
Journal of Cryptographic Engineering (2019) 9:263–275
https://doi.org/10.1007/s13389-019-00219-1

REGULAR PAPER

Automatic generation of HCCA-resistant scalar multiplication
algorithm by proper sequencing of field multiplier operands

Poulami Das1 · Debapriya Basu Roy1 · Debdeep Mukhopadhyay1

Received: 5 February 2018 / Accepted: 28 July 2019 / Published online: 8 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Horizontal collision correlation analysis, in short HCCA, imposes a serious threat to simple power analysis-resistant elliptic
curve cryptosystems involving unified algorithms, e.g., Edwards curve unified formula. This attack can be mounted even
in the presence of differential power analysis-resistant randomization schemes. In this paper, we have designed an effective
countermeasure for HCCA protection, where the dependency of side-channel leakage from a school–book multiplication with
the underlying multiplier operands is investigated. We have shown how changing the sequence in which the operands are
passed to the multiplication algorithm introduces dissimilarity in the information leakage. This disparity has been utilized in
constructing a minimal cost countermeasure against HCCA. This countermeasure integrated with an effective randomization
method has been shown to successfully thwart HCCA. Additionally we provide experimental validation for our proposed
countermeasure technique on a SASEBO platform. To the best of our knowledge, this is the first time that asymmetry in
information leakage has been utilized in designing a side-channel countermeasure.

Keywords ECC · HCCA · Countermeasure · Asymmetric leakage · Field multiplications

1 Introduction

Elliptic curve cryptosystems are emerging as a primary
choice for securing lightweight embedded devices as it incor-
porates more security per key bit compared to RSA [28], thus
qualifying as a less resource hungry alternative. Also with
the recent explosion of Internet of things (IoT), applications
using lightweight hardware devices are increasing exponen-
tially which in turn make the security of the underlying
devices imperative. However, the hardware implementations
of cryptographic applications suffer an inevitable insecu-
rity in terms of side-channel leakage [23], even though the
system is theoretically protected. Side-channel leakage of
information through power consumption [23], electromag-

The authors would like to thank ISEA Funding for Research on Next
Generation Network Security for partially supporting their work.

B Poulami Das
poulamidas22@gmail.com

Debapriya Basu Roy
dbroy24@gmail.com

Debdeep Mukhopadhyay
debdeep.mukhopadhyay@gmail.com

1 IIT Kharagpur, Kharagpur, India

netic (EM) dissipation, acoustic channel [14], etc. make the
system weakly protected and may lead to complete secret
key recovery. A naive implementation of an elliptic curve
(EC) scalar multiplication algorithm, consisting of sequen-
tial doubling and addition operations, can be broken through
simple power analysis (SPA) [10] with only a single trace
of execution. This motivates researchers to construct cryp-
tosystems which are inherently secure against SPA. Atomic
scheme algorithms have been introduced in [8,24] which
transform the doubling and addition operations into a uni-
form structure, such that it becomes infeasible to distinguish
an addition operation from a doubling from a single power
trace. However, these atomic scheme algorithms still involve
different formulae for addition and doubling,which hasmoti-
vated researchers for further unification. In [7], a unified
addition formula is designed for a Weierstrass form of ellip-
tic curve, for both addition and doubling, while in [11] a
new form of curve, named Edwards curve, has been built
involving a complete addition formula which gives a valid
elliptic curve point as output for any two curve points taken as
input, thus taking care of both addition and doubling. Recent
extensive research involving use of Edwards curve in cryp-
tosystems reveals its implementation friendliness [4,17,22].
Also it is being considered as a safe curve with respect to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-019-00219-1&domain=pdf
http://orcid.org/0000-0002-7404-8504

264 Journal of Cryptographic Engineering (2019) 9:263–275

a number of important factors (ladder security, twist secu-
rity) [6]. Indeed because of the presence of single formula
for both point addition and point doubling, an Edwards curve
implementation, similarly Brier–Joye unified formula [7], is
SPA resistant. We note here that there exist advanced attacks
such as differential power analysis (DPA) attack [10] which
can exploit a SPA-resistant implementation and thus consid-
ered as a serious threat to elliptic curve cryptography (ECC)
designs. However, it requires access to a significantly large
number of power or EM traces of EC scalar multiplication
executions, with a fixed secret key; hence, this scenario is
not directly applicable to ECDSA, where a secret scalar is
used only once. However, the Big Mac attack by [27] intro-
duces an advanced form of single trace attacks later termed
as horizontal attacks which exposes even an SPA protected
implementation. Several horizontal attack approaches fol-
lowed the Big Mac analysis in [2,13,16] which were mainly
focused on RSA-based exponentiation algorithms. Bauer et
al. in [3] have put forward the idea of horizontal attack in case
of elliptic curve cryptography. The attack combines method-
ologies from the well-established horizontal attack [27] and
the idea of collision attack (introduced in [25]), and hence
termed as horizontal collision correlation analysis (HCCA)
which breaks an atomic scheme ECC algorithm or a uni-
fied ECC algorithm equipped with SPA resistance. Even
when the design is protected against advanced attacks such
as DPA, refined power analysis [15], address-bit differential
attack [18] with effective randomization schemes suggested
in [12,19], HCCA can be launched, thus introducing vul-
nerability in the implementation. It exploits the relation of
the secret key value with a property pertaining to the under-
lying field multiplications involved in a point doubling and
point addition operation. It is a unique property based on the
sharing of operands between two field multiplications which
holds irrespective of any randomization used at each iteration
of the scalar multiplication.

Our contribution Our main contribution in this paper is to
show how we can design a minimal cost yet effective coun-
termeasure that helps in resisting HCCA. Our contribution
can be summarized as follows

– We coin a term order of operands to define the sequence
in which two operands are passed as parameters to a long
integer multiplication routine. We show how the infor-
mation leakage from a multiplication varies when the
order of operands in a multiplication is changed.We also
derive that the relation between side-channel leakage of
two multiplications sharing one (two) common operand
(s) is dependent on the order of operands passed to the
individual multiplications. We used Pearson correlation
metric [3] for our analysis.

– Based on this observation, we propose a countermeasure
that can be applied to the existing unified algorithms of
ECC to defeat HCCA. The countermeasure converts the
unified algorithm into a safer form, such that the relation
between side-channel leakageofmultiplications basedon
operand sharing property cannot be exploited. The coun-
termeasure requires determination of the safe sequence
through our proposed algorithm. As a result, there is no
additional timing and area overhead on the implementa-
tion. We show how the implementation integrated with
our proposed countermeasure enhances HCCA resistiv-
ity.

– Finally we provide extensive results of mounting HCCA
on the proposed countermeasure. The results have been
validated on SASEBO-GII with electromagnetic (EM)
traces.

