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Abstract
This paper presents a constant-time fast implementation for a high-security code-based key encapsulation mechanism (KEM).
The implementation is based on the “McBits” paper byBernstein, Chou, andSchwabe in 2013:we use the sameFFT algorithms
for root finding and syndrome computation, similar algorithms for secret permutation, and bitslicing for low-level operations.
As opposed to McBits, where a high decryption throughput is achieved by running many decryption operations in parallel,
we take a different approach to exploit the internal parallelism in one decryption operation for the use of more applications.
As a result, we manage to achieve a slightly better decryption throughput at a much higher security level than McBits. As
a minor contribution, we also present a constant-time implementation for encryption and key-pair generation, with similar
techniques used for decryption.

Keywords McEliece · Niederreiter · Bitslicing · Software implementation

1 Introduction

In recent years, due to the advance in quantum comput-
ing, cryptographers are paying more and more attention
to post-quantum cryptography. In particular, NIST’s call
for proposals [23] serves as an announcement to declare
that post-quantum cryptography is going to be reality, and
the whole world needs to be prepared for that. Among
other things, we need post-quantum public-key encryption
schemes and key encapsulation mechanisms (KEMs), and
some of the most promising candidates today are from code-
based cryptography.

In 1978,McEliece proposed his hidden-Goppa-code cryp-
tosystem [20] as the first code-based encryption system.
Until today, almost 40 years of research has been invested
on cryptanalyzing the system, yet nothing has really shaken
its security. It has thus become one of the most confidence-
inspiring post-quantum encryption systems we have today,
and it is important to evaluate how practical the system is for
deployment.

In 2013, Bernstein, Chou, and Schwabe published the
“McBits” paper [6], which presents a software implemen-
tation of Niederreiter’s dual form [22] of the McEliece
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cryptosystem. McBits features (1) a very high decoding (and
thus decryption) throughput which is an order of magni-
tude faster than the previous implementation by Biswas and
Sendrier [12], and (2) full protection against timing attacks.
These features are achieved by bitslicing non-conventional
algorithms for decoding: they use the Gao–Mateer additive
FFT [17] for the root finding, the corresponding “transposed”
FFT for syndrome computation, and a sorting network for
secret permutation.

The decryption throughput McBits achieves, however,
relies on the assumption that there are many decryption oper-
ations that can be carried out at the same time. This is a
reasonable assumption for some applications, but not for the
all applications. The user would be glad to have an imple-
mentation that is capable of decrypting efficiently, evenwhen
there is only one decryption operation at the moment.

The main contribution of this paper is that we show the
assumption is NOT a requirement to achieve a high decryp-
tion throughput. Even better, our software actually achieves a
slightly better decryption throughput than McBits, at a much
higher security level. To achieve this, we need to have a deep
understanding about the data flow in each stage of decoding
algorithm in order to figure out what kind of internal paral-
lelism there is and how it can be exploited.

Note that this paper is an extended version of [14]. The
implementation presented in this paper is mostly the same
as that for [14]. The main difference lies in generation the
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Table 1 Number of cycles for decoding for [6,14] and this paper

References m n t Bytes sec perm synd key eq root All arch

[6] 13 6624 115 958482 252 23140 83127 102337 65050 444971 IB

13 6960 119 1046739 263 23020 83735 109805 66453 456292 IB

[14] 13 8192 128 1357824 297 3783 62170 170576 53825 410132 IB

3444 36076 127070 34491 275092 HW

This 13 8192 128 1357824 297 4853 62170 170576 53825 412272 IB

4457 36076 127070 34491 277118 HW

The numbers in bold are copied from the rows for [14] as the implementations are the same

secret key: in order to generate uniformly random secret keys
among the key space, we use a more sophisticated key gen-
eration routine for this paper. This issue is discussed in detail
in Sect. 6. Also, in the decoding routine, the “permutation”
is implemented in a slightly different way from that for [14];
see discussions below and Sect. 3.

Also note that the implementation presented in this paper
is adapted from the SSE and AVX implementations for
the parameter set mceliece8192128 of the “Classic
McEliece” submission [5] (as an IND-CCA2-secure KEM)
to NIST’s call. The implementation for this paper is slightly
more optimized in key-pair generation and decapsulation,
and therefore, the cycle counts in this paper are better than
what is shown in the submission.

