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Abstract
Converting a Boolean mask to an arithmetic mask, and vice versa, is often required in implementing side-channel-resistant
instances of cryptographic algorithms that mix Boolean and arithmetic operations. In this paper, we describe a method for
converting a Boolean mask to an arithmetic mask that runs in constant time for a fixed order and has quadratic complexity as
the security order increases, a significant improvement in previous work that has exponential complexity. We propose explicit
algorithms for a second-order secure Boolean-to-arithmetic mask conversion that uses 31 instructions and for a third-order
secure mask conversion that uses 74 instructions. We show that our second-order secure algorithm is at least an order of
magnitude faster and our third-order secure algorithm is more than twice as fast as other algorithms in the literature.

Keywords Side-channel analysis · Higher-order DPA · Mask switching · Countermeasures · Boolean-to-arithmetic mask
conversion

1 Introduction

Differential Power Analysis (DPA) was introduced as a
means of extracting cryptographic keys by Kocher et al. [16]
in 1999, who noted that the power consumption of a device
was dependent on the operations being performed, and the
value of the operands used. They showed that one could
acquire the power consumption over time while a device was
computing a cryptographic algorithm, and analyze the acqui-
sitions to determine the cryptographic key. Subsequently, it
was shown that the same analyses could be conducted by
exploiting other side channels, e.g., the changes in the elec-
tromagnetic field around a microprocessor [1,10,25].

A typical DPA attack involves acquiring a series of acqui-
sitions while a device is operating on varying inputs and
analyzing the power traces by comparing what occurred at
the same point in time in each trace. The simplest analysis is
to choose one bit of an intermediate state and divide the set
of acquisitions depending on the value of this bit, make two
mean traces and subtract one trace from the other point by
point. A significant difference should be visible in the trace
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corresponding to where this intermediate state was created
by the device. This is typically referred to as a first-order
analysis, as each point in the output trace is dependent on the
same point in time in the acquisitions. If two (or more) points
in each trace are combined, we refer to as a second-order (or
higher-order) analysis.

To prevent the side-channel analyses of a cryptographic
implementation, one would typically apply a random mask
to the input such that operating on the masked data is
indistinguishable from random data. A common masking
technique is Boolean masking, where an input word gets
masked by a randomvalue.All operations are then performed
using the Boolean-masked data. However, there exist many
cryptographic algorithms that require bothBoolean and arith-
metic operations, such as the addition of integers, e.g.,
SHA-2 [22], ChaCha [5], Blake [2], Skein [9], IDEA[17],
RC6[27]. Masked versions of these algorithms therefore
require changing Boolean masks into arithmetic masks, and
vice versa, which we refer to as “Boolean-to-arithmetic" and
“Arithmetic-to-Boolean" mask conversions, respectively.

In 2001, Goubin [12] proposed an efficient constant-
timemethod for Boolean-to-arithmetic mask conversion. His
method is secure against first-order analysis, but does not
resist second-order attacks. The solutions in the literature
use recursive methods [7,28], where the missing carry bits
are calculated using a masked-adder structure, or look-up
table-based methods [30,31], that perform precomputations
and store intermediates in memory. It has also been sug-
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gested that higher-order versions of Boolean-to-arithmetic
mask conversion cannot be done in constant time [30].

In this paper, we present novel algorithms for higher-order
secure Boolean-to-arithmetic mask conversion. All proposed
methods run in constant time and are independent on the
input-word size. In particular, we present a second-order
secure algorithm that requires only 31 instructions and a
third-order secure algorithm that requires only 74 instruc-
tions. Our algorithms are significantly faster than the best
recursive methods in the literature [7].

This paper is an extended version of previous work first
published on the IACR’s eprint server in 2016 [13]. After
a weakness was identified in our third, and higher-order,
algorithms [8], the algorithms were updated and are pre-
sented here. Our second-order secure algorithm remains
secure and is at least one order of magnitude faster than pre-
vious work. The algorithms we present were tested using
exhaustive simulation, inspired by the state-of-the-art strong
non-interference (SNI) notion. Proofs based on this notion
are also provided.We show that our corrected algorithms are,
at aminimum, about twice as fast as relatedwork—including
recent work [8].

In addition to the new contributions, we highlight the
importance of the number of random numbers when com-
paring algorithms. Many algorithms give an artificially low
instruction count hiding a large number of required ran-
dom numbers. In comparing our work with other published
works, we take into account the number of random values
required to implement an algorithm by considering the num-
ber of instructions required to compute an Xorshift random
number generator [21] used by Coron’s explicit implementa-
tion [8].Wedemonstrate that ourwork is about twice as fast as
Coron’s in all cases.Moreover, our algorithms have quadratic
complexitywith regard to the security order,whereasCoron’s
algorithms have exponential complexity.

The paper is organized as follows. In Sect. 2, we describe
the general Boolean-to-arithmetic mask conversion problem
and discuss previous work. In Sect. 3, we present a novel
constant-time algorithm to perform a secure second-order
Boolean-to-Arithmetic mask conversion, and generalize it to
higher orders in Sect. 4. In Sect. 5, we compare our work
with other algorithms in the literature, and discusses imple-
mentation considerations in both software and hardware in
Sect. 6. Conclusions are drawn in Sect. 7.

2 Boolean-to-arithmetic masking

In this paper, we shall consider operations available in a
typical microprocessor with registers of a fixed bit length.
Specifically, we shall consider values that are in the field
(Z2k ,⊕,+) where k ∈ Z≥0 is the bit length of the registers
used,⊕ is a bitwise XOR operation and+ is integer addition.

Other operations are available in a typical microprocessor,
but are not relevant to the algorithms described in this paper.

We define the problem of changing a Boolean mask into
an arithmetic mask as follows:

Definition 1 (The problem of converting Boolean to arith-
metic masks) Given x ′ = x ⊕ r , where x, r ∈ (Z2k ,⊕,+),
as a Boolean-masked secret x and r is a random value taken
from Z2k , we wish to be able to compute x ′′ = x + s, with
s ∈ (Z2k ,⊕,+)where k ∈ Z≥0, without revealing any infor-
mation on x through some side channel, where x ′′ is the
arithmetically masked secret x and s is a random value taken
from Z2k .