2 Related work

Big Mac analysis [27] introduced the idea of applying
differential power analysis along the length of a single expo-
nentiation trace of RSA. It shows how the data dependency
during the precomputation phase can be exploited to iden-
tify exponent digits involved in a long integer multiplication
during an m-ary RSA exponentiation. The vulnerability is
shown to increase if the length of the key increases expos-
ing more multiplication traces to compare with. Amiel et al.
in [1] applies a novel technique of distinguishing multiplica-
tion from squaring operations based on the difference in their
expected Hamming weight distribution. However, it is a ver-
tical attack gathering information from several traces along
the same region of a long integer multiplication. In [9], the
idea of horizontal attack on an RSA exponentiation has been
strengthened by exploiting a significant number of potential
collision pairs obtained within a long integer multiplication,
if the underlying operation is a squaring operation. Multi-
plication operations are expected to result in few collisions
compared to squaring due to the presence of different input
operands. In [13], a practical vulnerability of using scalar
blinding as a DPA countermeasure has been demonstrated.
Due to the sparse form of NIST prime, a portion of the secret
key remains unblinded and gets exposed to vertical colli-
sion analysis, and the rest part of the key is recovered using
horizontal attack techniques. In [2], a generic approach is
introduced to break an ECC implementation with the help of
one template trace per bit. In [16], the vulnerability of regular-
ized algorithms such as Montgomery ladder [21] and Joye’s
add-only scalar multiplication [20] is highlighted, based on
collisions of intermediate results obtained from consecutive
iterations. In the next section, we discuss the resistance of
our countermeasure from the above-mentioned horizontal
attacks.

123

Journal of Cryptographic Engineering (2019) 9:263–275 265

3 Preliminaries

We discuss the idea of horizontal collision correlation anal-
ysis (HCCA) attack in this section.

3.1 Horizontal collision correlation analysis

First we proceed to explain the HCCA attack methodology
with the help of an illustration, followed by a summariza-
tion of the attack. Before moving to the example describing
HCCA, a closer look is given to the field operations under-
lying ECC doubling and addition operations. It is evident
that ECC point addition and point doubling operations are
associated with a number of field multiplication and field
addition operations. The underlying field multiplications
play an important role in HCCA. The attack is based on the
assumption: The adversary can detect when two field multi-
plications have at least one operand in common [3]. Without
loss of generality, we consider distinct field elements as A,
B,C , D to be used as operands to field multiplications. Then
the possible field multiplication pairs will take one of the
following forms: (1) A × B, C × D sharing no common
operand, (2) A × B, C × B sharing one common operand
and (3) A × B, A × B where both the operands are same.
Note that here no particular assumptions is made on the order
in which the operands are passed. However, operands which
are common are generally passed in the same order in the
two concerned multiplications. Based on the above class of
multiplication pairs, we state the following hypotheses for
field multiplication pairs:

– hypothesis 1: when a pair of multiplications (mi , m j)
shares one (two) common operand (s) among themselves.

– hypothesis 1a: when a pair of multiplications (mi ,
m j) shares exactly one common operand among
themselves. For example, the pair (A × B, C × B)
satisfies hypothesis 1a.

– hypothesis 1b: when a pair of multiplications (mi ,
m j) shares exactly two operands, i.e., they denote the
same multiplications. For example, the pair (A × B,
A × B) satisfies hypothesis 1b.

– hypothesis 2 when a pair of multiplications (mi , m j)
shares no common operand among themselves. For
example, the pair (A × B, C × D) having independent
operands satisfies hypothesis 2.

Such relation between field multiplication operations is
exploited to identify the doubling and addition operations
computed during an ECC scalar multiplication, which in turn
is directly dependent on the secret key. Hence, the identifica-
tion of doubling and addition operations leads to the recovery
of the underlying unknown key. Nowwe proceed to illustrate

Fig. 1 Horizontal collision correlation analysis (HCCA)

the attack scenario of HCCA. Without loss of generality, a
key sequence has been considered as 10110 . . . which can
be expanded as DBL, DBL, ADD, DBL, ADD, DBL, DBL,. . .,
whereDBL represents a point doubling operation, while ADD
denotes a point addition operation as shown in Fig. 1. Each of
theADD/DBL operations consist of underlyingfield additions
and fieldmultiplications. For instance, Fig. 1 shows that there
exists a multiplication pair (X1Y2, X2Y1) within the addi-
tion operation, satisfying hypothesis 2 of sharing operands.
A pair (X1Y1, X1Y1) can be found in case of doubling sat-
isfying hypothesis 1b of sharing operands. Now, according
to [3], if the correlation between the power traces of two con-
cerned multiplication pairs is considered, the multiplication
pair (X1Y2, X2Y1) should give low correlation value, with
respect to the correlation value obtained from the multiplica-
tion pair (X1Y1, X1Y1). If significant difference between the
correlation values is obtained, then the doubling and addition
operations can be successfully identified, leading to the com-
plete secret key recovery. This is how an attacker can launch
HCCA. The detailed intermediate steps of the Edwards curve
formula vulnerable to HCCA are shown in Fig. 2.

4 Our proposed countermeasure

We propose here a minimal cost countermeasure technique
which ensures the resistance of a unified ECC algorithm
againstHCCA.Our proposed countermeasure involves trans-
forming the ECC point doubling and point addition opera-
tions into a secure form, such that even if hypothesis 1 holds,
it is not revealed to the adversary. In other words, the infor-
mation of one of the operations satisfying hypothesis 1 is
hidden through our implementation. An ECC implementa-
tion integrated with our proposed countermeasure becomes
more resistant against HCCA. Our countermeasure can be
instantiated with minimal overhead of resources in case of
the Edwards curve unified formula as well as Brier–Joye uni-
fied formula. It is based on an observation that the leakage

123

266 Journal of Cryptographic Engineering (2019) 9:263–275

Fig. 2 Safe sequence transformation of Edwards curve formula: steps
1–4

from the power consumption is dependent on the order-
ing of operands in a field multiplication. This discrepancy
in leakage occurs as the ordering of the operands brings
in asymmetry in the leakage, which we exploit to develop
our countermeasure. We note that although the concept of
asymmetric leakage has been addressed in [26] in case of
multipliers and swapping of operands has been suggested
as a potential countermeasure, Sugawara et al. in [26] do not
exploit its applicability to any ECC cryptosystem. To the best
of our knowledge, this is the first countermeasure design for
any elliptic curve cryptosystem which utilizes asymmetry in
information leakage of multiplier operands.

4.1 Asymmetric leakage of field multiplication

In this section, we explain our theoretical rationale behind
the asymmetric leakage of field multiplications, which con-
tribute in constructing our countermeasure scheme.We begin
our discussion with an introduction to long integer multi-
plication (LIM) shown in Algorithm 1 (Algorithm 1 in [3]).
The long integer multiplication routine is called to compute
underlying field multiplications involved in the ECC point
addition and doubling operations. The LIM takes two field
operands X and Y as input and outputs their product XY .
Each of the field operands passed as parameter in the LIM
routine consists of underlying t words, each of size w. The
result can be of size 2t and is stored in a register of length 2t
words. The algorithm is run O(t2) times.

