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Abstract
With increasing expansion of the Internet of Things, embedded devices equipped with cryptographic modules become an
important factor to protect sensitive data. Even though the employed algorithms in such devices are mathematically secure
in theory, adversaries may still be able to compromise them by means of side-channel attacks. In power-based side-channel
attacks, the instantaneous power consumption of the target is analyzed with statistical tools to draw conclusions about the
secret keys that are used. There is a recent line of work that additionally makes use of techniques from the machine learning
domain to attack cryptographic implementations. Since a complete review of this emerging field has not been done so far,
this research aims to survey the current state of the art. We use a target-based classification to differentiate published work
and drive general conclusions according to a common machine learning workflow. Furthermore, we outline the relationship
between traditional power analysis techniques and machine learning-based attacks. This enables researchers to gain a better
understanding of the topic in order to design new attack methods as well as potential countermeasures.

Keywords Side-channel attacks · Power analysis · Machine learning · Deep learning

1 Introduction

Since Paul Kocher published the first publicly-known side-
channel attack (SCA) on several public-key cryptosystems
back in [60], there has been a lot of attraction in the security
community for physical attack vectors such as timing, power
consumption [58], electromagnetic (EM) radiations [103],
or even sound [31]. Rather than traditional cryptanalysis,
which aims to exploit theoretical weaknesses in the cryp-
tographic algorithms themselves, SCAs focus on the actual
implementation in software or hardware to recover the secret
key. Although the vast majority of the studies on SCAs have
been carried out to break cryptographic systems, it has been
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shown that the underlying principle may pose other kind of
threats as well. Examples are acoustic attacks on keyboards
to reveal typed text [142], or power analysis of an embedded
CPU to retrieve information about the executed instructions
[28]. Typical attack setups include visual inspection of the
physical traces, statistical methods, and information theory.
Power-based SCAs can be roughly divided in non-profiled
attacks (e.g. simple/differential power analysis [58]) and pro-
filed attacks (template attacks, stochastic approach [21,117]).

Machine Learning (ML) systems, generally speaking,
are able to improve their performance on a specific task
with increasing experience [40]. In a typical classification
problem, the system is fed with training examples consist-
ing of input data vectors (features) and associated outcome
measurements (labels) which is generally referred to as
supervised learning. During training, the algorithm makes
predictions on the basis of the input data and is corrected
if those predictions do not match the expected labels. The
goal is to build a prediction model that generalizes well
on unseen examples, meaning it produces the correct out-
come for inputs that have not been part of the training data.
Unsupervised learning, in contrast, deals with tasks where
no outcome labels are available. The learning algorithm tries
to deduce useful properties or the underlying structure of the
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input data set, e.g. by clustering it into different classes. Semi-
supervised learning lies somewhere in-between supervised
and unsupervised learning and describes settings at which
outcome labels are present for a part of the training exam-
ples but not for the whole data set.

ML is widely used in many domains such as natural
language processing, image recognition, or robotics, and is
gaining further importance for future autonomous systems
[54]. In addition, there has been also a large amount of papers
presented during the last years that incorporate ML tech-
niques for SCAs. Jap et al. summarized a subset of the work
which deals with the application of ML to analyze power
or EM side-channels of cryptographic implementations [51].
They noted that there is a strong analogy between supervised
ML problems and profiled SCAs as well as between unsu-
pervisedML and non-profiled SCAs. However, to the best of
our knowledge, there has been no thorough analysis of the
topic.

1.1 Contribution and structure of the paper

In this work, we give a broad overview of how ML tech-
niques have been used in SCAs to break different kinds of
cryptographic primitives. As illustrated in Fig. 1, the first
papers that deal withML for side-channel analysis published
in 2011 targeted unprotected implementations of symmetric

ciphers. Later, the community also began to consider asym-
metric and stream cipher implementations, as well as SCA
protected implementations. There are furthermore a couple
of recent publications which are based on advanced Deep
Learning (DL) techniques. For each attack vector, we review
the approaches presented in the literature and compare them
according to several criteria such as the number of physical
traces needed or the used feature engineeringmethods.While
this study is not intended to provide an in-depth analysis of
each approach, our contribution is rather to point out which
MLmethods and according parameters are more suitable for
attacking a certain cryptographic system. On the one hand,
we aim to give helpful insights to build advanced attackmeth-
ods based on ML in the future, and on the other, we want to
raise awareness of developers of security critical applications
for such kind of threats.

The remaining part of the paper is structured as follows:
Sect. 2 provides background on the different ML tech-
niques utilized in power and EM-based SCAs. In Sect. 3,
we introduce standard methods for side-channel analysis
apart from ML techniques. These are often referenced as
baseline in the analyzed papers in order to asses the quality
of the approach. The following subsections cover a review
of the individual papers divided in four categories: imple-
mentation attacks against block ciphers, stream ciphers,
asymmetric ciphers, and other cryptographic constructions

Fig. 1 Excerpt of the analyzed publications in chronological order. The most used public datasets are shown above the timeline
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such as Physical Unclonable Functions (PUFs). Next, we
discuss observed commonalities and differences and derive
some general recommendations useful to knowwhen consid-
ering ML techniques in SCAs. The discussion is augmented
by Sect. 6, which gives hints how to properly conduct and
report ML experiments for side-channel analysis. We con-
clude our work with a brief summary and possible future
work.

2 Background onmachine learning
techniques

In this section, we introduce generalML-related terminology
before we review several algorithms applied for side-channel
analysis.

2.1 Notations and general terminology

Throughout the paper, unless noted otherwise, we use low-
ercase bold letters to refer to vectors (e.g. a specific training
sample is denoted as x ∈ R

n×1), and uppercase bold letter
for matrices (e.g. X ∈ R

n×m).
In supervised learning, the training set consists of N input–

output pairs {(xi , yi )}Ni=1 and the goal is to find a suitable
relationship in order to map new inputs to the correct label
y. Unsupervised learning algorithms only work on the input
data {xi }Ni=1, trying to extract meaningful patterns and rela-
tions [87]. The goal of almost every ML problem either
supervised or unsupervised is to find a model g(W) that
explains the distribution of the input data set. It is obtained by
fitting its parametersW to minimize a cost or error function
E , which allows to judge how well the model performs on
the input data.

In SCA settings, an input training example x is usually
a vector of numbers representing a physical measure of the
target during operation, e.g. the power consumption over a
certain time interval while performing an encryption. In a
usual ML process as shown in Fig. 2, these raw data are
preprocessed in a first step. For example, many ML algo-
rithms require that the input data are normalized (meaning it
is rescaled to values between 0 and 1) or standardized (hav-
ing zero mean and unit variance). Then, data points with the
highest information content are extracted (or constructed,
e.g. by combining/creating additional data), a mechanism
that we refer to as feature engineering. Next, a suitable algo-
rithm needs to be selected for the given learning problem
and its hyperparameters (the parameters that control the algo-
rithm’s behavior which are usually defined a priori) have to
be adapted. Finally, the optimized model’s performance is
verified with ‘unseen’ data which was not used for train-
ing. A typical train/test-split assigns 60% of the data to the
training set and 20% to the test set. The remaining 20% is

Fig. 2 Standard ML process

used for hyperparameter optimization. However, if the test
set becomes too small, statistical uncertainty around the aver-
age test error can make comparability between different ML
algorithms difficult [36]. That is why in practice often a pro-
cedure called k-fold cross-validation is employed. The idea
is to split the whole data set randomly in k (the number of
folds) disjunct subsets and iteratively use one of them as test
set, while the rest of the data are used as the training set. The
average error across all trails is the estimated generalization
error (i.e. the expected test error when applying new data
to the trained model). Cross-validation is also often used to
estimate suitable hyperparameters.

Two common terms that are related to the performance of a
ML model are underfitting and overfitting [36]. Underfitting
occurs when the model is not able to obtain a sufficiently
low error on training and test set. Overfitting means that the
model performswell on the training set, but not on the test set.
One way to control the degree of overfitting or underfitting
of a model is by altering its capacity (i.e. the ability to fit to
a wide range of functions), e.g. by increasing or decreasing
the number of parameters.

The following subsections summarize the most impor-
tant supervised and unsupervised learning algorithms used
in SCAs. For better understanding, we have grouped them
into three major categories:

– Dimensionality reduction
– Supervised learning
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– Clustering

2.2 Dimensionality reduction

Dimensionality reduction techniques aim for decreasing the
number of features in the input data set, while preserving
as much information as possible. It can be done with both,
unsupervised and supervised techniques in order to obtain a
lower-dimensional representation of the original input. How-
ever, the loss in the input data may also have a negative effect
if the removed information is crucial for prediction, although
it is not important for the actual representation of input data
[9].

2.2.1 Principal component analysis (PCA)

A popular approach for dimensionality reduction is principal
component analysis (PCA). It maps each input data vector
x = {x1, . . . , xn} onto a newvector x′ = {z1, . . . , zm}, where
m < n. This is done by first calculating the mean vector μ

over all input features of the complete data set. Next, the
n × n-dimensional covariance matrix is computed and its
eigenvectors and corresponding eigenvalues are found. The
m eigenvectors with the largest eigenvalues are called princi-
pal components. In order to obtain the input data in its chosen
principal components, a n × n matrix A is formed from all
principal components. The transformed data are then derived
by computing:

x′ = AT (x − μ), (1)

then skipping the points in output data x′ corresponding to
the n − m smallest eigenvalues [26]. Side-channel obser-
vations usually deal with a high number of sample points
(= features), making calculations computationally expen-
sive. Because of that it is common to first find the sample
points where the most leakage information is present, which
are usually referred to as Points of Interest (POIs). PCA sup-
ports this by capturing the data with the largest variance and
thus helping to reduce the amount of noise in the traces. That
is why PCA is a heavily used technique in SCAs, even for
settings that make otherwise no use of ML techniques (for
example in [6]).