One naïve approach would be to perform the conversion
directly by simply removing theBooleanmask and by adding
an arithmetic mask afterward, i.e.,

(x ′ ⊕ r) + s = ((x ⊕ r) ⊕ r) + s = x + s = x ′′,

using the notation given in Definition 1. This, however,
wouldmanipulate x directly, allowing an attacker to use side-
channel analysis to determine that a hypothesized value of x
ismanipulated during themask conversion.Hence, one needs
to use an algorithm where all intermediates are statistically
independent of the secret x .

Definition 1 is generalized to higher-order masking
schemes as follows:

Definition 2 (The problem of converting Boolean to arith-
metic masks of higher order) Assuming a masking scheme
of order n. Then, given x ′ = x ⊕ r1 ⊕· · ·⊕ rn , where x, ri ∈
(Z2k ,⊕,+), k ∈ Z≥0 for i ∈ {1, . . . , n}, as a Boolean-
masked secret x and n a random values, ri for i ∈ {1, . . . , n},
taken from Z2k , we wish to compute x ′′ = x + s1 +· · ·+ sn ,
with si ∈ (Z2k ,⊕,+) for i ∈ {1, . . . , n}, without revealing
any information on x through some side channel, where x ′′ is
the arithmetically masked secret x and si , for i ∈ {1, . . . , n},
are random values taken from Z2k .

Higher-order mask conversion methods require that the
masks used for the arithmetically masked output are not
related to the Boolean-masked input to avoid any side-
channel leakage. If we consider, without loss of generality, a
second-order secure Boolean-to-arithmetic mask conversion
that uses the same input masks r1 and r2 to mask the output,
information would leak through the carries generated from
the arithmetic masks. For ease of expression, we shall con-
sider an attacker able to XOR two intermediate states together
in a second-order side-channel attack (a very rough approx-
imation of a second-order side-channel attack, we refer the
interested reader to Mangard et al. [19] for a more detailed
discussion). If an attacker can combine the input x ′ and the
output x ′′ using some side-channel information, they obtain
the following:
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x ′ ⊕ x ′′ = (x ⊕ r1 ⊕ r2) ⊕ (x + r1 + r2)

= (x ⊕ r1 ⊕ r2) ⊕ ((x ⊕ r1 ⊕ c1)) ⊕ r2 ⊕ c2)

= c1 ⊕ c2,

where c1 and c2 represent the carries produced in the addi-
tions x + r1 and (x + r1) + r2, respectively, as an XOR
difference. That is, c1 = (x + r1) ⊕ x ⊕ r1 and c1 =
(x + r1 + r2) ⊕ x ⊕ r1 ⊕ r2. We note that c1 and c2 are
dependent on x and could be used to conduct a side-channel
attack.

To avoid this source of higher-order leakage, the output
of the mask conversion needs to be masked with values that
are independent of the input Boolean masks. This can be
achieved through refreshing themasks during the conversion,
either once or periodically, as required [7].

In the following, we describe some of the methods for
mask conversion that have been presented in the literature.

2.1 Goubin’s method

Goubin proposed an efficientmethod of converting aBoolean
mask to an arithmetic mask at CHES 2001 [12]. His method
requires a constant number of instructions, is resistant to
first-order side-channel analysis and, at the time of writing,
remains the most efficient algorithm known.

The essential observation of Goubin was that the function

ΦZ(a, b) : Z2 −→ Z : a, b �−→ (a ⊕ b) + b (1)

is affine over F2. It follows that (Φ(a, b)⊕Φ(a, 0)) is linear
for any b ∈ Z. Trivially, we note the same function is valid in
the field (Z2k ,⊕,+), for any k ∈ Z≥0, and in the remainder
of this paper, we shall consider the function:

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (2)

a, b �−→ (a ⊕ b) + b

for some k ∈ Z≥0.
Taking the notation from Definition 1, for some arbitrary

k in Z≥0, the above allows one to mask the computation of
Φ(x ′, r) = (x ′ ⊕ r) + r with an additional random value
γ ∈ Z2k . We recall x, r ∈ (Z2k ,⊕,+) and x ′ = x ⊕ r .
Then,

Φ(x ′, γ ⊕ r) = (x ′ ⊕ (γ ⊕ r)) + (γ ⊕ r), (3)

which can be followed by an unmasking step using

Φ(x ′, γ ) = (x ′ ⊕ γ ) + γ. (4)

Hence, a secure Boolean-to-arithmetic mask conversion can
be performed using the following relationship:

x ′′ = x ′ ⊕ Φ(x ′, γ ) ⊕ Φ(x ′, γ ⊕ r)

= x ′ ⊕ [(x ′ ⊕ γ ) + γ ] ⊕ [(x ′ ⊕ (γ ⊕ r)) + (γ ⊕ r)]
(5)

where following the notation in Definition 1, s = r , i.e.,
x ′′ = x + r . One can implement this conversion using 7
instructions (2 additions and 5 XOR operations), as described
by Goubin, and is recalled in Algorithm 1.

Algorithm 1: First-order secure Boolean-to-arithmetic
masking

Input: x ′ = x ⊕ r , the mask r , a random integer γ ,
where x, r , γ ∈ (Z2k ,⊕,+)

Output: x ′′ = x + r

1 t ← x ′ ⊕ γ

2 t ← t + γ

3 t ← t ⊕ x ′
4 γ ← γ ⊕ r
5 z ← x ′ ⊕ γ

6 z ← z + γ

7 z ← z ⊕ t
return z

Goubin then proceeds to give a proof of the following:

Lemma 1 An implementation of Algorithm 1 is resistant to
first-order side-channel analysis.

Proof From Algorithm 1, we can obtain the list of interme-
diate values V0, . . ., V6 that appear during the computation
of (5):

V0 = γ

V1 = γ ⊕ r

V2 = x ′ ⊕ γ

V3 = (x ′ ⊕ γ ) + γ

V4 = [
(x ′ ⊕ γ ) + γ

] ⊕ x ′

V5 = x ′ ⊕ γ ⊕ r

V6 = (x ′ ⊕ γ ⊕ r) + (γ ⊕ r)

If we suppose that γ is uniformly distributed onZ2k , for some
arbitrary k ∈ Z≥0, it is easy to see that:

– The values V0, V1, V2, and V5 are uniformly distributed
on Z2k .

– The distributions of V3, V4, and V6 are dependent on x ′
but not on r . 	


We note that this proof holds in the field (Z2k ,⊕,+), for any
k ∈ Z≥0, but not in Z since the carry produced by the most
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significant bits of x combined with the arithmetic mask will
depend on x .

