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Abstract
We consider the question whether synchronization/alignment methods are still useful/necessary in the context of side-channel
attacks exploiting deep learning algorithms. While earlier works have shown that such methods/algorithms have a remarkable
tolerance to misaligned measurements, we answer positively and describe experimental case studies of side-channel attacks
against a key transportation layer and anAES S-boxwhere such a preprocessing remains beneficial (and sometimes necessary)
to perform efficient key recoveries. Our results also introduce generalized residual networks as a powerful alternative to other
deep learning tools (e.g., convolutional neural networks and multilayer perceptrons) that have been considered so far in the
field of side-channel analysis. In our experimental case studies, it outperforms the other three published state-of-the-art neural
network models for the data sets with and without alignment, and it even outperforms the published optimized CNN model
with the public ASCAD data set. Conclusions are naturally implementation-specific and could differ with other data sets,
other values for the hyper-parameters, other machine learning models and other alignment techniques.

Keywords Deep learning · Residual networks · Side-channel attack · Alignment methods · Embedded security

1 Introduction

Past research has shown an increasing interest from the
side-channel community regarding the use of machine learn-
ing/deep learning techniques as a powerful way to exploit
physical leakageswith limited knowledge of the target imple-
mentations: See, for example, [4,10–12,14,15,17–20,22,23].
In general, one potential advantage of these techniques com-
pared to more conventional statistical tools (e.g., Gaussian
templates [5] and linear regression [24]) is that they quite
efficiently deal with large dimensionalities (which may pre-
vent the need of estimating large covariance matrices or to
rely on dimensionality reduction [2]). This intuition has been
recently put forward by Cagli et al. at CHES 2017; they
demonstrate that (e.g., deep) learning algorithms are good
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candidates to exploit the leakage of implementations pro-
tected with jitter-based countermeasures [3].

In this paper, we mitigate a tempting shortcoming in the
interpretation of these past results, namely the fact that side-
channel attacks based on deep learning do not benefit from
re-synchronization. We insist that such a shortcoming is not
induced by previous authors, in particular the CHES 2017
ones. We only consider it as a natural question to confirm
whether or not such algorithms sometimes benefit from some
sort of preprocessing. We believe the question is of impor-
tance since a general negative answer would significantly
simplify the life of evaluation laboratories. For this purpose,
we describe experimental case studies based on two pro-
tected implementations (one targeting a key transportation
layer and the other targeting an AES S-box), the measure-
ments of which are affected by misalignments and hardware
interrupts. In both cases, we show that the application of a
re-synchronization preprocessing before the application of
a deep learning algorithm actually allows reducing the data
complexity of the attacks. In the second case, we even con-
sider a “compressive” alignment (i.e., reducing the number of
samples in the preprocessed traces becausewe canuse shorter
interval after the alignment), which was not only necessary
from the data complexity point of view, but also highly ben-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-019-00209-3&domain=pdf
http://orcid.org/0000-0002-8703-219X
https://github.com/ANSSI-FR/ASCAD


86 Journal of Cryptographic Engineering (2020) 10:85–95

eficial from the time complexity point of view (to maintain
a reasonable execution time for the deep learning attacks).
From an information theoretic viewpoint, the latter can only
reduce the total amount of information in the traces, hence
showing clear experimental evidence that re-synchronization
can make the traces easier to exploit even for deep learning
algorithms.

As an additional result, we also introduce the use of
residual networks (ResNets) as an alternative to the tradi-
tional convolutional neural networks (CNN) and multilayer
perceptrons (MLP) that have been previously considered
in the literature. We compare its performance with the
other three state-of-the-art neural network models in a side-
channel context, namely the ASCAD_CNN model [22], the
SPACE_CNN model [15] and the SCANet model [19]. The
results with all our six data sets with or without alignment
demonstrate that this ResNet model quite systematically out-
performs the other three models.

Cautionary note We acknowledge that these conclusions
may be affected by the level of profiling of the implemen-
tations. In theory, for an infinite amount of profiling on
raw traces, re-synchronization may become useless for deep
learning as for any well-specified multivariate side-channel
attack. A similar statement holds for the choice of parameter
for the ResNet we exploited. In this respect, our goal is only
to show that for a realistic amount of profiling and standard
use of a popular deep learning algorithm, re-synchronization
may help.More generally, our conclusion is admittedly based
on an experimental basis. So the conclusions of this paper
could be different from other data sets, other values for
hyper-parameters, other machine learning models or other
alignment techniques.