2.2.2 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is another dimensional-
ity reduction technique that is applied in SCAs to reduce the
number of sample points [15,121].While PCA seeks for find-
ing the features that maximize the variance of the input data,
LDA additionally maintains the discriminatory information
needed for separation between multiple classes [104]. LDA
is thus considered a supervised method that can be used not

only for data compression, but also for classification. The
main difference in computation compared to PCA is the cal-
culation of the within-class (SW) and between-class (SB)

matrices which are defined as:

SW =
c∑

i=1

Ni∑

j=1

(xi, j − μi )(xi, j − μi )
T (2)

SB =
c∑

i=1

Ni (μi − μ)(μi − μ)T , (3)

where c is the number of classes,μi and Ni the sample mean
and sizes of the respective class, and μ the overall mean
of samples from all classes. Afterward, the transformation
matrix W that maximizes the separation between the classes
is created by solving the eigenvalue problem S−1

W SB, before
the updated data set X′ is derived by the multiplication XW.
Bruneau et al. carried out a formal analysis of dimensional-
ity reduction techniques in SCAs and showed that LDA is
superior than PCA in many contexts [13].

2.3 Supervised learning

Many supervised leaningmethods can be used in twomodes:
classification or regression. In a classification setting, the
algorithm is asked to specify the class an input belongs to
from a finite set of values. Sometimes not the class is given
as output but rather a probability distribution over classes.
Regression learning tasks, in contrast, deal with the pre-
diction of quantitative outputs. We describe the different
algorithms in the upcoming with a focus on classification-
oriented usage, since the majority of work that is analyzed
later aims for predicting discrete target labels (e.g. subkey
bytes).

2.3.1 Support vector machine (SVM)

SVM is one of the most popular supervised learning algo-
rithms [24]. It is also known as max-margin classifier, as it
creates an optimal binary hyperplane between data points
belonging to two linear separable classes y1 and y2 as shown
in Fig. 3. Themodels prediction function is given bywT x+b,
where w is denoted as the weight vector and b the bias. For
instances belonging to class y1, it outputs a positive value.
A negative prediction is outputted accordingly for instances
belonging to class y2. The hyperplanewith the largest margin
between the points of the two classes can be calculated by
solving the optimization problem:

min
w,b

1

2
‖w‖2

subject to: yi (wT xi + b) ≥ 1, i = 1 . . . N (4)

123



Journal of Cryptographic Engineering (2020) 10:135–162 139

Fig. 3 Classification using a binary hyperplane SVM

The points that lie closest to the separating hyperplane are
called support vectors.

Because almost all real-world problems deal with nonlin-
ear separable data (i.e. data that cannot be separated by a
linear decision boundary), the kernel trick was introduced. It
enables the mapping of data onto a higher-dimensional space
where the separation becomes possible again. The choice of
the appropriate kernel function is crucial for the performance
of a SVM, as it defines the transformed feature space where
classification will be done [62]. The linear kernel function
and the radial basis function (RBF) kernel were mostly used
in SCA settings.A comprehensive description of kernel func-
tions can be found in [118].

2.3.2 Decision trees (DTs)

DTs are a class of supervised learning algorithms that sep-
arate the training data by constructing a tree with zero or
more internal nodes and at least one leaf node [88]. During
training, the feature that best splits the training examples at
each internal node is chosen. Branches coming out of these
internal nodes are labeledwith distinct outcomes of the corre-
sponding feature, while leaf nodes are associated with output
labels. New test instances are classified by passing it through
the tree starting at the root node which is equivalent to a tree
search. Figure 4 shows a simple DT performing a 3-bit AND
operation on an input example x = (x1, x2, x3).

A well-known algorithm for building a decision tree that
was also used in SCAs is theC4.5 algorithm [102]. It has been
designed to overcome several issues that can occur when
learning a tree, such as overfitting, or how to handle data
with missing attribute values [86]. C4.5 chooses decision
attributes to split the tree in further branches by using the
gain ratio metric (i.e. the information gain that is achieved
by a certain split whereby the size and number of branches
are considered as well).

Fig. 4 Decision tree representing an AND operation with 3 input vari-
ables

2.3.3 Random forest (RF)

RF is an ensemblemethod that consists of a collection of tree-
based classifiers which are individually trainedwith identical
distributed random vectors of the training data set [10]. Each
tree is furthermore constructed only with a random subset of
available features (typically the square root of the total num-
ber of features or even only one feature [40]). Classification
of test set examples after training is done by a majority vot-
ing among the grown trees. Thus, the procedure is relatively
robust against outliers and noise and can easily be paral-
lelized.

2.3.4 k-Nearest neighbors (kNN)

k-Nearest neighbors belong to the class of instance-based
learning algorithms. Instead of creating a classifier for a cer-
tain target function during training, the provided input data
set is just stored in a structured manner. Only when it comes
to evaluation of new instances, a set of related examples is
retrieved from the training database for classification of the
new query instance. This procedure is therefore also referred
to as lazy-learning method, since most of the computation
is postponed to the classification phase [86]. kNN assumes
that the examples in the training data set may be consid-
ered as points in the n-dimensional feature space. When
an output label y should be found for a new input exam-
ple x, the k-nearest neighbor instances in the training set are
discovered according to a certain distance metric (for exam-
ple Manhattan or Euclidean distance). The resulting output
class is then just the most frequent label among the k-nearest
neighbors. The appropriate choice of the parameter k heavily
affects the performance of the kNNalgorithm.An automated,
though computationally expensive, approach for determining
the value for k is proposed by Guo et al. [39].

2.3.5 Neural networks (NNs) and deep learning (DL)

Neural networks were partly inspired by biological learning
systems (e.g. the human brain) and date back at least into the
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Fig. 5 Perceptron

1960s. They are composed of densely interconnected units
called neurons, which take a number of real-valued inputs
and produce a single real-valued output [86]. One type of
a NN is the perceptron. As illustrated in Fig. 5, it receives
a vector of input features x = (x1, . . . , xn) and performs a
linear combination with the weight values w1, . . . , wn of its
input connections and a bias value w0. The result is passed
through a threshold activation function f (for example the
hyperbolic tangent f (x) = tanh(x)) in order to calculate the
output value ỹ. For learning the perceptron, the weights are
adjusted according to the training data set.

Single-layer perceptrons are only able to represent func-
tions whose underlying data set is linear separable such as
the boolean AND function. To overcome this limitation and
represent more complex mappings, many perceptrons can be
stacked together to form a whole network which are gener-
ally referred to as multilayer perceptrons (MLPs). An MLP
consists of three types of units, typically arranged in layers
as shown in Fig. 6. The input layer is just a representation
of the raw input features. All neurons of the input layer are
connected to each neuron of the following hidden layer. The
number of hidden layers in an MLP and the number of units
per hidden layer varies, depending on the required model
capacity to fit the training data. In general, too many units
in the hidden layer may lead to overfitting, while underesti-
mating the number of neurons has a negative effect on the
classification performance of the MLP [36]. The units in the
output layer directly correspond to the prediction classes of
the problem to solve.

Training the MLP is a multi-step process involving the
following steps:

1. Initialize theweightsw
(k)
i, j of the network to small random

values, where (i, j) denotes the connection between the
i-th node of layer k and the j-th node of layer k + 1.

2. Take a training example (x, y) and compute an error func-
tion E (sometimes also called loss function), depicting

Fig. 6 Example of a simple MLP with 3 input units, 4 hidden units, 2
output units (bias units omitted)

the difference between the expected output y and the pre-
diction result ỹ obtained from the MLP.

3. Compute by means of the backpropagation algorithm
how the individual weights of network have contributed
to the calculated error E , i.e. the gradient of the error
function with respect to the weights:

∇E = ∂E

∂wi, j

4. Update the weights in order to minimize E using the
gradient information and the learning rate parameter γ .
The learning rate is a positive scalar that determines how
fast the weights are driven toward the optimal solution:

Δwi, j = −γ
∂E

∂wi, j

5. Repeat the steps 2–5 until some termination criteria are
met. An iteration over the complete training data set is
called an epoch.

The above sketched algorithm is called stochastic gradient
descent. However, in practice one would rather use larger
batch sizes (i.e. the number of training examples that are
propagated through the network) and adaptive learning rates
for updating the MLP’s weight parameters (for instance the
Adam algorithm [57]).

In recent years, there has been a growing interest in NN
models with multiple hidden layers stacked upon each other,
which is commonly referred as to Deep Learning (DL). It
is a particular powerful type of ML techniques that are able
to represent the learning task as a nested hierarchy of con-
cepts, where more abstract concept representations are built
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Fig. 7 Example of a 1-Dconvolution operation. The output is formedby
applying the kernel to each part of the input (as with a sliding window)

from simpler ones. The usage of deep neural nets is moti-
vated by the fact that they have succeeded in solving central
problems in artificial intelligence such as speech recognition
and image classification. These tasks usually deal with high-
dimensional data whichmakes it exponentiallymore difficult
to learn a classifier that generalizes well on unseen examples,
a challenge that is also known as the curse of dimensionality
[36].