2.2 Recursive methods

One can also convert a Boolean-masked value into an arith-
metically masked value using an addition operation, which
generates the required carries that can then be applied to
the Boolean-masked input value bit-by-bit. The first applica-
tion was proposed by Goubin [12] as a means of converting
an arithmetic mask to a Boolean mask (a topic beyond the
scope of this paper), and a similar technique was described
by Golić in 2007 who proposed using the same method
for Boolean-to-arithmetic mask conversion in hardware [11].
Both conversion methods have a complexity of O(n) with
regard to the bit length of the inputs because all n bits of the
input word are processed individually.

Another hardware-oriented design was proposed by
Schneider et al. [28], who presented a conversion method
based on a Carry Look-ahead Adder (CLA) structure which
reduces the complexity toO(log n). They adopted a threshold
implementation [23,24] approach to avoid first and second-
order side-channel leakage.

Recursive software implementations were proposed by,
for example, Karroumi et al. They described amethod adding
two Boolean-masked values in O(n) time [15]. Coron et
al. [6] were the first to propose the use of Carry Look-
ahead Adders in software, thus reducing the complexity to
O(log n). Both works made use of masked AND operations,
as defined by Trichina [29] and Ishai et al. [14], respectively.

2.3 Higher-order Boolean-to-arithmetic masking

Coron et al. [7] proposed a method for conducting a higher-
order Boolean-to-arithmetic mask conversion (see Defini-
tion 2) at CHES 2014. Their algorithm calculates carries
recursively and is built on masked AND and XOR operations
that are resistant to higher-order side-channel analysis. Using
these secure operations, one can construct an adder resistant
to higher-order side-channel analysiswithwhich one can also
convert an arithmeticmask to aBooleanmask (the latter topic
being beyond the scope of this paper). The authors reported
that their fastest hth-order Boolean-to-arithmetic mask con-
version has a minimum time complexity of O((2 h + 1)2n),
with regard to the bit length of the inputs n.

The first look-up table-based conversion algorithm that
resists second-order attacks was proposed by Vadnala and
Großschädl [30], where, to achieve the desired level of
resistance, the algorithm adopts the generic second-order
secure S-box implementation of Rivain et al. [26]. Using this
method, following the notation in Definition 2, one computes
xi + r for fixed r , where xi ∈ {0, . . . , 2k}, and then chooses
the correct masked output from all the possible values gen-

erated. However, a table with 2k entries is required which is
problematic if k is not small.

An improved version was proposed by Vadnala and
Großschädl [31], where an input k-bit word would be split
into p words with smaller bit widths of � ≤ 8 bits. The
conversion is then done on each word individually, and the
results combined. Their final solution has a time complexity
ofO(2�+2 p) and a memory requirement ofO(2�+2(�+ 2)).

3 Constant-time second-order
Boolean-to-arithmetic mask conversion

In this section, we present a novel method to perform second-
order secure Boolean-to-arithmetic mask conversion whose
time complexity is independent of the input-word size. Fol-
lowing the notation in Definition 2, we consider a Boolean-
masked input x ′ = x⊕r1⊕r2, where x, r1, r2 ∈ (Z2k ,⊕,+),
and an arithmetically masked output x ′′ = x+s1+s2, where
s1, s2 ∈ (Z2k ,⊕,+).

In the following, we try to express the ideas behind the
mask conversion as clearly as possible. This leads to many
instances where an expedient expression will leak if imple-
mented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt
to enumerate all the possible leaks that could be caused by
incorrectly ordering operations.

3.1 Definitions

We recall (2), defined over the field (Z2k ,⊕,+), for any
k ∈ Z≥0

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (6)

a, b �−→ (a ⊕ b) + b

for any k ∈ Z≥0. We shall also use the function

Φ̄(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (7)

a, b �−→ (a ⊕ b) − b

for any k ∈ Z≥0. While subtraction is not a field operation,
we shall use it as a convenient way of expressing the addition
with the additive inverse of an operand. Similar toΦ, Goubin
notes that

x − r = x ′ ⊕ Φ̄(x ′, γ ) ⊕ Φ̄(x ′, γ ⊕ r), (8)

using the notation in Definition 1, and that Φ̄ is also affine
over F2 [12].
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3.2 The Algorithm

Our conversion method consists of three steps.

1. We compute (x + (r1 ⊕ r2 ⊕ α)) + s1 for some random
values α, s1 ∈ Z2k .

2. We compute s2−(r1⊕r2⊕α) for some random s2 ∈ Z2k .
3. Add the results of Steps 1 and 2, resulting in x + s1 + s2.

We describe these steps in detail below.
Step 1 We consider Goubin’s solution to the first-order
Boolean-to-arithmetic mask conversion (5),

x + r = (x ⊕ r) ⊕ Φ(x ⊕ r , γ ) ⊕ Φ(x ⊕ r , γ ⊕ r). (9)

Let r = r1 ⊕ r2 and γ = γ1 ⊕γ2, where r1, r2, γ1, γ2 ∈ Z2k ,
then

x + (r1 ⊕ r2) = (x ⊕ r1 ⊕ r2) ⊕ Φ(x ⊕ r1 ⊕ r2, γ1 ⊕ γ2)

⊕ Φ(x ⊕ r1 ⊕ r2, γ1 ⊕ γ2 ⊕ r1 ⊕ r2),
(10)

or, more succinctly, using the notation from Definition 2,

x + (r1 ⊕ r2) = x ′ ⊕ Φ(x ′, γ1 ⊕ γ2)

⊕ Φ(x ′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2). (11)

Given that Φ is affine over F2, we can split the first Φ oper-
ation giving,

x + (r1 ⊕ r2) = Φ(x ′, γ1) ⊕ Φ(x ′, γ2)
⊕ Φ(x ′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2). (12)

If onewere to compute x+(r1⊕r2)using the above, a second-
order side-channel attack would be possible for same reason
that we require the input and outputmask to be different. That
is, the combined leakage of the input x ′ and x + (r1 ⊕ r2)
will depend on x (see Sect. 2).