The rest of the paper is organized as follows. Section 2
introduces the alignment method that we used, the neces-
sary background on deep residual networks and the target
implementations that we investigated. Section 3 describes
the verification of the ResNet model we adopted regarding
its capability in a side-channel context by analyzing AES
traces obtained from the ChipWhisperer Lite (CWL) board
and the comparison with the state-of-the-art neural network
models regarding performance. Sections 4 and 5, respec-
tively, show the experimental results for the application of
this ResNet model with the impact of misalignment against
our two main targets and the comparison of their perfor-
mances. Finally, in Sect. 6 we further demonstrate the good
generalization of our ResNet model by comparing its perfor-
mances with the published optimized ASCAD_CNN model
using all 16 S-boxes’ data from their published ASCAD data
set.

2 Background

2.1 Target implementations

Weinvestigated twomain target implementations in thiswork
and additionally used the simple case of an AES software
implementation on the CWL board for preliminary assess-
ments. In this warming up case, we capture 90,000 profiling
power traces with a 16-byte randomized AES input and key,
and 10,000 attack power traces with a fixed randomAES key
and randomized AES input.

For our first device under test (DUT1), we target the AES
key during its transportation. The latter is important for secu-
rity evaluations, since it frequently happens that the keys
encrypted in some nonvolatile memory (NVM) have to be
transported to the cryptographic coprocessor when invok-
ing the corresponding cryptographic encryption/decryption
operations. In case the key is decrypted/masked/unmasked
during this transportation, it may lead to additional sources
of leakages that could be exploited by an adversary. Con-
cretely, our DUT is a modern 32-bit secure microcontroller
with a built-in secure AES coprocessor and the AES key
is encrypted and stored in an EEPROM. To invoke AES
encryption, the encrypted AES key is decrypted and masked
during its transfer from EEPROM to the AES coprocessor.
We acquire 80,000 EM traces for profiling and 20,000 traces
for attack.

Finally, our second DUT is a more standard case of an
AES coprocessor for another securemicrocontroller resistant
to first-order leakage, where we target the S-box output of the
first block cipher round. For this one, we measure 500,000
EM traces for profiling and 30,000 traces for attack.

We note that the different ratios between the numbers of
profiling and attack traces can be connected to the fact that it
is in general more complex to profile a leaking device than
to attack it once a model is well estimated [27]. As a result,
the more secure an implementation (e.g., due to masking or
other countermeasures), the larger this ratio can be.

2.2 Alignmentmethod

Due to the complex architecture (and potential countermea-
sures) of our DUT, their raw measured EM traces are very
misaligned. To get better aligned traces for our investigations,
we use the same method as in [21], which exploits correla-
tion in order to synchronize the EM traces focusing on the
leakage part of targeted sensitive data (e.g., the AES key for
the transportation case in Sect. 4 and the AES S-box output
for the case in Sect. 5). This method works in three steps.

– Firstly, a searching interval A that contains the operation
to be synchronized is manually selected among all the
traces.
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– Secondly, a smaller reference interval Bq specific to each
trace q is also manually chosen.

– For each trace, we finally find the portion to be synchro-
nized by using the second window Bq to search over
the whole interval A. The right portion is selected as the
one having the maximum correlation with the reference
interval. If the correlation is lower than a given threshold
(chosen by the attacker/evaluator), the trace is assumed
not good enough and discarded.