To establish the reasoning behind asymmetry in leakage
of field multiplications, we introduce here an information
leakage model which will guide us toward the theoreti-
cal basis of our countermeasure. Generally, in case of an
iterative algorithm, a calculation Ci is identified, which is

ALGORITHM 1: Long Integer Multiplication
algorithm(LIM)
Data: : {X = (X [t], X [t − 1],, X [1])2w } ,

{Y = (Y [t],Y [t − 1],, Y [1])2w }
Result: : {X .Y}

begin
for i ← 1 to 2t do

R[i] = 0
end
for i ← 1 to t do

C = 0 ;
for j ← 1 to t do

(U , V)2w = xi × y j ;
(U , V)2w = (U , V)2w + C ;
(U , V)2w = (U , V)2w + R[i + j − 1] ;
R[i + j − 1] = V ;
C = U ;

end
R[i + t] = C ;

end
return R ;

end

operated at each iteration of the algorithm execution. The
output Oi of the calculation Ci is updated at every itera-
tion to a specific register location. The value of the output
Oi computed and stored at each iteration leaks the informa-
tion. This information leakage is denoted as l(Oi), which
can be approximated using a function of Oi , i.e., f (Oi). The
information leakage at each iteration gets augmented itera-
tively to result in a vector < f (Oi)>. In case of Algorithm 1,
we consider an instance of the long integer multiplication
run with input field operands A = (at , at−1, . . . , a2, a1),
B = (bt , bt−1, . . . , b2, b1)which results in the output A×B.
At (i, j)th iteration, we can associate the calculation Ci, j

with the partial product computation ai × b j . The output
of the partial product Oi, j = aib j is stored in every iter-
ation, which leaks an information l(Oi, j). We assume that
the information leakage l(Oi, j) follows Hamming weight
power model. As a result, the function f (Oi, j) is approxi-
mated with the help of the Hamming weight of the output
value Oi, j . So we consider f (Oi, j) = H(Oi, j), where H(x)
implies the Hamming weight of the value x . Based on the
leakage model considered, the information leakage of long
integer multiplication can be represented by an augmented
vector, denoted as < H(Oi) > or < H(aib j) >. It is evi-
dent from Algorithm 1 that the sequence of partial products
changes when the order of the operands passed as parameter
to the LIM routine is swapped. We consider the information
leakage l(ai , b j) at each iteration, corresponding to partial
product ai × b j computed during an instance of LIM(A, B)
execution. It is observed that the vector is formedas< l(a0,b0),
l(a0,b1), . . ., l(a0,bt−1), . . ., l(at−1,bt−1) >. The one obtained dur-
ing computation of LIM(B, A) can be presented as < l(b0,a0),
l(b0,a1), . . ., l(b0,at−1), . . ., l(bt−1,at−1) >. This asymmetry in the
sequence of the two vectors acts as a distinguisher between
two multiplications.

123

Journal of Cryptographic Engineering (2019) 9:263–275 267

To calculate the relationship between information leak-
ages of two long integer multiplications, we have considered
the following metrics:

4.2 Pearson correlationmetric

Considering underlying field operands as: A, B, A′, B ′, the
correlation between two long integer multiplications LIM(A,
B) and LIM(A′, B ′) can be approximated with the Pear-
son correlation coefficient computed between two vectors
< H(aib j) >, < H(a′

i b
′
j) > (following similar notation as

above). Let us denote the two vectors asH(AB) andH(A′B ′),
respectively. The correlation is obtained by the use of Pear-
son correlation coefficient as follows:

ρ =

(∑t−1
i=0, j=0 H(ai b j)H(a′

i b
′
j)

t2

)
−

(∑t−1
i=0, j=0 H(ai b j)

t2

)(∑t−1
i=0, j=0 H(a′

i b
′
j)

t2

)

std(AB)std(A′B ′)
.

(1)

Here the standard deviation from the information leak-
age of a long integer multiplication LIM(A, B) is denoted as
std(AB). It is obtained as follows:

std(AB) = std(< H(AB) >)

=

√√√√∑t−1
i=0, j=0 H(aib j)

2

t2
−

(∑t−1
i=0, j=0 H(aib j)

t2

)2

.

(2)

We define four correlations based on the following long
integer multiplications LIM(A, B), LIM(B, C), LIM(C , B),
LIM(C , D). The following correlation is obtained from
LIM(A, B) and LIM(C , B)

ρ1 =

(∑t−1
i=0, j=0 H(ai b j)H(ci b j)

t2

)
−

(∑t−1
i=0, j=0 H(ai b j)

t2

)(t−1∑
i=0, j=0

H(ci b j)

t2

)

std(AB)std(CB)
,

(3)

where we denote
∑t−1

i=0, j=0 H(aib j)H(cib j) as α, where α

can be expanded as

α = (H(a0b0)H(c0b0) + . . . + H(a0bt−1)(c0bt−1)

+H(a1b0)H(c1b0) + . . . + H(at−1bt−1)H(ct−1bt−1)).

(4)

The following correlation is obtained from LIM(A, B) and
LIM(B, C)

ρ2 =

(∑t−1
i=0, j=0 H(ai b j)H(bi c j)

t2

)
−

(∑t−1
i=0, j=0 H(ai b j)

t2

)(∑t−1
i=0, j=0 H(bi c j)

t2

)

std(AB)std(BC)
,

(5)

where
∑t−1

i=0, j=0 H(aib j)H(bi c j) can be expressed as β,
which takes the form

β = (H(a0b0)H(b0c0) + · · · + H(a0bt−1)H(b0ct−1)

+H(a1b0)H(b1c0) + · · · + H(at−1bt−1)H(bt−1ct−1)).

(6)

Here we consider the correlation coefficient between a mul-
tiplication pair with hypothesis 2, computed from LIM(A, B)
and LIM(C , D).

ρ3 =

(∑t−1
i=0, j=0 H(ai b j)H(ci d j)

t2

)
−

(∑t−1
i=0, j=0 H(ai b j)

t2

)(∑t−1
i=0, j=0 H(ci d j)

t2

)

std(AB)std(CD)
,

(7)

where
∑t−1

i=0, j=0 H(aib j)H(cid j) is coined as γ , represented
as

γ = (H(a0b0)H(c0d0) + · · · + H(a0bt−1)H(c0dt−1)

+H(a1b0)H(c1d0) + · · · + H(at−1bt−1)H(ct−1dt−1)).

(8)

We develop here few lemmas which will be required conse-
quently to support the theoretical foundation of our coun-
termeasure. As defined above, A and B denote two field
multiplication operands which will be used as parameters
in the LIM routine. Now we proceed to the lemmas.

Lemma 1 The standard deviation of a Hamming weight vec-
tor obtained from LIM(A, B) is same as that obtained as
LIM(B, A), i.e., std(AB) = std(BA).

Proof The vector composed from leakage information of
LIM(A, B) can be expanded as < H(a0, b0), H(a0, b1), . . .,
H(a0, bt−1), . . .,H(at−1, bt−1) >. It can be observed that the
two vectors are two different arrangements of same under-
lying elements. As a result, std(AB) = std(BA). Hence
proved. ��

If we denote mean(X) as the mean value of a vector X ,
on the basis of a similar argument we can also show that
mean(AB) = mean(BA).

Lemma 2 cov(H(AB),H(CB)) �= cov(H(AB), H(BC)).
When C = A,
cov(H(AB),H(AB)) �= cov(H(AB),H(BA)).