CNNs tackle the challenge of large input data by including
task-specific mechanisms into their architecture that allow to
reduce the number of parameters of the model while keep-
ing or even increasing the accuracy of the neural network
[91]. CNNs are primarily used in the field of pattern recog-
nition within images; however, they can also be used to
process 1-D time-series data (as it is the case for side-channel
traces). Additional to fully connected layers used in classical
MLPs, CNNs include two other types of layers: convolution
(CONV) layers and pooling layers. CONV layers determine
the output of neurons which are connected to small spatial
regions of the input by calculating the scalar product with a
set of kernels or filters as illustrated in Fig. 7. The parameter
weights of the kernels are learned to activatewhen they detect
a specific feature or pattern at a certain position of the input
during interference. Pooling layers perform downsampling
of their given input in order to reduce the number of parame-
ters and the computational complexity of the network,mostly
by considering themaximumvalue (=max-pooling) of a cer-
tain spatial extent as the output. CommonCNNarchitectures,
e.g. the so-calledVGGnets proposed for image classification
[119] are composedof severalConvandpooling layers before
one or more fully connected layers are connected on top.

2.4 Clustering

Cluster analysis techniques mostly belong to the group of
unsupervised learning algorithms, meaning they work with
unlabeled training examples only. The aim of clustering is
to group related objects of the training data set into smaller

subsets (clusters). Objects assigned to the same cluster are
more similar to each other than objects belonging to differ-
ent clusters. Similarity (or dissimilarity) between the objects
is measured by calculating the pairwise distance of variable
values (features) of the objects. This can be done on quanti-
tative, ordinal, or categorical scale depending on the type of
variable [40].

2.4.1 k-Means

A popular clustering algorithm is k-means. It divides the
training set into k different clusters starting with an initial
guess. Then, it iteratively identifies the closest cluster cen-
ter (centroid) for each example in the data set and updates
the centroids based on the mean μ j of all training examples
assigned to it until there is no change anymore. More for-
mally, the goal is to find for a data set {xi }Ni=1 the partitioning
c = (c1, . . . , ck) that minimizes the total cluster variance:

min
c,{μ j }k1

k∑

j=1

∑

xi εc j

‖xi − μ j‖2 (5)

The squared Euclidean distance serves as similarity measure
for determining the closeness of two training examples.

2.4.2 Hierarchical clustering

K -means requires the a priori knowledge of the number of
clusters for separating the data set. However, sometimes one
is rather interested in the relationship between different sub-
sets of the input data. This can be accomplished by using
hierarchical clustering techniques. These arrange the data
set into a tree-like structure where the clusters at each level
are built by merging clusters from the layer below. Leave
nodes of the hierarchy represent a single data example. There
are in general two types of strategies to create a hierarchi-
cal structure from the data set. Agglomerativemethods work
bottom-up and merge related clusters until a single root clus-
ter was found. Closeness of clusters is calculated by group
average dissimilarity ormax/min distance of single pairs, that
is, a threshold value has to be defined upfront. Divisive clus-
tering algorithms, in contrast, start with the complete data set
and recursively divide it into smaller clusters at each level of
hierarchy. The splitting procedure remains active until for
all clusters, zero dissimilarity exists among the members or
each cluster consists of only one training example.

3 Power analysis attacks

This section introduces common techniques for a certain
class of SCAs, the so-called power-based SCAs or power
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analysis attacks. SCAs belonging to this group exploit the
fact that the instantaneous amount of power used by a device
depends on the processed data and performed operations
[79]. Due to this correlation, cryptographic secrets such as
a symmetric key used in the advanced encryption standard
(AES) block cipher are exposed when a device is performing
a cryptographic operation. To measure a device’s power con-
sumption, one can insert a small resistor in series with the
power or ground input (also called shunt). The voltage drop
along the resistor divided by its resistance yields the power
consumption [61]. A sequence of such power measurements
sampled with an oscilloscope over a certain period is called a
trace. Several techniques have been proposed for analyzing
power traces in order to extract cryptographic secrets. Simple
power analysis (SPA) is considered as the most straightfor-
ward approach as it attempts to directly interpret the power
consumption variation in a trace to deduce information about
a device’s operation and used key material [58].

3.1 Differential/correlation power analysis
(DPA/CPA)

In practice, SPA leaks are often hidden in noise or hard to
interpret manually (as for example when targeting FPGA
design which performs many operations in parallel). In this
case, it is advantageous to apply more advanced analysis
techniques based on statistical methods, namely differential
power analysis (DPA) or correlation power analysis (CPA).
Using DPA, the basic idea is to divide a set of traces into
subsets according to a selection function which reflects the
expected value of an internal intermediate operation O of
the attacked cipher (typically a function that depends par-
tially on the secret key and known plaintext or ciphertext).
Next, the average power consumption of each subset is cal-
culated and the pairwise difference is determined. Given that
the selection of which trace belongs to each subset is uncor-
related with the measurements in the traces, the calculated
differences will become small. However, for correct guesses
the difference trace will show clearly visible spikes having
enough power measurements [59]. In a CPA, the attacker
first estimates the hypothetical power consumption for the
targeted intermediate operation. Common power models are
the Hamming Weight (HW), Hamming Distance (HD), and
Zero Value (ZV) model [79]. Then, real power measure-
ments of the cryptographic device are collected using the
same known plaintext (or ciphertext) as for the hypothetical
model. In a final step, the estimated power consumptionsM
are comparedwith the collected tracesT using the correlation
coefficient as distinguisher [11,61]:

Corr(M,T) = μ(M × T) − μ(M) × μ(T)√
σ 2(M) × σ 2(T)

(6)

where μ denotes the mean and σ 2 the variance. Other
side-channel distinguishers that have been proposed in the lit-
erature to compare key-dependent predictions of the physical
leakages with actual measurements are mutual informa-
tion analysis (MIA) [33] and Kolmogorov–Smirnov analysis
(KSA) [134].

3.2 Profiling power analysis

CPA is most effective for settings where the power leakage
model of the attacked device is known upfront. If no corre-
lation can be found with any of the aforementioned models,
one can try to build a customized leakage model using a sec-
ond so-called profiling device. It is a copy of the attacked
device which the adversary can manipulate to characterize
the leakages very precisely with statistical techniques.

Template attacks [21] assume that the traces’ leakage
follows a multivariate Gaussian distribution which can be
described by an according mean vector μ and covariance
matrix Σ . They are built for each possible value oi of the
attackedoperationO . The probability density function (PDF)
for an n-multivariate leakage l is therefore estimated by the
equation:

PDF(l|O = oi ) =
exp

(
− 1

2 (l − μi )
TΣ−1

i (l − μi )
)

√
(2π)n|Σi | (7)

Once the leakagemodel has been characterized, the adver-
sary acquires a new set of traces from the attacked device and
computes those probabilities of originating from hypothe-
sized operations Õ using the templates. Finally, maximum
likelihood principle is applied to combine the individual
guesses and recover the secret key.

The Stochastic Approach (SA) of Schindler et al. provides
another kind of profiled side-channel analysis tool [117].
Contrastingly to template attacks, SA describes the leakage
function as sum of a data-dependent (and thus also key-
dependent) part and a noise term which are approximated
separately during profiling. The stochastic model assumes a
linear relationship in the data-dependent part and neglects
nonlinear dependencies. It was shown that in contexts where
the leakage can be described by a monomial of small degree
and the number of profiling traces is limited, the SA is more
efficient than template attacks due to its simplicity. Further-
more, template attacks can be seen as a special case of the
SA with maximal degree [34,66].

3.3 Electromagnetic side-channel attacks

Side-channel attacks due to electromagnetic (EM) emana-
tions are also an active branch of research. In general, EM
measurements can be analyzed using the same techniques
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Fig. 8 Relationship between traditional profiled/non-profiled SCAs and SCAs based on ML techniques

that apply to power measurements [61]. Simple electro-
magnetic attacks (SEMA) and differential electromagnetic
attacks (DEMA) [30,103] are the common terms to refer to
such kind of attacks. However, EM measurements are much
more flexible and allow to capture (often more useful) infor-
mation in very close proximity to the attacked chip even
if power traces are available. EM allows, for example, to
observe only the parts of a device’s chip that have the highest
side-channel leakage. In this paper, we consider work that is
based on both, power and EMmeasurements, because of the
strong relationship between them.

4 Attack vectors

Now that we have introduced ML and power-based SCAs
in general, this chapter deals with the combination of
both worlds. Figure 8 shows a high-level overview of how
SCAs based on ML techniques can be fit into the common
profiled/non-profiled SCA classification setting.

Whereas in non-profiled and profiled SCAs, the side-
channel leakage is estimated according to a certain power
model (respectively under specific assumptions about the
leakage’s probability distribution), most MLmodels are able
to approximate any function of the leakage (under certain
conditions which are explained later). During the attack
phase, the ML models can either be embedded in a non-
profiled (see Sect. 4.1.3) or profiled attack flow, or can be
used directly to make hypotheses about the target values (e.g.
individual key bits).

In the following subsections, we give an exhaustive
overview on such approaches where ML methods were
applied to extract confidential information of implemented
cryptographic primitives. For each attack vector, we summa-
rize the contributions from academia and compare them later

with respect to different criteria such as preprocessing and
feature selection methods.

4.1 Attacks on block cipher implementations

By far the most analyzed work considered symmetric block
ciphers as a target. In order to highlight different possi-
bilities for ML methods in this field and ease readability,
we organized them into several subcategories. However, we
stress that a clear distinction is not always possible and some
approaches may fit into more than one class.

4.1.1 Recovery of intermediate cipher states

One of the first papers that deals with the application of ML
techniques in SCAs of cryptographic implementations was
presented by Hospodar et al. [48]. They used a variant of
SVM called least square support vector machine (LS-SVM)
to distinguish power traces of an unprotected software AES
implementation regarding three properties of the S-Box out-
put: HW smaller/larger than 4, even or oddHW, and the value
of the fourth least significant bit. The most relevant features
were discovered by a SumOf Squared pairwise T-differences
(SOST) analysis [34], Pearson correlation and PCA. They
examined that the choice of the LS-SVM parameters signifi-
cantly affects the performance of the classification, whereas
the size of the training set is less important.

