actually we observe performances slightly
decreasing for an under-fitting phenomenon due to the lack of
epochs. Observing results obtainedwith nconv = 0, we verify
the fact that the performance of the network is impacted by
desynchronization when no CONV layer at all is exploited.
The claim of CONV layers overcoming desynchronization
issue by extracting patterns in the trace is then verified. Those
conclusions are perfectly in line with [54] which observes
that CONV layers play a minor role when the observations
traces are perfectly synchronized.

Number of filtersFollowingRule 3, the aimof the next bench-
mark is to test several values for the number of filters in
the CONV layers of the first block (denoted n f ilters,1 in
Rule 3). Figure 7 shows that increasing the number of filters
also increases the SCA-efficiency.However, it also obviously
increases the time of the training which leads us to look at a
good trade-off between efficiency and computational time.

Kernel sizeWe here study the impact of the kernel size (aka
the dimension of the convolutional filters) on the model effi-
ciency. In parallel, we compare two different approaches
which either consist in combining several convolutional
layers with small dimension or in selecting one unique con-
volutional layer with high dimension.

Fig. 7 Mean ranks (left-hand side) and mean training time (right-hand
side) ofCNNbase for a desynchronization in {0, 100} anddifferent values
of initial number of filters

Fig. 8 Mean ranks with different kernel sizes (left-hand side) andmean
ranks with 3 layers of dimension 3 in each block for different epochs
(right-hand side) of CNNbase, for a desynchronization amount of 100

Fig. 9 Mean ranks (left-hand side) andmean accuracy (right-hand side)
of CNNbase for a desynchronization in {0, 100} and various numbers of
final fully-connected layers

Unexpectedly, as shown in Fig. 8, the kernel size signif-
icantly impacts the SCA-efficiency. We obtain a mean rank
below10with a desynchronization amount of 100 by increas-
ing the size of the filters to 11, whereaswe only obtain amean
rank of 40 by increasing the number of convolutional layers
to 3 for each block with filters of size 3. For a complete com-
parison we also increased the number of epochs to 200 in our
second experiment but it clearly does not improve the effi-
ciency in the same scale than the kernel size. This behaviour
is very different than the one expected if we refer to recent
results in computer vision where the trend is to increase the
number of layers with filters of small size.

Number of fully-connected final layers
For this benchmark, we train four versions of CNNbase

with different numbers of fully-connected final layers. Each
of these dense layers has 4096 units. We observe from Fig. 9
that the network requires at least one dense layer when the
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Fig. 10 Mean ranks of CNNbase for a desynchronization in {0, 100}
and activation function in {ReLU , tanh, sigmoid}

traces are synchronized. Roughly speaking, this suggest that,
for SCA attacks, theQDApart of CNNnetworks is simulated
bydense layers,while convolutional layers essentially extract
information (e.g. by combining leakage points and/or by
dealingwith the desynchronization). The results also confirm
that the number of dense layers increases the SCA-efficiency.
Hence, fully connected layers are a critical part of the CNN
network in the context of SCA and shall be not removed.
This differs from the recent trend in computer vision where
dense layers are replaced by an average pooling layer and it
explains the poor results of Inception-v3 and ResNet-50 in
our experiments (Fig. 2).

Activation functions For the three tested activation functions,
Fig. 10 shows that only ReLU can afford a good efficiency
for SCAwhen desynchronization is below 50. Therefore, we
recommend the usage of ReLU activation function for CNN
architecture.

Pooling layer and padding We observed that the choice of
the pooling layer and the padding played a minor role in the
attack success rate. Among the tested options, we eventually
selected a the Average pooling layer and a padding option
equal to same. More information about the related bench-
marking may be found in “Appendix E”.
CNN best At the end of these benchmarks, we are able to
define the best CNNarchitecture based on our selection of the
parameters. Therefore, we define CNNbest as the CNN archi-
tecture with 5 blocks and 1 convolutional layer by block, a
number of filters equal to (64, 128, 256, 512, 512) with ker-
nel size 11 (same padding), ReLU activation functions and
an average pooling layer for each block. The CNN has 2
final dense layers of 4096 units. CNNbest is trained with a
batch size equal to 200 by using RMSprop optimizer with an
initial learning rate of 10−5. According to previous bench-
marks and results of Fig. 4, a number of epochs above 130 is
necessary to obtain the best results with CNNbase on desyn-
chronized traces. In our experiments on CNNbest, we noticed
that a training with 75 epochs is sufficient. For robustness
and because it had an acceptable computing time impact,
we eventually chose to benchmark until a number of epochs
equal to 100.

Fig. 11 VGG-16 mean ranks for a desynchronization amount in
{0, 100} and different numbers of epochs

Fig. 12 Template Attacks mean ranks for a desynchronization amount
in {0, 100} and different values of PCA reduction

4 Attack comparisons on desynchronized
traces

In this section, we perform on desynchronized traces a last
comparison of the efficiency of the four models studied
throughout this article, namely: VGG-16, PCA-QDA (aka
template attacks) and CNNbest. For completeness, we also
report on comparisons with a MLP model trained by fol-
lowing an approach similar to that described in Sect. 3 for
CNN models (see “Appendix C” for more details). As in the
previous sections, models are evaluated with a 10-fold cross-
validation on 50, 000 traces.

VGG-16We train VGG-16with different numbers of epochs.
The size of the batch is equal to 200 and we use RMSprop
optimizer with a initial learning rate of 10−5. The results
for different desynchronization values are plotted in Fig. 11.
As expected, the SCA-efficient increases with the number of
epochs and we select 150 epochs for this model.

Template attacks As described in Sect. 14, we first perform
an unsupervised PCA on the 700 samples of the traces in the
dataset Dprofiling and we apply a QDA on the resulting com-
ponents. Fig. 12 shows the impact of the desynchronization
on the efficiency of template attacks. We note that the attack
fails for a desynchronization amount equal to 100. When no
desynchronization is added, best results are obtained when
only 10 components are kept after the PCA.
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Fig. 13 Mean ranks of CNNbest for a desynchronization amount in
{0, 100}

Fig. 14 Mean ranks of the best models for a desynchronization amount
in {0, 100}

CNNbest Finally, we evaluate CNNbest with the parameters
described in the previous subsection. Results are displayed
in Fig. 13.

