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Abstract
In this paper, we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded
platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows
one to define a custom “figure of merit” according to which all evaluated candidates can be ranked. We used the framework
to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED,
Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on
three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights into
the question of how well these lightweight ciphers are suited to secure the Internet of things. The benchmarking framework
provides cipher designerswith an easy-to-use tool to compare newalgorithmswith the state of the art and allows standardization
organizations to conduct a fair and consistent evaluation of a large number of candidates.

Keywords IoT · Lightweight cryptography · Block ciphers · Evaluation framework · Benchmarking

1 Introduction

The Internet of things (IoT) is a frequently used term to
describe the currently ongoing evolution of the Internet into
a network of smart objects (“things”) with the ability to com-
municate with each other and to access centralized resources
via the IPv6 (resp. 6LoWPAN) protocol [5]. Today, the two
most important and widely noticed exponents of the IoT are
RFID technology (which has become a major enabler of
modern supply chain management and industrial logistics)
and wireless sensor networks (WSNs), which have found
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widespread adoption in several application domains ranging
from home automation over environmental surveillance and
traffic control to medical monitoring. A recent white paper
by Cisco IBSG estimates up to 50 billion devices being con-
nected to the Internet by the year 2020 [28], which implies
that, in the not so distant future, every person in the developed
world will be surrounded by dozens of sensors, actuators,
RFID tags, and many other kinds of smart objects yet to be
developed. This evolution from the Internet of people to the
Internet of thingswill have a huge impact on our daily life and
change thewaywe interact with the physical world surround-
ing us [5]. However, it is also evident that 50 billion smart
devices connected to the Internet introduce unprecedented
challenges to the security andprivacy of their owners or users.

It is widely accepted that symmetric-key cryptosystems
play amajor role in the security arena of the IoT, but they need
to be designed and implemented efficiently enough to not
exhaust the scarce resources of typical IoT devices. Gligor
defined in [30] lightweight cryptography as cryptographic
primitives, schemes and protocols tailored to extremely con-
strained environments such as sensor nodes or RFID tags.
A standard sensor node (e.g., the MICAz mote) is equipped
with an 8-bit microcontroller (e.g., the ATmega128) clocked
at 7.8 MHz and features 4 kB of RAM. Passive RFID
tags do not even have a (software programmable) proces-
sor, which means that performing cryptography on such tags
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is only possible through hardware implementation. The effi-
cient implementation of cryptographic primitives so that they
become applicable in the constrained regimes of sensor nodes
and RFID tags is a challenging task since, for example, per-
formance is conflicting with other metrics of interest like
silicon area and power consumption (in the case of hardware
implementation) or memory consumption and code size (for
software). In addition, lightweight primitives should be able
to withstand all known cryptanalytic attacks (e.g., linear and
differential cryptanalysis when thinking of block ciphers)
since lightweight cryptography is not meant to be “weak”
cryptography in the sense that a lightweight primitive should
not be the weakest link in the security of a system [30].

In this paper, we present a survey of lightweight block
ciphers along with software benchmarking results obtained
on embedded 8-, 16-, and 32-bit microcontrollers. We con-
sider three metrics of interest: execution time, memory (i.e.,
RAM) requirement, and binary code size. To ensure a fair and
consistent evaluation, we developed a benchmarking tool-
suite that we make available to the cryptographic research
community following the spirit of thewell-known andwidely
used eBACS system [9]. Our benchmarking tool is “open” in
various aspects; first, it is possible to upload implementations
of new ciphers as well as new (i.e., improved) implementa-
tions of ciphers that are already included. Second, the tool
was developed from the ground up with the goal of sup-
porting a wide range of embedded platforms through both
cycle-accurate instruction set simulation and actual measure-
ments on development boards. Currently, our tool includes
cycle-accurate instruction set simulators for AVR ATmega
and TI MSP430, as well as an ARM development board
equipped with a Cortex-M3 processor.1 We use GCC for all
these platforms, but other compilers could be supported as
well. Third, our tool is also open with respect to the evalu-
ation metrics. Currently, it can evaluate three basic metrics,
namely execution time, RAM footprint, and binary code size.
Other metrics can be derived thereof or are, at least, closely
related. For example, the energy consumption of a block
cipher executed on an embedded processor operating in a
certain power mode can be estimated by the product of exe-
cution time, supply voltage, and average power dissipation.
However, since our framework supports development boards,
it could be extended to acquire more accurate energy figures
by simplymeasuring the processor’s power dissipation while
it executes a cryptographic algorithm.

Our benchmarking toolsuite accepts source codes written
either in “pure” ANSI C or in C with inlined assembly sec-
tions for the three processor architectures mentioned above.
In this way, the toolsuite supports various trade-offs between

1 The main reason for evaluating the execution time for ARM on a
development board is that we could not find a cycle-accurate Cortex-M
instruction set simulator of good quality that is freely available.

performance and portability. At one end of the spectrum
are highly-optimized implementations for which the com-
plete encryption/decryption function consists of handcrafted
assembly code. Assembly programming allows one to fully
exploit the architectural features of a processor and, in this
way, reach peak performance. The speed-up due to the
integration of handcrafted assembly code is especially pro-
nounced if a cipher performs a large number of operations
that are significantly less efficient in C than in assembly
language (e.g., multi-word arithmetic, certain bit manip-
ulations). Benchmarking results obtained from carefully
optimized assembler implementations played an important
role in the evaluation of candidates for cryptographic stan-
dards like the AES [43] and SHA-3 [45], and this will also
be the case for future standardization activities in the area
of lightweight cryptography for the IoT [44]. However, an
implementation of a cipher written in assembly language is
architecture-dependent and, consequently, not portable. At
the other end of the performance portability spectrum are
pure C implementations, which are highly portable but, in
general, less efficient than their handcrafted assembly coun-
terparts.

While the importance of benchmarking hand-optimized
assembly implementations is out of dispute, we argue that
it makes also sense to benchmark portable C implementa-
tions of lightweight ciphers. Our argument is twofold and
based on the specific properties and constraints of the IoT.
First, it has to be noticed that there is no single dominating
hardware platform in the IoT, in contrast to the “conven-
tional” Internet of commodity computers, where the Intel
architecture has a market share of over 90%. In fact, the
IoT is populated by billions of heterogenous devices with
largely incompatible processors and different operating sys-
tems. Supporting a large number of platformswith optimized
assembly code is tedious and error-prone since, for each pro-
cessor architecture, a separate code base needs to be written,
tested, debugged, and then maintained. In the light of ever-
increasing time-to-market pressure, cryptographic engineers
may value the portability of C code more than the perfor-
mance of assembly code. Our second argument is related
to the steadily increasing research interest in lightweight
ciphers with new designs being published (almost) every
month. Implementations written in C often serve as proof-
of-concept in the design phase of a new primitive to explore,
e.g., different candidates for a round function. Benchmarks
generated from C implementations allow cipher designers to
quickly evaluate the impact of various design options (e.g.,
round function, number of rounds) on execution time, RAM
footprint and code size. In this way, designers can already
assess in an early phase of the design cycle how a new prim-
itive may compare with the state-of-the-art.

We report detailed benchmarking results for a total
of 19 lightweight block ciphers, namely the AES [43],
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Chaskey [42], Fantomas [31], HIGHT [35], LBlock [58],
LEA [34], LED [32], Piccolo [50], PRESENT [12], PRIDE
[1], PRINCE [13], RC5 [48], RECTANGLE [61], RoadRun-
neR [6], Robin [31], Simon [7], SPARX [23], Speck [7], and
TWINE [52]. Our rationale for selecting exactly the men-
tioned 19 ciphers is twofold; first, each of these candidates
has some special property or feature that makes it interesting
for applications in the IoT. Second, they cover a wide range
of different design strategies and approaches. Our evalua-
tion considers two application scenarios or use cases; the
first relates to the encryption of messages transmitted in a
wireless sensor network (WSN) and the second is a simple
challenge-response authentication protocolwith applications
in, e.g., object identification or access control. To accommo-
date the different requirements of these application scenarios,
we evaluated at least two versions of most of the 19 ciphers,
including a low-memory variant and a speed-optimized vari-
ant. The former can be seen as a “minimalist” implementation
that favors low memory footprint and small code size over
performance. On the other hand, the second implementa-
tion includes certain optimizations that increase code size
and/or memory footprint (e.g., partial loop unrolling, use
of small lookup tables) with the goal of improving perfor-
mance. Roughly half of the implementations were written
from scratch by us whereby we put a comparable effort into
optimizing each cipher to ensure a consistent and fair evalua-
tion. The other half was either taken from other open-source
projects or contributed by the designers of the algorithms or
by volunteers; in all these cases, we carefully reviewed the
source codes and further optimized them whenever possi-
ble. In this way, we tried to minimize the impact of varying
programming skills and/or experience. Most of our imple-
mentations are faster or on par with the best execution times
reported in the literature on the platformswe consider. There-
fore, these implementations form a solid code base for the
benchmarking of lightweight block ciphers.
Related work There exist a number of related research
projects that evaluate software implementations of
lightweight block ciphers, but none of them analyzed execu-
tion time, RAM footprint, and code size on different 8-, 16-,
and 32-bit platforms.We studied previous benchmarking ini-
tiatives in detail, but in the end we decided to develop a new
benchmarking framework from scratch instead of contribut-
ing to an existing one since each of the existing frameworks
has a certain issue or limitation that would have been dif-
ficult to fix. Nevertheless, understanding the strengths and
weaknesses of other benchmarking initiatives helped us to
design a flexible and powerful framework capable of collect-
ing accurate and detailed results about the execution time,
RAM consumption, and code size of lightweight ciphers.