Heuser and Zohner were the first who used multi-class
SVM classification to make assumptions about the HW of an
intermediate value byte of an AES implementation running
on an ATMega-256-1 microcontroller [43]. They show that
their SVM attack is more suitable than the template attack
for power traces with high noise level since it relaxes the
assumption that the data underlie amultivariateGaussian dis-
tribution. This provided the basis for the work of Bartkewitz
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and Lemke-Rust one year later, who designed probabilistic
multi-class SVMs the same way as being done in template
attacks [5]. For finding the POIs, they applied a technique
called normal-based feature selection. Here, the absolute
values of the weight vector w determine if a corresponding
feature has significant influence on the classification perfor-
mance or not. Weight values with small absolute value are
therefore just set to zero to disregard unimportant features.
The efficiency of the approachwasmeasured according to the
so-called Key Guessing Entropy (KGE), a technique which
quantifies the difficulty to retrieve the correct value of a key
regarding the required number of traces [123]. They observed
that the linear kernel does not perform well in SVM-based
template attacks since it implies a linear classification prob-
lem, whereas the RBF kernel is appropriate for non-linear
problems.

Banciu et al. investigated several classifiers in the con-
text of single trace attacks [3]. These type of attacks assume
an adversary which only has access to a single attack trace.
When targeting symmetric ciphers, the attacks should be
error tolerant in a sense that side-channel leakage informa-
tion for an intermediate value can be a set of possible values.
Examples from literature are pragmatic SPA [78], which tol-
erates a set of five HW guesses, whereas algebraic SCAs
[105] are restricted to three possible HW values. In the study,
templates, SVM, kNN, DT and RF were considered to out-
put a ranked list of HWs given power consumption traces
obtained from anAES implementation running on two exper-
imental platforms: An 8-bit microcontroller and an ARM7
microprocessor. Only Gaussian template, RF and SVM per-
formed well across the two data sets and different numbers
of traces/features used for training.

Picek et al. studied in detail the effectiveness ofBayes clas-
sifiers compared to template-based attacks [95]. In addition
to the Naïve Bayes approach which considers the features as
conditionally independent of each other regarding the clas-
sification, the averaged one-dependence estimators (A1DE)
strategy was investigated as well. It relaxes this strong
assumption by making all attributes independent given the
class except one privileged attribute called the super-parent
[132]. between 5000 and 100,000 measurements from two
public data sets (DPA contest v2 and v4 [126,127]) were
randomly selected in order to predict the outputs of the AES
S-Box (respectively, the HW of the S-Box outputs) using
a train/test ratio of 2:1. Two additional evaluation metrics
besides classification accuracy were used to report the result:
area under ROC curve (AUC) and F-measure. ROC analy-
sis plots the true-positive rate against the false-positive rate,
and F-measure effectively references the true positives to
the arithmetic mean of predicted positives and real positives
[100]. In most scenarios, A1DE achieved a higher accu-
racy than template attacks and an improved version with
pooled covariance matrix [23]. The authors therefore sug-

Fig. 9 Hierarchical trace classification usingHWas intermediate nodes
[97]

gested A1DE as an alternative when the profiling base is
small and other ML techniques such as SVM and RF are too
costly to tune and perform.

In a further contribution, Picek et al. presented an approach
called hierarchical classification [97]. The idea is to explore
the natural clustering of the leakage in order to arrange the
class variables (i.e. sensitive target values) in a tree structure.
Figure 9 shows their attack methodology: First, the attack
traces are divided in the corresponding HW of the sensitive
variable (e.g. output of AES S-Box) and then each subset
is classified into the actual value of the sensitive variable
itself. Naïve Bayes, C4.5, rotation forest [106] and SVM
were considered as classification algorithms and evaluated
along with standard template attacks. In most cases of the
conducted experiments, hierarchical SVM performed best.
As an extension, the authors proposed to combine the hierar-
chical approach with a standard flat classification to increase
the accuracy.

Finally, Picek et al. showed in an additional study the
importance of proper parameter tuning when using (param-
eterizable) ML techniques for side-channel analysis [99].
From the set of examined supervised classifiers (SVM, rota-
tion forest, RF andMultiBoost [29]), the best results (in terms
of classification accuracy using tenfold cross-validation)
through parameter tuning were obtained for SVM. However,
rotation forest andMultiBoost performed only slightlyworse
with their optimal settings, butwere farmore robust to param-
eter value changes. It is furthermore shown that a carefully
tuned algorithm is able to reach a relatively high accuracy
(more than 70% when having low noise) even if only a small
number of relevant features is used (here 20%). Selection
of the features was done with the information gain method,
which is related to the C4.5 used to grow DTs (see Sect.
2). The authors also presented a novel side-channel metric
calledData Confusion Factor that quantifies the difficulty of
a given ML problem regarding a certain data set.
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Maghrebi et al. were the first who applied DL in the con-
text of side-channel analysis [76]. Apart from CNNs which
were introduced in Sect. 2, the authors investigated stacked
auto-encoders [85] as well as Long and Short TermMemory
(LSTM) [46] from the field of DL techniques. A common
factor that motivates the usage DL in general is that they
intrinsically incorporate feature extraction mechanism. That
is, unlike most standard ML classifiers, deep NNs can learn
from the raw input data set as they are able to identify themost
informative points themselves without human engineering.
In order to check if this holds also for SCAs on cryptographic
algorithms, they performed a series of experiments using the
aforementionedDL techniques, classicMLclassifiers (SVM,
RF, MLP) and templates to attack unprotected and protected
hardware and software implementations of AES (using data
sets fromDPAcontest). Summarizing the results, one can say
that the DL methods mostly outperformed the other attack
techniques. Especially for the protected software, implemen-
tation was no prior mask profiling necessary to break the key
compared to the attacks described in several other publica-
tions (see Sect. 4.1.4). Interestingly, the impact of PCA as
preprocessing step in combinationwithMLPdid not enhance
the efficiency, a finding that stays in contrast to most related
work (e.g. [35]).

4.1.2 Direct (sub-)key recovery

Lerman et al. [65] showed the applicability of supervisedML
to attack individual key bits of an FPGA-based 3DES imple-
mentation. They considered Self Organizing Maps (SOMs),
SVMs and RFs as prediction models and combined them
with different dimension reduction techniques (PCA, min-
imum Redundancy Maximum Relevance (mRMR), Rank-
ing), whereas the combination of RF with PCA performed
best.Abrute-force strategy for key bitswith uncertain predic-
tions is suggested in order to enhance the attack.Additionally,
a comparison with a standard template-based power attack
was performed and evaluated using the KGE metric.

Liu et al. also focused on multi-class SVM as a distin-
guisher in their work published in [74], but exploited EM
as side-channel instead of power consumption. For reduc-
ing the high amount of sample points in the traces, they first
determined the 4000 most relevant components using SOST
analysis and then applied a PCA. This setting was used to
determine the state of a 6-bit subkey of an unprotected DES
implementation.

Another SVM-based attack on DES was presented by He
et al. resulting from a semester project of an ML course at
Stanford University in [41]. They used standard SPA and
DPA to determine the exact location of the first and second
key permutation and the first XOR operation round function
in the power traces. For each region, a separate classifier was
trained, whereas more sophisticated feature engineering also

including the ciphertext was needed for the XOR classifier
in order to get an accuracy greater than 80%.

Martinasek and Zeman proposed a three-layer MLP to
determine the first AES key byte from power traces obtained
from a smart card microcontroller [138]. Their method was
able to identify the correct value in around 85% of the cases.
By calculating the average power trace and subtraction of
measured traces from this average trace, they were able to
further improve their method [81]. In [82], a comparison of
their MLP techniques with templates is presented using the
same data set and an adapted version of SOST [12] for finding
the POIs. It turned out that the optimized MLP version was
almost equally efficient as a template-based power attack.
Second and third experiments based on the public data set
of DPA contest v4 were presented in [83]. Here, the main
outcome was that if the adversary has only a limited number
of power traces and POIs available, MLP-based attacks are
more effective. However, when using template attacks based
on a pooled covariance matrix and a larger learning data
set, the results were practically the same compared to the
developed MLP architecture.

4.1.3 Leakagemodeling

Side-channel leakage modeling based upon NNs was stud-
ied for the first time by Yang et al. [136]. They motivate
its usage by the fact that NNs are able to capture nonlinear
power leakages without specific restrictions, as compared
to other nonlinear models [47,75]. These generally assume
that the leakage behavior (respectively the power consump-
tion) of individual bits of a sensitive operation is independent
of each other. The NN is trained to predict the hypotheti-
cal leakage (real value) given an intermediate value of the
target cryptographic algorithm, meaning it is not used to
directly recover the secret key as in a classification set-
ting. Instead, it is combined with CPA and MIA where it
replaces standard leakage models such as the HW. Effective-
ness of their attack constructions was reported with a series
of experiments including different levels of noise and dif-
ferent evaluation metrics (KGE, success rate and distinctive
level [50]).