Note that concretely, thismethodwas usually appliedmul-
tiple times for each DUT by targeting different time intervals
(for both the searching interval and reference interval). Dur-
ing the measurement, no very distinguishable feature close
to the target interval can be used to trigger the oscilloscope.
So we have to align the traces step by step to get close to
the target interval, and then, within the target interval we do
more local alignments. Roughly, we choose new intervals
when the misalignment is getting larger, and we repeat this
process until the target interval is well aligned. This allowed
us to recursively improve the alignment for the part of the
traces that corresponds to the target leakage. Before we mea-
sure the traces for profiling attacks, we used SPA/SEMA and
CPA/CEMA techniques to narrow down the potential tar-
get interval. For DUT1, we first try to find the leakage of
key data using a CPA by measuring the whole AES encryp-
tion command execution with a randomized AES key data
per execution, so the interval is rather large. We try differ-
ent alignments and calculate the correlation of key data after
each alignment. For DUT2, we cannot find the leakage of
the S-box output because it is a masked implementation, but
we figure out which interval is likely related to AES encryp-
tion by SPA and SEMA techniques. The length of the target
interval is changing when the input length is increasing. In
order to recursively align the traces to the target interval,
we accordingly choose the distinguishable feature of most
traces step by step. After we recursively aligned the traces to
the target interval, the segment around the target interval of
each trace is taken off from the original traces to be used for
profiling attacks. In general, the required time of this recur-
sive alignment process depends on the number of traces, the
number of sample points per trace and the size of the chosen
interval. For DUT1, it takes less than 1 h, and for DUT2, it
takes about 7 h.

2.3 Deep residual network

Since theyhavebeenproposed/applied in the computer vision
field with great successes [8], deep ResNets [9] have been
widely applied in different fields such as machine trans-
lation [30], speech synthesis [29], speech recognition [31]
and AlphaGo [25]. Thanks to the open source deep learning
libraries Keras [6] and TensorFlow [1], it is straightforward

Fig. 1 Structure of ResNet

to build a model for performing profiling attacks in a side-
channel context. We refer to these original papers for the
details of the method and next list the parameters that we
used in our experiments.

The core design idea of ResNets is to extend neural net-
works to very deep structures without degradation problems
thanks to a so-called shortcut connection. ResNet is a stack
of residual blocks: Each residual block consists of several
layers and a shortcut connection, and the shortcut connec-
tion connects the input and output of that residual block.
As depicted in Fig. 1, the latter is inserted in each residual
block such that the gradient flows directly through the bot-
tom layers. Each residual block consists of three basic blocks,
and each basic block is composed of three layers: a convo-
lutional layer γ followed by a batch normalization layer β

[13] and a ReLU activation layer σ [16]. After stacking three
residual blocks, a global average pooling layer δ is adopted
(instead of a fully connected layer), in order to reduce the
number of weights to be trained. Finally a softmax layer
s is adopted to generate the class label of the input side-
channel trace. In summary, the ResNet model can be written
as:

ResNet=s ◦ δ ◦
[
σ ◦

[
β ◦ γ ◦ [

σ ◦ β ◦ γ
]n1−1⊕ 1

]]n2
,

(1)

where n2 denotes the number of residual blocks (we set it
to 3 for all our experiments) and n1 is the number of basic
blocks per residual block (we also set it to 3 in this work).We
further use 128, 256 and 256 filters for these three residual
blocks. That is, all the convolutional layers within one resid-
ual block are using the same amount of filters. Following
the original ResNet paper [8], we also did not use a dropout
layer.

2.4 Accuracy, loss and key rank

Accuracy and loss are twinmetrics that are widely used in the
machine learning community to monitor and evaluate neural
network models. Training accuracy is the successful clas-
sification rate over the training data, and training loss is the
error rate over the training data. After each epoch, the trained
model is applied to the validation data to calculate validation
accuracy and validation loss. These two values indicate how
good the trained model is at predicting outputs for inputs
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Fig. 2 Rank of correct subkey candidates of all 16 S-boxes with CWL
data set

it has never seen before. Validation accuracy increases ini-
tially and saturates as the model starts to overfit. We also use
the key rank (i.e., guessing entropy) as classical metric for
side-channel security evaluations [28].

3 Warming up: results on CWL (AES S-box)

In order to verify that the ResNet model is applicable in a
side-channel context, we used it to analyze an unprotected
AES implementation on the CWL board and fed the Ham-
ming weight of the first-round S-box outputs into the ResNet
model as described in 2.3. We then performed key recov-
ery by classifying the Hamming weight of the S-box outputs
of the attack traces and translating this into key informa-
tion. We followed the best practice of deep learning to use
balanced data per class (also for our other experiments),
and we captured 90,000 profiling traces as mentioned in
Sect. 2.1.Due to the uneven distribution of the nineHamming
weight classes, in the end we have only 320 profiling traces
per Hamming weight class. We use 20% profiling traces as
validation data to improve the training of the weights and
3000 sample points per trace to feed into the ResNet model.
Figure 2 displays the rank of the correct subkey candidates
of all 16 S-boxes. As can be seen, with a few attack traces the
correct subkeys of S-box 8 and S-box 16 can be disclosed.
All the other S-boxes show similar results except that S-box
15 needs a few hundred traces to recover the subkey. For
the CWL experiments, we use a batch size of 32 and 100
epochs, “Adadelta” optimizer with an initial learning rate of
1.0, adaptively reducing the learning rate with a factor of 10
if the validation loss is not decreased within five consecutive
epochs.
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Fig. 3 Performance comparison of four NN models using CWL data
set