To overcome this problem, we apply an extra Boolean
mask, α ∈ Z2k , to x ′ as follows:

(x ⊕ α) + (r1 ⊕ r2) = Φ(x ′ ⊕ α, γ1) ⊕ Φ(x ′ ⊕ α, γ2)

⊕ Φ(x ′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2).
(13)

However, (x⊕α)+(r1⊕r2) is not useful but can bemodified
given that Φ is affine over F2, resulting in

x + (r1 ⊕ r2 ⊕ α) = Φ(x ′ ⊕ α, γ1) ⊕ Φ(x ′ ⊕ α, γ2)

⊕ Φ(x ′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α).

(14)

If we consider (14), we note that the combination of x+(r1⊕
r2⊕α)with eitherΦ(x ′ ⊕α, γ1) orΦ(x ′ ⊕α, γ2)will not be
statistically independent of x . In both cases, the combination
will be dependent on the carry bits produced by the arithmetic
operations, as all variables occur an even number of times.
The effect is similar to that seen if masks are not changed in
a higher-order conversion algorithm, as discussed in Sect. 2.
We can, prevent this by applying a Boolean mask s1 ∈ Z2k ,
giving:

(x + (r1 ⊕ r2 ⊕ α)) ⊕ s1 = Φ(x ′ ⊕ α, γ1) ⊕ Φ(x ′ ⊕ α, γ2)

⊕ Φ(x ′ ⊕ α, γ1 ⊕ γ2

⊕ r1 ⊕ r2 ⊕ α) ⊕ s1. (15)

The order that (15) is computed is important to avoid com-
bining masks that would allow a second-order side-channel
attack. However, this is quite straightforward and will not be
detailed here.

Then, given (x + (r1 ⊕ r2 ⊕ α)) ⊕ s1, one can apply
Goubin’s first-order Boolean to arithmetic mask conversion,
as described in Algorithm 1, which will produce

x + (r1 ⊕ r2 ⊕ α) + s1 (16)

without any first or second-order leakage.
Step2The second step is anotherBoolean-to-arithmeticmask
conversion to securely compute s2 − (r1 ⊕ r2 ⊕ α), where
s2 represents one of the two output masks. For this purpose,
one canuse thefirst-order secureBoolean-to-arithmeticmask
conversion defined in (5), where we define s′

2 = s2 ⊕ (r1 ⊕
r2 ⊕ α) as the Boolean-masked input and s′′

2 = s2 − (r1 ⊕
r2 ⊕ α) as the arithmetically masked output of the following
conversion. Then, given (5), we have

s′′
2 = s′

2 ⊕ Φ̄(s′
2, δ) ⊕ Φ̄(s′

2, δ ⊕ r1 ⊕ r2 ⊕ α), (17)

where δ is a random value taken from Z2k . If we let δ = r1,
then

s′′
2 = s′

2 ⊕ Φ̄(s′
2, r1) ⊕ Φ̄(s′

2, r2 ⊕ α), (18)

and, given that Φ̄ is affine over F2, this can be rewritten as

s2 − (r1 ⊕ r2 ⊕ α) = Φ̄(s′
2, r1) ⊕ Φ̄(s′

2, r2) ⊕ Φ̄(s′
2, α).

(19)

Equation (18) requires a total of 7 XORs and 2 additions,
whereas Eq. (19) requires 5 XORs and 3 additions. Thus, the
first equation might be attractive for hardware implementa-
tions in cases where additions are more expensive than XOR
operations.
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Step 3 We can now compute the desired arithmetically
masked value x ′′ by combining the output of (16) and (19),
i.e.,

x ′′ = ((x + (r1 ⊕ r2 ⊕ α) + s1)) + (s2 − (r1 ⊕ r2 ⊕ α))

= x + s1 + s2.

3.3 Implementation details

Algorithm 2 shows the second-order secure Boolean-to-
arithmetic mask conversion described above, which requires
31 instructions. We made some effort to reduce the number
of instructions and random values required without affecting
the level of security or the sequence of steps. That is, we com-
pute the steps given at the beginning of Sect. 3.2. The details
of the steps given above remain unmodified for clarity.

Algorithm 2: Second-order secure Boolean-to-
arithmetic masking.
Input: x ′ = x ⊕ r1 ⊕ r2 with x, r1, r2 ∈ Z2k and random

numbers γ1, γ2, α, s1, s2 ∈ Z2k for some k ∈ Z≥0
Output: x ′′ = x + s1 + s2

1 z ← γ1 ⊕ r1
2 z ← z ⊕ γ2
3 z ← z ⊕ r2
4 u ← x ′ ⊕ z
5 z ← z ⊕ α

6 u ← u + z
7 v ← x ′ ⊕ γ1
8 v ← v ⊕ α

9 v ← v + γ1
10 w ← x ′ ⊕ γ2
11 w ← w ⊕ α

12 w ← w + γ2
13 z ← r2 ⊕ s1
14 u ← u ⊕ r2
15 u ← u ⊕ v

16 u ← u ⊕ w

17 v ← u ⊕ s1
18 v ← v + r2
19 w ← u ⊕ z
20 v ← v ⊕ w

21 w ← u + z
22 z ← v ⊕ w

23 w ← α ⊕ r2
24 u ← s2 ⊕ r1
25 u ← u − w

26 w ← w ⊕ s2
27 v ← w ⊕ r1
28 w ← w − r1
29 u ← u ⊕ v

30 u ← u ⊕ w

31 z ← z + u
return z

We prove the security of Algorithm 2 using the probing
model proposed by Ishai et al. [14], where we seek to show
that it is secure for up to two probes. For this, we use the
refined model proposed by Barthe et al. [4] where we make
use of the t-SNI (strong non-interference) construction, with
t being the security order. This allows us to prove that an
algorithm is only vulnerable to a side-channel attack of order
n, where n ≥ t + 1 (rather than n ≥ 2 t + 1 required by Ishai
et al.).

Lemma 2 (2-SNI of Algorithm 2) Let {x ′, r1, r2} be the input
shares of Algorithm 2, and {x ′′, s1, s2} be the output shares
for any set of t intermediate variables and any subset |k| ≤ tk
of output shares such that t+tk ≤ 2, there exists a subset I of
intermediate variableswith |I | ≤ 2, such that the distribution
of those t intermediate variables, and the output shares can
be perfectly simulated from {x ′, r1, r2}.
Proof We construct two sets I = {x ′, r1, r2} and J =
{γ1, γ2, α, s1, s2} corresponding to the input shares and the

random values required, respectively. We denote ai , for
1 ≤ i ≤ 31, as the intermediate values in Algorithm 2,
the definition of which means that is easy to see that each
ai can be perfectly simulated from the input shares and/or
the required random values. That is, any internal variable
within Algorithm 2 can be perfectly simulated from a subset
of elements from I and/or J . 	