Summarize of the results In Fig. 14, we compare the best
results obtained from the models. CNNbest outperforms all
the other models on desynchronized traces with only 75
epochs. VGG-16 has decent results too, but with an higher
number of epochs.CNNbest and template attacks combined to
aPCAhave similar resultswith synchronized traces, however
this second model performs poorly with desynchronization.
MLPbest has good performances on synchronized traces, but
is very sensitive to desynchronization.21

5 Conclusions and perspectives

In this paper, we have conducted a thorough study of the
application of deep learning theory in the context of side-
channel attacks. In particular, we have discussed several
parametrization options andwehave presented a large variety
of benchmarkswhich have been used to either experimentally
validate our choices or to help us to take the adequate deci-
sion. The methodologies followed for the hyper-parameters
selection may be viewed as a proposal to help researchers

21 For the sake of completeness, we have also tested the SCANet model
introduced in [54]. This did not yield to good performances on our
dataset: we have obtained a mean rank of approximatively 128 for each
of our desynchronizations 0, 50 and 100.

to make their own choice for the design of new deep learn-
ing models. They also open the way for further research in
this domain. Since convolutional neural networks are shown
almost similarly efficient as multi-layer perceptron networks
in the context of perfectly synchronized observations but out-
perform them in presence of desynchronization/jittering, our
study suggests that CNN models should be preferred in the
context of SCA (even if they aremore difficult to train).When
it comes to choose a base architecture for the latter models,
our study shows that the 16-layer network VGG-16 used by
the VGG team in the ILSVRC-2014 competition [60] is a
sound starting point (other publicmodels likeResNet-50 [28]
or Inception-v3 [63] are shown to be inefficient). Our results
show that VGG-16 allows to design architectures which,
after training, are better than classical Templates Attacks
even when combined with dimension reduction techniques
like principal component analysis (PCA) [53]. Clearly, our
analysis does not enable to draw strong conclusions on the
optimization and selection of optimal networks in the con-
text of side-channel analysis. It however shows the impact
of each hyper-parameter on the model soundness. All the
benchmarkings have been done with the same target (and
database) which corresponds to an AES implementation
secured against first-order side-channel attacks and devel-
oped in assembly for an ATMega8515 component. This
project has been published in [4]. To enable perfect repro-
ducing of our experiments and benchmarks, we also chose to
publish the electromagnetic measurements acquired during
the processing of our target AES implementation (available
in [3]) together with example Python scripts to launch some
initial training and attacks based on these traces. We think
that this ASCAD database may serve as a common basis
for researchers willing to compare their new architectures or
their improvements in existing models. In this paper, we did
not address the question of model optimality in the context
of side-channel attacks. We think that this subject, together
with the extension of our study to masking schemes which
are not a simple Boolean sharing, is a promising avenue for
further research.

A signal-to-noise characterization of the tar-
get operations

See Fig. 15.
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Fig. 15 SNRs for various intermediate values related to the processing
of sbox(p[3] ⊕ k[3]) in the interval [45400..46100]

B The new ASCAD database

B.1 Trace format

For the storage of the observations and the metadata (plain-
text/ciphertext/key/mask values), we chose to use the current
version 5 of theHierarchicalDataFormat (HDF5). The latter
one is a multi-purpose hierarchical container format capa-
ble of storing large numerical datasets with their metadata.
The specification is open and the tools are open source. The
development of HDF5 is done by the HDF Group, a non-
profit corporation [26]. A HDF5 file contains a POSIX-like
hierarchy of numerical arrays (aka datasets) organizedwithin
groups and subgroups. Effectively, HDF5 may be seen as a
file system within a file, where files are datasets and folders
are groups. Moreover, HDF5 also supports lossless compres-
sion of datasets. To manipulate our HDF5 files we used the
h5py python package [27].

Our HDF5 file ATMega8515_raw_traces.h5 is
composed of two datasets within two groups: metadata
and traces. The type of the latter one is HDF5 Scalar
Dataset (i.e. may be viewed as a 2-dimensional array of 8-

Fig. 16 Structure of the ATMega8515_raw_traces.h5 HDF5
data file

bit integers, the first dimension being the observation index,
the second dimension being a time index and 8-bit integer
being the type of the measure). The type of metadata is
HDF5Compound Datasetwhich is similar to astruct
in C language. The members of the compound dataset
metadata are plaintext, ciphertext, key andmask which all
are arrays of 16 unsigned 8-bit integers. The 14 first elements
of the mask array correspond to the masks r [3], · · · , r [16]
in Algorithm 1 and the two last elements respectively corre-
spond to rin and rout (as explained before the masks r [1] and
r [2] have been forced to 0 for test/validation purpose). We
give an overview of this structure on Fig. 16.

B.2 MNIST database and adaptations to SCA

Our raw traces format, as described in the previous subsec-
tion, is a classical representation of data for SCA analysis.
This however suffers from some issues when considering it
in the light of ML analysis:

– When considering a classification problem, one wants to
get explicit and distinct classes where each trace is sorted
(i.e. labelled) to help with the profiling phase.

– From the traces in ATMega8515_raw_traces.h5,
it is not clear which dataset is to be used for training,
and which is to be used for the tests and the accuracy
computation.

– Finally, the raw ATMega8515_raw_traces.h5 file
does not contain explicit labels for the SCA classifica-
tion problem, though these can be computed given the
plaintext and key metadata.

TheMNISTdatabase [39] is a reference in theML image
classification community, allowing any new machine learn-
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ing algorithm to be fairly compared to the state-of-the-art
results. The efficiency of a new algorithm is tested against
the classification of 28×28 pixels greyscale, normalized and
centered images of handwritten digits. The database is split
in groups, each one containing data and labels:

1. The training dataset group (50, 000 samples) contains
the samples used during the training phase. This group
is composed of the raw images in a file, and their labels
with the same index in another file.