Lerman et al. [64] incorporated methods from time-
series modeling into multi-class profiling attacks based on
SVM and RF. The rationale is to explore potential informa-
tion available in temporal dependencies between individual
values of a power trace. This can also be seen as sort of dimen-
sionality transformation of the input data to a space with
lower variance, making the approach more robust against
noise. They furthermore evaluated other feature selection
techniques (MAX function, mRMR, SOST) with respect
to different levels of noise showing the advantage of their
method. The experimentswere carried out on power leakages
from the DPA contest v1 (unprotected ASIC DES) [125].
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Jap et al. [52] presented a method for leakage model-
ing called Support Vector Regression (SVR). As the name
implies, SVR is based on support vectors like SVMs, but uses
regression instead of classification. The procedure is quite
similar to the SA of Schindler. The attacker first acquires two
sets of traces from the reference device: one set for model
building and the second one for noise covariance estimation
(profiling). Then, the attacker measures new traces from the
target device and determines the secret key by using maxi-
mum likelihood and the built profile. However, the advantage
of SVR is the kernelmethod, allowing it to capture non-linear
dependencies, whereas the method of Schindler et al. [117]
is based on linear regression. The quality of SVR was com-
paredwith SA andHWwhen used as leakagemodel in a CPA
against an AVR microcontroller running an AES implemen-
tation. It could be shown that SVR reaches almost the same
preciseness of a complex SA model with 256 dimensions.

Whitnall and Oswald presented a general strategy to
integrate unsupervised clustering methods into a profiled
DPA-style attack at CHES 2015 [133]. The intent was to
extract a nominal power model (i.e. a power model that does
not need to be perfect) during a profiling phase and use it in
the subsequent attack phase to hypotheticallymap new traces
to classes for each potential key. The guess that is associated
with the most meaningful pattern is probably the secret key.
They evaluated k-means and hierarchical clustering in com-
bination with several partition-based DPA distinguishers to
attack software and hardware implementations ofAES [122].
The strength of their method is the robustness to natural dis-
tortions, meaning it does not require identical measurement
setups or even identical preprocessing steps for the profiling
and attack traces. This is especially an advantage over gaus-
sian templates which are not effective in non-ideal attack
scenarios.

4.1.4 Mask recovery

Zeng et al. [139] presented a successful attack against an
AES software implementation which is protected with a
lightweight countermeasure called Rotating S-Box Masking
(RSM). Since the mask values are fixed in this countermea-
sure, the critical part is to break the 4-bit random offset
value that denotes the starting index [89]. Therefore, they
first trained a separate SVM classifiers to discover the secret
mask offset and then attacked every S-Box using the HW and
bit power models [79] to recover all subkey bytes. In order to
determine the optimal number of profiling traces and POIs,
they conducted a series of 60 experiments.

A similar attack strategy against RSM was proposed by
Lerman et al. [67,69]. Their approach applies a profiled attack
to extract the mask values considering RF, SVM, templates,
SA and multivariate regression analysis [124] followed by a
non-profiled (using CPA) or profiled step that retrieves the

Fig. 10 Attack strategy against masked implementation by Lerman
et al. [67]

secret key as illustrated in Fig. 10. Since in their setting a
large number of traces followed an unknown PDF that was
not gaussian (determined by Shapiro–Wilk test [2]), the ML
models were able to extract more information when ana-
lyzing the same data set (with respect to template attacks).
Regarding SA, the main advantage of the ML approach is
reduced execution time (four times less).

Based on the previously mentioned work, Gilmore et al.
[35] performed an attack on the same target.However, instead
of training a SVM to recover the mask value and a non-
profiled attack to recover the secret key, they proposed a
strategy solely based on MLPs. Initially, a first MLP is built
to determine the mask value and afterward a second MLP is
trained with the same traces and the knowledge of the mask
value to attack bytes of the key. By using cross-validation,
they found out that a single hidden layer with the number
of neurons equal the number of input features (= number of
sample points in the traces) is sufficient for the aforemen-
tioned tasks. In contrast to other approaches, they employ
PCA not for finding a small amount of features that carry the
most information, but as preprocessing technique to discard
sample points that contribute less than 2% to the total signal
variance.

Martinasek et al. [80] used gaussian templates and MLPs
to attack an improved version ofRSM that combinesmasking
and shuffling techniques (denoted as DPA Contest v4.2 [7]).
The templates served for revealing the secret offset values in
a first step, while the MLP from an earlier paper was used in
order to retrieve the output of the S-Box. By doing so, they
were able to discover the whole 16-byte AES key needing
only 13 power traces in the attack phase.

In another contribution, Martinasek et al. [84] provided
an extensive comparison between a range of ML algorithms
and different template attacks. They implemented a verifi-
cation program that automatically searches for the optimal
hyperparameter setting of each classifier that achieves the
best classification accuracy for a given dataset. For that pur-
pose, tenfold cross-validation was performed in a loop over
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a range of possible parameter combinations. The selection
of parameters was done based on experience of the authors
gained from previous studies. The overall process of the test-
ing program and the considered algorithms are described
in Algorithm 1. Summarizing the obtained results for three
different data sets, the authors concluded that everyML algo-
rithm can be optimized to get almost the same classification
results (all tested algorithms achieved a success rate between
84 and 95%). However, the time required for finding the best
hyperparameter setting for a certain algorithm varied heav-
ily. For example, it took approximately eight days until the
best parameters of the SVM were returned by the verifica-
tion program, whereas optimizing kNN terminated after only
6 minutes and 35 seconds. This is plausible since kNN only
has a single parameter to choose and does not include a learn-
ing phase (see Sect. 2). Therefore, kNN is advertised as an
alternative tool for profiled SCAs.

Algorithm 1 Optimize Hyperparameters
Input: X, the input data set
Input: M , a ML classifier of set {SVM, DT, MLP, kNN, RF, LDA}
Input: p, the parameters to test
Output: popt , the optimal parameter combination
Output: ACopt , the classification accuracy obtained by using popt
for all parameter combinations in p do

psel ← select_parameters(p)
ACsel ← tenfold_cross_validation(X, M,psel )
if ACsel > ACopt then

ACopt ← ACsel
popt ← psel

end if
end for

Hou et al. [49] explored the effect of wavelet analysis
when used as a kernel function in an SVM-based SCA.
According to the authors, the wavelet kernel is able to
approximate almost any function in continuous space and
therefore improves generalization of the SVM compared to
traditional kernel functions such as Gaussian. They con-
ducted an exhaustive analysis using different kernel and
wavelet functions for attacking protected and unprotected
AES implementations that substantiate their assumption.
Also the required time effort for training could be reduced
by 40% through optimal choice of SVM parameters.

4.1.5 Simulated settings

An approach that includes probabilistic NNs and discrete
wavelet transform as preprocessing tool was presented by
Saravanan et al. [114]. Wavelet transform is a special form
of Fourier transform that correlates the original signal with a
set of template functions obtained from scaling and shifting
a wavelet function in order to decompose the original signal
into several components with different frequency bands. The

power traces that were processed by the wavelet transform
were collected by varying the atmospheric temperature from
27 to 70 ◦C within a Cadence Spectre simulation of the AES
S-Box. They were able to successfully determine the correct
used key out of four random keys with a single attack trace.
A more comprehensive evaluation of the approach including
other wavelet families was shown in [113].

Amore theoretical contribution of Lerman et al. systemat-
ically investigated the influence of the number of dimensions
(i.e. the number of sample points considered) on two types of
profiled SCAs: ML-based and template attacks [71]. Using a
formal proof, they showed that ML attacks are less beneficial
compared to template attacks in case of a perfect profiling
(i.e. when the probability density function of the leakage is
perfectlymodeled).However, a perfect profiling never occurs
in practice due to noise and interdependencies between indi-
vidual sample points. Therefore, they created a simulated
environment where they could vary the number of informa-
tive and useless dimensions in order to examine the effect
of imperfect profiling. They observed that ML-based attacks
(here SVM and RF) become more interesting when the num-
ber of useless samples in the traces is high and the training
data set is limited. The main conclusion of the authors was
thus that template-based attacks are suitable for well under-
stooddevices,whereasML-based attacks aremore promising
in black-box settings.

Heuser et al. [42] investigated lightweight block ciphers
regarding side-channel resistance in profiled andnon-profiled
scenarios. In the case of non-profiled attacks, they evalu-
ated several ciphers with 4-bit and 8-bit S-Boxes using the
confusion coefficient metric [129] and software simulations.
The authors could not examine that 4-bit S-Boxes are gen-
erally weaker than the considered 8-bit S-Boxes. For the
profiled experiments, Naïve Bayes, C4.5, and MLP were
used from the family of supervised ML algorithms to attack
PRESENT and AES simulations. Their study showed that a
single feature (with sufficient information) may be enough
for mounting a successful attack. However, it was also shown
that the difference between AES and PRESENT in terms of
side-channel resilience is rather low.

4.1.6 Attacking unlabeled traces

An unsupervised, regression-based attack methodology was
proposed by Chou et al. [22]. As laid out by the authors,
unsupervised attack settings generally require no reference
device for generating training data (i.e. by feeding different
plaintexts and keys into the reference device and recording
associated power traces). Their framework was furthermore
able to consider information from multiple DES decryption
rounds in order to deal with situations of only limited number
of traces.
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Between the previous method and the other aforemen-
tioned work lies the semi-supervised template approach
introduced in [70]. Here, an attacker is able to collect two
sets of traces from the same device: The first set using sev-
eral known keys (for example from different users having
different keys) and the second set with fixed unknown key
(for example when the attacker manipulates the device). By
using the clustering technique partitioning around medoids
(PAM) [128], they were able to discover the HW of a byte of
the attacked symmetric cryptographic key.

Another semi-supervised SCA based on collaborative
learning was proposed by Liu et al. [73]. In this attack setting
that required only a small set of labeled traces, two different
SVM classifiers (RBF and linear) were used to predict the
class of unlabeled traces with corresponding class probabil-
ity. If the result of the two SVM classifiers was consistent
and the class probabilities were within a certain range, the
selected training example was added to the labeled training
set and a re-training was performed. This cycled until a cer-
tain termination criteria was met (five iterations). Compared
to the single SVM approach [67] which used the same data
set from DPA contest v4, the presented collaborative model
was superior when dealing with the same number of labeled
traces. This is due to the fact that it is able to make efficient
use of the information of unlabeled samples as well. How-
ever, an additional CPA was needed in order to reveal the
mask values in a first step.