1.1 Performance

The decoding timings of our software, the implementation
for [14], as well as those for the highest-security parameters
in [6, Table 1], are listed in Table 1. Most notations here are
the same as in [6, Table 1]: we use m to indicate the field
size 2m, n to denote the code length, and t to denote the
number of errors. “Bytes” is the size of public keys in bytes;
“Sec” is the (pre-quantum) security level reported by the
https://bitbucket.org/cbcrypto/isdfq script from Peters [24],
rounded to the nearest integer. We list the cycle counts for
each stage of the decoding process as in [6, Table 1]: “perm”
for secret permutation, “synd” for syndrome computation,
“key eq” for key-equation solving, and “root” for root find-
ing. In [6, Table 1], there are two columns for “perm”: one
stands for the initial permutation and one stands for the final
permutation, but the cycle counts are essentially the same
(we pick the timing for the initial permutation). Note that
the column “all,” which serves as an estimation for the KEM
decryption time, is computed as

“perm” × 2 + “synd” × 2 + “key eq” + “root” × 2.

This is different from the “total” column in [6, Table 1] for
decoding time, which is essentially

“perm” × 2 + “synd” + “key eq” + “root”.

Table 2 Cycle counts for key-pair generation (key gen.), encapsulation
(encap.), and decapsulation (decap.)

References key gen. encap. decap. arch

[14] 1552717680 312135 492404 IB

1236054840 289152 343344 HW

This paper 3193838257 330839 523690 IB

1578541256 282372 355152 HW

BIKE [1] ≈ 690000 ≈ 360000 ≈ 8270000 KL

KYBER [2] 121056 157964 154952 HW

The difference is explained in Sect. 6 in detail. “Arch”
indicates the microarchitecture of the platform: “IB” for Ivy
Bridge, “HW” for Haswell, and “KL” (in Table 2) for Kaby
Lake.

We comment that the way we exploit internal parallelism
brings some overhead that can be avoided when using exter-
nal parallelism. In general, such an overhead is hard to avoid
since the data flow of the algorithm is not necessarily friendly
for bitslicing internally. This is exactly the main reason why
our software is slower in “key eq” than McBits (a minor rea-
son is that we are using a larger t). Despite the extra overhead,
we still perform better when it comes to “synd” and “root.”
The improvement on “perm” is mainly because of our use
of an asymptotically faster algorithm. Our “all” speed ends
up being better than McBits. We emphasize that the timings
for McBits are actually 1/256 of the timings for 256 paral-
lel decryption operations, while the timings for our software
involve only one decryption operation.

For completeness, we also show the cycle counts of
our implementation for key generation, encapsulation, and
decapsulation in Table 2 and compare with those in [14].
All the cycle counts for our software were measured
using the SUPERCOP benchmarking toolkit. We use the
randombytes function in SUPERCOP to obtain random-
ness for the key generation and encapsulation. In recent
versions of SUPERCOP,randombytesfirst reads from the
operating system entropy to obtain a short seed, and then, the
seed is expanded using some pseudorandom number genera-
tor to generate a byte string of the desired length. According
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Table 3 Numbers of bytes for secrets keys (sk. size), public keys (pk.
size), and the ciphertexts (ct. size) for the submissions to NIST’s call

References sk. size pk. size ct. size

This paper [5] 14080 1357824 240

BIKE [1] 548 8188 8188

KYBER [2] 3168 1440 1504

to our experiment results, the calls to randombytes are
not significant in either key generation or encapsulation.

For comparison with other submissions to NIST’s call,
Table 2 also includes the speeds for the IND-CPA-secure
code-based KEM “BIKE” [1] and the IND-CCA2-secure
lattice-based KEM “KYBER” [2]. We use the largest param-
eter set of the variant BIKE-1 for BIKE and the parameter
set KYBER1024 for KYBER. All the parameter sets (includ-
ing the one for our implementation) are designed to fit the
level-5 security level defined by NIST. All implementations
being compared are constant time. The sizes of the secret
keys, public keys, and the ciphertexts for the submission are
summarized in Table 3.

