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Abstract
This paper proposes a compact and highly efficientGF(28) inversion circuit design based on a combination of non-redundant
and redundant Galois field (GF) (or finite field) arithmetic. The proposed design utilizes an optimal normal basis and redundant
GF representations, called polynomial ring representation and redundantly represented basis, to implement GF(28) inversion
using a tower fieldGF((24)2). The flexibility of the redundant representations provides efficient mappings from/to theGF(28).
This paper evaluates the efficacy of the proposed circuit by gate counts and logic synthesis with a 65-nm CMOS standard cell
library in comparison with conventional circuits. Consequently, we show that the proposed circuit achieves approximately
25% higher area–time efficiency than the conventional best inversion circuit in our environment. We also demonstrate that
AES S-Box with the proposed circuit achieves the best area–time efficiency.

Keywords Hardware implementation · GF(28) inversion circuit · S-Box · AES

1 Introduction

Cryptography based on Galois field (GF) (or finite field)
arithmetic has been widely utilized for secure communica-
tions, authentication, and digital signatures in many systems.
For modern ciphers, the substitution function is one of the
most integral parts to be resistant against major cryptana-
lytic techniques such as differential and linear cryptanalyses
[1,2]. Inversion functions over GF(2m) are known as a use-
ful component for m-bit substitution functions [3]. Many
ISO/IEC standard ciphers (e.g., AES and Camellia) employ
an inversion function over GF(28) in substitution functions
[4,5]. For example, SubBytes of AES consists of an inver-
sion over GF(28) (i.e., S-Box) and an affine transformation
overGF(2). The hardware performance of such ciphers heav-
ily depends on the inversion circuits used. As a result of the
explosive increase in resource-constraineddevices in the con-
text of Internet of things (IoT) applications, there is currently
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substantial demand for lightweight implementation of inver-
sion functions [3,6].

So far, many approaches to reducing the hardware cost of
GF(28) inversion circuits have been proposed. While it has
been shown that directmapping-based approaches (e.g., table
lookup, PPRM, and BDD [7–9]) are useful for low-latency
implementation, the tower field approach, which calculates
a−1 (= a254) (a ∈ GF(28)) using the equivalent tower
field, is a promising approach for achieving the compact
and efficient implementation. This technique converts the
original field GF(28) into an isomorphic tower field such
as GF(((22)2)2) and GF((24)2) in the middle of the inver-
sion. Researchers have previously shown that the tower field
approach is efficient because the subfields GF((22)2) and
GF(24) operations are designed more compactly than the
original field operations. Satoh et al. [10] were the first to
present a compact implementation of the AES S-Box by the
tower field GF(((22)2)2) represented by polynomial bases
(PB). Canright [11] further reduced the gate count of the
AES S-Box by using normal bases (NB) and optimizing the
change-of-basis. Canright’s implementationwas the smallest
for a long time. Nogami et al. [12] recently mixed polyno-
mial and normal bases (MB) to achieve the most efficient
implementation. They showed that the product of gate count
and critical delay for the inversion circuit could be reduced
by the MB. Some implementations using GF((24)2) have
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also been proposed by researchers such as Jeon et al. [13],
who presented PB-basedGF((24)2) inversion circuit design.
These results suggest that such field representations have a
significant impact on hardware performance.

The above bases (i.e., PB, NB, and MB) represent each
element of GF(2m) using m bits in a non-redundant manner.
However, there are two redundant representations, namely
polynomial ring representation (PRR) and redundantly rep-
resented basis (RRB), which use n (> m) bits to represent
each element of GF(2m). The defining polynomial of these
redundant representations is given by a reducible polynomial
of degree n, whereas that of non-redundant representations is
given by an irreducible polynomial of degree m. This means
that redundant representations provide a wider variety of
polynomials that can be selected as a defining polynomial
than non-redundant representations. Drolet [14] showed that
the use of PRRmakes it possible to select a binomial xn+1 as
a defining polynomial, which can lead to the design of small-
complexity arithmetic circuits. Wu et al. [15] and Nekado
et al. [16] showed that RRB-based designs were useful for
designing efficient inversion circuits.

This paper presents a technique in which non-redundant
and redundant GF arithmetic are combined to achieve a com-
pact and efficient GF(28) inversion circuit design. The key
idea underlying the proposed circuit is calculation of the
inversion of the tower field GF((24)2) by the NB, PRR, and
RRB combination. The former part for the 16th and 17th
powers of the input is calculated by an NB with a symmetric
property. This is followed by calculation of the latter parts
forGF(24) inversion andGF(24)multiplication by PRR and
RRB, respectively. The mapping from NB to PRR/RRB is
efficiently implemented by the symmetric property of the
NB. The efficacy of the proposed circuit is evaluated by
means of gate counts and logic synthesis results using a
TSMC 65-nm CMOS standard cell library. The proposed
circuit has approximately 25% higher efficiency (i.e., area–
time product) excluding the change-of-basis than any other
conventional circuits, including those with the tower field
GF(((22)2)2). In addition, the flexibility of redundant rep-
resentations in the proposed circuit enables it to have the
best efficiency even including the change-of-basis from/to
GF(28). To the best of our knowledge, the proposed circuit
is the most efficient tower field arithmetic-based implemen-
tation for the AES S-Box.

While a preliminary version [17] presented and evaluated
the above circuit based on the combination of non-redundant
and redundant GF arithmetic, this paper further enhances our
circuit by two new techniques. First, we present a variation
of the new conceptual circuit with an additional unification
of inner operations, which achieves the shortest critical path
among tower field inversion circuits including that in [17].
The unification also results in a more area–time efficient
inversion/S-Box circuit than ever before. We then present

a more efficient unified S-Box design which supports both
encryption and decryption by a new optimization technique
for change-of-basis. The new designs are evaluated by the
same manner as the preliminary version [17]. As a result, we
confirm that our new designs have the highest efficiency in
terms of area–time product even where both encryption and
decryption are supported.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces preliminary and related work associated
with the design of GF(28) inversion circuits. The redun-
dant GF representations introduced in the proposed circuit
are also described. Section 3 presents the proposed GF(28)
inversion circuit. In addition, this section evaluates the pro-
posed circuit by the results of gate count and logic synthesis.
Section 4 presents the AES S-Box design that incorporates
the proposed inversion circuit and its change-of-basis, and
shows their evaluation results in the same manner as Sect. 3.
Finally, Sect. 5 presents concluding remarks.