4.1.7 Attacking misaligned traces

The contribution of Lerman et al. [68] aimed to clarify which
profiled SCAs have the lowest sensitivity to signal modifi-
cations in real-world settings. They considered several ML
classifiers (SVM, RF,MLP) as well as standard and extended
template attacks based on a pooled covariance matrix [23].
The conducted experiments were grouped in four scenar-
ios: invalid traces (traces which are associated with a wrong
label), misaligned traces, increased noise, and a different DC
offset in the profiling and attack traces. For the first scenario,
it was shown that the ML models mostly outperform tem-
plate attacks in case of a high number of wrong traces. This
is consistentwith the outcome of numerous other studies (e.g.
[71,83]) showing that ML techniques are more advantageous
when the training set is small. In case of misaligned traces in
the attacking set, the five models performed similarly (suc-
cess rate decreases linearly with growing misalignment).
However, ML models performed better when the profiling
set also contains misaligned traces. By contrast, pooled tem-
plates outperformed all other models or had similar results
for noisy traces and traces with varying DC offsets between
the profiling and attack set (at least when considering traces
from the DPA contest v4.2). This led the authors to conclude

that there is no best model for each scenario, an observation
that is generally referred to as ‘no free lunch’ theorem [135].

Cagli et al. investigated the applicability of CNNs to
break cryptographic implementations which are protected
with jitter-based countermeasures [16]. This type of protec-
tion mechanisms creates misalignments in the side-channel
traces for example by insertion of random delays through
dummy operation or by generating an unstable clock sig-
nal. To defeat such countermeasures, the authors proposed
the use of a CNN in combination with data augmentation
techniques. These are commonly used as a regularization
operation when training CNNs for image recognition tasks
in order to increase the training set size by adding extra copies
of examples which are modified by label invariant modifica-
tions. In the context of side-channel analysis, this means the
traces are distorted artificially in order to simulate a clock jit-
ter effect that does not influence the target label information.
To this end, shifting deformations (simulates random delay)
and add-remove deformations (simulates clock jitter) were
applied to the traces of different training-sets. They created
a CNN architecture encompassing more than ten layers and
trained it to classify the HW of an S-Box lookup of an AES
software implementation. Two case-studies were presented,
one regarding software-based and the other one regarding
hardware-based countermeasures. The results showed that
the data augmentation technique heavily helps to defeat over-
fitting of the CNN and reaching a validation accuracy of
around 80%although only a limited amount of training traces
were used in each setting. However, the performance on a
secured hardware AES smartcard implementation was rather
marginal compared to a gaussian template attackwithmanual
realignment preprocessing.

Prouff et al. [101] conducted a comprehensive study of
MLPs,CNNs and template attacks based on a public database
named ASCAD provided by the same authors. ASCAD aims
for establishing a common framework to evaluate and com-
pare different ML models in the context of side-channel
analysis. It consists of three sets of SCA traces and associated
metadata of a first-order secured software AES implemen-
tation which exhibit different levels of jitter, along with a
number of python scripts to set up and parameterize the
database. For finding the optimal network configuration for
the MLP and CNN attacks, the authors followed a two-
stage selection process: first, the training hyperparameters
(e.g. learning rate) were tuned, followed by an evaluation
of the impact of different architecture-related design choices
(number of layers etc.). A comparison of the best models
elaborated by thismethod showed almost similar on perfectly
synchronized traces, while the CNN outperforms the other
models in the presence of de-synchronization (confirming
the results of Cagli et al. [16]).

Shortly after the publication of the ASCAD data set at the
beginning of 2018, Timon exploited the database for the first
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non-profiledSCAbased ondeep learning [130]. The idea is to
create hypothetical intermediate values over all key hypoth-
esis as in a standard CPA in a first step. Then, for each key
guess, a deep learning training is performed using the calcu-
lated intermediates as labels. Given the circumstance that the
key is guessed correctly, the training metrics (accuracy, loss)
should be significant better than for trials where the key is
wrong. It could be shown that the proposed method is more
efficient than a CPA in case of de-synchronized traces and is
also able to reveal the correct key fromfirst- and second-order
protected implementations. Furthermore, it is demonstrated
that data augmentation for CNNs as suggested in [16] can
also be applied in combination with MLPs to enhance the
attack performance.

4.2 Attacks on stream cipher implementations

Chakraborty et al. suggested a power-based SCA on the
stream cipher Grain v1 using LS-SVM [19]. They built a
power consumption model for the initialization phase based
on previous work about power analysis of Fibonacci Lin-
ear/Nonlinear Feedback Shift Registers [14,137] in order to
attack the 80-bit key. The LS-SVM served for identifying the
HD between two successive clock cycles which is needed for
the proposed strategy. The expected number of Initialization
Vectors (IVs) to recover the whole key was less than 100.
The same authors combined their SCA with a fault analysis
scheme to overcome fault attack countermeasures developed
for the Grain stream cipher family [18]. An external func-
tion generator was used to introduce clock glitches that may
cause single bit faults. The idea of the attack is to first perform
the SCA during the initialization of the cipher and thereafter
combine itwith the single bit errormodel to retrieve the secret
key.

An EM SCA based on multi-class directed acyclic graph
SVM (DAG-SVM) was proposed by Duan et al. [25]. A
DAG-SVM for a k-class classification problem was cre-
ated of k(k − 1)/2 binary SVMs that were arranged in a
rooted binary tree as shown in Fig. 11. At inference time,
the tree is traversed top down whereby each binary SVM is
tested against each other. In order to find the optimal hyper-
and training parameter for the SVMs, the authors conducted
an automatic tuning technique using Particle Swarm Opti-
mization (PSO). This is a parallel evolutionary algorithm
inspired by social behavior of birds looking for food [27].
Cross-validation result of the SVMswas used as fitness func-
tion. They accomplished a 100% key HW classification rate
when attacking a RC4 software implementation with the best
parameter solution, beating several otherMLalgorithms such
as k-means and probabilistic NNs.

Results of a power analysis attack against the stream
cipherMICKEY-128 2.0 were reported by Chakraborty et al.
[20]. The authors used PSO to generate specially crafted IVs

Fig. 11 Example of a DAG with four binary SVMs [25]

which allowed them to built power templates based on the
HD model for individual key bits. These were the training
base for an LS-SVM classifier. Additionally, they showed
that PSO generated IVs can reduce the amount of power
traces needed for a standard CPA attack from 3000 to 500.

Zhang et al. [140] also used wavelet transform for their
attack on a software implementation of RC4. They ana-
lyzed the impact of four kind of signals on the success rate:
The original signal, reconstructed signal, and high- and low-
frequency signals. PCA was used to lower the dimension of
the individual signals and a SVM served as classifier. In the
range of 100–800 dimensions (features), the best classifica-
tion result of the four signals was that of the reconstructed
signal followed by the low-frequency signal.

4.3 Attacks on asymmetric cipher implementations

Published work in this area can mainly be divided in single
trace attacks (where the adversary is able to use only the
leakage of a single execution) and attacks which includes a
profiling step.

4.3.1 Single trace attacks

Heyszl et al. utilized k-means clustering to attack an FPGA-
based Elliptic Curve Cryptography (ECC) point multiplica-
tion to recover the secret scalar [44]. Since the secret scalar
changes in every execution, they proposed to perform simul-
taneous EM measurements at different positions on the die
and combine them in order to gather more leakage informa-
tion and lower the remaining brute-force complexity. Later,
Specht et al. [120] improved the attack by using PCA as
dimensionality reduction and feature selection technique,
discarding the highest-ranked as well as many low-ranked
components. However, their setting based on expectation–
maximization clustering did not gain significant benefit from
the combination of different channel measurements.

A single trace attack against an FPGA implementation
of the Rivest–Shamir–Adleman (RSA) algorithm protected

123



150 Journal of Cryptographic Engineering (2020) 10:135–162

with leakage resistant arithmetic and exponent blinding was
presented by Perin et al. [94]. Here, k-means was used in
the search for the POIs in the traces and fuzzy k-means
was employed in the cluster classification. Furthermore, they
combined the cluster classifications of several POIs in the
traces to recover the bits of the secret exponent. Additional
hardware countermeasures that reduce the signal-to-noise
ratio (SNR) such as time disarrangement or dummy cycles
were proposed to avoid memory access related leakage of
information due to conditional tests in the algorithm (for
example in practical implementations of the Montgomery
ladder).

Järvinen and Balasch [53] investigated single trace attacks
in the context of ECC algorithms with precomputations.
Precomputations are generally used to speed up the scalar
multiplication operation and are computed from the base
point P . The authors focused on a certain SPA-resistant
width-w non-adjacent form (w-NAF) scalar multiplication
algorithm [90], but the attack also applies to other scalar mul-
tiplication algorithms which use precomputation methods.
Twomethodologies were presented, one based on correlation
and the other one on k-means clustering, whereas the latter
is, in general, weaker but requires less knowledge about the
attacked implementation. Feasibility of the approaches was
demonstrated by Matlab simulations and real experiments
using an 8-bit AVR microcontroller. The results showed that
software implementations of that particular type of scalar
ECC multiplication which use small word sizes (8/16-bit)
are potentially at risk.