123

268 Journal of Cryptographic Engineering (2019) 9:263–275

Proof The two covariances cov(H(AB),H(CB)) and cov
(H(AB),H(BC)) can be represented as

cov(H(AB),H(CB)) = α − mean(AB)mean(CB) (9)

cov(H(AB),H(BC)) = β − mean(AB)mean(BC)

= β − mean(AB)mean(CB). (10)

Since, fromLemma2.mean(BC) = mean(CB), the second
term in both the covariances are mean(AB) · mean(CB).
Also, from Eqs. 4 and 6, α �= β, as a result we can conclude

cov(H(AB),H(CB)) �= cov(H(AB),H(BC)).

When C = A, from Eq. 4 and 6, we show that still α �= β.
The value of α can be expressed as

α = (H(a0b0)H(a0b0) + · · · + H(a0bt−1)H(a0bt−1)

+H(a1b0)H(a1b0) + · · · + H(at−1bt−1)H(at−1bt−1)).

= (H(a0b0)
2 + H(a0b1)

2 + · · · + H(a0bt−1)
2

+H(a1b0)
2 + · · · + H(at−1bt−1)

2), (11)

while β can be reduced as

β = (H(a0b0)H(b0a0) + · · · + H(a0bt−1)H(b0at−1)

+H(a1b0)H(b1a0) + · · · + H(at−1bt−1)H(bt−1at−1)).

= (H(a0b0)
2 + H(a0b1)(b0a1) + · · ·

+H(a0bt−1)H(b0at−1)

+H(a1b0)h(b1a0) + · · · + H(at−1bt−1)
2). (12)

From Eqs. 11 and 12, we can observe that α �= β. As a result,
when C = A, we can conclude similarly that

cov(H(AB),H(AB)) �= cov(H(AB),H(BA)). ��

Lemma 3 ρ1 > ρ2 for the case: A = C.

Proof When A = C , precisely the two multiplications pairs
considered are: (LIM(A, B), LIM(A, B)) and (LIM(A, B),
LIM(B, A)). The correlation ρ1 between (LIM(A, B), LIM(A,
B)) can be computed as

ρ1 = cov(H(AB),H(AB))√
var(H(AB))

√
var(H(AB))

.

= var(H(AB))

var(H(AB))
, since cov(X , X) = var(X).

= 1,

while the correlation ρ2 between (LIM(A, B), LIM(B, A)) can
be computed as

ρ2 = cov(H(AB),H(BA))√
var(H(AB))

√
var(H(BA))

.

= cov(H(AB),H(BA))

var(H(AB))
.

< 1.

From Lemma 3,

cov(H(AB),H(AB)) �= cov(H(AB),H(BA)).

Hence, it is proved that ρ1 > ρ2, when C = A. ��
With the help of the lemmas discussed above, we make

the following observations:
Observation 1: ρ1 �= ρ2 From Eqs. 3, 5, we can recollect
the mathematical forms of ρ1 and ρ2. From Lemma 1, we
can conclude that std(AB) = std(BA). As a result, the
denominators in case of both the correlations are equal. From
Lemma 2, we have the result

cov(H(AB),H(CB)) �= cov(H(AB),H(BC)).

Consequently numerators of the twocorrelations are unequal.
Also, since From Lemma 1,

mean(AB) = mean(BA).

The difference in value arises from the unequal values of
α and β. We give a closer look at the forms of α and β to
observe that: 1) each term inα takes the formH(aib j)H(cib j)

where the word multiplications share operand b j and 2) each
term in β is of the form H(aib j)H(bi c j), where the word
multiplications have no common operand. Each term of α

and β takes different forms yielding different values. As a
result, ρ1 is clearly not same as ρ2.

Observation 2: ρ2 and ρ3 are indistinguishable To make a
comparison between the values of ρ2 and ρ3, we look at
the form of each of the terms present in the two equations
take: 1) each term in β is of the form H(aib j)H(bi c j), where
the word multiplications have no common operand and 2)
each term in γ is of the form H(aib j)H(cid j), where the
word multiplications are devoid of any common term. The
two forms H(aib j)H(bi c j) and H(aib j)H(cid j) are indistin-
guishable, hence rendering β and γ being indistinguishable.
We conclude from our observation that the two correlation
coefficients take similar form.

Observation 3: ρ1 > ρ2 for a multiplication pair with
hypothesis 1b A multiplication pair satisfying hypothesis
1b implies same multiplications are being computed. From

123

Journal of Cryptographic Engineering (2019) 9:263–275 269

Lemma 3, we obtain that in such a case ρ1 will always be
greater than ρ2 irrespective of the underlying field element
values involved.Hence,ρ1 > ρ2 occurswith high probability
in such a case.

From the above observations, the importance of order-
ing of operands in underlying field multiplications can be
inferred. Based on our inference, we suggest that the infor-
mation leakage due to sharing of operands can be hidden by
operand reordering. This fact has been exploited in designing
our countermeasure which will be explained in the following
subsection.

4.3 Preventing HCCA by choosing safe sequence

The countermeasure is designed on the basis of the idea of
reordering of operands discussed in the previous subsection.
It attempts to transform the series of field multiplications
underlying ECC point doubling and point addition opera-
tion into a HCCA-resistant form. In other words, it makes
the implementation secure against HCCA. As can be noted
in Sect. 3.1, an ECC implementation becomes vulnerable to
HCCA if only one of the addition or doubling operations
satisfies hypothesis 1. The idea is to alter the operation con-
taining hypothesis 1, into a formwhere information regarding
operand sharingbetweenfieldmultiplications is hidden.Con-
sequently it is not revealed to the adversary whether any
doubling or addition operation contains hypothesis 1 or not.
Hence, the basis of distinction between doubling and addition
operation is concealed.

We swap the operands, to blur the correlation between
a pair of multiplications sharing operand (s). Let the mul-
tiplications be (A × B, A × B) computed as A × B and
B × A. LIM(A, B) gives the expansion (< l(a0,b0), l(a0,b1),
. . ., l(a0,bt−1), . . ., a(bt−1,bt−1) >), and LIM(B, A) leads to
(< l(b0,a0), l(b0,a1), . . ., l(b0,at−1), . . ., l(bt−1,at−1) >). Here
after swapping of operands, still the first and last partial prod-
ucts, namely a0b0 and a(t−1)b(t−1), are same for both A× B
and B × A, and hence, an attacker may just focus on these
two squares for getting similarity between A× B and B× A.
However, herewewould like to comment that firstly, it would
be extremely challenging for an attacker to extract accurately
the power (EM) trace corresponding to the partial products
within a long integer multiplication, where the long integer
multiplication needs to be correctly located within the entire
trace. If the partial product is computed as point multipli-
cation within a clock cycle time, the trace corresponding to
the partial products will be also small and give insufficient
information. Secondly, if the partial products are computed
for fairly large base width of 64 bits or above, then it is sug-
gested that they be calculated as long integer multiplications
also (64 bits = 4w, where w = 16 bits). Since the partial
products are themselves always expanded in the swapping
manner ((a0b0) in A× B, (b0a0) in B× A), computing them

as long integer multiplications again diffuses the similarity
between the partial products.