3.1 Performance comparison with the state of the
art

To compare the performance of our ResNet model with other
state-of-the-art neural networks in a side-channel context,
we performed the similar attacks using other three neural
network models published in [15,19,22].

Those three models are the best ones according to their
experiments andwe are using their default hyper-parameters.
(We did not have enough information to replicate the CHES
2017 CNN model [3]). We adapt those models to nine Ham-
ming weight classes. Figure 3 compares the rank of correct
subkey candidates of S-box 8 and S-box 16, respectively,
using our ResNet model and the other three models. It can
be observed that our ResNet model compares positively to
the others (in terms of convergence).
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4 Experimental results on DUT1 (AES key
transfer)

We start with an analysis of a key transportation layer which
is a less usual target in the academic literature, but a quite
important one in industry. The fact that key transportation
leaks information on the key is indeed a critical weakness.

In this context, our profiling traces are obtained by ran-
domizing all the 16 bytes of AES key and fixing the 16-byte
AES input to execute AES encryption. (The fixed input data
are not detrimental since we are targeting the key trans-
portation). For the attack traces, it is pretty different: We
are targeting the value of the first byte of a 16-byte AES
key considering the other bytes are leaking in a similar way.
We randomize the first byte from 0x00 to 0xFF , so that we
have 256 classes of attack traces for it and set the other 15
bytes to fixed random values. That is a realistic scenario that
the attackers normally encounter: When an attacker wants to
attack a fixed AES key, he needs to attack the AES key bytes
one by one, while the other bytes are fixed random values.
From a security evaluation viewpoint, we want to simulate
the attack scenario as realistic as possible. The key bytes can-
not be changed, and we cannot attack all the 2128 possible
keys (for 16-byte AES key). We still want to evaluate how
well we can correctly identify all 256 possible values of one
key byte (consider it as an example of all 16 bytes), so nor-
mally we choose one example byte and vary it from 00x00
to 0xFF , but the other 15 bytes are fixed random values just
like what the attacker will face for attacking a 16-byte key.

We use 256 classes of profiling traces to train the ResNet
model and 20% of profiling traces as validation data to
improve the training. We then use the trained model in order
to classify all the 256 classes of attack traces to see howmany
classes can be correctly identified. From attack perspective, it
is a profiling-based SPA attack. So we consider the percent-
age of correctly identified classes during the attack phase.
For the DUT1 experiments, we use a batch size of 32 and 40
epochs, “Adadelta” optimizer with an initial learning rate of
1.0, adaptively reducing the learning rate with a factor of 10
if the validation loss is not decreased within 10 consecutive
epochs.

For this target, in order tofigure out the impact ofmisalign-
ment with regard to the deep learning attacks, we conduct
the deep learning attacks using the same ResNet model
with two data sets: aligned traces (applying our synchro-
nization method six times) and misaligned ones (applying
our synchronization method four times). This impact of the
alignment is visually illustrated in Fig. 4.

We further calculate the SOST [7] trace per data set of
DUT1 as shown in Fig. 5 for better showing the impact of
misalignment.

Both aligned and misaligned traces have 1600 sample
points to be fed into the ResNet model, and we are using

Fig. 4 256 overlapped aligned and misaligned EM traces of DUT1
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Fig. 5 SOST traces of aligned and misaligned EM traces of DUT1

the same number of profiling and attack traces and the same
batch size for both cases. The training accuracy and valida-
tion accuracy (as described in Sect. 2.4) of the ResNet model
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are given in Fig. 6. From the profiling perspective, the train-
ing accuracy using aligned traces is converging much faster
and higher than the one using misaligned traces, although
we are using the same ResNet model. Besides, from the
attack perspective, as shown in Fig. 7, the aligned traces
also showmuch better percentage of correctly identified class
results. With aligned traces, the percentage of correctly iden-
tified classes already reaches 100% after seven epochs, and
afterward, the percentage of correctly identified classes is
stabilized at 100%. On the other hand, with the misaligned
traces, the percentage of correctly identified classes reaches
100% after 18 epochs.