In the course of the BLOC project [17], a total of 16
lightweight block ciphers were evaluated on an MSP430
microcontroller. The provided C library [16] shows that the

project does not insist on a common interface for all ciphers,
and there seems to be no way to easily integrate new plat-
forms. By inspecting the benchmarking code, we discovered
a bug in the calculation of the RAM requirements because
the authors assumed that a variable of type unsigned int
has a size of one byte instead of two. Furthermore, some
implementations did not verify the test vectors provided in
the cipher specification.2 For the block ciphers considered
both in our paper and in [17], our results on MSP430 are, on
average, three times better.

During the ECRYPT II project, a survey paper [25] with
the results of a performance evaluation of 12 low-cost block
ciphers on an 8-bit AVR ATtiny45 device was published.
Among the analyzed ciphers are only designs that were
introduced before 2012, i.e., more recent ciphers, such as
Simon and Speck [7], are not included. The authors describe
their evaluation methodology and the implementation guide-
lines they followed to ensure a fair comparison of the 12
lightweight ciphers. Although the assembly source codes are
available [27], there is no framework provided that can help
users to asses the performance of new designs under the
same conditions. The assembly implementation results of
this survey on AVR ATtiny45 are on par with our assembly
implementation results on AVR ATmega128.

The XBX extension [57] to SUPERCOP [9] allows one to
benchmark hash functions on embedded devices and adds
two new metrics, namely RAM footprint and ROM con-
sumption. Unfortunately, the framework is currently not
maintained any more, but still worth mentioning because of
the consistent evaluation across several platforms and the
importance of the benchmarking results for the SHA-3 com-
petition [45].
Our contributions First, we designed and implemented a
framework for fair and consistent benchmarking of
lightweight cryptographic primitives on 8-, 16-, and 32-bit
processors. Our work is motivated by the lack of a well-
accepted and widely used tool that allows the cryptographic
research community to analyze and compare the execution
time, RAM requirements, and code size of lightweight prim-
itives on a range of embedded platforms. These three metrics
can be extracted at a very detailed level for different oper-
ations (e.g., encryption, decryption, key expansion) through
a well-defined API. We make the entire source code of our
framework available under GPL version 3 to facilitate the
establishment of a completely free and open benchmarking
environment for lightweight cryptosystems. The source code
can be downloaded from the CryptoLUX wiki [19].

Second, we survey 19 lightweight block ciphers and
analyze, in particular, their suitability for software imple-

2 The maintainers of the BLOC project merged our pull request
on GitHub that fixed the mentioned issues, see http://github.com/
kmarquet/bloc/pull/2.
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mentation on resource-restricted devices. This set of ciphers
covers a wide range of different design principles and
includes a number of recent proposals with highly interest-
ing properties, e.g., Simon/Speck [7], Robin/Fantomas [31],
and SPARX [23]. We collected between two and up to 24
implementations of each cipher to account for different trade-
offs between execution time, RAM footprint, and code size.
For nine out of the 19 ciphers, we have not only C imple-
mentations, but also optimized assembly code for the three
platforms we consider. In total, our repository includes over
250 implementations, of which we developed roughly half
from scratch and the rest we took over (and slightlymodified)
from other open-source projects or they were contributed by
the cipher designers. The source code of all our implemen-
tations is available under GPL and can be downloaded from
the CryptoLUX wiki.3

Third, we present detailed timing, RAM consumption,
and code size figures of all 19 ciphers, which we generated
with the help of our benchmarking toolsuite. Furthermore,
we define two typical usage scenarios that aim to resemble
security-related operations commonly carried out by “real”
IoT devices. The results we obtained shed some new light on
the relative efficiency of lightweight block ciphers because
(i) several of our implementations are much faster or smaller
than that of other survey and benchmarking efforts, and (ii)
we include a few designs that have been published only
very recently. Since lightweight cryptography is a rapidly
progressing area of research, we also maintain a web page
[19] with the latest results, which gets automatically updated
when users provide new implementations. Our framework
allows the user to define a custom “figure of merit” (FOM)
according towhich an overall ranking of a set of block ciphers
can be assembled. The FOMmetric can use different weight
factors for execution time, RAM footprint, and code size, and
may even consider (cryptanalytic) security aspects.

To the best of our knowledge, this paper is the first to ana-
lyze a broad range of lightweight block ciphers on different
processors in a comprehensive and consistent fashion, taking
into account the specific constraints and requirements of the
IoT. Our results allow one to infer some interesting relations
between cipher design principles and performance figures
and, in this way, contribute to a better understanding of how
to design and implement lightweight block ciphers.

2 Benchmarking framework

Most papers introducing a new block cipher report some
kind of results of some kind of performance evaluation on

3 All results reported in this paper are based on version 1.1.20 of
the FELICS framework, which can be downloaded from http://www.
cryptolux.org/index.php/File:FELICS.zip.

some kind of platform using some kind of implementation.
These results are then used by the authors to claim that the
proposed cipher has some kind of “advantage” over exist-
ing ciphers or compares “favorably” with the state of the
art. However, the practical relevance of such comparisons is
questionable since it is not easily possible to take differences
in the characteristics of the target platforms or differences in
the simulation/measurement conditions into account. Conse-
quently, it is difficult to assess the relative efficiency of the
numerous proposals for lightweight ciphers in a fair and con-
sistent fashion. This motivated us to develop a benchmarking
toolsuite that allows for a unified evaluation of a large num-
ber of candidates by collecting accurate and comprehensive
results for execution time, RAM footprint, and code size. The
toolsuite is currently able to extract thesemetrics from imple-
mentations for 8-bit AVR, 16-bit MSP430, and 32-bit ARM
Cortex-M processors, but other platforms could be supported
as well. We make the full source code of the benchmarking
framework available under GPL to facilitate its acceptance
in the cryptographic research community and to maximize
transparency in the evaluation of lightweight block ciphers.

We developed our framework with the goal of being
easy to use, but we also aimed for high flexibility in order
to support various optimization strategies for lightweight
ciphers. Therefore, the benchmarking framework accepts
implementations written in C, which can optionally contain
inlined assembly segments to speed up performance-critical
operations. New ciphers typically come with a reference
implementation in C that can be easily cross-compiled for the
three platforms mentioned above. This allows cipher design-
ers to quickly assess the performance of a new block cipher
on different 8-, 16-, and 32-bit processors. Currently, the
GNU Compiler Collection (GCC) is used for all three plat-
forms, but our toolsuite could be easily extended with other
compilers. The benchmarking framework applies different
combinations of compiler switches to optimize the code gen-
eration and achieve best possible results. To ensure a fair and
consistent evaluation of ciphers, each implementation has to
adhere to a pre-defined Application Program Interface (API)
and follow a set of guidelines to meet certain constraints. A
detailed description of the framework requirements can be
found in “Appendix B”.

As stated in the previous section, we consider benchmark-
ing results obtained with C implementations to be useful for
cipher designers and for cryptographic engineers who pre-
fer portable C code over platform-optimized assembly code.
Since cipher designers tend to write reference implementa-
tions in ANSI C, the effort of evaluating a new cipher boils
down to adapting the C source code to meet the requirements
of the framework. However, benchmarks generated with C
implementations do often not reflect the full potential of a
lightweight cipher becauseANSICcannot efficiently express
multi-word arithmetic operations and certain bit manipula-
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tions. In addition, the quality of theC compiler (i.e., its ability
to apply sophisticated optimizations) may impact the relative
performance of lightweight ciphers. To mitigate these issues,
and to serve cryptographic engineers who are primarily
interested in high speed rather than high portability, the tool-
suite supports the benchmarkingof hand-optimized assembly
implementations for the three considered platforms. We had
both C and assembly implementations available for nine of
the 19 lightweight ciphers we benchmarked; the remaining
ten cipherswere evaluated usingC source codes only. In total,
we analyzed more than 250 different C and assembly imple-
mentations of 19 lightweight block ciphers. We make the
full source code of all implementations available under GPL
to ensure the reproducibility of our results and, in this way,
increase the transparency and trustability of our evaluation
process.

2.1 Evaluationmetrics

The benchmarking framework is able to extract three pri-
marymetrics, namely execution time, run-timememory (i.e.,
RAM) consumption, and code size. We consider these met-
rics as “primary” because (i) they determine to a large extent
how well a block cipher meets the constraints and require-
ments of the IoT, and (ii) they cannot be derived from other
metrics. Since reaching high performance is the main design
goal of essentially any software-oriented cipher, it is clear that
a benchmarking framework needs to be capable to evaluate
the execution time in a comprehensive and precise fashion. In
addition, other metrics, such as the energy consumption of a
cipher, have a strong correlation with the execution time.4

While most existing papers that present implementation
results for a lightweight block cipher only report execution
times, we consider it important to take also RAM footprint
and code size into account. Many IoT devices are so con-
strained that they feature only a few hundred bytes of RAM
and a few kB of flash memory, which means RAM footprint
and code size are crucial criterions for cryptographic engi-
neers when selecting a lightweight cipher. In addition, since
it is not possible to optimize all three metrics simultaneously,
one has to find a trade-off. For example, common approaches
to reduce the execution time, such as loop unrolling or the
use of a lookup table to speed up the round function, gen-
erally increase the code size or RAM consumption or both.
Our benchmarking framework allows a cryptographic engi-
neer to analyze such trade-offs and, in this way, determine
the best optimization strategy for the requirements of the tar-

4 One can get a rough estimate of the energy consumption by simply
forming the product of execution time, average power consumption of
the target processor, and supply voltage. More accurate energy figures
could be obtained by extending the framework to support power mea-
surements on microprocessor development boards.