It should be noted that the transformation technique
mainly involves rearrangement of multiplication operands.
This process does not incorporate any randomization or any
extra operation. Therefore, the cost of this countermeasure
step is zero in terms of area as well as timing overhead.
Moreover, the order of operands is decided beforehand and
can be precomputed before implementing the design, requir-
ing only one time effort from the designer’s point of view.
We design an algorithm, named safe_sequence_converter
routine presented in Algorithm 2 which takes care of the
transformation process of our countermeasure. We proceed
to portray our transformationmechanism through an illustra-
tion, which will be followed by a description of our designed
Algorithm 2.

We have considered the Edwards curve unified formula
shown in [5] for explaining our conversion scheme. It can
be noted that the Edwards curve unified formula involves a
single formula which is used for both addition and doubling.
It underlies a series of field multiplication operations which
are listed in Fig. 2. We note that the multiplications are writ-
ten w.r.t. the point addition operation, i.e., when two distinct
points (X1, Y1, Z1) and (X2, Y2, Z2) are taken as input. To
construct a safe sequence, we need to find out which are the
multiplications which share operands among themselves. To
do so, we construct an undirected graph with the individ-
ual multiplications as the graph vertices, whereas an edge is
constructed between two graph vertices if the two underly-
ing multiplications satisfy hypothesis 1 of sharing operands
(edge property). We observe in Fig. 2 how edges are formed
between (X1X2, X1Y2), (X1X2, X2Y1), (Y1Y2, X1Y2) and so
on. Furthermore, we witness that the graph is not completely
connected; instead, it is composed of a number of islands.

One may argue that multiplications such as T5T6 involve
operand T6 which is of the form T1T2 (here T1 = Z1Z2,
T2 = S1 + S4), so T5T6 is sharing a common operand T1
with T1T1, T1T2 or T1T3. However, the multiplication output
of (T1T2) mod Fp, where Fp is the underlying field prime,
is stored in the location T6. Considering the value of the
operands T1, T2, T5, T6 as necessarily random, it can be
assumed that although T6 = (T1T2) mod p involves T1 in
its input, it is statistically independent from T1. The random-
ization technique discussed in Sect. 6 ensures the randomness
of the multiplier operands.

Now we make a crucial observation that the operand
sharing obtained from the graph considered reveals all the
operand sharing multiplications which will be present in the
addition operation. But if we consider the graph correspond-
ing to the doubling operation where points (X1, Y1, Z1) and
(X2, Y2, Z2) are the same, it can be observed that the previous
operand sharing will still be present along with some possi-
ble extra operand sharing vertices. So the operand sharing

123

270 Journal of Cryptographic Engineering (2019) 9:263–275

Fig. 3 Safe sequence transformation of Edwards curve formula: final
step

edges obtained from the addition operation graph illustrated
above are the edges common to both addition and doubling
operations. As a result, they do not qualify in distinguishing
between addition and doubling operations.

Evidently, the operand sharing edgeswhich are found only
in case of doubling operation may contribute in the distinc-
tion. To get a closer look, we consider the complements of the
islands of our previously constructed graph. Note that we are
not interested in the edges between islands in the complement
graph because they do not share operands among themselves.
We also replace the vertex values with the respective forms
of doubling operation. For example, X1Y2 will be replaced
with X1Y1. The complement of the islands is considered here
to concentrate on those edges which will be formed only in
case of doubling operation. However, the complement of the
islands will include both essential edges (e.g., edge between
two vertices each containing value X1Y1) as well as redun-
dant edges (e.g., edge between twoverticeswith values X1X1

and Y1Y1, respectively, which do not satisfy the edge prop-
erty). We remove the redundant edges and look only at the
essential edges because they are the ones which will help in
distinguishing an addition operation from a doubling oper-
ation. In this case, doubling operation involves X1Y1, X1Y1
operated twice, which are satisfying hypothesis 1b. On the
other hand, addition operation consists of two underlying
multiplications X2Y1, X1Y2 satisfying hypothesis 2 of shar-
ing operands. Thus, they successfully depict HCCA. Based
on observation 2 and observation 3, we rearrange the mul-
tiplications as X1Y1 and Y1X1, so that their operand sharing
property remains hidden. Thus, the information leakage for
the pair LIM(X1, Y1), LIM(Y1, X1) will be similar to that of
the pair LIM(X2, Y1), LIM(Y1, X2). So we suggest swapping
the order of operands of the second multiplication. Our final
sequence for Edwards curve formula is presented in Fig. 3.

From Lemma 4, we get that the problem of swapping
operands of field multiplications can be solved by the prob-
lem of two-colorability of a graph. So if the final reduced
graph with the islands containing essential edges be two-
colorable, thenwe proceed to color the graphwith two colors,

Fig. 4 Safe sequence transformation of Brier–Joye unified formula

and eventually swap the operands of those vertices which
belong to the class of one particular color.

In a similar fashion, we transform the Brier–Joye unified
formula shown in [7] into a secure structure. The transfor-
mation steps corresponding to the Brier–Joye formula are
portrayed in Fig. 4.

Before proceeding to state Lemma 4, we give here a ratio-
nale behind the operand swapping problem formulation. In
our operand swapping problem, we need to identify a set of
verticeswhichneed to go throughoperand swapping, keeping
other vertices intact as before so that the overall set reaches a
secure form. So it is depictable that the vertex set needs to be
partitioned into two sets. The set of vertices which requires
operand swapping is called the swap set, while the other set
is named as uninterrupted set. Also it can be perceived that in
any edge, since the edge has been created due to operand shar-
ing of two vertices, one of the vertices of the edge should be
swapped and thus should belong to swap set, while the other
vertex should belong to the uninterrupted set. Furthermore,
there does not exist an edge such that both of their end ver-
tices belong to the swap set or the uninterrupted set. Suppose
there exists one such edge, then if both vertices belong to the
swap set then it implies in case of both the vertices, the ver-
tex operands have been swapped. But this is equivalent to the
state before swapping. For example, it means a vertex pair
(X1Y1, X1Y1) has been swapped to (Y1X1,Y1X1),which does
not solve our aim of information masking through operand
swapping. This is because the correlation between both the
mentioned pairs will be higher with respect to the pair (X1Y1,
Y1X1), as has been proved in Lemma 3. From this, it directly
follows why must the vertex ends of any edge belonging to
the set E should not belong to the same set (swap set or
uninterrupted set). Naturally, it is also understood why the
vertices belonging to either swap set or uninterrupted set do
not contain any edge between themselves. Now we define
the operand swapping problem more formally followed by
stating the two-colorability problem of graph.
Operand swapping problem or problem a: Given an undi-
rected graph G denoted by the set {V , E} , whether there
exists a partition of V as (V1, V2) with the following condi-
tions: (1) V1 or swap set consists of elements as {v| operands
of v should be swapped}. (2) V2 or uninterrupted set can be
presented as {v| operands of v should not be disturbed}.

123

Journal of Cryptographic Engineering (2019) 9:263–275 271

(3) The edge set E is of the form {e|e = (vi , v j), where
(vi ∈ V1, v j ∈ V2) or (vi ∈ V2, v j ∈ V1)}.
Two-colorability problem of graph or problem b: Given a
graph G as set {V , E}, whether the vertices of the graph can
be colored with two colors, such that no two vertices sharing
the same edge contain the same color, i.e., in other words
to check whether the graph is a bipartite graph, now we are
ready to state Lemma 4.