2. Similarly, the test dataset group (10,000 samples) is com-
posed of the raw images in a file, and their labels with
the same index in another file.

Following the path of the MNIST database, we propose a
novel approach that fits the needs of testing ML algorithms
against the SCA classification problems described in previ-
ous sections. We provide a database ASCAD with labelled
datasets that will allow the SCA community to objectively
compare the efficiency of ML and DL methods. To fit the
SCA context, we have adapted the so-called MNIST training
and test concepts to the more appropriate profiling and attack
semantics as introduced and described in Sect. 2.2.1.22

The database information is extracted from the raw data
file ATMega8515_raw_traces.h5, and its structure is
presented onFig. 17. For the sake of efficiency and simplicity,
the HDF5 file format has been kept for our ASCADdatabase.
The new file ASCAD.h5 is composed of:

– two main groups: Profiling_traces for profiling
which contains Np information, and Attack_traces
for attacking which contains Na information.23 In our
case, over the 60, 000 labelled traces, we have chosen
Np = 50, 000 and Na = 10, 000.

– In each main group, we find three HDF5 datasets;

– the traces dataset contains the raw traces zoomed
in on the 700 samples window of interest: the
[45400..46100] interval containing the relevant infor-
mation as previously described (only keeping the
relevant samples in the traces allows to have a rea-
sonably sized database),

– the labels dataset contains the labels (following
the ML classification meaning) for each trace. In our
case, the value of the byte sbox(p[3] ⊕ k[3]) is the
label of interest, leading to 256 possible classes (the
sequel of the article discusses this choice, and com-
pares it to other possible classes such as using the

22 Additionally, beware that in this paper training and testing are used
in the context of cross-validation and are subsets of the profiling dataset
Dprofiling.
23 We recommend to perform the cross-validation only with the profil-
ing set.

Hamming weight of sbox(p[3] ⊕ k[3])). In Remark
2, we explain how this labelling over the outputs of
the sbox processing can be simply converted into a
labelling over the different key candidates. It is to be
noted that the masks are not used when computing
the labels.

– The metadata dataset contains the information
related to each trace in a HDF5 compound (aka struc-
ture), taken fromATMega8515_raw_traces.h5
almost without any modification (an additional field
is added, see below). From a strict ML perspective,
this metadata is useless since the labels are the only
necessary information to check the efficiency of an
algorithm. These data are however useful from a SCA
perspective since the plaintext byte p[3] is necessary
to extract the estimated k̂[3] from the label values, and
the real value of the key byte k[3] is useful for the key
ranking with regard to each class probability. Even
though only p[3] and k[3] are useful for key ranking,
we have decided to keep all the other metadata (the
other plaintext and key bytes, the ciphertext and the
masks) for the sake of completeness: the size of this
metadata is very reasonable. Finally, a desync field
is added to the compound structure: this uint32
field represents the optional random desynchroniza-
tion applied to the traces, which simulates a jitter as
explained hereafter.

We feel that our ASCAD database is versatile enough to
check the efficiency and accuracy of ML and DL algorithms
applied to side-channel analysis, andwe also aimat providing
general purpose python scripts that will ease the process
of:

– creating new databases following the same structure to
attack other outputs in other AES rounds (with data
extracted from ATMega8515_raw_traces.h5 or
any other similarly structured HDF5 file),

– modifying the profiling and attack datasets sizes and
index to check their effect,

– adding a parametrized desynchronization to the traces to
check the efficiency of the algorithm against jitter, and its
impacts on the hyper-parameters. See the sequel of the
article for a discussion on this.

As a benchmarking baseline, we will actually provide
three HDF5 files that form our reference database:

– ASCAD.h5, which contains profiling and attack datasets
as previously described. The traces are synchronized and
there is no jitter,

– ASCAD_desync50.h5, which contains traces with a
50 samples window maximum jitter.
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Fig. 17 Structure of the ASCAD.h5 HDF5 data file

– ASCAD_desync100.h5, which contains traces with a
100 samples window maximum jitter.

Themethod used to simulate the jitter is described in 3.3.2.

CMulti-layer perceptrons (MLP)

C.1 Core principles and constructions

Multi-Layer Perceptrons (MLPs) are associated with a
model/function ĝ that is composed of multiple linear func-
tions and some nonlinear activation functions which are
efficiently-computable and whose derivatives are bounded
and efficient to evaluate. In short, an MLP can be defined as
follows:

ĝ : � �→ ĝ(�) = s ◦ λn ◦ αn−1 ◦ λn−1 ◦ · · · ◦ λ1(�) = y ,

(10)

where:

Algorithm 1: Secure AES Implementation with Table
Recomputation

Input : a 16-byte plaintext (p[1], · · · , p[16]),
an 18-byte mask vector (r [1], · · · , r [16], rin, rout),
and a 16-byte master key (mk1, · · · ,mk16)

Output: a 16-byte ciphertext (c1, · · · , c16)

function MaskedAES:
// SBox recomputation
for i = 0 to 255 do

1] sbox�[i] ← sbox[i ⊕ rin] ⊕ rout

// Initialization
for i = 1 to 16 do

2] state0[i] ← p[i] ⊕ r [i]
3] state1[i] ← r [i]
4] key[i] ← mki

// AES processing
for round = 1 to 10 do

/* Key scheduling */
5] (key[1], · · · , key[16]) ←

KeyScheduling(key[1], · · · , key[16])
for i = 1 to 16 do

/* AddRoundKey and SubBytes */
6] state0[i] ← (state0[i] ⊕ key[i] ⊕ rin) ⊕ state1[i]
7] state0[i] ← sbox�[state0[i]]
8] state0[i] ← (state0[i] ⊕ state1[i]) ⊕ rout