This was validated by implementing a simulator and ver-
ifying that the distributions of each ai , for 1 ≤ i ≤ 31,
are identical for all values of x ∈ Z24 , without loss of
generality. Likewise, the simulator also verified the joint dis-
tribution of all possible combinations of pairs of elements
in I ∪ J ∪ {a1, . . . , a31} (i.e., the union of the set of inputs,
required random values, and intermediate states) are iden-
tical for all values of x ∈ Z24 , without loss of generality.
Thus, demonstrating that Algorithm 2 is resistant to first and
second-order side-channel analysis.We chose the fieldZ24 to
be small enough tomake verification trivial and large enough
that carries are propagated as they would be in an arbitrarily
large field.

Remark 1 We note our proof is somewhat different to the
proofs described by Barthe et al. [4]. Typically, one would
seek to model intermediate states as random values to ease
the computation complexity of the verification. However, the
combination ofBoolean and arithmetic operationsmakes this
difficult, and it is simpler to model the random values as
inputs to determine whether the distribution of each interme-
diate state is identical for all values that the masked input can
take.

4 Higher-order Boolean-to-arithmetic
masking

To generalize the algorithm described in Sect. 3, we consider
an nth-order Booleanmasking scheme, for n > 2, that masks
the secret value x with random masks r1, . . . , rn . That is,
we wish to take x ′ = x ⊕ ⊕n

i=1 ri and compute x ′′ = x +∑n
i=1 si without allowing any nth-order leakage to occur (see

Definition 2).
In the following, we try to express the ideas behind the

mask conversion as clearly as possible. This leads to many
instances where an expedient expression will leak if imple-
mented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt
to enumerate all the possible leaks that could be caused by
incorrectly ordering operations.

4.1 The Algorithm

Our conversion method consists of four steps.
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1. We compute x + (α ⊕ ⊕n
i=1 ri ) + ⊕n−1

i=1 μi for some
random values α,μi ∈ Z2k .

2. We compute (α ⊕ ⊕n
i=1 ri ) + ⊕n−1

i=1 μi + ⊕n−1
i=1 κi for

some random values κi ∈ Z2k .
3. We compute

⊕n−1
i=1 κi + ∑n

i=1 si for all output masks
si ∈ Z2k .

4. We combine the results of Steps 1, 2, and 3 to obtain
x + ∑n

i=1 si .

We describe these steps in detail below.
Step 1 We consider Goubin’s solution to the first-order
Boolean-to-arithmetic mask conversion (5):

x + r = (x ⊕ r) ⊕ Φ(x ⊕ r , γ ) ⊕ Φ(x ⊕ r , γ ⊕ r). (20)

Let r = r1 ⊕ · · · ⊕ rn and γ = γ1 ⊕ . . . ⊕ γn , where
r1, . . . , rn, γ1, . . . , γn ∈ Z2k ; then following the reasoning
given in Sect. 3.2, we can state

x +
n⊕

i=1

ri = x ′ ⊕ Φ

(

x ′,
n⊕

i=1

γi

)

⊕ Φ

(

x ′,
n⊕

i=1

γi ⊕ ri

)

.

(21)

Given that Φ is affine over F2, we can split the first Φ oper-
ation giving,

x +
n⊕

i=1

ri = ((n ∧ 1)x ′) ⊕
(

n⊕

i=1

Φ(x ′, γi )
)

⊕Φ

(

x ′,
n⊕

i=1

γi ⊕ ri

)

, (22)

where ∧ is a logical-AND operation. That is, we require an
XOR with x ′ only when n is odd.

To prevent second-order leakage caused by the combina-
tion of the input x ′ and the output of (22), we apply an extra
Boolean mask, α ∈ Z2k , following the reasoning given in
Sect. 3, i.e.,

x +
(

α ⊕
n⊕

i=1

ri

)

= ((n ∧ 1)(x ′ ⊕ α))

⊕
(

n⊕

i=1

Φ(x ′ ⊕ α, γi )

)

⊕ Φ

(

x ′ ⊕ α, α ⊕
n⊕

i=1

γi ⊕ ri

)

,

(23)

where we compute Φ(x ′ ⊕ α, γi ), for i ∈ {1, . . . , n}, as

Φ(x ′, α, γi ) �−→ ((x ′ ⊕ γi ) ⊕ α) + γi

to avoid any second-order leakage caused by combining (x ′⊕
α) with the output of (23).

However, the computationwould still cause a higher-order
leak, i.e., when x ′, α, and (23) get combined. Thus, we are
required to add extra masks to prevent this leakage, and we
useμi for i ∈ {1, . . . , n−1} and also ξi for i ∈ {1, . . . , n−2},
as follows:

(

x +
(

α ⊕
n⊕

i=1

ri

))

⊕
n−1⊕

i=1

μi

=
n−2⊕

i=1

ξi ⊕ ((n ∧ 1)(x ′ ⊕ α)) ⊕
(
n−1⊕

i=1

Φ(x ′ ⊕ α, γi ) ⊕ μi

)

⊕ Φ(x ′ ⊕ α, γn)) ⊕ Φ

(

x ′ ⊕ α, α ⊕
n⊕

i=1

γi ⊕ ri

)

⊕
n−2⊕

i=1

ξi .

(24)

Note that the masks ξi are used to protect the intermediate
values of (24) as there is not a secure way of ordering these
terms without causing leakage. The masks, therefore, need
to be interleaved with the computation and removed at the
end.

The result is then passed through a function that will per-
form a Boolean-to-arithmetic mask conversion to replace the
Boolean operation with an arithmetic operation, i.e.,

x+
(

α ⊕
n⊕

i=1

ri

)

+
n−1⊕

i=1

μi . (25)

Note that the first-order conversion requires sufficient addi-
tional masks (δi for i = 1...n − 1) to not cause any leakage,
i.e.,

x+
(

α ⊕
n⊕

i=1

ri

)

+
n−1⊕

i=1

μi = ((n − 1) ∧ 1)ζ )

⊕
(
n−1⊕

i=1

Φ(ζ, δi )

)

⊕ Φ

(

ζ,

n−1⊕

i=1

δi ⊕ μi

)

, (26)

where ζ = (x + (α ⊕ ⊕n
i=1 ri )) ⊕ ⊕n−1

i=1 μi .