get application and the constraints of the target device. The
execution time, RAM footprint, and code size of an imple-
mentation can be combined into a single number by defining
a figure of merit (FOM), which makes it possible to rank
different implementations. We describe in Sect. 4.1 a FOM
that is basically a weighted sum of the three metrics across
the three platforms we support.
Execution time The execution time is quantified through the
number of clock cycles required for the execution of each of
the four basic operations of a block cipher, namely encryp-
tion, decryption, encryption key schedule, and decryption
key schedule (see “Appendix B”). As mentioned earlier, our
framework supports instruction-set simulators as well as the
acquisition of real measurements from development boards.
Concretely, the cycle-accurate simulators Avrora [54,55] and
MSPDebug [8] are used to evaluate the execution times for
the 8-bit AVR and 16-bit MSP430 platform, respectively.
On the other hand, the cycle counts on the ARM Cortex-
M3 are determined with the help of the system timer by
reading the SysTick Current Value Register (SYST_CVR).
This register gets decrementedwith each processor clock and
allows for very precise measurement of elapsed cycle counts.
The framework automatically inserts C code for reading the
system timer immediately before and immediately after the
operation to bemeasured and calculates the execution time as
the difference of the two timer values. However, the obtained
execution time may vary by a few cycles depending on how
the compiler translates the C code for reading the timer into
assembly instructions in different contexts and how the data
types are aligned in memory. Therefore, it is possible to get
slightly varying execution times for one and the same oper-
ation in different usage scenarios. We collected the timings
for ARM reported in Sect. 4 using an Arduino Due board [2]
with a Cortex-M3 [3] processor.
RAM footprint The RAM footprint is determined by the
size of the data section (which contains all static variables
that are initialized to a nonzero value) and the maximum
stack consumption. There is no need to take the bss section
into account since the two usage scenarios we developed for
the benchmarking of lightweight ciphers (described further
below) operate without uninitialized static data. In addition,
the heap is not used at all because the framework does not
permit any dynamically allocated variables. The amount of
RAM occupied by the data section is determined with
help of the size tool from the GNU Binutils collection.
On the other hand, the maximum stack consumption of an
operation or usage scenario is evaluated in the standard way
with a so-called stack canary. At the beginning of the oper-
ation/scenario (i.e., directly after the function call for that
operation/scenario), the free stack space is filled with a cer-
tain pattern. Then, at the end of the function’s execution, the
values in the stack area are compared with the pattern and
the number of overwritten bytes gives the stack consump-
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tion. The parameters passed to the function under evaluation
do not need to be counted since the arguments are placed in
registers on all three platforms and not pushed on the stack.
However, what is added to the RAM consumption is the size
of the operation-specific or scenario-specific variables (e.g.,
byte-arrays for plaintext, key, round key, initialization vector,
etc.), which are declared and defined in the main function.
Code size The code size is measured in bytes and quantifies
the amount of storage an operation or usage scenario occu-
pies in the nonvolatile memory (e.g., flash memory) of the
target device. It is evaluated by applying the size tool on
the relevant object files generated by the compiler. This tool,
which is part of the GNU Binutils, lists the size of the differ-
ent sections of an object file or executable. In order to obtain
the overall code size, the framework simply adds the size of
the text and data sections of the relevant object files. The
text section contains the executable machine instructions
the compiler generated from the source code. On the other
hand, the data section comprises all static variables that
are initialized with a nonzero value. The content of this sec-
tion is loaded from flash memory into RAM at the beginning
of the program execution. As already mentioned above, the
bss section is empty since none of the benchmarked oper-
ations and scenarios use any uninitialized static variables.
It should also be noted that common code fragments (e.g.,
auxiliary functions used in both encryption and decryption)
are counted only once when computing the overall code size.
Hence, it makes sense for implementers to identify common
functionality and put it into a single C function or procedure.
However, we do not take into account the size of the main
function (from where the functions for the basic operations
like encryption or decryption are called) because it is the
same for all ciphers and not relevant in the context of the
studied scenarios.

2.2 Usage scenarios

Besides the evaluation of the four basic operations of a block
cipher (i.e., encryption, decryption, encryption key schedule,
and decryption key schedule), the benchmarking framework
also supports more advanced forms of assessment based on
usage scenarios. A usage scenario should implement some
common security service with practical relevance for the
IoT and utilize the basic cipher operations. In this way, it
is possible to obtain realistic benchmarking results that are
meaningful in the real world. The results reported in Sect. 4
are based on two simple usage scenarios, which we describe
below. Further usage scenarios can be easily added thanks to
the modular design of the benchmarking framework.
Scenario 1: communication protocol This scenario covers
the need for secure communication between two IoT devices
such as two sensor nodes in a WSN. It is assumed that the
sensitive data is encrypted and decrypted using a lightweight

block cipher in CBCmode of operation. Since standard com-
munication protocols for the IoT, such as IEEE 802.15.4 [36]
and ZigBee [62], are characterized by low transmission rates
and small packet sizes, we assume the plaintext to have a
length of 128 bytes (i.e., 1024 bits) in this scenario. There
is no need for a padding scheme because the length of the
plaintext is a multiple of both 64 and 128 bits, which are
the two block sizes we consider in this paper. Furthermore,
we assume that the master key resides in RAM and that the
round keys (obtained through the operation for key sched-
ule) are also kept in RAM for later use by the encryption
or decryption operation. The plaintext and initialization vec-
tor for CBC mode shall also be in the device’s RAM at the
beginning of the execution. In order to reduce the RAM foot-
print, the encryption is performed in place, which means the
plaintext gets overwritten by the ciphertext (and vice versa
for decryption). However, the key schedule does not modify
the master key.
Scenario 2: challenge-response authentication This scenario
is inspired by a simple authentication protocol where an
IoT device proves that it is in possession of a secret key
by encrypting a challenge using a block cipher. In real-world
settings, the IoT device can, for example, be an RFID tag (see
e.g., [29]) or a smart card. In this scenario, we assume that a
lightweight block cipher is used in CTRmode to encrypt 128
bits of data. The device has the full round key stored in flash
memory, which means there is no need to store the master
key and also no key schedule operation has to be performed.
Both the 128-bit plaintext to be encrypted and the counter
value are held in RAM at the beginning of the execution. In
order to reduce the RAM footprint, the encryption is done in
place, i.e., the plaintext gets overwritten by the ciphertext.

2.3 Target devices

The IoT is populated by billions of devices that are equipped
with a highly diverse and largely incompatible range of hard-
ware platforms. In fact, the microcontroller population of the
IoT is much more heterogeneous than the processor popu-
lation of commodity computers, where the Intel architecture
enjoys a market share of over 90%. Since there is no sin-
gle dominating platform in the IoT, it is essential that a
lightweight block cipher achieves consistently good perfor-
mance on a variety of 8-, 16-, and 32-bit microcontrollers.
It is also essential that a benchmarking framework is capa-
ble to collect implementation results from a wide range of
platforms. Our framework supports the AVRATmega128 [4]
as example for an 8-bit architecture, the TI MSP430F1611
[53] as representative for a 16-bit platform, as well as the
ARM Cortex-M3 [3] as example for a 32-bit RISC machine.
However, as stated in the previous section, the benchmarking
framework can be easily extended to support further plat-
forms. A brief description of the main characteristics of the
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three currently supported microcontrollers can be found in
“Appendix A”.

3 Analyzed ciphers

Since our aim is to contribute to a better understanding of the
relation between basic design methodologies for lightweight
ciphers and the resulting software performance on resource-
limited IoT devices, we selected 19 ciphers that represent
a wide variety of design approaches based on Substitution-
Permutation Networks (SPNs) and Feistel Networks (FNs).
A classical example for an SPN is the AES [21,43], but
other designs for the S-box and the linear layer are possible,
as demonstrated by PRESENT [12], Robin, and Fantomas
[31]. The overall structure of an SPN-based cipher can also
vary while still maintaining a round function consisting of
an S-box layer and a linear layer: LED [32] adds key mate-
rial every four rounds only, while PRINCE [13] implements
a property called α-reflection, which minimizes the over-
head for decryption on top of encryption. Furthermore, it is
also possible to build an SPN using only modular Addition,
Rotation, and XOR (ARX), as was done by the designers of
SPARX [23]. An FN, on the other hand, can be designed by
utilizing a small SPN as the Feistel function, as in LBlock
[58] and Piccolo [50], or with simple arithmetic and logical
operations, as in Simon [7] and ARX designs like HIGHT
[35], RC5 [48], and SPECK [7]. These operations may be
data-dependent like in RC5. A variant of the FN is the Gen-
eralized FN, which uses more than two branches. The way
the branches are mixed at the end of each round can con-
sist of a simple rotation (HIGHT) or a dedicated permutation
optimizing diffusion (TWINE [52], Piccolo). A high number
of branches allows the use of very simple Feistel functions
like in TWINE and HIGHT.

Besides representing a wide variety of different design
approaches, most of the 19 lightweight ciphers we selected
for our study have a certain property or feature that makes
them particularly interesting for use in the IoT.We intention-
ally did not restrict our selection to software-oriented ciphers
and included some designs that were developed for effi-
ciency in hardware, e.g., Piccolo, PRESENT, and PRINCE.
As stated in the previous section, the device population of
the IoT is very heterogenous and shows extreme differences
in terms of computational capabilities and resources. Some
devices are so constrained that cryptographic operations can
only be implemented in hardware (e.g., RFID tags), while
other devices are powerful enough to run cryptographic soft-
ware at acceptable speed. Since all these devices should be
able to interact and communicate securely with each other,
they have to use one and the same cipher. In order to be
suitable for the IoT, a lightweight block cipher needs to be
efficient in both hardware and software. Thus, it makes sense