/* ShiftRows */
9] (state0[1], · · · , state0[16]) ←

ShiftRows(state0[1], · · · , state0[16])
10] (state1[1], · · · , state1[16]) ←

ShiftRows(state1[1], · · · , state1[16])
/* MixColumns except for the last round

*/
if round �= 10 then

11] (state0[1], · · · , state0[16]) ←
MixColumns(state0[1], · · · , state0[16])

12] (state1[1], · · · , state1[16]) ←
MixColumns(state1[1], · · · , state1[16])

// Last AddRoundKey
13] (key[1], · · · , key[16]) ← KeyScheduling(key[1], · · · , key[16])

for i = 1 to 16 do
14] ci ← (state0[i] ⊕ key[i]) ⊕ state1[i]

// Return the ciphertext
return (c1, . . . , c16)

steps]

– the λi functions are the so-called Fully-Connected (FC)
layers and are expressible as affine functions: denoting
v the D-dimensional input of an FC, its output is given
by A� + B, being A ∈ R

C×D a matrix of weights and
B ∈ R

C a vector of biases.
– the αi are the so-called activation functions (ACT): an

activation function is a nonlinear real function that is
applied independently to each coordinate of its input (e.g.
theReLUactivation function processesmax(0, x) to each
coordinate x),
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– s is the so-called softmax function (SOFT): s(�)[i] =
e�[i]

∑
j e

�[ j] .

In the rest of the paper,MLP(nlayer, nunits, α)will denote an
MLP architecture with nlayer layers, nunits units (a.k.a. nodes
or neurons) andα as activation function for each hidden layer.
Such an MLP corresponds to (10) with αi = α for every i ,
with n = nlayer, and with λi defined for D = C = nunits if
i ∈ [2...nlayer−1] and for (C, D) = (nunits, 700) if i = 1 and
(C, D) = (256, nunits) for i = nlayer (indeed inputs of the
model are 700-dimensional leakage traces while the outputs
are in [0..255]).

C.2 Choice of the hyper-parameters

As explained in Sect. 3.3, the strategy we applied to tune the
hyper-parameters is divided into three steps. First we fix a
base architecture that we denote MLPbase corresponding to
MLP(6, 200, ReLU ), the 6-layers MLP with 200 units and
the ReLU activation function for each layer. Secondly we
tune the trainingparameters, leading to the parametrization of
a procedure Training(nepochs, batch_si ze, optimizer ,
learning_rate). Then, different variations of MLPbase are
tested by studying the impact of each architecture parame-
ter on the model efficiency after training with the procedure
fixed during previous step. The full strategy aims at provid-
ing us with an architecture MLPbest and a training procedure
that are goodw.r.t. the evaluationmetrics listed in Sect. 2.4.2.

C.2.1 Training parameters

This subsection aims at studying how the mean rank of the
side-channel attack involving the trained model is impacted
by the length of the training dataset, the number of epochs,
the batch size and the learning rates/optimizers.

First we evaluate the impact of the size Ntrain of the train-
ing set on the success of a neural network based SCA. We
performed a 10-fold cross-validation with different sizes of
dataset, while keeping a constant computational time dur-
ing the training step for fair comparison. This is done by
adapting the number of epochs to the number of traces in
the dataset. We expect that the performance of the model
increases with the size of the training set until a certain
threshold that determined the optimal number of traces. The
neural network used for this experiment is MLPbase trained
with RMSProp optimizer, learning rate 10−5 and batch size
100. The initialization of the weights is performed from an
uniform distribution of mean 0 as defined in Glorot and Ben-
gio’s article [22]. Figure 18 shows the mean rank function
for different sizes of training set. Our empirical results on the
full ATMega8515_raw_traces.h5 show that approxi-
mately 50, 000 training traces are required for a full success

Fig. 18 Mean rank function (7) after 10-fold cross-validation of
MLPbase with Training(·, 100,RMSProp, 10−5) for different sizes
of training set, for an increasing number n of test traces and for different
epochs chosen to keep the overall computation time roughly constant

Fig. 19 Mean ranks and training time of MLPbase = MLP(6, 200,
ReLU ) trained with Training(nepochs, batch_si ze,RMSProp,
10−5) for varying values of nepochs and batch_si ze

of the attack/test in less than 1000 traces. That iswhyASCAD
is composed of a training set Dprofiling of size 50, 000 and
an attack set Dattack of size 10,000. Based on these results,
the benchmarks in the rest of the paper were performed on
ASCAD profiling traces Dprofiling.

Then we select the best values for the number of epochs
and the batch size of the training step. Figure 19 shows the
empirical results for different values nepochs with a 10-fold
cross-validation on Dprofiling. We notice that the number of
epochs has a significant impact on the rank functions. Tak-
ing into account the trade-off between computation time and
SCA-efficiency, best results are obtained by choosing 400
epochs and a batch size equal to 500 or 200 epochs and a
batch size equal to 100. However, it appears that we have a
best accuracy and a best stability on the rank functions with
the latter pair of parameters, which leads us to select these
values for the rest of our benchmarks on MLP. We insist on
the fact that theses values are obtained as a trade-off that
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Fig. 20 Mean ranks and
accuracy of MLPbase =
MLP(6, 200, ReLU ) trained
with
Training(200, 100, optimizer , 10−5)

for different optimizers

Fig. 21 Mean ranks and
accuracy of MLPbase =
MLP(6, 200, ReLU ) with
RMSProp optimizer and
different values of learning rate

allows us to perform multiple cross-validations in a reason-
able amount of time. When the batch size parameter is fixed
to 100 we can obtained better results by increasing the num-
ber of epochs and consequently the training time. Therefore
in the case of a single SCA attack in a given amount of time,
we recommend to fix the batch size to 100 and to increase
progressively the number of epochs after 200 until the dedi-
cated amount of time for the training step is reached (in our
experimental results we did not notice any improvement in
the SCA-efficiency after 800 epochs).

The last training parameters that we tune are the gradient
descent optimization method (also called optimizer) and the
learning rate. Empirical results in Figs. 20 and 21 show that
these parameters also have a high impact on the success of the
attack.Wemanaged to obtain good resultswith optimizer =
RMSProp and a learning rate equal to 10−5 (which confirms
the soundness of the choices made for experiments reported
in Figs. 18 and 19).