Step 2 In the second step, we wish to compute

(

α ⊕
n⊕

i=1

ri

)

+
n−1⊕

i=1

μi +
n−1⊕

i=1

κi , (27)

for some random values κi ∈ Z2k . In which, we view the
combination of any elements of {κ1, . . . , κn−1}, {μ1, . . .,
μn−1}, and, likewise, the combination of any elements of
(r1 ⊕ . . . ⊕ rn) as secret. Let
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ε = α ⊕
n⊕

i=1

ri ⊕
n−1⊕

i=1

κi , (28)

then, given (22), we can compute

(

α ⊕
n⊕

i=1

ri

)

+
n−1⊕

i=1

κi = (((n − 1) ∧ 1) ε)

⊕
(
n−1⊕

i=1

Φ(ε, βi )

)

⊕ Φ

(

ε,

n−1⊕

i=1

κi ⊕ βi

)

, (29)

where βi are random values taken from Z2k for i ∈
{1, . . . , n − 1}. We note that the order in which operands are
treated is particularly important. For example, the terms of
theXOR sums need to be computed separately, i.e.,

⊕n
i=1 ri⊕⊕n−1

i=1 κi = (κ1 ⊕ r1)⊕(κ2 ⊕ r2)⊕· · ·⊕(κn−1 ⊕ rn−1)⊕rn .
As a next step, we add n − 1 additional masks, as in Step

1, i.e., we add random values μi for i ∈ {1, . . . , n − 1} as
follows:

(

α ⊕
n⊕

i=1

ri +
n−1⊕

i=1

κi

)

⊕
n−1⊕

i=1

μi = (((n − 1) ∧ 1) ε)

⊕
(
n−1⊕

i=1

Φ(ε, βi ) ⊕ μi

)

⊕ Φ

(

ε,

n−1⊕

i=1

κi ⊕ βi

)

.

(30)

Finally, we can perform a first-order secure Boolean-to-
arithmetic mask conversion (similar as described in Step 1)
to replace the single Boolean operation with an arithmetic
operation giving

(

α ⊕
n⊕

i=1

ri +
n−1⊕

i=1

κi

)

+
n−1⊕

i=1

μi , (31)

which equals to (27).
Step 3 In the third step, we wish to compute

⊕n−1
i=1 κi +∑n

i=1 si , for some random values to be used as output masks
si ∈ Z2k , for i ∈ {1, . . . , n}. This can be achieved by
conducting an (n − 2)th-order secure Boolean-to-arithmetic
mask conversion (e.g., using Algorithm 1 when n = 3 or
Algorithm 2 where n = 4 etc.) using the input

⊕n−1
i=1 κi ⊕

⊕n−2
i=1 λi , λi (for i ∈ {1, . . . , n − 2}) are random values,

resulting in
⊕n−1

i=1 κi + ∑n−2
i=1 si . Note that we choose the

output masks of the lower-order conversion to be used as
output masks for the order we are considering.

Then one can add sn−1 and sn to get the desired result, i.e.,

n−1⊕

i=1

κi +
n∑

i=1

si . (32)

Step 4 We add the output of each step. Adding the output of
Step 1 to the output of Step 3 produces

x +
(

α ⊕
n⊕

i=1

ri

)

+
n−1⊕

i=1

μi +
n−1⊕

i=1

κi +
n∑

i=1

si . (33)

Then subtracting the output of Step 2 results in

x +
n∑

i=1

si . (34)

4.1.1 Complexity

Each of the steps described above, without the use of
Boolean-to-arithmetic mask conversions of a lower order,
will have a linear increase in time complexity with regard
to the order of the side-channel resistance, that is, have
time complexity O(n). The recursive call to Boolean-to-
arithmetic mask conversions of a lower order will increase
the time complexity to O(n2).

4.2 Implementation details

Algorithm 3 gives an explicit implementation of a third-order
secureBoolean-to-arithmeticmask conversion as an example
of the method described above, which requires 74 instruc-
tions.

As previously, we proceed with a 3-SNI proof:

Lemma 3 (3-SNI of Algorithm 3) Let {x ′, r1, r2, r3} be the
input shares of Algorithm 3, and {x ′′, s1, s2, s3} be the output
shares for any set of t intermediate variables and any subset
|k| ≤ tk of output shares such that t + tk ≤ 3, there exists a
subset I of intermediate variables with |I | ≤ 3, such that the
distribution of those t intermediate variables, and the output
shares can be perfectly simulated from {x ′, r1, r2, r3}.
Proof We construct two sets I = {x ′, r1, r2, r3} and J =
{γ1, γ2, γ3, β1, β2, δ1, δ2, κ1, κ2, α, μ1, μ2, s1, s2, s3} corre-
sponding to the input shares and the random values required,
respectively. We denote ai , for 1 ≤ i ≤ 74, as the intermedi-
ate values in Algorithm 3, the definition of which means that
is easy to see that each ai can be perfectly simulated from
the input shares and/or the required random values. That is,
any internal variable within Algorithm 3 can be perfectly
simulated from a subset of elements from I and/or J . 	


Our proof was validated by implementing a simulator and
verifying that the distributions of each ai , for 1 ≤ i ≤ 74 is
identical for all values of x ∈ Z24 , without loss of generality.
Likewise, the simulator also verified the joint distribution of
all possible combinations of pairs and triplets of elements
in I ∪ J ∪ {a1, . . . , a74} (i.e., the union of the set of inputs,
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Algorithm 3: Third-order secure Boolean-to-arithmetic
masking.
Input: x ′ = x ⊕ r1 ⊕ r2 ⊕ r3 with x, r1, r2, r3 ∈ Z2k and random

numbers γ1, γ2, γ3, β1, β2, δ1, δ2, κ1, κ2, α, μ1, μ2, s1, s2,
s3 ∈ Z2k for some k ∈ Z≥0