2 Preliminaries and related works

2.1 Inversion circuits by tower fields

This section briefly describes previous work on the design
of GF(28) inversion circuits based on tower field arithmetic.
The inverse element of a ∈ GF(28) is given by

a254 =
{
a−1 for a �= 0
0 if a = 0

,

because any element ofGF(28) satisfies a = a256. The basic
idea underlying the tower field approach is reduction in hard-
ware cost by exploiting smaller arithmetic operations over
subfield GF((22)2) or GF(24) instead of GF(28). There is
a one-to-one mapping (i.e., change-of-basis) between the
elements of GF(28) and those of the tower field. This GF
inversion over a tower field is efficiently implemented in the
Itoh–Tsujii Algorithm (ITA) [18].

Figure 1 illustrates a GF(28) inversion circuit presented
in [11], where the data path is divided into upper and lower
4 bits and each component denotes an arithmetic circuit
over subfield GF((22)2). Let a ∈ GF(((22)2)2) be the
input given by hα16 + lα in an NB {α16, α}, where h and
l (∈ GF((22)2)) are, respectively, the upper and lower 4 bits
of a, and α is a root of an irreducible polynomial of degree
2 over GF((22)2) (i.e., a defining polynomial for extending
GF((22)2) to GF(((22)2)2)). The inversion of a is calcu-
lated in the following three stages: (1) calculation of the
16th and 17th powers, (2) subfield inversion, and (3) final
multiplication. Note that the above GF((22)2) operators are
replaced with the GF(24) operators in the case of the tower
field GF((24)2).
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Fig. 1 Inversion circuit over GF(((22)2)2) in [11]

The performance of this inversion circuit depends on
the tower field and its basis representation. Three of the
best known circuit structures are based on the tower field
of GF(((22)2)2). Satoh et al. first designed this kind of
GF(((22)2)2) inversion circuit using PB [10]. Canright then
designed amore compact circuit based onNB [11]. The hard-
ware cost of inversion and exponentiation operations can be
reduced by NB because the squaring operation is performed
solely by wiring. Nogami et al. presented the possibility of
MB, which employs both polynomial and normal bases for
the input and output data, respectively [12]. Their method
exhibited improved performance in the product of gate count
and critical delay for the GF(((22)2)2) inversion circuit and
the AES S-Box, including change-of-basis. In addition to
GF(((22)2)2), it is possible to design efficient inversion cir-
cuits using another tower field of GF((24)2). Jeon et al.
[13] designed GF((24)2) inversion circuit based on PB with
smaller critical delay than those of GF(((22)2)2) inversion
circuits.

2.2 Redundant representations for Galois fields

Polynomial ring representation (PRR) is a redundant repre-
sentation of GF [14]. An extension field GF(2m) based on a
PBhas a set of elements (i.e., polynomials)whose degrees are
at mostm−1 (i.e.,m bits). Elements of anNB-basedGF(2m)

are also represented by m bits. On the other hand, an exten-

sion field GF(2m) based on PRR has a set of polynomials
whose degrees are up to n−1 (i.e., n bits), where n > m [14].
In other words, whereas a PB- or an NB-based GF(2m) is
defined as anm-dimensional linear space overGF(2), a PRR-
basedGF(2m) is defined as anm-dimensional subspace of an
n-dimensional linear space. PRR is also equivalent to cyclic
redundancy code (CRC), a kind of error-correction code.

Let x and H(x) be an indeterminate element and an irre-
ducible polynomial of degreem overGF(2), respectively. Let
G(x) be a polynomial of degree n − m, which is relatively
prime to H(x), and is satisfied with G(0) �= 0. Let P(x) be
a polynomial (of degree n) given by the product of G(x) and
H(x). A set of polynomials of degrees less than or equal to
n − 1, where each polynomial is divisible by G(x), together
with modulo P(x) arithmetic is isomorphic toGF(2m). Note
here that n = m + degG(x). The representation of GF(2m)

using such a residue ring is called PRR. A PRR can be con-
structed from any PB-based GF(2m).

As an example of PRR, we present the construction of a
PRR-based GF(24), where the defining polynomial P(x) is
given by x5 + 1 and its factors G(x) and H(x) are given by

G(x) = x + 1,

H(x) = x4 + x3 + x2 + x + 1.

Wefirst compute themultiplicative unit element E(x), which
is given by

E(x) = U (x)G(x) = 1 − V (x)H(x),

whereU (x) and V (x) are polynomials satisfyingU (x)G(x)
+ V (x)H(x) = 1. Hence, E(x) = (x3 + x)(x + 1) = x4 +
x3+ x2+ x . LetCi (x) = (xi mod H(x))×E(x) mod P(x)
(0 ≤ i ≤ 24 − 2). Here, Ci (x) corresponds to β i , where β is
a root of H(x). In addition, zero is mapped to zero. Thus, we
can derive a correspondence between a PB-based GF(24)
with the irreducible polynomial H(x) and the PRR-based
GF(24). Table 1 shows the correspondence between the PB-
and PRR-based GF(24), which shows an example of one-to-
one mapping between PB- and PRR-based elements. Here,
the PB-based GF(24) represents elements by polynomials
of degrees at most 3 (i.e., 4 bits), whereas the PRR-based
GF(24) represents elements by polynomials of degrees up to
4 (i.e., 5 bits). In addition, the PRR-basedGF(24) consists of
only polynomials dividable by G(x) = x + 1, which means
that the PRR-basedGF(24) is equivalent to a cyclic codewith
the generator polynomialG(x). See [20] for details about the
construction method.

It is known that the performanceof theGFcircuit generally
improves as the number of terms in the modular polynomial
decreases [19]. Here, a binomial xn + 1 is available for the
modular polynomial of PRR-based GF(2m), whereas it is
unavailable for GFs based on non-redundant representations.
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Table 1 Example of
correspondence between PB-
and PRR-based GF(24)

PB where β4 + β3 + β2 + β + 1 = 0 PRR where P(x) = x5 + 1

Polynomial Vector repr. Polynomial Vector repr.