C.2.2 Architecture parameters

As described in previous subsection, an MLP architecture
is characterized by three architecture hyper-parameters: the
number of layers, the number of units of each layer and the
activation functions. In this section,weuse the trainingproce-
dure Training(200, 100, RMSProp, 10−5) determined
in previous section and we come back on ourMLPbase initial
choice to challenge its hyper-parameters.

First we evaluate the optimal number of layers with a
fixed number of nodes: models MLP(nlayers, 200, ReLU ) are
trained for different values nlayers ∈ [3..11]. Figure 22 plots
the mean rank function, the mean accuracy and the average
training time.All themean rank functions converge to 0when

the number of traces increases. However, the 6-layers MLP
has a slight advantage on less than 600 traces and has the best
mean accuracy.

Then we evaluate the optimal number of units per layer.
Small values lead to simple models that are not power-
ful enough to represent the dataset trends and high values
lead to complex models that are difficult to train and are
more susceptible to over-fitting.We limit our empirical study
to MLPs with the same number of units by layer. Fig-
ure 23 shows the obtained results. With the previously fixed
training parameters, the performance of the attack seems
to increase once the number of units per layer equals or
exceeds 200.

Finally we study the effect of the activation function on
the performance of the neural network. Since its introduc-
tion in Deep Learning, Rectified Linear Units (ReLUs) have
proved to be the best suitable choice for a number of prob-
lems, and most specifically in image recognition [23,32,51].
The obtained networks have sparse representation, and the
simple definition of the ReLU (x) = max(0, x) activation
function allows quick computations. Figure 24 plots the
experimental results obtainedwithMLP(6, 200, α) for differ-
ent activation functions α. The best results are obtained with
ReLU , tanh and so f tsign which is a variation of tanh. We
select ReLU activation function since it provides state-of-
the-art results and its computation time is below the two other
functions.

Benchmarks reported in this section confirms that the
architecture MLP(6, 200, ReLU ) leads to good compromise
efficiency versus computational time when trained with the
following parameters: Training(200, 100, RMSProp,
10−5). In the rest of this paper, this architecture is denoted
MLPbest. We insist on the fact that MLPbest has a decent
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Fig. 22 Mean ranks, mean
accuracy and mean training time
of MLP(nlayers, 200, ReLU )

with different numbers of nlayers

Fig. 23 Mean ranks, mean
accuracy and mean training time
of MLP(6, nunits, ReLU ) with
different nunits

Fig. 24 Mean ranks of
MLP(6, 200, α) with different
activation functions

SCA-efficiency with 200 epochs but the latter efficiency con-
tinues to improve when the number of epochs increases until
800 epochs (in our experiments we did not notice any signif-
icant improvement after 800 epochs). Hence, depending on
the amount of time allocated to the training of MLPbest, it
may be interesting to increase the number of epochs in the
range [200..800].

C.3 Open discussions

C.3.1 Self-normalizing neural networks

Recently, a new type of MLP called Self-Normalizing Neu-
ral Networks (SNN) has been introduced in [33]. It aims to
improve the robustness of MLPs against perturbation during
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Fig. 25 Mean ranks and
accuracy of a SNN and MLPbest
with different numbers of
epochs

Fig. 26 Mean ranks of MLPbest
with Hamming weights as labels
and MLPbest with real values as
labels

the training step and to reduce the variance of the training
error. Its architecture is a slight variation of the standardMLP
architecture: the activation function, called “scaled exponen-
tial linear units” (SELU) is given by:

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0
. (11)

Furthermore, the initialization of the weights is performed
from a standard normal distribution. These two modifica-
tions imply that the neural network is self-normalizing, i.e.
the mean and variance of the activation functions across the
different layers stay within small pre-defined intervals. This
new architecture outperformed standard MLPs on a number
of benchmarks, including MNIST.

We test on the ASCAD a SNN architecture with 6 layers
and 200 units for each layer and we compare it withMLPbest.
Experimental results in Fig. 25 show that rank functions
are very similar between the two architectures. This high-
lights the fact that there does not seem to be any significant
improvement with the SNN architecture in the context of
SCA. The accuracy is slightly higher with SNN as expected

in a Machine Learning perspective, however it does not have
an influence on the overall rank function.

C.3.2 Hamming weight versus identity labelling

We test our MLPbest architecture on the SCA dataset with a
labelling of the traces modified to take the Hamming weight
of the sensitive value instead of the real value itself. This
strategy of data labelling reduces the number of classes to
predict (9 values for the Hamming weight instead of 256 val-
ues for a byte). Consequently, the model trained on the new
dataset is less complex than the model trained on the full val-
ues. We also modify the computation of the rank function in
(2) by taking into account the distribution of the Hamming
weight values. In Fig. 26, the corresponding rank functions
are plotted. They show that the new labelling strategy is less
interesting. Indeed, even if the Hamming weight model is
less complex and requires a smaller number of epochs for
the training step, the conditional probability approximated
by the neural network is less discriminating (which is a con-
sequence of the reduced number of classes). Moreover, the
weighting coefficients in (2) (deduced from the Hamming
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Fig. 27 Mean ranks of a PCA on n components followed by a QDA

weight distribution for uniform data) may increase the vari-
ance of the rank (viewed as a random variable) since e.g. an
error on a value with Hamming weight 0 or 8 accounts for(8
4

) = 70 times an error on a value of Hamming weight 4.
Eventually, assuming that the deterministic part of the leak-
age corresponds to an Hamming weight may be an incorrect
abstraction and induces error in the modelling.

C.3.3 Comparison with template attacks

We compare MLPbest with standard template attacks (aka
quadratic discriminant analysis, or QDA in the machine
learning community). We first perform an unsupervised
dimension reduction to extract meaningful features. For this
task we use a classical PCA which is parametrized by the
number of components to extract. Then the classification
task is performed with a QDA (i.e. Template Attacks). Note
that, contrary to QDA, neural networks do not require the
preprocessing feature extraction step since this task is real-
ized by the first layers of the networks. Figure 27 shows
the results obtained with different numbers of components
extracted from the PCA.