Lemma 4 The problem of swapping of vertex operands (mul-
tiplication operands) in an undirected graph is polynomial
time reducible to the problem of two-colorability of a graph.

Proof An instance of graph G is fed to problem b, which
returns the decision in polynomial time whether the input
graph is two-colorable or not. If the answer is yes, then the
graph is passed to a graph coloring algorithm that returns
the resultant graph colored with two colors. Without loss of
generality, the two colors can be named as color1 and color2.
We define the set of vertices colored with color1 as swap set,
while the set of vertices colored with color2 as uninterrupted
set. Thus, we have determined a solution for the instance of
problem a. Hence proved. ��

Now we give a closer look at the correctness of the
polynomial reduction of problem a into problem b. As was
mentioned in the above proof, the solution for the instance of
the graph considered corresponding to problem b gives back
the graph instance colored with two colors, based on the
graph coloring algorithm. The vertices having color1 form
set1, while the vertices colored with color2 form a set2. The
vertices within set1 do not contain any edge between them;
similarly in set2, no two vertices are connected by an edge.
For every edge in E , twovertices are coloredwith twodistinct
colors, which implies the two vertices belong to two differ-
ent vertex sets. We can consider set1 as the swap set; on the
other hand, the set2 can be considered as theuninterrupted set
required for the solution of problem a. The sets obtained from
solution to problem b also satisfy the condition for the edge
set that every edge should contain vertices belonging to the
two different sets, so that for every edge the vertex belonging
to the swap set should undergo operand swapping, while the
other vertex from uninterrupted set should remain unaltered.
That is why the solution obtained from problem b qualifies
as a solution for problem a.

5 Experimental results

In earlier sections, we have established the basis of hori-
zontal collision correlation attack along with the strategies
to thwart this attack methodology. It is evident from [3]
and our previous discussions that ECC scalar multiplica-
tion in both Edwards curve and short Weierstrass form based

ALGORITHM 2: Safe_sequence_converter() : Algo-
rithm to determine safe operand ordering of multiplica-
tion pairs

Data: : Set S = {mi | i ∈ {1, n}, where n is the number of multiplications}

Result: : Set S’ = {m′
i | i ∈ {1, n}, where n is the number of multiplications}

begin
Create_Graph() ;
Find_GraphComponents() ;

Find_Safeseq_Ĝ() ;

end

Create_Graph(): ;
begin

Initialize Graph G ;
for i ← 1 to n do

AddVertex(G, S[i]) ;
// create vertices of graph G

end
for i ← S[0] to S[n − 1] do

for j ← S[0] to S[n − 1] do
if i �= j and share_operand(S[i], S[j]) == TRUE then

AddEdge(G, S[i], S[j]) ;
// create edges of graph G

end
end

end
end

Find_GraphComponents(): // find Islands of the Graph
begin

for v ← 0 to G → V − 1 do
V isi ted[v] = FALSE

end
seg_count = 1 ;
for v ← 0 to G → V − 1 do

if V isi ted[v] == FALSE then
I sland[seg_count] = Clone_Graph(G, v) ;
// 1)clone the graph island containing vertex v
// 2)set the visited vertices
Seg_array[seg_count].ele = v ; // keep track of starting node of
the island
seg_count = seg_count + 1 ; // keep track of the number of
islands formed

end
end

end

Find_Safeseq_Ĝ(): // find safe sequences
begin

for i ← 0 to seg_count − 1 do
G1 = Construct_ComplementGraph(I sland[i]) ;
Remove_redundant_edges(G1) ;
// remove the edges not satisfying the edge property
if Colorable_2(G1) == TRUE then

Color_Graph(G1, RED, BLACK) ;
end
Swap_Order(G1, RED) ;
for v ← 0 to (G1 → V − 1) do

S′ .add(G1− > array[v].data) ;
end

end
end

curve is vulnerable toHCCA.Specifically, theEdwards curve
implementation incorporating unified formula is extremely
vulnerable to HCCA as there exists a pair of multiplica-
tions which shares both the operands during execution of
point doubling. Hence, an adversary is expected to observe
sufficiently high similarities when he/she compares the
power trace of aforementioned multiplications, sharing both
operands.

We have considered Pearson correlation metric for our
experimental validation which has been extensively recom-
mended in the literature. We show our theory of HCCA
protection is practically valid using this metric.We have used
SASEBO-GII as the hardware platform for evaluatingHCCA
and countermeasure. All the algorithms are implemented on
cryptographic FPGA of SASEBO-GII (XC5VLX50).

We show results on EM traces of actual ECC scalar
multiplication for an underlying Edwards curve. We have
implemented Curve1174 on SASEBO-GII evaluation board.

123

272 Journal of Cryptographic Engineering (2019) 9:263–275

(a) Evaluation of HCCA on
Edwards Curve Scalar Mul-
tiplier with Correlation

(b) Evaluation of our coun-
termeasure on Edwards
Curve Scalar Multiplier with
Correlation

Fig. 5 Evaluation of HCCA and our countermeasure on Edwards curve
scalar multiplier with correlation reduces HCCA vulnerability from
93.33 to 47.5%

The cost of the implementation was 5664 slices, 16 DSPs
with the frequency of 125 MHz. We have collected around
600 EM traces of scalar multiplication. As we have already
mentioned in the previous sections that in Edwards curve
unified formula, point doubling involves a pair of field mul-
tiplication having both of their operands shared, whereas
point addition does not have any pair of field multiplica-
tions which share both of the operands, success of HCCA
depends upon whether an adversary can distinguish between
a pair of field multiplications having both of their operands
shared and a pair of field multiplications having no com-
mon operand. If the adversary can achieve this, he can
distinguish between point doubling and point addition oper-
ations which will directly give him the knowledge about
secret scalar value. By using the countermeasure, we aim
to remove the threat of HCCA. The objective is to make
the job of distinguishability between pair of multiplications
having no operand shared and pair of multiplications having
both of their operands shared difficult. In Fig. 5a, red plot
denotes the pair of multiplication with sharing of operands
(within doubling), while the blue plot denotes multiplica-
tion pair with no sharing (within addition). It demonstrates
HCCA attack, when the red plot has a higher correlation
value than the blue plot with a success rate of 93.33% for
600 single scalar multiplication runs. Figure 5b contains
a green plot for the pair of multiplications with operand
sharing (within the doubling operation), where the operands
have been swapped as a measure of the countermeasure.
Besides, it contains a blue plot which denotes a pair of
multiplications with no sharing of operand (within the addi-
tion). In this figure, the number of occasions when the
green plot (sharing of operands) has a higher correlation
than the blue plot (no sharing of operands) is 285 out
of 600 cases, which gives HCCA success rate of 47.5%.
Thus, swapping of operands reduces success rate of HCCA
from 93.33% to 47.5% as noted using Pearson correlation
metric.