0 0000 0 00000

1 0001 x4 + x3 + x2 + x 11110

β2 + β 0110 x2 + x 00110

β3 + β + 1 1011 x4 + x2 10100

β2 0100 x4 + x3 + x + 1 11011

β2 + β + 1 0111 x4 + x3 11000

β3 + β2 + 1 1101 x4 + x 10010

β3 + β2 + β + 1 1111 x3 + x2 + x + 1 01111

β + 1 0011 x + 1 00011

β3 + β 1010 x3 + x 01010

β 0010 x4 + x3 + x2 + 1 11101

β3 + β2 1100 x3 + x2 01100

β3 + 1 1001 x3 + 1 01001

β3 1000 x4 + x2 + x + 1 10111

β3 + β2 + β 1110 x4 + 1 10001

β2 + 1 0101 x2 + 1 00101

This is because the modular polynomial P(x) is given by a
reducible polynomial (i.e., G(x) × H(x)). Thus, the perfor-
mance of PRR-basedGFarithmetic circuits can be better than
those of PB- and NB-based arithmetic circuits. For example,
we can use xm+1 + 1 for P(x) if the mth degree all one
polynomial (AOP) is irreducible according to the following
formula over GF(2):

xm+1 + 1 = (x + 1)(xm + xm−1 + · · · + 1),

where the polynomial xm + xm−1+· · ·+1 is called the AOP
of degree m.

Themajor advantages of using the binomial are as follows:
(i) Parallel multiplication can be given as the discrete time
Wiener–Hopf equation and (ii) squaring and apart of constant
multiplication are performed only by bit-wise permutation
(i.e., wiring). In (i), reduction by P(x) in multiplication can
be performed only by bit-wise permutation while multipli-
cation based on non-redundant representation requires some
addition over GF(2) for the reduction. In (ii), squaring and a
part of constant multiplication can be performed without any
logic gate since they are the special case of multiplication.
Accordingly, the PRR-based design can be more efficient
than conventional designs.

Redundantly represented basis (RRB) is another redundant
representation of GF [16]. Each element is represented by a
primitive nth root where n is the minimal integer such that
GF(2m) can be embedded into GF(2n).

RRB is available when theAOP of degreem is irreducible.
Let β be a root of the AOP. The m elements (i.e., bases)
βm−1, βm−2, . . . , and β0 are linearly independent and then

compose aPB. In contrast,RRBemploys abinomialβm+1−1
as the defining polynomial, which is satisfied with the fol-
lowing equation:

βm+1 + 1 = (β + 1)(βm + βm−1 + · · · + 1) = 0.

The set {βm, βm−1, . . . , β0} is called RRB. Because the
degree of the binomial is m + 1, each element is represented
by a linear combination of βm, βm−1, . . . , and β0. Note that
the elements of such an RRB-based GF(2m) are represented
in a non-unique manner because βm, βm−1, . . . , and β0 are
linearly dependent in contrast to PRR1.

RRB-based GF(2m) squaring can be performed by bit-
wise permutation, as is the case with NB. This is because
RRB is equivalent to an extended (Type I) optimal normal
basis (ONB). We can derive RRB by adding a base {β0}
to ONB. This means that an efficient multiplication method
for ONB, called the cyclic vector multiplication algorithm
(CVMA) [21], is also available for RRB. Thus, we can design
more compact and efficient multipliers by combining RRB
and CVMA. As an example, let us consider a GF(24) mul-
tiplier based on RRB. Let s and t (∈ GF(24)) be the inputs
and u (∈ GF(24)) be the output. Let β be a root of the AOP
of degree 4. In RRB, s is given by s4β4 + s3β3 + · · · + s0,

1 While PRRandRRBcan use the same defining polynomial, themajor
difference between PRR and RRB is the uniqueness of representation
for each element. For example,GF(22) can be represented redundantly
with a modular polynomial x3 +1. Here, a PRR-basedGF(22) consists
of four elements: 0, x + 1, x2 + 1, and x2 + x (which is equivalent to
a cyclic code with a generator polynomial x + 1) while an RRB-based
GF(22) consists of eight elements: 0, 1, γ, γ + 1, γ 2, γ 2 + 1, γ 2 + γ ,
and γ 2 + γ + 1 where γ denotes a root of x2 + x + 1.
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where s0, s1, . . . , and s4 ∈ GF(2). Also, t and u are given
in the same manner. The multiplication is represented by

u = s × t = u4β
4 + u3β

3 + u2β
2 + u1β + u0,

where

u0 = (s1 + s4)(t1 + t4) + (s2 + s3)(t2 + t3), (1)

u1 = (s0 + s1)(t0 + t1) + (s2 + s4)(t2 + t4), (2)

u2 = (s0 + s2)(t0 + t2) + (s3 + s4)(t3 + t4), (3)

u3 = (s0 + s3)(t0 + t3) + (s1 + s2)(t1 + t2), (4)

u4 = (s0 + s4)(t0 + t4) + (s1 + s3)(t1 + t3). (5)

The critical delay of the RRB-based GF(24) multiplier is
TA+2TX , while those of multipliers based on non-redundant
representations are TA + 3TX [16]. The gate count of the
RRB-based multiplier requires only 10 AND and 25 XOR
gates [16], whereas that of a PRR-based multiplier requires
25 AND and 20 XOR gates [14].

Nekado et al. [16] designed a more efficient GF((24)2)
inversion circuit based on RRB by utilizing the above
advantage. Figure 2 shows the block diagram of GF((24)2)
inversion circuit in [16], where GF(24) is given by RRB and
GF((24)2) (i.e., the quadratic extension of GF(24)) is given
by NB. In the circuit, RRB-based multiplications are divided
into two parts denoted by Mul0 and Mul1 in order to reduce
circuit area. Mul0 performs bit-wise XOR operations, and
Mul1 performs bit-wise AND operations followed by XOR
operations. This circuit achieved lower latency than the pre-
vious ones thanks to the efficient multiplications based on
RRB.

3 Proposed GF(28) inversion circuit

3.1 Circuit description

This section presents our proposed GF(28) inversion circuit
that takes full advantage of the above redundant GF arith-
metic. The important ideas are to employ the tower field
GF((24)2) inside the circuit and perform the subfield (i.e.,
GF(24)) operations using redundantGF arithmetic.We intro-
duce PRR for the GF(24) inversion because we can exploit
a defining polynomial, P(x) = x5 + 1, thanks to the irre-
ducible AOP of degree 4. We also introduce RRB for the
GF(24) multiplication. In addition, we employ an NB for
the input in order to exploit the Frobenius mapping feature,
which performs the 16th power of input solely by wiring.

In accordance with ITA, our inversion circuit consists of
three stages, as shown in Fig. 1. Here, we represent the inputs
of Stages 1, 2, and 3 by NB, PRR, and RRB, respectively. In
particular, we employ an NB that has a symmetric property,

Add.

a

h l

Mul 0 Mul 0
Sqr.