C.3.4 First-order attacks

By using the mask values contained in the ASCAD, it is
possible to compute the masked output after the first round
AES Sbox:

z = sbox(p[3] ⊕ k[3]) ⊕ rout

where z is the sensitive value and p[3], k[3], rout are theplain-
text byte, the key byte and the mask byte.

Therefore, we can mount a first-order SCA by labelling
the traces with the masked output values and we can test the
performance of MLPbest in this weaker context. The results
in Fig. 28 show that, without anymodification in the architec-

Fig. 28 Mean ranks and accuracy of MLPbest on a first-order SCA

ture and the training parameters, MLPbest easily succeeds in
this attack. The rank functions converge to 0 with 20 epochs
and only 4 traces are required to determine the correct key.
We also managed to obtain an accuracy of 0.028, and we did
not notice any over-fitting with 200 epochs.

C.4 Efficiency results on ASCAD database

We trained MLPbest on ASCAD Database with and without
desynchronization and with different numbers of epochs. As
shown in Fig. 29,MLP is very sensitive to desynchronization
and increasing the number of epochs is not enough to get
better results.

Fig. 29 Mean ranks of MLPbest for a desynchronization amount in
{0, 100} and different values of epochs
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D Example of tested CNN architecture

See Fig. 30.
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Fig. 30 Example of our CNNbase architecture

E CNN: Supplementary materials for t7he
hyper-parameters’ choice

Pooling Layer andPadding We tested three different options
for all the pooling layers of CNNbase: max pooling, aver-
age pooling, and stride pooling24. Contrary to standard CNN
architectures used in computer vision that rely on max pool-
ing, we obtained our best results with average pooling layers
(Fig. 31).

Padding Finally we tested two configurations of padding.
Results in Fig. 32 show that this parameter does not have a
significant impact on the SCA-efficiency.

24 Stride pooling consists in taking the first value on each input window
defined by the stride.

Fig. 31 For a desynchronization amount in {0, 100} and different pool-
ing layers (either max or average or stride pooling), the mean ranks of
CNNbase

Fig. 32 For a desynchronization amount in {0, 100} and a padding
option either set to same or to valid, the mean ranks of CNNbase

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on
heterogeneous systems (2015). https://www.tensorflow.org/. Soft-
ware available from tensorflow.org

2. Akkar, M.L., Giraud, C.: An Implementation of DES and AES,
Secure against Some Attacks. In: Ç. Koç, D., Naccache, D., Paar,
C. (eds.) Cryptographic Hardware and Embedded Systems–CHES
2001. Lecture Notes in Computer Science, vol. 2162, pp. 309–318.
Springer, Berlin (2001)

3. ANSSI: Ascad database (2018). https://github.com/ANSSI-FR/
ASCAD

4. ANSSI: secaes-atmega8515 (2018). https://github.com/ANSSI-
FR/secAES-ATmega8515

5. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based
on probabilistic multi-class support vector machines. In: Man-
gard, S. (ed.) Smart Card Research and Advanced Applications
CARDIS. Lecture Notes in Computer Science, vol. 7771, pp. 263–
276. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-
37288-9_18

6. Bengio, Y., Grandvalet, Y.: Bias in estimating the variance of k-fold
cross-validation. In: Duchesne, P., Rémillard, B. (eds.) Statisti-
cal modeling and analysis for complex data problems, pp. 75–95.
Springer, Berlin (2005)

7. Bergstra, J., Bengio, Y.: Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res. 13((Feb)), 281–305 (2012)

8. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for
optimizing the hyperparameters of machine learning algorithms.

123

https://www.tensorflow.org/
https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/secAES-ATmega8515
https://github.com/ANSSI-FR/secAES-ATmega8515
https://doi.org/10.1007/978-3-642-37288-9_18
https://doi.org/10.1007/978-3-642-37288-9_18


Journal of Cryptographic Engineering (2020) 10:163–188 187

In: Proceedings of the 12th Python in Science Conference, pp. 13–
20 (2013)

9. Bishop, C.M.: Pattern Recognition and Machine Learning.
Springer, Berlin (2006)

10. Breiman, L., et al.: Heuristics of instability and stabilization in
model selection. Ann. Stat. 24(6), 2350–2383 (1996)

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a
leakage model. In: Joye, M., Quisquater, J.J. (eds.) Cryptographic
Hardware and Embedded Systems–CHES 2004. Lecture Notes in
Computer Science, vol. 3156, pp. 16–29. Springer, Berlin (2004)

12. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analy-
sis for information extraction in the presence of masking. In:
K. Lemke-Rust, M. Tunstall (eds.) Smart Card Research and
Advanced Applications-15th International Conference, CARDIS
2016, Cannes, France, 7–9 November 2016, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 10146, pp. 1–
22. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-
54669-8_1

13. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks
with data augmentation against jitter-based countermeasures - pro-
filing attacks without pre-processing. In: W. Fischer, N. Homma
(eds.) Cryptographic Hardware and Embedded Systems-CHES
2017-19th International Conference, Taipei, Taiwan, September
25–28 2017, Proceedings, Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer, Berlin (2017). https://doi.org/10.1007/
978-3-319-66787-4_3

14. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.,
Koç, Ç., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems-CHES 2002. Lecture Notes in Computer Science, vol.
2523, pp. 13–29. Springer, Berlin (2002)

15. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn.