to evaluate the software performance of hardware-oriented
ciphers and vice versa. In the following, we give an overview
of the 19 lightweight ciphers we selected for benchmark-
ing and describe how they can be implemented in software.
The main characteristics of the candidates are summarized
in Table 1.
AES. The AES is standardized by the NIST and by far the
most-widely used block cipher today. It has an SPN struc-
ture with an internal state of 128 bits represented in the form
of a (4 × 4)-byte matrix. The SubBytes, ShiftRows,
MixColumns, and AddRoundKey functions operate on
the cipher’s state [21,43]. To date, the best single-key crypt-
analysis of AES-128 is a meet-in-the-middle attack on seven
rounds out of ten [22]. Size-optimized implementations of the
AES put the S-box and the round constants in lookup tables
since they occupy just slightly more than 256 bytes. The
source code of our size-optimized implementation mostly
follows the cipher pseudocode on all three considered archi-
tectures. Since T-tables are very large (4 kB for either
encryption or decryption), we did not include such imple-
mentations.
Chaskey. The Chaskey cipher is based on the π permuta-
tion of the Chaskey MAC algorithm [42] that is currently
considered for standardization by the ISO/IEC. Said π per-
mutation is a generalized FN and uses ARX operations on
32-bit words. The cipher has an Even-Mansour structure,
which means there is no key schedule but the master key
is simply XORed to the internal state before and after π is
applied. Chaskey-LTS (Long Term Security) has twice as
many rounds as Chaskey and is recommended as a fallback
in the case of cryptanalytic breakthroughs. Currently, the best
attack against Chaskey is a differential-linear attack on seven
out of eight rounds [40]. We benchmarked the C implemen-
tation provided by the designers, which is straightforward
thanks to the simple structure of the cipher. In addition,
we developed implementations in assembly language from
scratch. The execution times of both can be improved by
unrolling several rounds at the cost of larger code size.
Fantomas. Fantomas is a 128-bit cipher belonging to the
family of LS-designs [31]. Its linear layer consists in the
parallel application of so-called “L-boxes,” while the S-box
is designed to simplify the implementation of masking, a
countermeasure against differential power analysis (DPA).
There is no key-schedule; the master key is simply added
in every round. At the time of writing this paper, there was
to our knowledge no attack against Fantomas. A software
implementation of Fantomas usually combines lookup table-
based L-boxes with bit-sliced S-boxes, which are computed
using a Feistel structure. Storing the four 512 B L-boxes
in RAM instead of flash improves the execution time by a
quarter on AVR and ARM. Our implementations are based
on the C source code provided by the designers.
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Table 1 Overview of the 19 lightweight block ciphers considered in this paper

Cipher Year Block size Key size Round key size Rounds Security level Type Target

AES 1998 128 128 1408 10 0.70 SPN SW, HW

Chaskey 2014 128 128 0 8/16 0.87/0.43 Feistel SW

Fantomas 2014 128 128 0 12 NA SPN SW

HIGHT 2006 64 128 1088 32 0.81 Feistel HW

LBlock 2011 64 80 1024 32 0.72 Feistel HW, SW

LEA 2013 128 128 3072 24 0.63 Feistel SW, HW

LED 2011 64 80 0 48 NA SPN HW, SW

Piccolo 2011 64 80 864 25 0.56 Feistel HW

PRESENT 2007 64 80 2048 31 0.84 SPN HW

PRIDE 2014 64 128 0 20 NA SPN SW

PRINCE 2012 64 128 192 12 0.83 SPN HW

RC5a 1994 64 128 1344 20 0.80 Feistel SW, HW

RECTANGLE 2015 64 80/128 1664 25 0.72 SPN HW, SW

RoadRunneR 2015 64 80/128 0 10/12 0.5/0.58 Feistel SW

Robin/Robin� 2014 128 128 0 16 1/NA SPN SW

Simon 2013 64 96/128 1344/1408 42/44 0.71/0.70 Feistel HW, SW

SPARX 2016 64/128 128 1600/4224 24/32 0.62/0.68 Feistel SW

Speck 2013 64 96/128 832/864 26/27 0.73/0.74 Feistel SW, HW

TWINE 2011 64 80 1152 36 0.64 Feistel HW, SW

Block, key and round key sizes are expressed in bits. The security level is the ratio of the number of rounds broken in a single key setting to the
total number of rounds
a We use RC5 with increased number of rounds, RC5-20

HIGHT. The lightweight cipher HIGHT is a generalized FN
with an ARX structure. More precisely, the Feistel functions
perform only logical XOR and bitwise rotations. The output
of the Feistel functions is combined with the other branches
using either XOR or addition modulo 28 [35]. An impossi-
ble differential attack breaks 26 out of 32 rounds of HIGHT
[46]. All implementations we benchmarked follow closely
the specification from [33], which modifies the design of
the original paper [35]. The 128 7-bit δ constants are either
computed when the key-schedule function is called or pre-
computed and stored in flash or RAM. An entirely unrolled
version with inlined auxiliary round functions F0 and F1
requires only half of the cycles of the reference implementa-
tion.When implemented in assembly language, the execution
time decreases by 50% on MSP and by 10% on AVR and
ARM, respectively.
LBlock.LBlock is anFNwith 32 rounds. TheFeistel function
consists of a logical XOR with the round subkey, a substi-
tution layer of eight different S-boxes, and a permutation of
eight nibbles. Furthermore, the content of one of the branches
is rotated by eight bits in each round. The chosen design
trade-offs between security and performance led not only to
hardware efficiency but also software efficiency [58]. To date,
the best cryptanalytic result is obtained through an impossi-
ble differential attack against 23 out of 32 rounds [14]. The
benchmarked LBlock implementations follow the specifica-

tion from [58]. Optimization strategies include performing
operations on 8, 16 or 32 bits when possible, storing the S-
boxes in flash or RAM, and unrolling the loops. The best
execution time on ARM is achieved by the fully unrolled
implementation using 32-bit operations, with the S-boxes
stored in RAM.
LEA. The block cipher LEA uses a generalized FN with
four 32-bit branches [34]. Designed for high-speed software
encryption on 32-bit platforms, the cipher can be efficiently
implemented in hardware as well. The designers mention a
boomerang attack against 15 rounds, which is, to our knowl-
edge, the best cryptanalytic result to date. The benchmarked
assembler implementations are based on three different opti-
mization strategies: fast execution time, small code size, and
a trade-off between speed and size. These optimizations are
facilitated by LEA’s simple structure requiring only 32-bit
operations.
LED. The AES-based cipher LED is aimed at very com-
pact hardware implementation while maintaining reasonable
performance in software. It represents the state by a (4× 4)-
nibble matrix and uses similar round transformations as the
AES, except that they are nibble-oriented. A distinguishing
characteristic of LED is the absence of a key schedule; the
round keys are simply replaced by a part of the master key
[32]. To the best of our knowledge, there are no attacks on
LED-80. However, there is a differential attack that covers
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16/32 rounds of LED-64 and 24/48 rounds of LED-128 [41].
The structural attack breaking 32/48 rounds of LED-128 pro-
posed in [24] is unlikely to be adaptable to LED-80. Our LED
implementation combines the SubCells, ShiftRows,
and MixColumnsSerial operations into a table lookup
to reduce execution time.
Piccolo. Piccolo has a generalized FN structure with four
16-bit branches. To improve diffusion, Piccolo uses a byte
permutation between rounds. Picoolo’s Feistel function con-
sists of two S-box layers separated by a diffusionmatrix [50].
The currently best attack against Piccolo-80 is a meet-in-
the-middle attack on 14 rounds, which was presented by the
designers. Our Piccolo implementation follows closely the
description provided in [50]. The arithmetic in GF(24) uses
only XORs and two small lookup tables for multiplication
by two and three. Both the S-box and the key schedule con-
stants are stored in lookup tables. No specific loop unrolling
is applied.
PRESENT. PRESENT has an SPN structure and comes with
a bit-oriented permutation layer. The nonlinear layer is based
on a single 4-bit S-box that was designed for efficiency in
hardware [12]. A truncated differential attack against 26 out
of 31 rounds of PRESENT is described in [11]. Since the
S-box is quite small, a lookup table is used in all our imple-
mentations. However, its combination with a bit permutation
over a 64-bit word is difficult to optimizewithout introducing
extremely large lookup tables (up to 1 MB for decryption).
The size-optimized implementation resembles the cipher’s
pseudocode and was taken from [16]. In general, the bit-
oriented design of PRESENTmakes C implementations very
slow unless one can afford huge lookup tables. Our assembly
implementations take advantage of bit-manipulation instruc-
tions that the target platforms support. OnAVR, the assembly
implementation is around 12 times faster than its C counter-
part, while the MSP assembly version is even 19 times faster
than the C code.
PRIDE. The block cipher PRIDE is an SPN with a strong
linear layer and a bit-sliced S-box, which are optimized for 8-
bit microcontrollers [1]. It uses the so-called FX construction
with the same key for pre- and post-whitening and a different
key as basis for the round keys. A differential attack on 19 out
of 20 rounds is described in [59]. The designers contributed
a C implementation using only 8-bit operations. PRIDE’s
simple key schedule can be performed on the fly to reduce
the RAM requirements at the cost of execution time. The S-
box requires only bitwise operations, and also the linear layer
consisting of four transformations (one for every 16 bits of
the state) can be implemented efficiently in software.
PRINCE. Similar to PRIDE, PRINCE is an FX construction,
whereby the first two subkeys are used as whitening keys,
while the third subkey is the 64-bit key for a 12-round SPN
called PRINCEcore. PRINCE introduced the α-reflection
property: encryption with a given key corresponds to decryp-