Add.

Mul 1

Inv.

Mul 1 Mul 1

Mul 0

a-1

Fig. 2 Inversion circuit over RRB-based GF((24)2) in [16]

which makes it possible to convert the elements from NB to
PRR without increasing the circuit delay.

Figure 3 shows a block diagram of our proposed cir-
cuit, where components H , L, and F , respectively, calculate
Hi, j , Li, j , and Fi ′, j ′ described in the following. When input
a is represented by hα16+lα, components NB2RRB convert
h and l from NB to RRB solely by wiring. Note that H and
L are shared with Stages 1 and 3. The stages in the proposed
circuit are designed as follows:

3.1.1 Calculation of the 16th and 17th powers

Stage 1 performs the 16th and 17th powers of input, where
input a is given by NB, and outputs a16 and a17 are given by
RRB and PRR, respectively. Let α be a root of an irreducible
polynomial of degree 2 over GF(24). The irreducible poly-
nomial is given by α2 +μα +ν, whereμ and ν are constants
of GF(24). When input a is represented by a = hα16 + lα
in an NB {α16, α}, a16 and a17 are, respectively, given by

a16 = lα16 + hα, (6)

a17 = hlμ2 + (h + l)2ν. (7)

Equation (6) indicates that a16 is performed by twisting
wires.

The change-of-basis from NB to RRB does not require
any additional gates because the NB (e.g., {β4, β3, β2, β1})
can be considered as a reduced version of RRB (e.g., {β4,
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Fig. 3 Proposed inversion circuit

β3, β2, β1, β0}) with the same root of the AOP of degree
4. Conversely, the change-of-basis from NB to PRR requires
some gates. However, the symmetric property of the NB used
in our circuit provides a mapping that does not increase the
circuit delay.

Let us now look at the change-of-basis from NB to PRR.
Since the change-of-basis is given by an isomorphim rep-
resented by z′ = �(z), where an element z in one GF
representation is converted into an element z′ in another
GF representation. In the binary vector form, the output
z′ is obtained from the product of a conversion matrix γ

and the transposed input (i.e., z′ = γ zT ) when the conver-
sionmatrix γ represents the isomorphism�. The PRR-based
GF(24) is given with the defining polynomial P(x) = x5+1
(G(x) = x + 1 and H(x) = x4 + x3 + x2 + x + 1) and the
conversion matrix from NB to PRR is as follows:

φ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎟⎠ ,

where the least significant bits are in the upper left corner.
(See [20] for an explanation of how to obtain the matrix.)
Let d = d4x4 + d3x3 + · · · + d0 be the output of Stage
1 (i.e., the 17th power of input in PRR), where d0, d1, . . . ,

and d4 are elements of GF(2). The output is provided by
applying the change-of-basis Φ from NB to PRR to a17 (i.e.,
the product of the conversion matrix φ and the transposed
vector form of a17). However, the multiplication of φ and
the output of Eq. (7) requires an additional circuit with 2TX
delay if the multiplication is performed explicitly. To avoid
such additional circuit, we derive another output equation
from Eq. (7) as follows:

d = Φ(hlμ2 + (h + l)2ν)

= Φ(μ2(hl)) + Φ(ν((h + l)2))

= Φ ′(hl) + Φ ′′((h + l)2), (8)

whereΦ ′ andΦ ′′ are the linear functions obtainedbymerging
Φ with the constant multiplications ofμ2 and ν, respectively.
Note that constant multiplications over GF can also be given
as linear functions represented by conversionmatrices.When
μ = β4 + β and ν = β, the resulting matrices φ′ and φ′′
representing, respectively, Φ ′ and Φ ′′ are given as

φ′ =

⎛
⎜⎜⎜⎜⎝

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎟⎟⎟⎠ , φ′′ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎟⎟⎟⎠ ,

where the least significant bits are in the upper left corners.
The resulting elements of PRR are shown in Table 1.

To design the circuit defined by Eq. (8), we exploit the
ONB with the symmetric property that h and l are given by
h = h4β4+h3β3+h2β2+h1β and l = l4β4+l3β3+l2β2+
l1β with a common NB {β4, β3, β2, β1}, where h1, . . . , h4
and l1, . . . , l4 are the elements of GF(2). Here, “symmetric”
indicates that h and l is represented by the same NB while
the circuit in [16] uses different (i.e., asymmetric) bases for h
and l 2. The usage of ONBmakes it more efficient to compute
a17 and alsomakes it possible to perform the change-of-basis
between the ONB, PRR, and RRB by solely bit-wise permu-
tation because all of the used representations are defined by
the AOP of degree 4. As a result, the outputs d0, d1, . . . , and
d4 are given by

d0 = (h1l2 + h2l1 + h3l4 + h4l3 + h1l1 + h4l4)

+(h1 + l1 + h3 + l3 + h4 + l4), (9)

d1 = (h1l2 + h2l1 + h1l3 + h3l1 + h2l2 + h4l4)

+(h1 + l1 + h2 + l2 + h3 + l3 + h4 + l4), (10)

2 More precisely, we can construct five different bases using β, that
is, four PBs {β3, β2, β1, β0}, {β4, β2, β1, β0}, {β4, β3, β1, β0}, and
{β4, β3, β2, β0} in addition to an ONB {β4, β3, β2, β1}. We use the
ONB for h and l for efficient computation of Stage 1, while the previous
work [16] used one of them for each h and l in order to construct efficient
conversion matrices for the change-of-basis, MixColumns, and affine
transformation.
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d2 = (h1l3 + h3l1 + h1l4 + h4l1 + h2l3 + h3l2 + h2l2)

+(h1 + l1 + h2 + l2 + h4 + l4), (11)

d3 = (h1l4 + h4l1 + h2l3 + h3l2 + h2l4 + h4l2 + h3l3)

+(h2 + l2 + h3 + l3 + h4 + l4), (12)

d4 = (h2l4 + h4l2 + h3l4 + h4l3 + h1l1 + h3l3)