4.1 Performance comparison with the state of the
art

Similarly, Fig. 8 shows the percentage of correctly identified
classes using our ResNet model and the other three mod-
els with both the aligned and misaligned DUT1 data sets.
As can be seen for both aligned and misaligned traces, our
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Fig. 8 Performance comparison of four NN models using DUT1 data
sets

ResNet model converges faster and gives better results from
the attack perspective (less epochs of training are needed).
In particular, considering the misaligned traces, our ResNet
model outperforms the others a lot. It further confirms that the
generalization of the ResNet model can bring an interesting
alternative to the other models.

5 Experimental results on DUT2 (AES S-box)

We now consider a more standard attack scenario where an
adversary exploits the leakage of an S-box execution in the
first round of theAES block cipher. In this case, for the profil-
ing traces,we randomize all the 16 bytes ofAESkey andAES
input data to execute an AES encryption. And for the attack
traces,wefixed a random16-byteAESkey and randomize the
input data per trace. Similarly to the previous section,we train
the ResNet model using 256 classes corresponding to the S-
box outputs with the profiling traces, and we also use 20%
profiling traces as validationdata. For theDUT2experiments,
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we use a batch size of 32 and 30 epochs, “Adadelta” opti-
mizer with an initial learning rate of 1.0, adaptively reducing
the learning rate with a factor of 10 if the validation loss is
not decreased within 10 consecutive epochs.

To evaluate the impact of misalignment in this attack sce-
nario, the same ResNet model is again used to perform deep
learning attacks with aligned traces andmisaligned ones, this
time considering three different data sets. In the first one, next
denoted as theAligned_1 data set (applying our synchroniza-
tion method nine times) and shown in the top graph of Fig. 9,
the traces are well aligned at the leakage part and every trace
has 634 sample points. The second data set (next denoted
as the misAligned_1 data set and shown in the middle graph
of Fig. 9) corresponds to the most misaligned traces. It is
obtained by applying the alignment method only three times
to the raw traces. In this case, to include the leakage part in the
traces, every trace consists of 11,598 sample points. Finally,
for the last data set (denoted as the misAligned_2 data set
and shown in the bottom graph of Fig. 9), we apply only one
alignment step less than what we do for the Aligned_1 data
set. As a result, the raw traces are aligned very close to the
leakage part, but still the traces are not aligned at the leakage
interval, and every trace contains 744 sample points.

To further demonstrate the impact of misalignment, we
also calculate the SOST trace per data set of DUT2 as shown
in Fig. 10.

Based on this setup, first we launch the deep learning
attacks using the Aligned_1 data set. All the 16 S-boxes
are getting similar results as depicted in the top graph of
Fig. 11. We then performed the same attacks as in the pre-
vious section against the misAligned_1 data set. In this case,
it took about one week per S-box for 30 epochs with a sin-
gle NVIDIA GTX 1080Ti GPU card, hence highlighting the
importance of alignment also for time complexity reasons.
The attacks took about 4 h per S-box for 30 epochs for the
Aligned_1 data set. Even after running it for a fewweekswith
different hyper-parameters (e.g., optimizer, number of resid-
ual blocks, number of filters, batch size, number of epochs,
adding dropout layer [26] right before the last softmax layer
in Fig. 1), the rank of the correct subkey candidate remained
very low and it was not possible to recover the subkeys.
This result moderates the intuition that in a deep learning
context, the best practice is to use the rawdatawithout dimen-
sional reduction and the previous observation in [15,22] that
dimensional reduction methods lead to worse results in deep
learning SCA context.

In the following, we further conduct the deep learning
attacks on the misAligned_2 data set. For this purpose, we
first use the same ResNet model and the same amount of
profiling traces as what we used in themisAligned_1 data set
case, which is 1000 profiling traces per class of S-box output
value including 20% of validation traces. In this case, the
rank of the correct subkey remained stuck at high values. We

Fig. 9 256 overlapped aligned and misaligned EM traces of DUT2

next tweak the hyper-parameters of the ResNet model and
still get similar results. Eventually, we increase the number
of profiling traces to 1200 and add a dropout layer (with a
dropout factor of 0.3) right before the last softmax layer. To
speed up the tests, we use dual NVIDIA GTX 1080Ti GPU
cards. The best rank results are shown in the bottom graph
of Fig. 11. We also perform similar attacks (using the same
ResNet model with the same amount of profiling traces and
same dropout factor) on the other S-boxes using the same
misAligned_2 data set, this time with worse results.