4.3.2 Profiled attacks

Saeedi and Kong investigated the influence of dimensional-
ity reduction with PCA regarding classification accuracy and
time complexity when targeting an ECC point multiplication
[111]. They found that roughly 600 components out of 2500
sample points are enough to achieve a maximum accuracy of
approximately 95% when using SVM with RBF or polyno-
mial kernel. For less components, the RBF kernel performed
better. Later, they verified several other kernel functions and
the influence of corresponding function parameters onmulti-
class SVMs [109].

Furthermore, Saeedi et al. presented a SCA against an
ECC FPGA implementation based on a cascade-forward
backpropagation (CFBP) neural network [110]. In contrast to
the static architecture of MLPs, CFBP is able to dynamically
adjust the number of neurons in the hidden layer(s). Starting
with a network that only consists of the input layer and one
output neuron, new neurons are trained and added to the net-
work one byone during training based on the input data [116].
Each new neuron is connected to all input units as well as to
all unit of previous hidden layers, forming an architecture as
illustrated in Fig. 12. The authors performed an exhaustive

Fig. 12 ExampleCFBP architecture [110]. The network is built dynam-
ically during training by adding new neurons and connecting them with
the neurons of previous layers

investigation where the CFBP was trained with 12 different
training algorithms and a varying number of hidden layers. It
turned out that the Levenberg–Marquardt training algorithm
and a CFBP network architecture with a number of hidden
layers between 20 and 30 were the most efficient choice for
the considered data set. They achieved a classification accu-
racy of around 75% regarding four different bits of the secret
scalar.

Later, the authors applied a learning vector quantization
(LVQ) neural network on the same target [112]. LVQ is a spe-
cial learning algorithm that combines competitive learning
with supervision. The neurons of a competitive layer create a
prototype vector during training, by calculating the distance
between the input vectors and the prototype vector. These
directly define (nonlinear) class boundaries. Since the NN
architecture (number of hidden layers, number of neurons
per layer) plays an important role when using LVQ as well,
an experimental study with different numbers of hidden lay-
ers between 10 and 110 was performed. Architectures with
90 to 100 hidden layers showed the lowest training error.
Classification results were reported using a confusion matrix
regarding four different key bits, where an overall accuracy
of 86% was shown.

The approach ofÖzgen et al. [93] took advantage of super-
vised classification methods as well in order to reveal private
keybits of asymmetric cryptographic implementations.Here,
the targetwas thebinary left-to-right double-and-always-add
algorithm [55], a regular and thus (in theory) leakage resilient
version of an elliptic curve scalarmultiplication implemented
in the open source library mbedTLS. Naïve Bayes classifi-
cation, kNN, and SVMwere trained to built so-called online
templates for individual key bits using themultiplication pat-
tern contained in EM traces (time range where the critical
operation is performed). They are called online since the
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templates are created after the acquisition of a trace from the
target device. The proposed attack achieved 100% success
rate for each classification method if more than 20 template
traces (obtained from the training device) were used for a
scalar bit.

Chakraborty et al. demonstrated a successful attack on
a software-based RSA implementation [17]. This was pro-
tected with Joey’s ladder [56], an algorithm that secures
the modular exponentiation operation in RSA from uninten-
tional information leakage through side-channels. Although
the operations in the algorithm have no explicit dependency
on the secret exponent, a registers’ update sequence is differ-
ent for individual exponent bits which can be monitored in
associated power traces. Therefore, they built two classes of
power templates by suitable selection of plaintext messages
and known key values in the profiling phase. The plaintexts
were generated byPSO in away such that theHDbetween the
targeted register update differs substantially for the key bit
guesses in the same time window. As in the aforementioned
attacks by Chakraborty, LS-SVM was used as distinguisher.
The results showed a classification rate of around 82% when
the three highest SNR points were selected as features. The
authors also discussed threats due to possible cache tim-
ing side-channels in the Joye ladder and proposed a suitable
countermeasure.

4.4 Attacks on hash functions and physical
unclonable functions (PUFs)

There are some other attack scenarios, besides breaking
cipher implementations, where power side-channels have
been combined with ML techniques in the context of cryp-
tography. We shortly recap them here but do not consider
them in the following discussion.

Zohner et al. [143] used SVMs to attack hash functions.
They built profiles for all HWs of each intermediate value on
the Grøstl reference implementation, a candidate for SHA-3,
in order to solve a system of equations that allows to recover
the processed input data.

Mahmoud et al. [77] presented an hybrid power side-
channel and modeling attack on strong Physical Unclonable
Functions (PUFs). PUFs are a class of security primitives
that leverage material imperfection and micro- or nanoscale
structural disorders to implement a unique and individual
function which is assumed to be non-reproducible, not even
for the device manufacturer. They are used, e.g. in challenge-
response protocols for authentication or key exchange. The
aim of an adversary here is generally to create a correct PUF
response for unseen challenge vectors. In the reported attack,
the information contained in simulated power traces was
used to determine the number of zero and ones before enter-
ing the final XOR operation within so-called XOR arbiter
or lightweight PUFs. This information helped to improve

modeling the PUF behavior using ML methods (the authors
especially mention a variant of logistic regression [107]). A
similar attack methodology applied to FPGA implementa-
tions was shown by Rührmair et al. [108].

5 Discussion

In order to better evaluate the different approaches and
give a comprehensive overview, we summarized them in
“Appendix” according to the attacked target. It becomes evi-
dent that themajority of attackswere performed against block
cipher implementations. We assume this is primary due to
the publicly available traces from the DPA challenges which
are based on hardware or software realizations of DES and
AES. (We denote the used data sets in brackets in the tar-
gets column where applicable.) In typical ML-related tasks
such as object detection, it is common to have several ref-
erence data sets to compare the effectiveness of different
solutions. However, apart from the DPA contests and the
recently released ASCAD database, there are no other pub-
lic benchmark data sets available in the area of SCAs. This is
especially true for attacks against implementations of stream
or asymmetric ciphers. Most of the analyzed work there-
fore includes a detailed description of the used measurement
setup. Although this is a crucial point, we do not go into
detail here and refer the interested reader to the individual
approaches or for a general discussion to [79]. We instead
discuss the parts that relate to the general ML pipeline intro-
duced in Sect. 2.

5.1 Preprocessing

Regarding data preprocessing, the presented work can be
divided into three main categories. It is either used:

– To transform the data set into another representation (e.g.
by applying normalization or wavelet transform),

– To reduce the amount of noise in the traces (e.g. by com-
puting average traces or by lowering the dimension), or

– To ensure that the measurement points are properly
aligned

However, in a large number of publications no prepro-
cessing steps are mentioned at all. We assume that for those
approaches preprocessing was completely skipped or not
considered as useful. Specht et al. [120] furthermore refer to
the work of Heyszl et al. [45] which states that compression
methods are generally not advantageous for high-resolution
EM measurements. This is, however, contradictory to their
own clustering-based EM attack [44]. A general recommen-
dation whether to use preprocessing or not is thus hard, but
there are some points we want to highlight. First, some ML
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classifiers are very sensitive to changes in the input space.
Ensuring the same scale for all features by using data normal-
ization/standardization implicitly weights them all equally
and avoids numerical difficulties in the training process. Sec-
ond, while realignment techniques normally can be used
to defeat shuffling-based countermeasures [79], it has been
shown that exactly the opposite approach (deforming the
input with data augmentations) leads to better results when
combinedwithCNNs [16].We therefore argue that the choice
of a suitable preprocessing mechanism is dependent on the
used classifier.

5.2 Feature engineering

Feature engineering from the ML domain is tightly coupled
with POI analysis in SCAs and refers to the question which
sample points in the leakage traces correspond to manipu-
lations of the targeted sensitive intermediate variable [141].
There are manifold techniques available in the classical side-
channel community for finding those points, and some of
them were also applied to ML-based attacks (e.g. SOST).
Above all, Pearson correlation as given in Eq. (6) is the most
prominent candidate. Actually proposed as side-channel dis-
tinguisher to indicate the most promising key candidate in
a CPA, it can also be used as a feature selection method.
PCA is another widely applied technique. In the reviewed
approaches, it served both purposes, trace preprocessing or
feature engineering. However, the effect of a dimensional-
ity reduction by PCA on the actual classification accuracy
is not clear yet. In some of the previous contributions (e.g.
[65,75,120]), a positive effect was noticed, whereas in [76] a
negative impact is reported. Also choosing the correct num-
ber of retained principal components of the analyzed data
set is not an easy task. Often an (arbitrary) value is set as a
threshold value. A more analytical, though computational
complex, approach is to model the attack efficiency as a
function of principal components (as done in [111,140]).
Although proper feature selection was in general identified
as crucial for attack success by almost all the investigated
contributions, there is only a single paper that systemati-
cally compares the effectiveness of proposed techniques from
the side-channel domain (Pearson correlation, SOST, etc.) in
context of profiled ML attacks [98]. Two additional feature
selection classes from the ML domain (so-called Wrapper
and Hybrid methods) were presented as well, which gave
slightly better results. However, these are computationally
intractable (search complexity is partly exponential) when
dealing with raw, unfiltered traces.

Ideally, an attacker wants to get rid of all the manual
feature engineering needed for SCAs. This iswhereMLalgo-
rithms that are capable of automatically determining themost
important sample points become interesting. Normal-based
feature selection mechanism tailored for SVMs suggested

was the first work in this regard [5]. More recently intro-
duced attacks based on deep neural network architectures
[16,76] extend this path even further. As already mentioned
in Sect. 2, DL techniques such as CNNs are intrinsically
able to learn abstract representations that are composed of
lower level features. Apart from the ability to automatically
identify those features, building a hierarchy of features is
especially valuable when performing so-called higher-order
DPA (HO-DPA) attacks. These kinds of attacks exploit joint
statistical properties of multiple aspects of the analyzed sig-
nal and are typically used to defeat masked implementations
[32]. In practice, HO-DPA attacks often require to com-
bine the leakage of multiple sample points of a trace (at
least when targeting serial block cipher implementations).
Template attacks and variants of it naturally perform such a
multivariate analysis as well; however, they run into numer-
ical problems when the number of sample points to consider
is large.