+(h1 + l1 + h2 + l2 + h3 + l3), (13)

respectively. Here, the symmetric property enables us to fac-
tor Eqs. (9)–(13) as follows:

d0 = H1,2 ∨ L1,2 + H3,4 ∨ L3,4 + h2 ∨ l2 + h3l3, (14)

d1 = H1,2 ∨ L1,2 + H1,3L1,3 + h3 ∨ l3 + h4 ∨ l4, (15)

d2 = H1,3 ∨ L1,3 + H1,4L1,4 + H2,3 ∨ L2,3 + h4 ∨ l4,

(16)

d3 = H1,4 ∨ L1,4 + H2,3 ∨ L2,3 + H2,4L2,4 + h1 ∨ l1,

(17)

d4 = H2,4 ∨ L2,4 + H3,4 ∨ L3,4 + h1 ∨ l1 + h2l2, (18)

where Hi, j = hi + h j , Li, j = li + l j (1 ≤ i < j ≤ 4),
and ∨ denotes the OR operator (i.e., a ∨ b = a + b + ab).
The component denoted by Stage 1 in Fig. 3 performs the
computations corresponding to Eqs. (14)–(18). Therefore,
the proposed Stage 1 is performed with only TA + 3TX (or
TO + 3TX ) delay, whereas conventional GF(((22)2)2) inver-
sion implementations are performed with at least 6TX delay,
where TA, TO , and TX denote the delays of the AND, OR,
and XOR gates, respectively. In addition, the proposed Stage
1 is implemented with 5 AND, 10 OR, and 27 XOR gates
while the conventional design with TA + 3TX delay requires
10 AND and 35 XOR gates [16].

3.1.2 Subfield inversion

Stage 2 performs the inversion over the subfield GF(24),
where the input and output are given by PRR and RRB,
respectively. We first describe the architecture of the PRR-
based GF(24) inversion and then show the change-of-basis
from PRR to RRB below.

The inversion overGF(24) is performed by the 14th power
of the input. The input (i.e., the output of Stage 1) d = d4x4+
d3x3 + · · · + d0 is given as an element of the PRR-based
GF(24). The input is satisfied with the condition (called the
linear recurrence relation) d0 + d1 + d2 + d3 + d4 = 0 3

because it is equivalent to the codeword of a CRC generated
by G(x) = x + 1, which makes it possible to perform the
exponentiation by bit-wise operations over the PRR-based
GF(24) in an efficient manner.

3 The linear recurrence relation is used for error detection in CRC. A
polynomial is a codeword of a CRC iff the relation is satisfied.

Let e = e4x4+e3x3+· · ·+e0 be the inverse element ofd in
PRR, where e0, e1, . . . , and e4 are elements ofGF(2). Using
the linear recurrence relation, we can derive e0, e1, . . . , and
e4 as follows:

e0 = (d1 ∨ d4)(d2 ∨ d3), (19)

e1 = ((d4 + 1)(d1 + d2)) ∨ (d0d4(d2 ∨ d3)), (20)

e2 = ((d3 + 1)(d2 + d4)) ∨ (d0d3(d1 ∨ d4)), (21)

e3 = ((d2 + 1)(d1 + d3)) ∨ (d0d2(d1 ∨ d4)), (22)

e4 = ((d1 + 1)(d3 + d4)) ∨ (d0d1(d2 ∨ d3)). (23)

According to Eqs. (19)–(23), the proposed Stage 2 requires
TA+TO+TX delay,whereas the conventional structures [10–
12,16] require at least TA + 3TX . Also, the proposed Stage 2
is implemented with 13 AND, 6 OR, and 4 XOR, and 4 NOT
gates, whereas the conventional fastest Stage 2 [16] requires
12 AND, 11 XOR, and 2 XNOR gates. Note that when the
multiplicative unit element E(x) (= x4+x3+x2+x) is given
as the input, the output becomes not E(x) but 1. However, the
output is acceptable in Stage 3 (i.e., GF(24) multiplication)
because both E(x) and 1 are the idempotent elements in the
residue ring modulo P(x).

Let us now look at thePRR-to-RRBmapping.Toprovide it
uniquely, we focus on the definition of PRR in [14], in which
the mapping 	 from PRR defined by x to another represen-
tation defined by β is isomorphism. According to [20], the
change-of-basis from PRR can be performed by substituting
a root of H(x) (i.e., β) to elements. Let f = f4β4 + f3β3 +
· · · + f0 be the output of Stage 2 in RRB, where f0, f1, . . . ,
and f4 are elements of GF(2). The output can be given by

f = 	(e) = e4β
4 + e3β

3 + e2β
2 + e1β + e0.

This is because the RRB is defined using H(x). This means
that the PRR-to-RRB mapping is performed without any
additional circuit, assuming that f0 = e0, . . . , and f4 = e4.
As a result, the PRR-based design provides inversion and
change-of-basis with fewer logic gates.

3.1.3 Final multiplication

Stage 3 generates the final output using twoGF(24)multipli-
cation operations, where both the inputs and output are given
by RRB. Since Stage 3 solely consists ofGF(24) multiplica-
tion, Stage 3 can be efficiently implementedwith the efficient
RRB-based GF(24) multipliers described in Sect. 2.2.

Let h′ = h′
4β

4 + h′
3β

3 + · · · + h′
0 be the upper 5 bits of

the final output a−1 in RRB, where h′
0, h

′
1, . . . , and h′

4 are
elements of GF(2). Multiplying f and l, we can calculate
elements h′

0, h
′
1, . . . , and h′

4 as follows:

h′
0 = L1,4F1,4 + L2,3F2,3, (24)
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Table 2 Critical delay and gate count of inversion circuits over tower fields

Field Representation Gate count* Critical delay

Tower field ofGF(28) Intermediate field (g0, g1, g2, g3, g4, g5, g6)

Satoh et al. [10] GF(((22)2)2) PB PB (30, 0,96, 0, 0, 6, 0) 4TA + 17TX

Canright [11] GF(((22)2)2) NB NB (0, 0, 56,0, 0, 34, 6) 4TA + 15TX

Nogami et al. [12] GF(((22)2)2) PB and NB PB and NB (36, 0, 95, 0, 0, 0, 0) 4TA + 14TX

Jeon et al. [13] GF((24)2) PB PB (58, 2,67, 0, 0, 0, 0) 4TA + 10TX

Nekado et al. [16] GF((24)2) NB RRB (42, 0, 68,2, 0, 0, 0) 4TA + 7TX

This work (compact) GF((24)2) NB NB, PRR, and RRB (38, 16, 51, 0, 4, 0, 0) 3TA + TO + 6TX

This work (high-speed) GF((24)2) NB NB, PRR, and RRB (45,10, 57, 0, 10, 0, 0) 3TA + 6TX

*g0, g1, g2, g3, g4, g5, and g6 denote the number of AND, OR, XOR, XNOR, NOT, NAND and NOR gates, respectively

h′
1 = l1F0,1 + L2,4F2,4, (25)

h′
2 = l2F0,2 + L3,4F3,4, (26)

h′
3 = l3F0,3 + L1,2F1,2, (27)

h′
4 = l4F0,4 + L1,3F1,3, (28)

where Fi ′, j ′ denotes fi ′ + f j ′ (0 ≤ i ′ < j ′ ≤ 4). The
lower five bits of a−1 (denoted by l ′) are also obtained in the
same manner as in Eqs. (24)–(28). The component denoted
byStage 3 in Fig. 3 performs the computations corresponding
toEqs. (24)–(28).Note here that the calculations for Fi ′, j ′ can
be shared within Stage 3. As a result, the number of circuit
components for the two multipliers in Stage 3 is reduced.