tion with a related key [13]. To date, the best cryptanalytic
result is a multiple differential attack on ten out of the 12
rounds [15]. We implemented PRINCE as described in the
original paper [13,15]. The optimization strategies we con-
sidered include the use of 8-, 16-, 32-, and 64-bit operations
where possible and different amounts of loop unrolling. We
obtained the best performance with fully unrolled imple-
mentations based on 8-bit operations for AVR and 16-bit
operations for MSP. On ARM, the best execution times were
achieved using a partially unrolled version with 32-bit oper-
ations.
RC5. RC5 is an FN that uses data-dependent rotations [48].
Even though RC5 was designed long before lightweight
ciphers became popular, it is obviously suitable for resource-
constrained devices like wireless sensor nodes as shown in,
e.g., [47]. The block and key size, as well as the number of
rounds, can be chosen freely. We use RC5-32/20/16, i.e., a
version of RC5 operating on two 32-bit words with a total of
20 rounds (or 40 half-rounds) and a 16-byte key. The number
of rounds was chosen so as to have a security margin of 0.80.
RC5-32/12/16 can be attacked using differential cryptanal-
ysis as explained in [10]. This attack can be extrapolated to
18 rounds, but would require almost the full codebook (i.e.,
264 ciphertexts). RC5 was implemented by slightly adapting
the reference code provided in [48]. Because of its elegant
and simple design, there are only very few possibilities for
optimization. To explore different trade-offs, we unrolled the
cipher’s operations and pre-computed the encryption-key-
schedule array S to store it in flash or RAM.
RECTANGLE. The block cipher RECTANGLE is an SPN
that allows for efficient implementation in hardware and soft-
ware thanks to its bit-sliced structure [61]. Its nonlinear layer
applies a 4-bit S-box to each column of the state, which is
represented through a (4 × 16)-bit matrix, while the linear
layer rotates each row by a different amount. A differential
attack that covers 18 out of 25 rounds is described by its
designers. RECTANGLE was implemented in C and assem-
bly by its designers using different optimization strategies.
The bit-sliced S-box is relatively fast in software because it
uses only logical operations. On the other hand, the simple
linear layer involves three rotations of 16-bit words by 1, 12,
and 13 bits, which can be efficiently implemented on 8-, 16-,
and 32-bit architectures.
RoadRunneR. RoadRunnerR has an FN structure that was
designed with the aim of high efficiency on 8-bit processors
and provable security in terms of minimum number of active
S-boxes in differential and linear trails [6]. The Feistel func-
tion is an SPN composed of four 4-bit S-box layers, three
linear layers, as well as three key additions. There exists a
high-probability truncated trail covering five rounds, which
can be utilized to attack a 7-round variant of RoadRunneR-
128 [60]. RoadRunneR facilitates implementations in a
bit-sliced fashion and is easy to optimize thanks to its sim-
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ple structure. The bit-sliced S-box and the linear layer use
only bitwise operations and rotations of 8-bit values by 1 bit
and are, therefore, very fast in software. To reduce the RAM
requirements, the round keys can be computed on the fly.
Robin. Robin is a 128-bit cipher similar to Fantomas, but its
“L-boxes” are involutions [31]. The lookup table-based diffu-
sion layers and the structure of the S-boxes makes this family
of ciphers good candidates for Boolean masking in bit-sliced
software implementations. Unfortunately, there exists a set
of weak keys of density 2−32 that leads to a practical attack
on the full primitive as shown in [39]. In response to this
so-called invariant subspace attack, the designers of Robin
proposed Robin� [37], in which the 8-bit round constant
is replaced by a 128-bit round constant. Robin was imple-
mented in different ways based on the C code provided by
its designers. The two L-boxes are stored in flash or RAM,
while the S-box layer is computed at each round using the
Feistel structure. Robin� requires more memory and is also
slower than the original Robin due to the costly derivation of
the 128-bit round constants.
Simon. Simon uses an FN structure with a very simple round
function performingbitwiseXOR, bitwiseAND, and circular
left-shifts. Itwas primarily optimized for high performance in
hardware, but achieves excellent results in software as well
[7]. Differential attacks on 30 out of 42 rounds of Simon-
64/96 and on 31 out of 44 rounds of Simon-64/128 are
presented in [18].Optimized implementations of Simonwrit-
ten in assembly (for AVR and MSP) and C (for ARM) were
provided by its designers. Simon’s simple structure enables
various trade-offs between code size and execution time by
combining a different number of rounds in one loop iteration.
SPARX. The block cipher SPARX is an SPN designed on
the foundation of the recently introduced Long Trail Strategy
(LTS), which allows the use of a large and relatively “weak”
S-box rather than a small and strong one [23]. Its ARX-based
S-box consists of an unkeyed Speck-32 round [7], while the
linear layer is inspired by that ofNoekeon [20]. The designers
studied in [23] an integral attack based on Todo’s division
property covering 15 out of 24 rounds of SPARX-64/128 and
22 out of 32 rounds of SPARX-128/128.Due to its simple and
flexible structure, SPARX can be implemented using various
optimization strategies. We explored various different trade-
offs between execution time and code size by unrolling the
rounds of a step function and performing one or two step
functions at once.
Speck.Speckwas designed to achieve high efficiency in hard-
ware and software, especially when executed on resource-
restricted microcontrollers [7]. It uses a Feistel structure in
which both branches aremodified at each round using bitwise
XOR,modular addition, and circular shifts in both directions.
The to-date best cryptanalytic results against Speck-64/96
and Speck-64/128 are differential attacks targeting 19 and 20
rounds out of 26 and 27, respectively [51]. Speck has a sim-

ple round function that is extremely fast and takes just a few
bytes of code. Optimized implementations of Speck written
in assembly (AVR, MSP) and in C (ARM) were provided by
the designers. Depending on the optimization strategy, one
or several round functions can be unrolled to improve the
execution time at the cost of a minor increase in code size.
TWINE. TWINE is a generalized FN with 16 branches of
four bits [52]. The Feistel function just consists of a key
addition and the application of a 4-bit S-box. TWINE’s lin-
ear layer is a nibble permutationwith amuch higher diffusion
than a nibble rotation as used in, e.g., HIGHT. The designers
aimed for both small footprint in hardware and low RAM as
well as ROM/flash consumption in software. The best attack
on TWINE-80 is a multi-dimensional zero-correlation lin-
ear attack on 23 out of 35 rounds [56]. Since TWINE has
a rather minimalist structure, the speed-optimized imple-
mentation is only marginally larger than the size-optimized
version. The speed-optimized implementation described by
the designers in [52] places the 4-bit branches in separate
bytes, which means the state becomes twice as large. We
wrote a size-optimized implementation from scratch. Both
implementations are small enough to run on all three plat-
forms.

4 Benchmarking results

In this section, we firstly describe our evaluation method-
ology, including the figure of merit (FOM) we developed
to rank the candidates, and then, we present and discuss
the benchmarking results of 19 ciphers in the two scenar-
ios described in Sect. 2.2. A block size of 64 bits was used
when available; otherwise, we resorted to 128-bit blocks. We
only consider cipher versions with a key length of at least 80
bits, which we deem the minimum security level acceptable
for common IoT applications. For some ciphers, we collected
benchmarking results for 80- and 128-bit keys to assess how
the key length impacts execution time, RAM footprint, and
code size.

4.1 Evaluationmethodology

At the time of writing this paper, our repository con-
tained between two and 24 different implementations of 19
lightweight ciphers, and more than 250 altogether. Using the
tool suite introduced in Sect. 2, we benchmarked the imple-
mentations in a highly automated way on three platforms
(AVR, MSP, ARM) and for two usage scenarios. It is pos-
sible to rank all these 250+ implementations according to
their execution time, RAM footprint, or code size in any sce-
nario on any platform. In addition, wemaintain an interactive
web page [19] with up-to-date benchmarking results where
all these ranking options can be chosen. Due to space limita-
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tions, we can only present a small subset of the results in this
paper, whereby we aggregated the data as described below.
We also introduce a figure of merit (FOM) that allows us to
assemble an overall ranking of the 19 evaluated ciphers.

As explained in Sect. 2, our benchmarking tool determines
the execution time, RAM footprint and code size of each
implementation on each platform, which yields a massive
amount of “raw” data. Then, for each implementation i and
platform d, we calculate a performance indicator pi,d that
aggregates the three metrics from M = {execution time,
memory consumption, code size} according to the formula

pi,d =
∑

m∈M
wm

vi,d,m

mini (vi,d,m)
, (1)

where vi,d,m is the value of metric m for implementation
i on platform d; wm is the relative weight of metric m
and mini (vi,d,m) represents the minimum value of metric
m among all considered implementations of all considered
ciphers on the same platform d. By default, we set wm = 1
for each platform and select the implementation with the best
(i.e., smallest) performance indicator pi,d on each platform
for the calculation of the FOM. However, the benchmark-
ing tool suite also allows one to choose different weights for
the three metrics (which can be useful when, e.g., execution
time is more important than RAM footprint or code size) or
the three platforms (when e.g., ARM is more important than
AVR or MSP). Finally, for each cipher and the selected set
of best implementations i1, i2, i3 (one for each platform), we
calculate the FOM value as the average performance indica-
tor across the three platforms:

FOM(i1, i2, i3) = pi1,AV R + pi2,MSP + pi3,ARM
3

(2)

The FOM defined by Eq. (2) is an attempt to con-
dense three performance indicators into a single overall
performance figure. Using this FOM allows one to compare
(and rank) different ciphers, taking into account two major
requirements for the IoT, namely (i) that not only speed but
also memory requirements and code size are important, and
(ii) that good implementation results should be achieved on a
wide range of platforms and not just a single one. Of course,
there are many alternative ways to define a performance indi-
cator or a FOM. The performance indicator specified by
Eq. (1) aggregates each of the three considered metrics in
relation to the best (i.e., smallest) value of the metric among
all implementations. One could, for example, also relate the
value of the memory and code-size metric to the amount of
resources available on a device and calculate the performance
indicator pi,d as

pi,d = wtimevi,d,time

+
∑

wm
vi,d,m

maxi (vi,d,m)
for m ∈ {memory, size}.

(3)

where maxi (vi,d,m) is the total RAM capacity (for the mem-
ory metric) or the total flash capacity (for the code-size
metric) of device d; see “Appendix A” for details. In this
way, we essentially measure the fraction of the totally avail-
able resources occupied by the implementation of a cipher.
The FOM could, besides the efficiency metrics that deter-
mine the performance indicator, also take security aspects
into account; the figure of adversarial merit (FOAM) pro-
posed in [38] serves as a good example.