Output: x ′′ = x + s1 + s2 + s3

1 z ← κ1 ⊕ r1
2 z ← z ⊕ κ2
3 z ← z ⊕ r2
4 z ← z ⊕ r3
5 z ← z ⊕ α

6 w ← z ⊕ β1
7 u ← w + β1
8 u ← u ⊕ μ1
9 v ← z ⊕ β2

10 v ← v + β2
11 u ← u ⊕ v

12 v ← w ⊕ κ1
13 v ← v ⊕ β2
14 v ← v ⊕ κ2
15 w ← v ⊕ z
16 v ← v + w

17 v ← v ⊕ μ2
18 w ← u ⊕ v

19 z ← r3 ⊕ μ1
20 z ← z ⊕ μ2
21 u ← w ⊕ r3
22 u ← u + r3
23 v ← w ⊕ z
24 v ← v + z
25 u ← u ⊕ w

26 w ← u ⊕ v

27 u ← x ′ ⊕ γ1
28 u ← u ⊕ α

29 u ← u + γ1
30 u ← u ⊕ γ1
31 u ← u ⊕ μ1
32 v ← x ′ ⊕ γ2
33 v ← v ⊕ α

34 v ← v + γ2
35 u ← u ⊕ v

36 v ← x ′ ⊕ γ3
37 v ← v ⊕ α

38 v ← v + γ3
39 u ← u ⊕ α

40 u ← u ⊕ v

41 z ← γ1 ⊕ r1
42 z ← z ⊕ γ2
43 z ← z ⊕ r2
44 z ← z ⊕ γ3
45 z ← z ⊕ r3
46 v ← z ⊕ α

47 z ← x ′ ⊕ z
48 z ← z + v

49 z ← z ⊕ u
50 z ← z ⊕ μ2

51 z ← z ⊕ γ1
52 z ← z ⊕ x ′
53 u ← z ⊕ δ1
54 u ← u + δ1
55 v ← z ⊕ δ2
56 v ← v + δ2
57 u ← u ⊕ v

58 v ← δ1 ⊕ μ2
59 v ← v ⊕ δ2
60 v ← v ⊕ μ1
61 z ← z ⊕ v

62 z ← z + v

63 z ← z ⊕ u
64 v ← κ1 ⊕ s1
65 u ← v + κ2
66 u ← u ⊕ v

67 u ← u ⊕ κ2
68 v ← κ2 ⊕ s1
69 v ← v + κ1
70 u ← u ⊕ v

71 u ← u + s2
72 u ← u + s3
73 z ← z + u
74 z ← z − w

return z

required randomvalues, and intermediate states) are identical
for all values of x ∈ Z24 , without loss of generality. Thus,
demonstrating that Algorithm 3 is resistant to first, second,
and third-order side-channel analysis. In this case the choice
of the field Z24 is more important as a large field size could
not be tested in a reasonable amount of time.

The number of inputs required for Algorithm 3 would
seem to be too large for an efficient exhaustive search through
all the possible sources of third-order leakage. However, we
note that in simulating individual operations only a subset of
the inputs or random values are required. The effect is similar
to the use of gadgets in SNI proofs [4].

More concretely, to conduct a search of this algorithm
efficiently the only combinations where at least one element
in the elements chosen from the set I ∪ J ∪ {a1, . . . , a74}
is dependent on x . That is, any combination where none of
the elements were computed from variables dependent on x
they can be safely discarded. For elements in {a1, . . . , a74}
the simplest known expression using elements of I ∪ J was
taken by either following the sequence of instructions, or
from the equations above. These expressions were used to
generate a C source file to analyze that combination, which
was then complied with the -Ofast flag using gcc. Thus,
1.29 × 105 C source files were automatically created and

compiled. Executing the resulting binaries required 48 CPU
cores running for twelve weeks.

We test our algorithm as one block because, to date, break-
ing up our algorithm into gadgets that can be independently
verified and creating an algorithm equivalent to those we
propose has a prohibitive cost in performance [8]. That is,
Coron’s algorithm has exponential complexity, with regard
to the security order, compared to the quadratic complexity
of the algorithm presented in this paper.

5 Comparison

Table 1 compares the performance of our method with pre-
vious work. We consider the work of Coron et al. [7] who
proposed a high-order secure Boolean-to-arithmetic algo-
rithm in 2014. We also discuss the recent results from
Coron [8] and compare it with our results.We do not consider
LUT-based methods as they would require a precomputation
phase and additional memory (see Sect. 2). For this com-
parison, we estimated the operation count of all methods
by considering all necessary operations excluding the gen-
eration of random numbers, loop-instruction overheads, and
variable initialization.

We estimate the costs for Coron et al. [7] higher-order
Boolean-to-arithmetic mask conversion method as follows.
For a single-masked AND (SecAnd) operation [7, Sect. 3],
we estimate the number of required instructions to be

2 · (n + 1) · n + 25,

with n being the security order. Furthermore, we esti-
mate the higher-order secure masked addition function
(SecAddGoubin) as defined in [7, Sect. 3.2] to be

(2·(n + 1) · n + 26 + n)

+ (k − 1) · [2 · (n + 1) · n + 27] + (2 · (n + 1)),

where k represents the bit-width of the operands. The
Expand function has an estimated complexity of 2 · (n+ 1)
and the FullXor function requires 2 · n + n.

Using these estimations, we calculated the total operation
count for a higher-order Boolean-to-arithmetic mask conver-
sion as defined in [7, Sect. 5] for register sizes of 8, 16, 32,
and 64 bits and provide the results in Table 1. It shows that
our solution is faster than Coron et al. method from [7] for all
considered register widths and security orders, often by sev-
eral orders of magnitude. Compared to [8], who adopts our
original idea from [13], our solution is faster for any security
order. Specifically, our third-order secure algorithm is more
than twice as fast, and the difference increases to more than
an order of magnitude by the eight order. Our second-order
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Table 1 Operation count for
different
Boolean-to-arithmetic mask
conversion methods up to a
security order of eight

B → A conversion Security order

1 2 3 4 5 6 7 8

Goubin’s method (2001) [12] 7 – – – – – – –

Coron et al. (2014)—8 bits [7] – 909 1,369 1,962 2,619 3,372 4,189 5,171

Coron et al. (2014)—16 bits [7] – 1,781 2,681 3,842 5,131 6,612 8,221 10,155

Coron et al. (2014)—32 bits [7] – 3,525 5,305 7,602 10,155 13,092 16,285 20,123

Coron et al. (2014)—64 bits [7] – 7,013 10,553 15,122 20,203 26,052 32,413 40,059

Hutter-Tunstall (2016) [13]a – 31 56 115 197 331 513 763

Coron (2017) [8] – – 155 367 803 1,687 N/A 7,039

Our proposal – 31 74 123 242 386 557 753

aThe original algorithms have a security flaw from the third order upwards which were corrected in this
version of the paper

Table 2 Number of arithmetic and Boolean operations required for
our proposed method up to a security order of eight

B → A conversion Security order

1 2 3 4 5 6 7 8

Arithmetic operations 2 8 18 28 42 56 74 110

Boolean operations 5 23 56 95 200 330 483 643

secure algorithm is at least one order ofmagnitude faster than
previous work.