The above inversion circuit achieves the shortest critical
delay among tower field inversion circuits as evaluated in
Sect. 4. In the following, we describe a variation of the pro-
posed circuitwith a smaller critical delay at the cost of a slight
area overhead. We focus on Stage 2 and Fi ′, j ′ computation
prior to Stage 3. Since Stage 2 is given by one-to-one map-
ping and Fi ′, j ′ is computed by XORing the output of Stage
2, we can unify Stage 2 and Fi ′, j ′ computation by deriving
Fi ′, j ′ directly from d0, d1, . . . , and d4 as follows:

F0,1 = d2(d1d3 + 1) + d0d1 + d3d4, (29)

F0,2 = d4(d1d2 + 1) + d0d2 + d1d3, (30)

F0,3 = d1(d3d4 + 1) + d0d3 + d2d4, (31)

F0,4 = d3(d2d4 + 1) + d0d4 + d1d2, (32)

F1,2 = d1(d0d2 + 1) + d0d4 + d2d3, (33)

F1,3 = d3(d0d1 + 1) + d0d2 + d1d4, (34)

F1,4 = d0(d2d3 + 1) + d1d3 + d2d4, (35)

F2,3 = d0(d1d4 + 1) + d1d2 + d3d4, (36)

F2,4 = d2(d0d4 + 1) + d0d3 + d1d4, (37)

F3,4 = d4(d0d3 + 1) + d0d1 + d2d3. (38)

The above computation for each Fi ′, j ′ requires TA + 2TX
delay while the critical delay of the original circuit in Fig. 3
requires TA + TO + 2TX . On the other hand, we require 20

AND, 20 XOR, and 10 NOT gates to compute Fi ′, j ′ based
on Eqs. (29)–(38), whereas the original circuit requires 13
AND, 6 OR, and 14 XOR, and 4 NOT gates (i.e., 13 AND,
6 OR, and 4 XOR, and 4 NOT gates for computing Stage
2, and 10 XOR gates for computing Fi ′, j ′ ). Thus, we can
further reduce the critical delay of the inversion circuit at the
expense of a few additional gates.

3.2 Implementation results

Table 2 shows the circuit delay and gate count of the pro-
posed inversion circuit, where (g0, g1, g2, g3, g4, g5, g6) in
the gate count column, respectively, indicate the number of
AND, OR, XOR, XNOR, NOT, NAND, and NOR gates,
and representation indicates the GF representation(s) used
in the circuit. In the representation column, “Tower field
of GF(28)” denotes the representations for GF(((22)2)2) or
GF((24)2), and “Intermediate field” denotes GF((22)2) or
GF(24). “This work (compact)” denotes the inversion circuit
in Fig. 3, and “This work (high-speed)” denotes the circuit
where Stage 2 and Fi ′, j ′ computation are unified as described
in the last paragraph of Sect. 3. For comparison, Table 2 also
shows those of the conventional inversion circuits. The criti-
cal delay of all the conventional ones were given by reference
to [16]. On the other hand, the gate counts of the conventional
ones were individually given because there were no single
reference data covering all of them. The gate count of [11]
was given from the original paper, that of [10] was given
from a public source code by the authors [22], and those of
[13,16] were given by reference to [16]. The gate count of
[12] was given from a straightforward structure designed by
us according to [12] since there were neither public data nor
source code.

The critical paths of Stages 1, 2, and 3 in the proposed
circuit require TA + 3TX , TA + TO + TX , and TA + 2TX
delay, respectively. In our high-speed version, that of Stages
2 and 3 is at most 3TA + 2TX . As a result, the total delay
of our inversion circuit is 3TA + TO + 6TX (or 3TA + 6TX ),
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Table 3 Performance evaluation of inversion circuits over tower fields

Area Time Area–time
(GE) (ns) product

Satoh et al. [10] 210.50 3.02 635.72

Canright [11] 178.00 2.92 519.75

Nogami et al. [12] 291.50 3.67 1,069.81

Jeon et al. [13] 221.25 2.19 474.54

Nekado et al. [16] 204.50 1.89 386.51

This work (compact) 174.75 1.81 316.30

This work (high-speed) 187.50 1.55 290.63

which is the fastest compared with the other inversion cir-
cuits. The gate count in “This work (high-speed)” is smaller
or comparable to the conventional ones because the num-
ber of additional XOR and XNOR gates due to unification
is trivial. In total, the high-speed version newly designed in
this paper is more efficient than any other circuits including
our compact version.

To conduct a detailed evaluation, the above tower field
GF(28) inversion circuits were synthesized using Synopsys
Design Compiler with a TSMC 65-nm CMOS standard cell
library. Table 3 shows the synthesis results, where area indi-
cates the circuit area estimated based on a two-way NAND
equivalent gate size (i.e., gate equivalents (GE))4, time indi-
cates the circuit delay under the worst-case conditions, and
area–time product indicates the product of area and time.
For the best performance comparison, an area optimization
option (which maximizes the effort of minimizing the num-
ber of gates without flattening the description) was applied.
Note that the results were consistent evenwhen the following
speed optimization (which searches for the minimum tim-
ing without increasing the area obtained from the prior area
optimization) options was applied. The conventional inver-
sion circuits were also synthesized and evaluated using the
same tools and options. The source codes of [10] and [11]
were obtained from authors’ Web sites [22,23], respectively.
(Like them, we also applied gate-reduction techniques to our
inversion circuit.) The source codes of [12], [13], and [16]
were described by the authors according to the structures
given in the papers.