4.2 Discussion of results

Table 2 shows the results for Scenario 1 (“Communication
Protocol”) ordered by FOM value, whereby we measured
the encryption and decryption of 128 bytes using CBCmode,
including key schedule. The top-3 ciphers based on the FOM
score areChaskey, Speck, andSimon; the FOMvalue of these
three ciphers is less than half of the FOM value of the AES.
Note that the FOM value takes into account all three metrics
(i.e., execution time, RAM footprint, and code size) and does
so across three platforms (i.e., AVR, MSP, and ARM). Of
course, when looking at execution time, RAM requirements,
or code size individually, or when looking at AVR, MSP, or
ARM individually, the specific rankings can differ signifi-
cantly from the overall ranking based on the FOM score.
Furthermore, it should be noted that up to 24 different imple-
mentations of one and the same cipher exist, which are based
on different optimization strategies. In particular, when com-
paring different C implementations, it can (and usually does)
happen that they perform differently on the three platforms.
It may also happen that one and the same cipher is slower on
the 16-bit MSP platform than on 8-bit AVR (e.g., HIGHT,
AES, RC5), which is not a mistake but simply due to con-
sidering RAM footprint and code size equally important as
execution time. Another interesting observation is that small
differences in the key length (e.g., 32 bits in the case of Simon
and Speck, or even 48 bits for RECTANGLE and RoadRun-
neR) have only a marginal impact on the FOM value.

When having a closer look at the results on AVR, it
turns out that the top-ranked algorithms are quite similar
in terms of RAM footprint, which means the overall rank
is primarily determined by execution time and code size.
Speck has roughly twice the execution timeofChaskey,while
Simon carries a performance penalty by a factor of approx-
imately three. A somewhat surprising result is that the AES
beats Simon on AVR, but its high performance comes at the
expense of a rather large code size. Also LEA and SPARX
are a bit faster than Simon when comparing the versions with
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Table 2 Results for scenario 1: encryption and decryption of 128 bytes of data in CBC mode

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 1328a 229a 20,622a 900a 222a 16,674a 438 236 9851 4.0

Chaskey-LTS 128 128 1328a 229a 33,102a 904a 222a 25,394a 438 236 12,859 4.6

Speck 64 96 966a 294a 39,875a 556a 288a 31,360a 492 308 15,427 5.1

Speck 64 128 874a 302a 44,895a 572a 296a 32,333a 444 308 16,505 5.2

Simon 64 96 1084a 363a 63,649a 738a 360a 47,767a 600 376 23,056 7.0

Simon 64 128 1122a 375a 66,613a 760a 372a 49,829a 560 392 23,930 7.2

RECTANGLE 64 80 1152a 352a 66,722a 812a 398a 44,551a 664a 426a 35,286a 8.0

RECTANGLE 64 128 1118a 353a 64,813a 826a 404a 44,885a 660a 432a 36,121a 8.0

LEA 128 128 1684a 631a 61,020a 1154a 630a 46,374a 524a 664a 17,417a 8.3

SPARX 64 128 1198a 392a 65,539a 966a 392a 36,766a 1200a 424a 40,887a 8.8

SPARX 128 128 1736a 753a 83,663a 1118a 760a 53,936a 1122a 788a 67,581a 13.2

HIGHT 64 128 1414a 333a 94,557a 1238a 328a 120,716a 1444a 380a 90,385a 14.8

AES 128 128 3010a 408a 58,246a 2684a 408a 86,506a 3050a 452a 73,868a 15.8

Fantomas 128 128 3520 227 141,838 2918 222 85,911 2916 268 94,921 17.8

Robin 128 128 2474 229 184,622 3170 238 76,588 3668 304 91,909 18.7

Robin� 128 128 5076 271 157,205 3312 238 88,804 3860 304 103,973 20.7

RC5-20 64 128 3706 368 252,368 1240 378 386,026 624 376 36,473 20.8

PRIDE 64 128 1402 369 146,742 2566 212 242,784 2240 452 130,017 22.8

RoadRunneR 64 80 2504 330 144,071 3088 338 235,317 2788 418 119,537 23.3

RoadRunneR 64 128 2316 209 125,635 3218 218 222,032 2504 448 140,664 23.4

LBlock 64 80 2954 494 183,324 1632 324 263,778 2204 574 140,647 25.2

PRESENT 64 80 2160a 448a 245,232a 1818a 448a 202,050a 2116a 470a 274,463a 32.8

PRINCE 64 128 2412 367 288,119 2028 236 386,781 1700 448 233,941 34.9

Piccolo 64 80 1992 314 407,269 1354 310 324,221 1596 406 294,478 38.4

TWINE 64 80 4236 646 297,265 3796 564 387,562 2456 474 255,450 40.0

LED 64 80 5156 574 2,221,555 7004 252 2,065,695 3696 654 594,453 138.6

For each cipher and each platform, the results of the implementation with the best performance indicator according to Eq. (1) are shown. The figure
of merit (FOM) is based on the performance indicators on all three platforms (the smaller the FOM value, the better the implementations of a cipher)
Values in bold indicate the minimal (i.e. best) result for a metric on a target device among all evaluated implementations listed
aResults for assembly implementations

64-bit blocks and 128-bit keys. All other ciphers are at least
three time slower than Chaskey. The situation is similar on
MSP in the sense that Chaskey is clearly the fastest of all
19 ciphers, followed by Speck. Simon is again on the sixth
position, outperformed by RECTANGLE, LEA, as well as
SPARX with 64-bit blocks. However, the results on MSP
also illustrate a weakness of Chaskey, namely its rather large
code size, which exceeds that of Speck by a factor of 1.6. In
terms of RAM consumption, PRIDE and RoadRunneR per-
form very well on the MSP platform. Finally, on ARM, the
winners in the performance competition are Chaskey, Speck,
and LEA. In addition, these three ciphers also hold the top
positions in terms of code size, which is mainly because of
their extremely simple round function operating on 32-bit
words. All other algorithms are both slower and larger than
LEA.

Table 3 shows the results for Scenario 1 when different
weights are assigned to the three metrics used to calculate
the performance indicator according to Eq. (1), namely when
the execution time has twice the weight of RAM footprint
and code size. Setting the weights in this way can make
sense when a cipher is used on battery-powered devices and
low energy dissipation (enabled by fast execution times) is
considered more valuable than low memory requirements or
small code size. In this setting, the top-3 ciphers are still
the same as in Table 2, which was assembled with all three
metrics having the same weight, but there are some changes
in the middle of the table. For example, LEA holds now the
position of RECTANGLE (and vice versa) and alsoHEIGHT
and the AES exchanged their position.

The results for Scenario 2 (“Challenge-Response Authen-
tication”) are provided in Table 4, whereby we measured
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Table 3 Results for scenario 1: encryption and decryption of 128 bytes of data in CBC mode

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 1328a 229a 20,622a 900a 222a 16,674a 472 240 9313 5.4

Chaskey-LTS 128 128 1328a 229a 33,102a 904a 222a 25,394a 576a 228a 11,076a 6.5

Speck 64 96 966a 294a 39,875a 664a 290a 29,611a 492 308 15,427 7.5

Speck 64 128 1112a 302a 41,103a 592a 298a 31,832a 444 308 16,505 7.8

Simon 64 96 1084a 363a 63,649a 758a 362a 47,266a 600 376 23,056 10.7

Simon 64 128 1122a 375a 66,613a 780a 374a 49,328a 560 392 23,930 11.0

LEA 128 128 1684a 631a 61,020a 1154a 630a 46,374a 696 644 16,192 11.5

RECTANGLE 64 80 1152a 352a 66,722a 832a 400a 44,050a 664a 426a 35,286a 12.4

RECTANGLE 64 128 1118a 353a 64,813a 846a 406a 44,384a 660a 432a 36,121a 12.5

SPARX 64 128 1426a 392a 61,955a 986a 394a 36,265a 1200a 424a 40,887a 13.4

SPARX 128 128 1736a 753a 83,663a 1710a 758a 46,640a 2290a 784a 53,109a 19.6

AES 128 128 3010a 408a 58,246a 2684a 408a 86,506a 3080a 452a 73,579a 23.6

HIGHT 64 128 1414a 333a 94,557a 1258a 330a 120,215a 1444a 380a 90,385a 25.1

Fantomas 128 128 5892 267 111,677 4164 234 56,788 4604 308 70,142 26.3

Robin 128 128 4944 271 146,149 3170 238 76,588 3572 1312 74,665 28.5

Robin� 128 128 5076 271 157,205 3312 238 88,804 3724 1316 85,247 31.1

RC5-20 64 128 3706 368 252,368 1240 378 386,026 624 376 36,473 37.0

PRIDE 64 128 3384 373 111,155 2918 380 226,135 2240 452 130,017 38.8

RoadRunneR 64 80 2504 330 144,071 3088 338 235,317 2788 418 119,537 39.2

RoadRunneR 64 128 2316 209 125,635 2952 362 218,909 2504 448 140,664 39.8

LBlock 64 80 2954 494 183,324 1632 324 263,778 2204 574 140,647 43.7

PRESENT 64 80 2160a 448a 245,232a 1838a 450a 201,549a 2528a 502a 270,464a 59.3

PRINCE 64 128 5358 374 243,396 4174 240 357,423 4372 504 201,136 62.3

TWINE 64 80 4236 646 297,265 3796 564 387,562 2456 474 255,450 70.8

Piccolo 64 80 1992 314 407,269 1354 310 324,221 1596 406 294,478 71.9

LED 64 80 5156 574 2,221,555 7004 252 2,065,695 3696 654 594,453 264.8

For each cipher and each platform, the results of the implementation with the best performance indicator according to Eq. (1) are shown, whereby
different weights were assigned to the three metrics. Both the memory consumption and code size have a weight of 1, while the execution time has
a weight of 2, which means the execution time is considered more important than the other two metrics. The figure of merit (FOM) is based on the
performance indicators on all three platforms (the smaller the FOM value, the better the implementations of a cipher)
Values in bold indicate the minimal (i.e. best) result for a metric on a target device among all evaluated implementations listed
aResults for assembly implementations

the encryption of 128 bits of data in CTR mode using
pre-computed round keys. We calculated the performance
indicators according to Eq. (1) using the default weights,
which means all three metrics and all three platforms are
considered equally important. The results are similar to that
of Scenario 1 since the three top spots are held by the same
ciphers in exactly the same order, i.e., Chaskey is the best
overall performer and Speck is the runner-up. Simon secured
the third place, even though on all three platforms some other
ciphers show better execution times. However, Simon profits
from its relatively small code size and low RAM footprint.
Positions 4–6 are held by LEA, RECTANGLE, and SPARX
with FOM scores that are between 1.82 and 1.98 times worse
than Chaskey’s FOM score. The FOM score of all other

ciphers is more than three times higher than the FOM of
Chaskey.