20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
17. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side

channel attacks and leakagemodeling. J. Cryptogr. Eng. 1(2), 123–
144 (2011)

18. Fisher, R.A.: On themathematical foundations of theoretical statis-
tics. Philos. Trans. R. Soc. Lond. Ser. A. 222, 309–368 (1922).
https://doi.org/10.1098/rsta.1922.0009

19. Fisher, R.A.: The use ofmultiplemeasurements in taxonomic prob-
lems. Ann. Eugen. 7(7), 179–188 (1936)

20. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical
Learning. Springer Series in Statistics, vol. 1. Springer, New York
(2001)

21. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack
on a masked implementation of AES. In: IEEE International Sym-
posium on Hardware Oriented Security and Trust, HOST 2015,
Washington, DC, USA, 5–7 May 2015, pp. 106–111. IEEE Com-
puter Society (2015). https://doi.org/10.1109/HST.2015.7140247

22. Glorot,X., Bengio,Y.:Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
pp. 249–256 (2010)

23. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural net-
works. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pp. 315–323 (2011)

24. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press, Cambridge (2016)

25. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning.
Adaptive Computation and Machine Learning. MIT Press, Cam-
bridge (2016)

26. Group, H.: The hdf group. https://www.hdfgroup.org/
27. Group, H.: HDF5 For Python. http://www.h5py.org/
28. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image

recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

29. Heuser, A., Zohner, M.: Intelligent machine homicide-breaking
cryptographic devices using support vector machines. In:
W. Schindler, S.A.Huss (eds.) Constructive Side-ChannelAnalysis
and Secure Design-Third InternationalWorkshop, COSADE 2012,
Darmstadt, Germany, 3–4 May 2012. Proceedings, Lecture Notes
in Computer Science, vol. 7275, pp. 249–264. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-29912-4_18

30. Hospodar, G., Gierlichs, B.,Mulder, E.D., Verbauwhede, I., Vande-
walle, J.: Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng. 1(4), 293–302 (2011). https://doi.org/10.1007/
s13389-011-0023-x

31. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. CoRR (2015).
arXiv:1502.03167

32. Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best
multi-stage architecture for object recognition? In: 2009 IEEE 12th
International Conference on Computer Vision, pp. 2146–2153.
IEEE (2009)

33. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.:
Self-normalizing neural networks (2017). arXiv preprint
arXiv:1706.02515

34. Kocher, P., Jaffe, J., Jun,B.:Differential power analysis. In:Wiener,
M. (ed.) Advances in Cryptology-CRYPTO’99. Lecture Notes in
Computer Science, vol. 1666, pp. 388–397. Springer, Berlin (1999)

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. Commun. ACM 60(6),
84–90 (2017). https://doi.org/10.1145/3065386

36. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images,
speech, and time series. TheHandbook of Brain Theory andNeural
Networks 3361(10), 1995 (1995)

37. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E.,
Hubbard,W., Jackel, L.D.:Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1(4), 541–551 (1989)

38. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proc. IEEE 86(11),
2278–2324 (1998)

39. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of hand-
written digits. http://yann.lecun.com/exdb/mnist/

40. LeCun, Y., Huang, F.J.: Loss functions for discriminative training
of energy-based models. In: R.G. Cowell, Z. Ghahramani (eds.)
Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics, AISTATS 2005, Bridgetown, Barbados,
6–8 January 2005. Society for Artificial Intelligence and Statistics
(2005). http://www.gatsby.ucl.ac.uk/aistats/fullpapers/207.pdf

41. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack:
an approach based on machine learning. IJACT 3(2), 97–115
(2014). https://doi.org/10.1504/IJACT.2014.062722

42. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A
machine learning approach against amaskedAES. In: Friedman, J.,
Hastie, T., Tibshirani, R. (eds.) The Elements of Statistical Learn-
ing. Springer Series in Statistics, vol. 1, pp. 61–75. Springer, New
York (2014). https://doi.org/10.1007/978-3-319-08302-5_5

43. Lerman, L., Poussier, R., Bontempi, G.,Markowitch, O., Standaert,
F.: Template attacks vs. machine learning revisited (and the curse
of dimensionality in side-channel analysis). In: S. Mangard, A.Y.
Poschmann (eds.) Constructive Side-Channel Analysis and Secure
Design-6th International Workshop, COSADE 2015, Berlin, Ger-
many, 13–14April 2015.Revised Selected Papers, LectureNotes in
Computer Science, vol. 9064, pp. 20–33. Springer, Berlin (2015).
https://doi.org/10.1007/978-3-319-21476-4_2

44. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic
implementations using deep learning techniques. In: C. Carlet,
M.A. Hasan, V. Saraswat (eds.) Security, Privacy, and Applied
Cryptography Engineering-6th International Conference, SPACE
2016, Hyderabad, India, 14–18 December 2016. Proceedings, Lec-

123

https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://github.com/fchollet/keras
https://doi.org/10.1007/BF00994018
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1109/HST.2015.7140247
https://www.hdfgroup.org/
http://www.h5py.org/
https://doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1706.02515
https://doi.org/10.1145/3065386
http://yann.lecun.com/exdb/mnist/
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/207.pdf
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1007/978-3-319-08302-5_5
https://doi.org/10.1007/978-3-319-21476-4_2


188 Journal of Cryptographic Engineering (2020) 10:163–188

ture Notes in Computer Science, vol. 10076, pp. 3–26. Springer,
Berlin (2016). https://doi.org/10.1007/978-3-319-49445-6_1

45. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attack-
ing masked AES hardware implementations. In: Rao, J., Sunar,
B. (eds.) Cryptographic Hardware and Embedded Systems-CHES
2005. Lecture Notes in Computer Science, vol. 3659, pp. 157–171.
Springer, Berlin (2005)

46. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis
attack based on MLP in DPA contest V4.2. In: 39th Interna-
tional Conference on Telecommunications and Signal Processing,
TSP 2016, Vienna, Austria, 27–29 June 2016, pp. 223–226. IEEE
(2016). https://doi.org/10.1109/TSP.2016.7760865

47. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analy-
sis using neural network. In: Francillon, A., Rohatgi, P. (eds.) Smart
CardResearch andAdvancedApplications-12th InternationalCon-
ference, CARDIS 2013, Berlin, Germany, 27–29 November 2013.
Revised Selected Papers, Lecture Notes in Computer Science, vol.
8419, pp. 94–107. Springer, Berlin. https://doi.org/10.1007/978-
3-319-08302-5_7

48. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis
attack based on multi-layer perceptron network. Comput. Probl.
Sci. Eng. 343, 317 (2015)

49. McAllester, D.A., Hazan, T., Keshet, J.: Direct loss minimiza-
tion for structured prediction. In: J.D. Lafferty, C.K.I. Williams,
J. Shawe-Taylor, R.S. Zemel, A. Culotta (eds.) Advances in
Neural Information Processing Systems 23: 24th Annual Con-
ference on Neural Information Processing Systems 2010. Pro-
ceedings of a Meeting Held 6–9 December 2010, Vancouver,
British Columbia, Canada, pp. 1594–1602. Curran Associates,
Inc., Red Hook (2010). http://papers.nips.cc/paper/4069-direct-
loss-minimization-for-structured-prediction

50. Messerges, T.: Using second-order power analysis to attack DPA
resistant software. In: Koç, Ç., Paar, C. (eds.) Cryptographic
Hardware and Embedded Systems-CHES 2000. Lecture Notes in
Computer Science, vol. 1965, pp. 238–251. Springer, Berlin (2000)

51. Nair, V., Hinton, G.E.: Rectified linear units improve restricted
Boltzmann machines. In: Fürnkranz, J., Joachims, T. (eds.) Pro-
ceedings of the 27th InternationalConferenceonMachineLearning
(ICML-10), 21–24 June 2010, Haifa, Israel, pp. 807–814. Omni-
press, Madison (2010)

52. O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source plat-
form for hardware embedded security research. In: E. Prouff (ed.)
Constructive Side-Channel Analysis and Secure Design-5th Inter-
national Workshop, COSADE 2014, Paris, France, 13–15 April
2014. Revised Selected Papers, Lecture Notes in Computer Sci-
ence, vol. 8622, pp. 243–260. Springer, Berlin (2014). https://doi.
org/10.1007/978-3-319-10175-0_17

53. Pearson, K.: On lines and planes of closest fit to systems of points
in space. Philos. Mag. 2(11), 559–572(1901)

54. Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.:
On the Performance of Deep Learning for Side-channel Analysis.
IACR Cryptology. ePrint Archive 2018, 004 (2018). http://eprint.
iacr.org/2018/004

55. Prouff, E., Rivain, M.: A generic method for secure SBox imple-
mentation. In: Kim, S., Yung, M., Lee, H.W. (eds.) WISA. Lecture
Notes in Computer Science, vol. 4867, pp. 227–244. Springer,
Berlin (2008)

56. Rokach, L.,Maimon,O.: DataMiningwithDecision Trees: Theroy
and Applications.World Scientific Publishing Co., Inc, River Edge
(2008)

57. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein,M., et al.: Imagenet
large scale visual recognition challenge. Int. J. Comput.Vis.115(3),
211–252 (2015)

58. Schindler, W.: Advanced stochastic methods in side channel anal-
ysis on block ciphers in the presence of masking. J. Math. Cryptol.
2, 291–310 (2008)

59. Schindler, W., Lemke, K., Paar, C.: A Stochastic model for dif-
ferential side channel cryptanalysis. In: Rao, J., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems–CHES 2005.
Lecture Notes in Computer Science, vol. 3659. Springer, Berlin
(2005)

60. Simonyan, K., Zisserman, A.: Very deep convolutional net-
works for large-scale image recognition (2014). arXiv preprint
arXiv:1409.1556

61. Song, Y., Schwing, A.G., Zemel, R.S., Urtasun, R.: Direct
loss minimization for training deep neural nets. CoRR (2015).
arXiv:1511.06411

62. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9 (2015)

63. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826 (2016)

64. Weston, J., Watkins, C.: Multi-class support vector machines.
Technical Report CSD-TR-98-04, Royal Holloway, University of
London (1998)

65. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolu-
tional networks. In: European Conference on Computer Vision, pp.
818–833. Springer (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1007/978-3-319-08302-5_7
https://doi.org/10.1007/978-3-319-08302-5_7
http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction
http://papers.nips.cc/paper/4069-direct-loss-minimization-for-structured-prediction
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
http://eprint.iacr.org/2018/004
http://eprint.iacr.org/2018/004
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.06411

	Deep learning for side-channel analysis and introduction to ASCAD database
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Contributions

	2 Preliminaries and theoretical foundations
	2.1 Notations
	2.2 Side-channel analysis
	2.2.1 Profiling SCA
	2.2.2 Leakage dimensionality issue
	2.2.3 (Gaussian) Template attacks

	2.3 Machine learning and deep learning
	2.4 Model assessment and selection
	2.4.1 Evaluation methodology
	2.4.2 Evaluation metrics
	2.4.3 About the profiling set-up

	2.5 Target of the attacks experiments and leakage characterization
	2.5.1 About the implementation
	2.5.2 About the acquisition phase


	3 Convolutional neural networks
	3.1 Core principles and constructions
	3.2 A brief overview of current CNN architectures
	3.3 Determining an architecture
	3.3.1 Choice of the CNNbase
	3.3.2 Choice of the hyper-parameters in SCA context
	3.3.3 Training parameters
	3.3.4 Architecture parameters


	4 Attack comparisons on desynchronized traces
	5 Conclusions and perspectives
	A signal-to-noise characterization of the target operations
	B The new ASCAD database
	B.1 Trace format
	B.2 MNIST database and adaptations to SCA

	C Multi-layer perceptrons (MLP)
	C.1 Core principles and constructions
	C.2 Choice of the hyper-parameters
	C.2.1 Training parameters
	C.2.2 Architecture parameters

	C.3 Open discussions
	C.3.1 Self-normalizing neural networks
	C.3.2 Hamming weight versus identity labelling
	C.3.3 Comparison with template attacks
	C.3.4 First-order attacks

	C.4 Efficiency results on ASCAD database

	D Example of tested CNN architecture
	E CNN: Supplementary materials for t7he hyper-parameters' choice
	References