ALGORITHM 3: Adding Randomization
Data: secret key k = {km , . . . , k2, k1}, Base point P
Result: scalar product kP
// Precomputation Phase
for r ← 1 to |L| do

store[r].point → x = Xr ;
store[r].point → y = Yr ;
store[r].point → z = Zr ;

store[r].inv = (rdeg)−1 // r = λ

;
end
// generate a random permutation RP of the set perm

= {i | i ∈ [1, |L|]}
index = 1 ;
// scalar multiplication
for i = m − 1 to 1 do

Doubling(P);
if ki == 1 then

Addition(P, store[RP[index]].point) ;
index = index + 1 ;

end
end

5.1 Overhead analysis of our countermeasure

In Table 1, we give the overhead analysis of our counter-
measure. As has been discussed in the previous section,
Algorithm2 involves a precomputation phase of constructing
the safe sequence of an unified addition (doubling) operation,
but requires no runtime overhead of time and area, once the
safe form is obtained.

6 Adding randomization

To make our countermeasure resilient, we propose to add a
randomization technique along with the operand swapping
scheme as shown in Algorithm 3.

The technique is based on randomization of the base point
at every execution of addition operation so that any two mul-
tiplications chosen from two addition operations become free
from the operand sharing property. Also, randomization of
the base point leads to the randomization of intermediate
multiplier operands which is a necessary assumption made
in Sect. 4.3 to thwart operand sharing property.

Based on standard projective coordinate system, the
equivalence between two elliptic curve points can be defined
as (X1, Y1, Z1) ∼ (X2, Y2, Z2) if X2 = λX1, Y2 = λY1 and
Z2 = λZ1, where λ ∈ F∗

p . Any point (X , Y , Z) can be ran-

Table 1 Overhead analysis of our countermeasure

Countermeasure overhead (Algorithm 4.3)

Precomputation Algorithm 2 with O(n2) time and O(n2)
space, where n is number of vertices in the
graph

Runtime Zero timing and area overhead

123

Journal of Cryptographic Engineering (2019) 9:263–275 273

domized by using a random λ ∈ F∗
p into the form Rp as (λX ,

λY , λZ) [10]. We use this randomized base point as input to
every addition operation. Our randomizationmethod is based
on execution of a random permutation for every scalar mul-
tiplication run. The set of numbers used in the permutation
process can be represented by the set perm as {i |i ∈ [1, L]},
where L denotes the maximum number of addition operation
possible for a key ∈ [1, #(E)], where #(E) is the order of
the underlying elliptic curve. Every execution of the scalar
multiplication algorithm involves one random permutation
of the set perm. The λ value chosen for consecutive addition
operations is chosen from the consecutive elements of the set
perm.

Our operand swapping countermeasure equipped with the
above-mentioned randomization technique prevents HCCA
(as evident from Sect. 5). Additionally it provides resistant
against the class of Differential power attacks as proposed
in [10], because of the choice of a random value of base
point at each iteration of the addition algorithm. Prevention
against other class of horizontal attacks is discussed in the
following section.

7 Resistance against related horizontal
attacks

There are other horizontal attacks that can be found in the
literature, which are somewhat similar to HCCA.We demon-
strate in the following how they are related to HCCA and to
what extent it can be mitigated.

The attack demonstrated in [16] is applicable in case of
regular algorithms, where both doubling and addition oper-
ations are computed during each iteration. Two registers are
considered to store the intermediate results of each iteration.
The values of the two registers observed over consecutive
iterations are dependent on the key and hence lead to retrieval
of the secret key. This attack cannot be directly applied to
non-regular algorithms. In [2], an incremental key retrieval
process has been proposed for an ECC algorithm, where tem-
plate trace is being created for the i th iteration based on the
already retrieved portion of the secret and the guessed key
bit for the current iteration. However, in our implementation,
Algorithm 3 uses a different random value for each addition
(doubling) operationwithin a scalarmultiplication; thus, data
dependency based on the previously determined key bit value
cannot be exploited.

In [9], an attack on RSA is demonstrated, where long inte-
ger multiplication computation has been exploited. In case
of a squaring operation, the long integer multiplication on
operands of length l words involves (l2 − l)/2 potential col-
lision pairs of single precision multiplications, which makes
the long integer operation vulnerable. However, in case of
field multiplications of ECC, the number of collision pairs

present are less, because of lower bit length of fieldmultiplier
operands and hence lower number of collision pairs on the
same architecture model. Also the paper does not present any
practical results of this collision-based attack. Applicability
of [9] in ECC is yet to be exploited.

7.1 Rearranging attack

One important attack which is relevant to our design is
the rearranging attack. Recall that a field multiplication
LIM(A, B) (refer to Algorithm 1) is a computation of par-
tial products as

∑t
i=1, j=1(aib j), which takes the form∑t

i=1, j=1(bia j) when we compute the field multiplication
LIM(B, A)—here t represents the number of words as in
Algorithm 1. The partial products are shuffled in a determin-
istic waywhen LIM(B, A) is computed instead of LIM(A, B).
An attacker may take advantage of the same observation and
proceed as follows. From the power trace of LIM(B, A), an
attacker may extract traces for all the corresponding partial
products and then arrange them in the sequence which rep-
resents computation of LIM(A, B). So she can essentially
reconstruct the trace of a LIM(A, B) computation from a
power trace for LIM(B, A). Now it can launch the HCCA
attack as beforewith an original LIM(A, B) trace and a recon-
structed LIM(B, A) trace, and can distinguish it from a pair
{LIM(A, B), LIM(C, D)}. We note here that this attack will
work only if the partial product extraction is successfully
performed. However if a designer wants to add a mitigation
step to the rearranging attack, then we propose the follow-
ing enhancement of our HCCA countermeasure. We modify
Algorithm 2 as follows. Algorithm 2 outputs a set S′ contain-
ing multiplications, for which the operands to LIM need to be
sent in reverse order. We add an extra step here, stating the
following. For all the multiplications in set S′, multiplication
should be computed as LIM′(B, A), where the algorithm LIM′
takes as input, words of length w

2 , and the rest is same as LIM.
Through this modification, LIM′(B, A) will generate partial
products

∑2t
i=1, j=1(a

′
i b

′
j), where |a′

i | = w
2 , |b′

j | = w
2 . This

yields the same final output and, however, changes all the
individual partial products; hence, rearranging attack will
not work anymore. More generic modification of the LIM
algorithms for multiplications in set S′, such that individual
partial products are different from the ones in LIM(A, B),
solves our rearranging attack problem.

8 Conclusion

We have shown how the property of asymmetric leakage of
field multipliers can be utilized to construct a low-cost coun-
termeasure which is able to defeat the powerful HCCA. We
demonstrated how a unified addition (doubling) formula can

123

274 Journal of Cryptographic Engineering (2019) 9:263–275

be converted into a safe sequence, where the information
leakage from sharing of operands among fieldmultipliers has
been hidden. The process of conversion to the desired safe
sequence is achieved through our proposed algorithm (Algo-
rithm 2), and once the sequence has been determined through
our algorithm, there is no runtime overhead requirement
for the countermeasure. We have validated HCCA and our
proposed countermeasure scheme on a SASEBO platform.
This HCCA countermeasure, since minimal cost can be eas-
ily integrated with other horizontal attack countermeasures
and vertical attack countermeasures involving randomization
techniques [10], thus helps in designing a secure ECC-based
crypto-module. For an instance, our HCCA countermeasure
integrated with a randomization-based countermeasure has
been demonstrated in Sect. 6, which thwarts a larger class of
horizontal attacks.