5.3 Algorithm selection

Choosing a suitable ML technique for a given problem and
data set is generally not an easy task since it depends onmany
factors. However, when examining the list(s) of algorithms
we can make some observations. Most of the attacks against
block ciphers were based on supervised ML methods. There
are only two clustering attacks targeting AES [70,133] and
one unsupervised, regression-based approach [22]. The sit-
uation for implementation attacks on asymmetric ciphers is
not so clear. Here, unsupervised clustering techniques make
up approximately half of the total number of published work.
Stream ciphers, interestingly, have been exclusively targeted
with SVMs (respectively, variants of it). Although certain
trends are more or less visible, the choice between super-
vised and unsupervised techniques is not only affected by
the class of attacked cipher implementation, but also on the
(assumed) attacker model. If the adversary is in possession
of labeled trace data from the device under attack (or able
to create those using an exact copy), supervised classifiers
are preferable. Unsupervised methods can still be applied in
case a profiling is not possible, which is equal to a far weaker
attacker.

Looking at the overall, the most commonly of used ML
techniques are SVMs followed by MLPs. The initial choice
for SVMswas motivated by its good results in other domains
[131], its solid mathematical foundation, and its easiness to
use. The advantage of MLPs is that they are universal func-
tion approximators given the circumstance that the network
is given enough hidden units [36] and are therefore (the-
oretically) able to capture any side-channel leakage [136].
However, they are more expensive to train due to the large
number of parameters. Both arguments apply to deep learn-
ing techniques as well, but these are even more powerful
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due to the reasons mentioned above. Simpler models such
as kNN and Bayes classification may lead to good results
as well [84,93,95]. An adversary or evaluator searching for
the correct classifier faces a dilemma called bias-variance
tradeoff [36]: Is it better to take a model with high represen-
tational capacity (meaning the models ability to fit a wide
variety of functions and therefore high variance) having the
risk of overfitting the training data, or a simpler model that
varies not so much but tends to underfit the data (high bias)?
The most common approach to solve this problem still used
in practice today (and also partly in the analyzed work) is to
train a set of possible algorithms and select the one which
gives the lowest generalization error on the test set (respec-
tively applying cross-validation). A more systematic way for
selecting a suitable algorithm was presented by Lerman et
al. [72]. They suggest a framework to decompose the error
rate of a classifier into a bias and variance term. By knowing
the impact of the contributing factors on the error rate, one
can decide if a more complex model (in case the framework
detects a high bias) or a simpler model (in case of high vari-
ance) is needed in order to increase the success of an attack.

5.4 Hyperparameter optimization

Hyperparameter optimization is related to the question of
model selection as well. It refers to the process of finding
the optimal parameter settings for a considered algorithm
which maximizes its accuracy. In terms of a NN, that means
for instance the number of hidden layers or the type of
used activation function for the neurons of a certain layer.
Variables such as the aforementioned usually have a strong
impact on the representational capacity of a ML technique.
However, the importance of this step has not been rec-
ognized by all authors of the reviewed papers (or was
considered as not important for reporting it). In particular,
there are only two contributions that explicitly investigated
the influence of proper parameter tuning on the effective-
ness of SCAs [84,99]. Based on experience gained from our
own experiments with NNs, we can confirm that selection
of hyperparameters is in fact essential for attack success.
Due to space restrictions and improved readability, we have
not reported all the various optimization mechanisms in
“Appendix.” The range of used techniques, however, goes
from just applying standard values taken from literature
[5,67] over grid search [41,48] up to advanced methods like
PSO [25] and genetic algorithms [76]. When choosing an
appropriate algorithm, one should also consider that sim-
pler ML algorithms or standard side-channel analysis tools
require less optimization overhead since they usually only
have a few parameters that need to be tuned (in case of Naïve
Bayes even none at all).

5.5 Model test

Comparing the outlined approaches regarding attack qual-
ity is hard due to the different targets and used evaluation
methods. While some earlier work on the topic focused on
the classification of individual bits of an intermediate value
or the secret key [48,65], other authors tried to extract the
HW of a certain substate or key bytes [3,16,25,43,70], or
even revealed the complete secret [76]. Similarly, attack effi-
ciency was measured differently, whereas accuracy and key
guessing entropy are the predominant metrics. However, the
latter is an established method to assess efficiency of SCAs
and is more suitable than classification accuracy if the occur-
rence of target classes is not balanced. For example, when
considering HW, certain class values are more likely than
others.

Another point that complicates comparability are the
diverse data sets used.Asmentioned above, there are no other
side-channel benchmark application than the DPA contests
andASCAD and that is whymost approaches were evaluated
with self-generated traces or simulations. Additionally, some
contributions considered the influence of different noise lev-
els on the analysis [43,64,136] where others did not. We
stress that this is a common problem in the SCA community
and although there are efforts to standardize the evaluation
process (for example the Side-channel Attack Standard Eval-
uation BOard (SASEBO) project [38]); it is nowadays still
hard to reproduce the results of a third party. Nevertheless, in
order to give a hint on the attack complexity, we have listed
the number of used traces for most approaches.1

6 Guidelines for conductingmachine
learning in side-channel analysis

We already stressed out in the previous section that compar-
ing the analyzed work is difficult, since distinct methodolo-
gies were applied, experiments were almost never conducted
over the same datasets, and distinct evaluation metrics
were applied. In order to be able to properly compare and
reproduce results of upcoming work, this section gives rec-
ommendations for publishing results of ML techniques in
SCAs:

– It should be clarified which kind of preprocessing tech-
nique is used. If the analysis is carried out on raw data,
this should also be explicitly mentioned.

– The hyperparameters used for eachML algorithm should
be described to an extent that the approach can be easily

1 Note that a lower number not necessarily indicates a more powerful
attack due to major differences in the attack methodology among the
approaches.
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reimplemented by an ML novice. This is especially true
formodels that exhibit a large number of parameters, such
as NNs. Not only the parameters needed to instantiate the
ML model (sometimes called architectural parameters),
but also the parameters that affect the training procedure
should be stated (e.g. optimizer, learning rate, batch size,
number of epochs).

– Authors should furthermore explain how they found out
the optimal parameters for theirMLmodels. If a hyperpa-
rameter search was conducted, the corresponding ranges
for each value should be given. The information may
be valuable to other researchers looking for options to
increase the performance of their models.

– For the experiments, authors should not stick to a single
metric to measure the performance of their models. Hav-
ing a combination of several metrics from ML as well as
from the SCA domain eases comparability with related
work.

– Cross-validation as discussed in Sect. 2.1 should be
applied for estimating the final performance of themodel.

– Instead of using a fixed number of traces for training,
learning curves should be applied to gain an insight into
how the methods behave given more or less data. Alter-
natively, the restricted attacker framework proposed in
[96] can be applied. An extensive study will furthermore
successively remove sensitive components from the algo-
rithm in order to identify where the power of a certain
approach comes from (e.g. preprocessing) [63].

– The required (resource) overhead for an attacker should
be quantified (e.g. minimum number of traces needed,
time for training the model, computing resources).

– We finally advise authors, if possible, to publish their
software experiments and associated data on an open
source repository like GitHub. This is already best prac-
tice in theMLarea andwould certainly stimulate research
in the SCA domain.

7 Conclusion and future work

In this work, we presented a comprehensive overview on the
various ML methods used in SCAs against cryptographic
implementations. After a general comparison of different
ML techniques and an introduction to power-based SCAs,
we extensively reviewed scientific work and classified them
according to the targeted cipher. For each approach, main

findings and the steps related to a common ML workflow
were reported. Finally, we discussed our observations and
gave recommendations on conducting ML experiments for
side-channel analysis. Summarizing the result of this study, it
becomes clear that ML techniques are a powerful alternative
to standard side-channel evaluation methods. For black-box
settings without details about the implementation and leak-
age behavior, they might even be the better tool due to their
ability to adapt a wide range of functions. From a practical
perspective, the effort for applying ML for SCAs is typically
lower since there are several open source implementations
available for all types of algorithms (e.g. the python frame-
work scikit-learn [1]).

Future work may investigate the effect of other pre-
processing techniques known from the side-channel and
signal-processingdomain such as linear transformspresented
in [92]. The problem of proper hyperparameter selection for
the design of ML models (especially of deep NNs) is also
heavily discussed in the research community. An interest-
ing research question is if currently proposed methods (for
instance based on reinforcement learning [144]) may be ben-
eficial for ML-based SCAs as well. Another important topic
is the development of customized learning algorithms for
side-channel analysis. Thework ofBartkewitz [4] can be seen
as a first promising step in this regard. Furthermore, there is
up to now no line of work that deals with the application of
ML techniques to defeat devices with stronger side-channel
countermeasures or devices that combine multiple counter-
measures. So-called higher-order threshold implementations
[8] that are based on multiparty computation and secret shar-
ing would be an interesting target. Approaches that apply
dynamic hardware reconfiguration to effectively hide side-
channel leakages [37,115] might also be attractive to attack,
since subjects that underlie constant random changes are usu-
allymuch harder tomodelwithMLmethods. AsML is a very
volatile domain nowadays, we expect a lot of new ideas and
approaches upcoming in close future.

Funding This work is supported in parts by the German Federal Min-
istry ofEducation andResearch (BMBF) under grant agreement number
16KIS0606K(SecRec).

Appendix

See Tables 1, 2 and 3.
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