5.1 Performance details

Table 2 lists the number of required instructions for our
proposed algorithms in terms of arithmetic andBoolean oper-
ations up to a security order of 8. As a reference, we also list
Goubin’s solution in the first-order case, and our solution in
the other cases.

In Table 3, we list the number of required random vari-
ables to perform a Boolean-to-arithmetic mask conversion.
Many mask conversion proposals give an artificially low
instruction count hiding a large number of required random
numbers. We list the number of random values required to
compute Goubin’s original method [12], Coron et al. method
[7], our original solution from 2016 [13], and Coron’s recent
approach [8]. We compare these numbers with the number
of random values required by our proposed algorithm. For
the second- and third-order algorithms, we give the number
of random values required by our explicit algorithms, where
some random values are used to fulfill several purposes.

The results show that our solution requires significantly
fewer random variables when compared to all other algo-
rithms in the literature. In particular, when compared to [8],

we require almost half the number of random values for the
second-order case, and more than half the number random
number is all other cases, increasing to an order of magnitude
by the eighth order.

Finally, we provide a comparison of all solutions that takes
into account the number of randomness required. Table 4
lists the total instruction count for the algorithms. We added
the number of instructions listed in Table 1 with the num-
ber of instructions required to generate all random numbers
that are required for the mask conversion. For this purpose,
we consider a practical implementation of a Pseudo Random
Number Generator (PRNG), like the Marsaglia’s Xorshift
RNG used by Coron [8]. We consider only the XOR instruc-
tions, since modern processors are often able to perform shift
operations for free. We also did not consider typical over-
heads that are caused by function calls or loading constants
from memory. Therefore we assume that generating a ran-
dom number takes five instructions in the comparison given
in Table 4.

By considering the cost of generating random values, we
show that our proposal is about twice as fast as the next best
algorithm for lower orders and increases to more than ten
times faster for the eighth order case and above.

6 Implementation considerations

All algorithms described in this paper have the property that
all calculated intermediates (and relevant higher-order com-
binations thereof) are statistically independent of the secret
value x . In the past, it has been shown that the claimed secu-
rity order of those algorithms is usually lower when they
are directly applied in software or hardware. For example,
in a software implementation intermediate values are often
unintentionally combined by the underlying hardware archi-
tecture. One typical cause of leakage is where intermediate
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Table 3 Comparison of
required number of random
variables

B → A conversion Security order

1 2 3 4 5 6 7 8

Goubin’s method (2001) [12] 1 – – – – – – –

Coron et al. (2014)—8 bits [7] – 66 127 221 331 465 615 806

Coron et al. (2014)—16 bits [7] – 122 239 421 635 897 1,191 1,566

Coron et al. (2014)—32 bits [7] – 234 463 821 1,243 1,761 2,343 3,086

Coron et al. (2014)—64 bits [7] – 458 911 1,621 2,459 3,489 4,647 6,126

Hutter-Tunstall (2016) [13] – 5 11 27 44 81 120 199

Coron (2017) [8] – 11 32 77 170 359 740 1,505

Our proposal – 5 15 26 42 59 81 104

Table 4 Total operation count
including the generation of
random numbers using
Marsaglia’s Xorshift PRNG[21]
from Coron’s the open-source C
implementation

B → A conversion Security order

1 2 3 4 5 6 7 8

Coron (2017) [8] – 110 315 752 1,653 3,482 N/A 14,564

Our proposal – 56 149 253 452 681 962 1,273

Factor – ×1.9 ×2.1 ×2.9 ×3.6 ×5.1 N/A ×11.4

values of the algorithm, which are stored in some registers,
get overwritten with other intermediate results of the algo-
rithms. Other sources of leakage include the combination
of internal signals that depend on two or more intermediate
values which are either stored in registers (register interfer-
ences) or currently (or previously) used in operations in the
processor’s datapath. Hence, implementations of first-order
side-channel resistant algorithms may show first-order leak-
ages in practice, and the same holds true for higher-order
secure algorithms whose resistance level has shown to be
actually lower than claimed [3].

Direct applications of secure algorithms in hardware
require similar care when implemented. Integrated circuits in
CMOS, for example, have the property that many gates make
output transitions several times per clock cycle. Such tran-
sitions (glitches) contain information about the secret value,
even though all intermediates have been carefully masked
at the algorithm level [20]. State-of-the-art countermeasures
try to get rid of those physical effects by applying (addi-
tional) countermeasures at the gate level (e.g., using secure
logic styles such as dual-rail logic [18]) or algorithm level
(e.g., using secret sharing and multi-party computation such
as threshold implementations [23]).

Naïve implementation of algorithms that have beenproven
secure—in the sense that every calculated intermediate is sta-
tistically independent of the secret value—can, therefore, not
be automatically considered resistant to side-channel analy-

sis. However, the algorithms proposed in this paper can be
combined with other countermeasures in order to guarantee
resistance at the claimed security order. We do not provide
any further details here since the countermeasures required
will vary from one platform to another.

7 Conclusions

In this paper, we present Boolean-to-arithmetic mask con-
version methods that can be computed in constant time for
a masking scheme of second and third order. We present
explicit algorithms for a second-order secure mask conver-
sion that requires 31 instructions, and a third-order secure
mask conversion that requires 74 instructions. Our second-
order secure algorithm is at least one order of magnitude
faster than previous work; and our corrected algorithm for
third order is more than twice as fast.

Our algorithms are shown to be secure under the SNI
model, although we treat our algorithms as a single gad-
get, rather than break it into smaller gadgets that can be
independently verified. Attempts at achieving this have a
large performance cost [8], i.e., exponential complexity with
regard to the security order, compared to the quadratic com-
plexity of the algorithm presented in this paper. An efficient
method for that would allow one to break our algorithms into
gadgets is left for future research. Also, given the resources
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required to validate the SNI proof for Algorithm 3, a simi-
lar proof for orders greater than three is also left for future
research.
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