Table 5 shows the results when the performance indicators
are computed using a higher weight for the RAM footprint
and code size than for execution time. In real-world imple-
mentations of challenge-response authentication (e.g., access
control systems), the overall latency is often determined by
the data transfers between the two parties rather than the
execution time of the encryption. This is, in particular, the
case for RFID systems, which support only relatively low
transmission rates and are also prone to transmission errors.
In such a setting, one could argue that the execution time
of a lightweight cipher is not the main priority (especially
since the amount of data to be encrypted is small), but rather
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Table 4 Results for scenario 2: encryption of 128 bits of data (pre-computed round keys)

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 624a 80a 1465a 388a 70a 1153a 216a 76a 524a 4.4

Chaskey-LTS 128 128 624a 80a 2265a 390a 70a 1690a 216a 76a 648a 5.0

Speck 64 96 506a 53a 2647a 328a 48a 1959a 256 56 1003 5.1

Speck 64 128 452a 53a 2917a 332a 48a 2013a 276 60 972 5.2

Simon 64 96 600a 57a 4269a 460a 56a 2905a 416 64 1335 7.0

Simon 64 128 608a 57a 4445a 468a 56a 3015a 388 64 1453 7.2

LEA 128 128 906a 80a 4023a 722a 78a 2814a 520a 112a 1171a 8.0

RECTANGLE 64 128 602a 56a 4381a 480a 54a 2651a 444a 76a 2365a 8.5

RECTANGLE 64 80 606a 56a 4433a 480a 54a 2651a 444a 76a 2365a 8.5

SPARX 64 128 662a 51a 4397a 580a 52a 2261a 654a 72a 2338a 8.7

SPARX 128 128 1184a 74a 5478a 1036a 72a 3057a 1468a 104a 2935a 13.0

RC5-20 64 128 1068 63 8812 532 60 15,925 372 64 1919 14.8

AES 128 128 1246a 81a 3408a 1170a 80a 4497a 1348a 124a 4044a 14.9

HIGHT 64 128 636a 56a 6231a 636a 52a 7117a 670a 100a 5532a 15.9

Fantomas 128 128 2496 108 5919 1920 78 3602 2184 184 4550 19.6

Robin 128 128 2530 108 7813 1942 80 4913 2188 184 6250 23.0

Robin� 128 128 2580 106 8052 1980 80 5262 2272 196 6417 23.7

RoadRunneR 64 80 1420 61 7329 1536 76 13,034 1900 172 7234 25.5

PRIDE 64 128 2064 91 5727 1842 68 13,108 1592 148 7446 25.6

RoadRunneR 64 128 1184 59 6289 1724 74 13,266 1436 164 8573 26.3

LBlock 64 80 1440 64 11,183 804 58 16,101 1220 284 9015 28.7

PRESENT 64 80 1294a 56a 16,849a 1072a 58a 12,347a 1222a 80a 17,105a 38.6

PRINCE 64 128 1362 72 20,060 1576 76 24,246 1384 280 15,165 44.0

Piccolo 64 80 1114 72 25,820 784 70 20,081 688 112 17,965 44.2

TWINE 64 80 1528 64 21,701 1922 136 23,662 1180 156 15,673 44.6

LED 64 80 2548 267 135,061 4422 104 121,850 2172 352 35,891 149.2

For each cipher and each platform, the results of the implementation with the best performance indicator according to Eq. (1) are shown. The figure
of merit (FOM) is based on the performance indicators on all three platforms (the smaller the FOM value, the better the implementations of a cipher)
Values in bold indicate the minimal (i.e. best) result for a metric on a target device among all evaluated implementations listed
aResults for assembly implementations

the RAM consumption and code size. The ranking of the 19
ciphers in Table 5 is based on performance indicators that
assign the RAM footprint and code size twice the weight of
execution time. Besides Chaskey, Speck turns out to be very
lightweight and is, thus, an excellent choice for applications
where size is the primary constraint. On all three platforms,
Speck has a code size of below 500 Bytes and RAM footprint
of less than 60 Bytes. Also Simon is size-wise consistently
good on all three platforms.
Caveats. The results of any “benchmark paper” in cryptogra-
phy, including ours, always reflect the state of research at the
time when it was written. However, the efficient implemen-
tation of (lightweight) ciphers is an active area of research
that is likely to provide new approaches for speeding up one
or more of the 19 candidates considered in this paper. The
AES serves as a good example on how progress in soft-

ware optimization techniques can yield significantly more
efficient implementations. Similar progress could also make
one or more of our lightweight ciphers much faster than
anticipated today. This is the reason why we maintain a
web page [19] where up-to-date benchmarking results and
cipher rankings can be found. We also note that the results
of most of the hardware-oriented ciphers are based on C
implementations since, at the time of writing this paper, we
had optimized assembly code only for PRESENT. Although
handcrafted assembly code is often much more efficient than
compiled C code, it seems rather unlikely that assembly pro-
gramming could bring one of the hardware-tailored ciphers
close to the current top performers, unless a tremendous
breakthrough in software optimization ismade. Furthermore,
the presented results reflect, to a certain degree, also the
effort the implementers have put into optimization.We invite
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Table 5 Results for scenario 2: encryption of 128 bits of data (pre-computed round keys)

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 624a 80a 1465a 388a 70a 1153a 184a 76a 568a 7.1

Speck 64 96 448a 53a 2829a 328a 48a 1959a 256 56 1003 7.3

Speck 64 128 452a 53a 2917a 332a 48a 2013a 264 56 1029 7.4

Chaskey-LTS 128 128 624a 80a 2265a 390a 70a 1690a 216a 76a 648a 7.7

Simon 64 96 534a 57a 4521a 460a 56a 2905a 416 64 1335 9.8

Simon 64 128 542a 57a 4709a 468a 56a 3015a 388 64 1453 10.0

RECTANGLE 64 128 602a 56a 4381a 480a 54a 2651a 444a 76a 2365a 11.5

RECTANGLE 64 80 606a 56a 4433a 480a 54a 2651a 444a 76a 2365a 11.5

LEA 128 128 906a 80a 4023a 722a 78a 2814a 520a 112a 1171a 12.1

SPARX 64 128 662a 51a 4397a 580a 52a 2261a 654a 72a 2338a 12.2

RC5-20 64 128 1068 63 8812 532 60 15,925 372 64 1919 18.1

SPARX 128 128 1184a 74a 5478a 904a 80a 3273a 932a 108a 4085a 19.0

HIGHT 64 128 636a 56a 6231a 636a 52a 7117a 670a 100a 5532a 19.7

AES 128 128 1246a 81a 3408a 1170a 80a 4497a 1348a 124a 4044a 21.4

Fantomas 128 128 1712 76 9689 1412 74 5506 1412 104 6484 27.7

Robin 128 128 1712 78 12,499 1406 72 7051 1424 116 7686 30.9

PRIDE 64 128 958 60 11,222 1842 68 13,108 1592 148 7446 33.3

RoadRunneR 64 128 1184 59 6289 756 58 18,067 1436 164 8573 33.3

RoadRunneR 64 80 1420 61 7329 1536 76 13,034 1900 172 7234 33.7

Robin� 128 128 1754 80 14,285 1980 80 5262 1472 116 9186 34.2

LBlock 64 80 1440 64 11,183 804 58 16,101 616 80 11,818 34.7

PRESENT 64 80 1294a 56a 16,849a 1072a 58a 12,347a 1222a 80a 17,105a 44.2

Piccolo 64 80 1114 72 25,820 784 70 20,081 688 112 17,965 48.8

PRINCE 64 128 1362 72 20,060 1578 70 24,375 1200 132 16,270 51.0

TWINE 64 80 1528 64 21,701 1922 136 23,662 1180 156 15,673 52.3

LED 64 80 2602 91 143,317 4422 104 121,850 2172 352 35,891 164.0

For each cipher and each platform, the results of the implementation with the best performance indicator according to Eq. (1) are shown, whereby
different weights were assigned to the three metrics. Both the memory consumption and code size have a weight of 2, while the execution time has
a weight of 1, which means the former two metrics are considered more important than the execution time. The figure of merit (FOM) is based on
the performance indicators on all three platforms (the smaller the FOM value, the better the implementations of a cipher)
Values in bold indicate the minimal (i.e. best) result for a metric on a target device among all evaluated implementations listed
aResults for assembly implementations

the cryptographic research community to send us improved
implementations of the 19 lightweight ciphers we analyzed
in this paper. In addition, we also welcome implementations
of new ciphers.

4.3 Comparison with other benchmarking results

Many of the ciphers we study in this paper have already
been evaluated on AVR, MSP, or ARM processors before,
either separately or within some other benchmarking project.
It is not easily possible to compare performance figures
across various frameworks and implementations because
the evaluation methodology is usually different and also
the optimization efforts typically vary. The importance of a
consistent evaluation framework and methodology becomes

quickly evident when taking the AES counter-mode imple-
mentation for Cortex-M3 processors in [49, Section 3] as
example. This implementation uses the T-table approach
in combination with a careful optimization of the memory
accesses and achieves, according to [49], an average execu-
tion time of 659.4 clock cycles for a single-block encryption
with a 128-bit key. However, this cycle count was only
reached by configuring the Cortex-M3 processor to have a
reduced number of wait states for memory accesses, which
favors implementations using T-tables, but limits the max-
imum frequency the processor can be clocked with. On
the other hand, our benchmarking framework operates the
Cortex-M3 with the full wait states (so that it can be clocked
with its maximum frequency) and reports an execution time
of 1641 clock cycles for this T-table implementation. In
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addition, it must be taken into account that using T-tables
entails a large memory footprint, which worsens the FOM
score. This also explains why an implementation using only
S-box lookups can reach a better FOM score than the T-table
approach, despite the fact that T-tables have the potential to
reduce the execution time by a factor of more than two.