Our compact inversion circuit achieved the smallest area
although the total gate count of the proposed circuit was
roughly the same as the conventional ones [11,16]. The less
XOR gates in our circuit would lead to the smaller circuit
area because an XOR (or XNOR) gate requires larger area
than a NAND (or NOR) gate in standard cell libraries. Con-

4 Whilewe calculatedGEvalues from synthesis resultswith an inverter
cell information in the preliminary version [17], in this paper,we derived
these values directly from a NAND cell in order to accommodate them
to a result in [6]. Note that the GE values in this paper are consistent
with those in the previous version [17].

(a)

(b)

Fig. 4 Overview of AES a S-Box and b inverse S-Box based on tower
field arithmetic

sequently, we confirmed that the compact version of the
proposed circuit achieved the smallest area of 174.75 GE,
the smaller circuit delay of 1.81 ns compared with conven-
tional other circuits. In addition, we performed a dynamic
gate-level timing simulation to estimate power consumption
with Verilog-XL Simulator at the operation frequency of
100 MHz. As a result, we confirmed that the power con-
sumption of our circuit was 38% lower than the conventional
best in our environment. Moreover, the high-speed version
of the proposed circuit achieved the smallest critical delay of
1.55 ns, and the area–time product was 24.8% smaller than
that of the conventional best circuit, respectively.

4 Application to AES S-Box

4.1 Description of AES S-Box

The proposed inversion circuit was efficiently applied to the
AES S-Box design. The AES S-Box consists of a GF(28)
inversion and an affine transformation overGF(2). Here, the
GF(28) is represented in a PB with an irreducible polyno-
mial x8 + x4 + x3 + x + 1. Therefore, a change-of-basis
between GF(28) and GF((24)2) is required if the inversion
over GF((24)2) is applied. Figure 4 shows an overview of
the AES S-Box with tower field arithmetic. In an S-Box (Fig.
4a), the input (in the PB-basedGF(28)) is initially mapped to
the tower field by applying an change-of-basis Δ f which is
given by an isomorphim. After the inversion operation over
the tower field, the inverse mapping and affine transforma-
tion are finally performed in series. Here, we can merge the
inverse mapping into the affine transformation because both
of them are represented in the form of constant matrices over
GF(2). The merged mapping is denoted byΔl . This merging
reduces the delay and gate counts. On the other hand, in an
inverse S-Box (Fig. 4b), the inverse affine transformation is
performed prior to change-of-basis and tower field inversion.
Hence, the inverse affine transformation and change-of-basis
are unified asΛ f , and the inverse change-of-basisΛl is solely
performed after the tower field inversion.
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f

f

l

l

Fig. 5 Typical architecture of unified S-Box

The matrices for the change-of-basis Δ f and Δl (Λ f and
Λl ) have an impact on the performance of S-Box. When
tower field GF((24)2) is used, the matrices are defined by
the bases of GF(24) and the defining polynomials for the
extension of GF(24) to GF((24)2). The efficiency of the
two matrices for change-of-basis Δ f and Δl (Λ f and Λl ) is
determined by the largest Hamming weight in the columns.
For example, if the largest Hamming weight in the columns
is four, the critical path becomes 2TX delay. If it is five,
the critical path becomes 3TX delay. Therefore, the matrices
should be selected with a view to minimizing the largest
Hamming weight in the columns.

Some techniques for optimizing change-of-basis between
AES field and GF((24)2) have been reported in [16,24,25].
In [24,25], an algorithm which searches all construction
of isomorphic mappings from/to PB-based GF((24)2) was
used. In addition, a technique in [16] used More Miscel-
laneously Mixed Bases (MMMB) to expand search space
of the isomorphim for change-of-basis by utilizing asym-
metric property of input of inversion circuit given by RRB.
However, these technique cannot be applied to our inver-
sion circuits because the irreducible polynomial of GF(24)
should be given by the AOP of degree 4 and the input of
inversion circuit should be given by symmetric NB.

In this paper, we design a unified S-Box that supports
both encryption and decryption shown in Fig. 5 in addi-
tion to the S-Box. There are efficient conversion matrices for
either encryption or decryption in the proposed inversion cir-
cuit. However, we found that there is no efficient conversion
matrix for both encryption and decryption in the structure of
Fig. 5 due to the deficiency of search space of isomorphim
for change-of-basis. Therefore, we introduce a new tech-
nique for expanding the search space. Figure 6 illustrates the

AES S-Box structures with the proposed technique, where
the component “constant multiplication” perform a multipli-
cation over PB-based GF(28) with a fixed value. The S-Box
based on tower field arithmetic (denoted by S) is represented
by S(a) = A(Θ ′((Θ(a))−1)) + 0x63, where Θ is a change-
of-basis from the PB-based GF(28) to a tower field,Θ ′ is its
inverse change-of-basis, and A denotes the linear mapping of
the affine transformation. We can rewrite the equation using
a nonzero fixed value c (in the PB-basedGF(28)) as follows:

S(a) = A(c(Θ ′((Θ(c(a)))−1))) + 0x63.

Because themultiplication with c is a linear mapping, we can
unify c andΘ asΔ f , and unifyΘ ′, c, and A asΔl . The fixed
value c can take one of 255 elements over GF(28). Thus, we
can increase the variety of conversion matrices by 255 times.
The proposed technique can be also applied to the inverse
S-Box S′ as follows:

S′(a) = c′(Θ ′(((Θ(c′(A′(a)))))−1)) + Θ(c′(0x05)),

where A′ is the linear mapping of the inverse affine transfor-
mation and c′ is a nonzero fixed value for decryption. Note
that c and c′ do not need to be the same in general.

With the proposed technique, we successfully found effi-
cient conversion matrices δ f , δl , λ f , and λl , respectively, for
Δ f , Δl , Λ f , and Λl when the GF(24) elements of Stage 1
are represented in an NB {β4, β3, β2, β1} and the defining
polynomial for the extension is given by α2+(β4+β)α+β.
As a concrete example, the matrices δ f , δl , λ f , and λl are
given by

δ f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 1 0
1 1 0 0 1 0 0 0
0 1 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, δl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 1 1 1 1
1 0 1 0 0 1 0 0 0 1
0 0 1 1 0 1 0 1 1 1
0 0 0 0 0 1 1 1 1 0
0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 1 1 1
1 0 1 0 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(a)

(b)

Fig. 6 AES a S-Box and b inverse S-Box with proposed technique for optimizing linear mappings
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Table 4 Performance comparison of S-Boxes based on tower field arithmetic