References

1. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Dis-
tinguishing multiplications from squaring operations. In: Selected
Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14–15, Revised
Selected Papers, pp. 346–360 (2008)

2. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P.,
Tunstall,M.: Online template attacks. In: Progress in Cryptology—
INDOCRYPT 2014—15th International Conference on Cryptol-
ogy in India, New Delhi, India, December 14–17, 2014, Proceed-
ings, pp. 21–36 (2014)

3. Bauer, A., Jaulmes, É., Prouff, E., Reinhard, J.-R., Wild, J.: Hor-
izontal collision correlation attack on elliptic curves—extended
version. Cryptogr. Commun. 7(1), 91–119 (2015)

4. Bernstein, D.J., Birkner, P., Joye,M., Lange, T., Peters, C.: Twisted
edwards curves. In: Progress in Cryptology—AFRICACRYPT
2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11–14, 2008. Proceedings, pp. 389–
405 (2008)

5. Bernstein. D.J., Lange, T.: Faster addition and doubling on ellip-
tic curves. In: 13th International Conference on the Theory and
Application of Cryptology and Information Security Advances in
Cryptology—ASIACRYPT 2007, Kuching, Malaysia, December
2–6, 2007, Proceedings, pp. 29–50 (2007)

6. Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for
elliptic-curve cryptography (2014). http://safecurves.cr.yp.to/

7. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel
attacks. In: Proceedings of 5th International Workshop on Practice
andTheory inPublicKeyCryptosystemsPublicKeyCryptography,
PKC 2002, Paris, France, February 12–14 (2002)

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for
preventing simple side-channel analysis: side-channel atomicity.
IEEE Trans. Comput. 53(6), 760–768 (2004)

9. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M.,
Verneuil, V.: ROSETTA for single trace analysis. In: Proceedings
of Progress inCryptology—INDOCRYPT2012, 13th International
Conference on Cryptology in India, Kolkata, India, December 9–
12, 2012. pp. 140–155 (2012)

10. Coron, J.-S.: Resistance against differential power analysis for
elliptic curve cryptosystems. In: Cryptographic Hardware and
Embedded Systems, First International Workshop, CHES’99,

Worcester, MA, USA, August 12–13, 1999, Proceedings, pp. 292–
302 (1999)

11. Edwards, H.M.: A normal form for elliptic curves. Bull. Am.Math.
Soc. 44, 393–422 (2007)

12. Fan, J., Verbauwhede, I.: An updated survey on secure ECC imple-
mentations: attacks, countermeasures and cost. In: Cryptography
and Security: From Theory to Applications - Essays Dedicated to
Jean-Jacques Quisquater on the Occasion of His 65th Birthday, pp.
265–282 (2012)

13. Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on
blinded regular scalarmultiplications. In: Progress inCryptology—
INDOCRYPT 2014—15th International Conference on Cryptol-
ogy in India, New Delhi, India, December 14–17, 2014, Proceed-
ings, pp. 3–20 (2014)

14. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-
bandwidth acoustic cryptanalysis. In: Advances in Cryptology—
CRYPTO 2014—34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17–21, 2014, Proceedings, Part I, pp.
444–461 (2014)

15. Goubin, L.: A refined power-analysis attack on elliptic curve
cryptosystems. In: Public Key Cryptography - PKC 2003, 6th
International Workshop on Theory and Practice in Public Key
Cryptography, Miami, FL, USA, January 6–8, 2003, Proceedings,
pp. 199–210 (2003)

16. Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addi-
tion chain-based exponentiation algorithms using a single trace. In:
Topics in Cryptology—CT-RSA 2015, The Cryptographer’s Track
at the RSA Conference 2015, San Francisco, CA, USA, April 20–
24, 2015. Proceedings, pp. 431–448 (2015)

17. Hisil, H.,Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards
curves revisited. In: Advances in Cryptology - ASIACRYPT 2008,
14th International Conference on the Theory and Application
of Cryptology and Information Security, Melbourne, Australia,
December 7–11, 2008. Proceedings, pp. 326–343 (2008)

18. Itoh, K., Izu, T., Takenaka,M.: Address-bit differential power anal-
ysis of cryptographic schemes OK-ECDH and OK-ECDSA. In:
Cryptographic Hardware and Embedded Systems—CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August
13–15, 2002, Revised Papers, pp. 129–143 (2002)

19. Itoh, K., Izu, T., Takenaka, M.: A practical countermeasure against
address-bit differential power analysis. In: Cryptographic Hard-
ware and Embedded Systems—CHES 2003, 5th International
Workshop, Cologne, Germany, September 8–10, 2003, Proceed-
ings, pp. 382–396 (2003)

20. Joye, M.: Highly regular right-to-left algorithms for scalar multi-
plication. In: Cryptographic Hardware and Embedded Systems—
CHES2007, 9th InternationalWorkshop, Vienna, Austria, Septem-
ber 10–13, 2007, Proceedings, pp. 135–147 (2007)

21. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Cryp-
tographic Hardware and Embedded Systems—CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13–
15, 2002, Revised Papers, pp. 291–302 (2002)

22. Kim, K.H., Lee, C.O., Nègre, C.: Binary edwards curves revisited.
In: Progress in Cryptology—INDOCRYPT 2014—15th Interna-
tional Conference on Cryptology in India, New Delhi, India,
December 14–17, 2014, Proceedings, pp. 393–408 (2014)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:
Advances in Cryptology—CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA,
August 15–19, 1999, Proceedings, pp. 388–397 (1999)

24. Longa, P.: Accelerating the scalar multiplication on elliptic curve
cryptosystems over prime fields. IACRCryptol. ePrint Arch. 2008,
100 (2008)

25. Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision
attacks and its application to DES. In: Fast Software Encryption,

123

http://safecurves.cr.yp.to/

Journal of Cryptographic Engineering (2019) 9:263–275 275

10th International Workshop, FSE 2003, Lund, Sweden, February
24–26, 2003, Revised Papers, pp. 206–222 (2003)

26. Sugawara, T., Suzuki, D., Saeki,M.: Two operands ofmultipliers in
side-channel attack. IACR Cryptol. ePrint Arch. 2015, 291 (2015)

27. Walter, C.D.: Sliding windows succumbs to big mac attack. In:
Cryptographic Hardware and Embedded Systems—CHES 2001,
Third International Workshop, Paris, France, May 14–16, 2001,
Proceedings, number Generators, pp. 286–299 (2001)

28. Wikipedia: Elliptic curve digital signature algorithm. https://
en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_
Algorithm, last edited on 7 March (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

	Automatic generation of HCCA-resistant scalar multiplication algorithm by proper sequencing of field multiplier operands
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Horizontal collision correlation analysis

	4 Our proposed countermeasure
	4.1 Asymmetric leakage of field multiplication
	4.2 Pearson correlation metric
	4.3 Preventing HCCA by choosing safe sequence

	5 Experimental results
	5.1 Overhead analysis of our countermeasure

	6 Adding randomization
	7 Resistance against related horizontal attacks
	7.1 Rearranging attack

	8 Conclusion
	References