The most notable differences between our benchmarks
and previous implementation results obtained on AVR,MSP,
and ARM are as follows. The MSP implementations of
LBlock, Piccolo, and Twine developed as part of the BLOC
project [16] are a bit worse than ours, whereas the AES,
HIGHT, and PRESENT are much slower. On the other hand,
the AVR assembly implementations of PRESENT and the
AES from the ECRYPT project [27] are slightly slower than
our assembly versions, while our implementation of HIGHT
is twice as fast as the assembly implementation from [26]
and 10 times faster than that from [27].

5 Conclusions

Wepresented a benchmarking framework for fair and consis-
tent evaluation of lightweight block ciphers on three widely
used microcontroller platforms for IoT devices, namely 8-bit
AVR, 16-bit MSP430, as well as 32-bit ARM Cortex-M3.
The framework is able to extract three metrics of inter-
est (execution time, RAM footprint, and binary code size)
in a highly automated fashion and supports both cycle-
accurate instruction set simulators and development boards.
Furthermore, we introduced two usage scenarios for the
evaluation of block ciphers that accomplish common IoT
security services by utilizing the basic cipher operations.
The framework allows one to aggregate the three extracted
metrics on the three platforms into a single figure of merit
according to which a set of ciphers can be ranked. With
the help of this framework, we evaluated a total of 19
lightweight block ciphers using a code base consisting of
over 250 different implementations altogether (including
carefully optimized assembly implementations for nine of
the 19 ciphers). Our results show that state-of-the-art ARX
and ARX-like designs are not only very fast, but also
extremely small in terms of RAM footprint and code size.
The overall winner of our triathlon competition, based on
the FOM metric, is Chaskey, closely followed by Speck.
Both perform consistently well in the two usage scenar-
ios and on all three platforms, which makes them strong
candidates for a lightweight cipher to secure the IoT. Also
Simon, LEA, RECTANGLE, and SPARX achieved very
good results with FOM values below 10.0 when execution
time, RAM footprint, and code size are considered equally
important.

The FOM scores we used to rank the 19 lightweight block
ciphers are solely based on efficiency metrics and do not

take any (cryptanalytic) security aspects into account. In
this context, it should be noted that neither Chaskey nor
versions of Speck operating on more than 32 bits provide
provable security against linear or differential cryptanaly-
sis. Also related to security is our observation that the key
size has only a marginal impact on the overall efficiency
of modern lightweight ciphers. In particular, the results for
Simon and Speck indicate a gain in the FOM metric by a
few per cent when the key size is reduced from 128 bits to
96 bits, which can hardly justify the corresponding loss of
security.

The provided results can assist IoT security engineers
when choosing a lightweight cipher to match the require-
ments of the target application and the constraints of the target
device(s). Furthermore, the results are relevant for designers
of ciphers as they allow them to infer some links between
basic design decisions and the resulting performance and
size figures when the cipher is implemented in software and
executed on microcontrollers. In particular, we recommend
cipher designers to focus on simple round functions that
use as few operations as possible and reach a good secu-
rity level after several iterations. Among the most efficient
operations are the bitwise logical operations and modular
addition/subtraction. The cost of rotations depends on both
the features of the target architecture and the rotation amount.
One should use rotations by some carefully chosen value
(e.g., 7, 8, 9, 15, or 16 bits for a 32-bit word) to reduce the
execution time and code size on platforms that support only
rotations by one bit at a time. To get the best performance
across architectures with different word sizes, the cipher’s
word size should match the largest register size available on
the considered architectures. In this way, the content of the
registers is efficiently used on the platforms with the largest
word size, while the performance on architectures with a
smaller register size is not affected. The efficient operations
mentioned above do not require memory accesses, provided
that the cipher’s state can be kept in the available registers.
Finally, lookup tables of any size should be avoided as they
increase the code size and/or RAM footprint and also require
costly load instructions.

Future work may include the addition of new ciphers,
integration of countermeasures against physical attacks,
extending the toolsuite’s capabilities to benchmark other
lightweight symmetric primitives (stream ciphers, hash func-
tions, authenticated encryption algorithms) and the support
of additional processors.
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A Target devices

8-bit AVR ATmega128microcontroller

The ATmega128 [4] microcontroller developed by Atmel is
based on an 8-bit RISC architecture and provides 133 instruc-
tions, which are encoded to be either 16 or 32 bits wide.
Most of the instructions are executed in only one or two
clock cycles. The ATmega128 features a two-stage pipeline,
making it possible to execute an instruction while the next
instruction is fetched from program memory. In addition, it
comes with a relatively large register file consisting of 32
general-purpose registers (R0 to R31) of 8-bit width. Six
registers can be used as three 16-bit pointers (X, Y, and Z)
to access the data space. All 32 registers are directly con-
nected to the arithmetic logic unit (ALU). The standard ALU
instructions have a two-address format, which allows them
to read two 8-bit operand words from two independent regis-
ters and write the result of the operation back to one of them.
Like othermembers of the 8-bit AVR family, the ATmega128
uses a Harvard architecture (i.e., separate memories, buses,
and address spaces for program and data) to maximize per-
formance and parallelism. The memory sub-system includes
128 kB of flash (for storing program code), 4 kB of SRAM,
and 4 kB of EEPROM.

16-bit MSP430F1611microcontroller

The MSP430F1611 [53] is a 16-bit microcontroller from
Texas Instruments that contains a RISC CPU optimized for
ultra-low power consumption and various peripheral mod-
ules. A distinguishing feature of the MSP430 architecture
is its minimalist instruction set comprising only 27 core
instructions and 24 emulated instructions. The length of an
instruction can vary between one and three 16-bit words,
i.e., between two and six bytes. Depending on the instruc-
tion format, the 27 core instructions fall into three categories:
double-operand instructions (which overwrite one of the two
operands with the result), single-operand instructions, and
jumps. The MSP430 instruction set is highly orthogonal and
supports seven addressing modes for the source operand
and four addressing modes for the destination operand.
Depending on the used addressing modes, double-operand
instructions have a latency of between one clock cycle (when
source and destination operands are held in registers) and
six clock cycles (operands are in RAM or flash). There
are 16 registers, of which four, namely R0 to R3, serve a
special purpose. The von Neumann memory system of the
MSP430F1611 consists of 10 kB RAM and 48 kB flash.

32-bit ARM Cortex-M3microcontroller

The Cortex-M3 is a member of the ARM Cortex-M series
of 32-bit microcontrollers that was specifically designed
to achieve high system performance in power- and cost-
sensitive embedded applications [3]. It is based on the
ARMv7-M architecture and supports Thumb-2 technology,
which extends the 16-bit fixed-width Thumb instruction set
with some additional 32-bit ARM instructions, whereby 16-
bit and 32-bit instructions can be freely intermixed. Data
processing instructions have a conventional three-address
format that allows the target register to be distinct from the
two source operands. The first operand must always be one
of the 13 general-purpose 32-bit registers, while the sec-
ond operand can be a register, an immediate value, or a
register with an optional shift. Many instructions can be exe-
cuted conditionally, based on condition flags set by another
instruction. Cortex-M3 microcontrollers incorporate a Har-
vard architecture (enabling simultaneous instruction fetch
with data load/store) and have a three-stage pipeline with
branch speculation. The specific Cortex-M3 device we use
for benchmarking is an Arduino Due board equipped with an
Atmel SAM3X8 that features 512 kB flash and 96 kB RAM.

B API and implementation requirements

To unify evaluation conditions, our framework imposes some
requirements on the implementation of a block cipher. Firstly,
basic operations must be performed by functions having the
following C prototypes.
void RunEncryptionKeySchedule(uint8_t

*key, uint8_t *roundKeys);
void Encrypt(uint8_t *block, uint8_t

*roundKeys);
void RunDecryptionKeySchedule(uint8_t

*key, uint8_t *roundKeys);
void Decrypt(uint8_t *block, uint8_t

*roundKeys);
Each of the above functions should be implemented in its
own C file. If the cipher key schedule is the same for encryp-
tion and decryption then only the encryption key schedule
function has to be implemented. The framework takes a
common key schedule into account when computing the dif-
ferent metrics. Secondly, all other common code sections
should be placed in separate functions to reduce the overall
code size. The implementer needs to add the names of the
common files to the implementation info file, which gets
parsed by the framework when extracting the three met-
rics for the implementation. Thirdly, the implementer has
to choose whether the constants used by the cipher should
be stored in flash/ROM or RAM. However, this flexibility
comes at the expense that the implementer has to define and
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use a dedicated macro to read the constant value(s). Fourthly,
the block size used by the implementation must be a multiple
of 64 bits.

While these requirements guarantee the same evaluation
conditions for an accurate assessment of the performance of
a block cipher in various different evaluation scenarios, they
limit the applicability of some optimization techniques like
bit-slicing. Even though bit-sliced implementations can be
very fast, they have the disadvantage of high memory con-
sumption and can only be used in non-feedback modes of
operation (e.g., CTR mode). However, the performance of a
cipher implementation in such (highly) specific settings does
not say anything about the cipher’s performance inmore gen-
eral usage scenarios, which is what we are mainly interested
in and our framework was designed for. The benchmarking
toolsuite is able to verify the compliance with the formulated
requirements and to check the correctness of an implementa-
tion with the help of test vectors. Since the metrics extraction
process is completely automated, the toolsuite is easy to use,
even for beginners with little experience.
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