Critical delay Number of XOR gates Area Time Area–time

Δ f Inversion Δl Δ f Δl (GE) (ns) product

Satoh et al. [10] 3TX 4TA + 17TX 3TX 24 21 283.50 4.41 1,250.24

Canright [11] 3TX 4TA + 15TX 3TX 24 (in total) 236.75 4.30 1,018.04

Nogami et al. [12] 2TX 4TA + 14TX 2TX 20 19 392.00 4.78 1,873.77

Jeon et al. [13] 3TX 4TA + 10TX 3TX 10 31 312.25 4.82 1,505.03

Nekado et al. [16] 2TX 4TA + 7TX 3TX 17 36 289.50 3.29 952.46

This work (compact) 2TX 3TA + TO + 6TX 3TX 15 21 249.00 3.04 756.96

This work (high-speed) 2TX 3TA + 6TX 3TX 15 21 261.50 2.78 726.98

Table 5 Performance comparison of unified S-Boxes based on tower field arithmetic

Critical delay Number of XOR gates Area Time Area–time

Δ f or Λ f Inversion Δl orΛl Δ f + Λ f Δl + Λl (GE) (ns) product

Satoh et al. [10] 3TX 4TA + 17TX 3TX 46 44 366.75 4.94 1,811.75

Canright [11] 3TX 4TA + 15TX 3TX 20 18 311.25 4.97 1,546.91

Jeon et al. [13] 3TX 4TA + 10TX 3TX 22 31 381.00 5.93 2,259.33

Nekado et al. [16] 2TX 4TA + 7TX 3TX 32 68 372.50 3.66 1,363.36

This work (compact) 2TX 3TA + TO + 6TX 3TX 32 56 334.75 3.33 1,114.71

This work (high-speed) 2TX 3TA + 6TX 3TX 32 56 347.50 3.05 1,059.87

λ f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 0
1 0 0 0 0 1 0 0
1 1 1 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 0 1 0 0 1 1
0 0 1 1 1 1 0 0
0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, λl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0
1 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 1 1 0 0
1 1 1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the least significant bits are in the upper left corners.
The vector of the inverse affine transformation is given by
Θ(c′(0x05)) = 0x29. Here, the largest Hamming weight in
each column of δ f and λ f is at most four while that of δl
and λl is at most six. This means that the former and latter
mappings are implementedwith atmost 2TX and 3TX delays,
respectively.

4.2 Implementation results

Tables 4 and 5 show the critical delay and the number of
XOR gates required for the change-of-basis of the proposed
AES S-Box and unified S-Box compared with the conven-
tional implementations, respectively. Here, the numbers of
XOR gates for Canright’s and Jeon’s S-Boxes, which were
achieved by factorizing XOR gates, were given according to
their papers.We applied the similar factorization technique to
our S-Boxes. On the other hand, those for other S-Boxeswere
derived directly from conversionmatriceswithout any factor-

ization. Our circuits achieve 3TA+TO+11TX or 3TA+11TX
delay, which is smaller than the conventional S-Boxes with
tower field arithmetic5. Tables 4 and 5 also show the syn-
thesis results (area and delay time) obtained from the same
tool, synthesis options, and method as the above. The source
codes were given from the same methods as Table 3. Note
here that Canright’s design in [11] supports both encryption
and decryption, and we have slightly changed it to support
only encryption to allow a fair comparison to our design (for
Table 4). On the other hand, since Satoh’s design supports
either encryption or decryption, we have also changed it to
support both encryption and decryption as described in Fig. 5
(for Table 5). As a result, the area–time products of our AES
S-Boxes unified S-Boxes were, respectively, 28.1 and 31.5%
better than Canright’s ones, which had been the smallest for
a long time, and were also, respectively, 23.2 and 22.3% bet-
ter than Nekado’s latest ones. The power consumption of our
S-Boxes and unified S-Boxes, which were estimated in the
same manner as Sect. 4, were, respectively, 40.8 and 42.1%
better than Canright’s ones, and were also, respectively, 33.2
and 31.2% better than Nekado’s ones in our environment.

5 According to [26,27], a logicminimizationmethod can further reduce
the total gates or critical delay of [11,12]. However, the sameminimiza-
tion can also be applied to other circuits including ours. Therefore, we
did not apply the minimization in this paper. Note that, in our environ-
ment, the critical delay and area–time product of our S-Boxes without
the minimization technique are smaller than those in [26,27].
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Note that the results of inverse S-Boxes would be consistent
with Table 4.

A further discussion point when applying the proposed
method to cryptographic cores is the well-known side chan-
nel issue. In particular, the resource sharing of Stages 1 and
3 would cause glitches during the computation. To apply our
method to masking-based countermeasures with pipelining
such as threshold implementation (TI) [28,29] and general-
ized masking scheme (GMS) [30,31] to defeat sophisticated
(higher-order) attacks utilizing glitches, we need to decom-
pose shared resources, which results in the increase of 12
XOR gates for the compact version or 17 XOR gates for
high-speed version in total. Note, however, that such increase
would also happen in other works (e.g., [10,11,16]) using
the similar optimization. In contrast, our method is more
suitable for multiplexing-based countermeasures, such as
WDDL [32], due to the high efficiency. A further and com-
prehensive study on the side channel security is definitely
one of the important future topics for our method.

5 Conclusion

This paper proposed a new GF(28) inversion circuit that
utilizes a combination of non-redundant and redundant GF
arithmetic. The proposed circuit, which is based on tower
field arithmetic, was designed by utilizing PRR and RRB for
the subfield inversion and multiplication, respectively. The
flexibility of such redundant representations can provide effi-
cient change-of-basis from/to GF(28). The efficiency of our
proposed inversion circuit and its AES S-Box was evaluated
by gate count and logic synthesis results with a 65-nmCMOS
standard cell library. Consequently, we confirmed that the
newly proposed inversion circuit was approximately 47%
faster than the conventional best GF(((22)2)2) circuit with
5% area overhead. In addition, we proposed a new optimiza-
tion technique for change-of-basis between AES and tower
field. The proposed S-Boxes and unified S-Boxes achieved
the best efficiency in comparison with any other existing S-
Boxes based on tower field arithmetic.

Redundant GF representations, such as PRR and RRB,
provide high flexibility for GF arithmetic circuit design. It is
definitely possible to obtain efficient circuit structures using
them because the search space of isomorphism for change-
of-basis increases as a result of their flexibility. In addition, a
combination of non-redundant and redundant GF represen-
tations has the potential to further improve GF circuits, as
shown in this paper. Further research is being conducted to
expand the application of the design methodology based on
hybrid GF arithmetic.
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