From the profiling perspective, no big difference could be
observed between the training accuracy using aligned traces
from the Aligned_1 data set and the one using misaligned
traces from the misAligned_2 data set.

However, from the attack perspective, as shown in Fig. 11,
the aligned traces show much better key rank results. With
aligned traces, the correct subkey is steadily ranked at the top
position with more than 750 attack traces. The required num-
ber of attack traces for the misaligned case is about 16,294
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Fig. 10 SOST traces of aligned and misaligned EM traces of DUT2

(with more tweaks of the hyper-parameters and more profil-
ing traces).Wenote again the larger ratio between the number
of profiling and attack traces that typically reflects a more
challenging target.

5.1 Performance comparison with the state of the
art

To further check the performance of our ResNet model,
Fig. 12 displays the rank of correct subkey candidates using
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Fig. 11 Rank of correct subkey candidate with DUT2 data sets

our ResNet model and the other three models with both
Aligned_1 and misAligned_2 data sets. For both aligned and
misaligned traces, again, our ResNet model can recover the
correct subkey byte faster than the others. Especially for the
misaligned traces, our ResNet model outperforms the others
a lot.

6 Comparison with ASCAD_CNN_Best model
using ASCAD data set

To further demonstrate the generalization of our ResNet
model, we compare the rank results of 16 S-boxes based
on the published ASCAD data set using both the ResNet
model and the published ASCAD_CNN_Best model. For
both models, we use batch size of 100 and 200 epochs
(the best choice for ASCAD_CNN_Best). For the ResNet
model, we use “Adadelta” optimizer with an initial learn-
ing rate of 1.0, adaptively reducing the learning rate with
a factor of 10 if the validation loss is not decreased within
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Fig. 12 Performance comparison of four NN models using DUT2 data
sets

10 consecutive epochs. For ASCAD_CNN_Best model, we
use “RMSProp” optimizer with an initial learning rate of
10−5 and keep it fixed during the training (the best choice
for ASCAD_CNN_Best).

Figure 13 shows the rank of correct subkey candidates of
all 16S-boxes using bothmodels. For bothmodels, all 16 sub-
key bytes can successfully be recovered using less than 4000
traces. The first two S-boxes are not masked, and the correct
key candidates of them can be recovered with only one trace.
For our ResNet model, all the subkey bytes can be recov-
ered using less than 600 traces. For the ASCAD_CNN_Best
model, 15 subkey bytes can be recovered using around 1000
traces, but S-box 10 requires 3000 traces to get stable results.
It further confirms the good generalization of our ResNet
model.
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Fig. 13 Performance comparison of ResNet and ASCAD_CNN_Best
models using ASCAD data set

7 Conclusions

Our results confirm that neural network models are power-
ful tools for black box leakage analysis and demonstrate the
good generalization of the proposedResNetmodel compared
with the other state-of-the-art NN models in a side-channel
context. Yet, even with such powerful tools, preprocess-
ing the leakage traces with alignment/re-synchronization
methods (and possibly filtering) can be highly beneficial to
the attacks/evaluations’ success. This is true from the data
complexity point of view, and data complexity is generally
accounted for the most important complexity measure in
side-channel analysis. But our second DUT shows that it
is also true from the time complexity point of view. Indeed,
alignment playing the role of data compressing due to much
shorter interval being used then allows significantly reducing
the number of samples in the traces to be fed to the ResNet,
which may reduce its execution time from weeks to days
(or even hours). The latter conclusions naturally become
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increasingly relevant for devices protected with a variety
of countermeasures. As stated in introduction, our conclu-
sions are specific to the investigated data sets. In particular,
deep ResNets only outperform other tested models in our
case study (and are not claimed to be universally better, as
popularized by the no-free-lunch theorem). We believe our
conclusion regarding the interest and sometimes need of pre-
processing to be more general (since consistently observed
with different models and data sets).
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