1.2 Parameter selection

As shown in Table 1, we implement one specific parameter
set

(m, n, t) = (13, 8192, 128),

with 1357824-byte public keys and a 2297 security level. We
explain below the reasons to select this parameter set.

The Gao–Mateer additive FFT evaluates the input polyno-
mial at a predefinedF2-linear subspaceofF2m . Theparameter
n indicates the size of the list of field elements that we need
to evaluate at, so for n = 2m we can simply define the sub-
space as F2m . In the case of n < 2m , however, there is no way
to define the subspace to fit arbitrary choice of the field ele-
ments (which is actually a part of the secret key), so the best
we can do is still evaluate at the whole F2m . In other words,
having n < 2m would result in some redundant computation.

The parameter n also indicates the number of elements
that we need to apply secret permutations on. The permuta-
tion algorithm we use, in its original form, requires that the
number of elements to be a power of 2. The algorithm can
be “truncated” to deal with an arbitrary number of elements,
but this makes implementation difficult.

Having t close to the register size is convenient for bit-
slicing the FFT algorithms and also the Berlekamp–Massey
algorithm. We choose t = 128 to match the size of XMM
registers in SSE-supporting architectures, as well as the size
of the vector registers in the ARM-NEON architectures. Not
having t close to the register size will not really affect the

performance of FFTs: the algorithms are dominated by the
t-irrelevant part as long as t is much smaller than 2m . A
bad value for t has more impact on the performance of the
Berlekamp–Massey algorithm since we might waste many
bits in the registers. Choosing t = 128 (after choosing
n = 2m) also forces the number of rows mt and number
of columns n − mt of the public-key matrix to be multiples
of 128, which is convenient for implementing the encryption
operation.

For the reasons stated above, some other nice parameters
for (m, n, t) are

– (12, 4096, 64) with 319488-byte public keys and a 2159

security level,
– (12, 4096, 128) with 491520-byte public keys and a 2189

security level, and
– (13, 8192, 64) with 765440-byte public keys and a 2210

security level.

We decided to select a parameter set that achieves at least a
2256 pre-quantum security level and thus presumably at least
a 2128 post-quantum security level.

The reader might argue that such a high security level is
not required for real applications. Indeed, even if quantum
algorithms can take a square root on the security level, it
still means that our system has a roughly 2150 post-quantum
security level. In fact, we even believe that quantum algo-
rithms will not be able to take a square root on the security:
we believe there is a overhead of more than 220 that needs
to be added upon the square root. However, before the post-
quantum security of our system is carefully analyzed, we
think it is not a bad idea to implement a parameter set that
is very likely to be an overkill and convince users that the
system achieves a decent speed even in this case. Once
careful analysis is done, our implementation can then be
truncated to fit the parameters. The resulting implementa-
tion will have at least the same speed and a smaller key
size.

1.3 Software availability

Our software is available at https://tungchou.github.io/code/
mceliece8192128.tar.gz. The code can be easily put into
SUPERCOP for benchmarking; see https://bench.cr.yp.to/
tips.html. The whole software is in the public domain.

1.4 Organization

The rest of this paper is organized as follows. Section 2
introduces the low-level building blocks used in our soft-
ware. Section 3 describes how we implement the Beneš
networks for secret permutations. Section 4 describes how
we implement the Gao–Mateer FFT for root finding and the
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corresponding “transposed” FFT for syndrome computation.
Section 5 introduces how we implement the Berlekamp–
Massey algorithm for key-equation solving. Finally, Sect. 6
introduces how the components in Sects. 3, 4 and 5 are com-
bined to form the complete decryption, as well as how key
generation and encryption are implemented.

2 Building blocks

This section describes the low-level building blocks used in
our software. We will use these building blocks as black
boxes in the following sections. The implementation tech-
niques behind these building blocks are not new. In particular,
this section presents (1) how to use bitslicing to perform
several field operations in parallel and (2) how to perform
bit-matrix transposition in software. Readers who are famil-
iar with these techniques may skip this section.

2.1 Individual field operations

The finite field F213 is constructed as F2[x]/(g), where
g = x13 + x4 + x3 + x + 1. Let z = x + (g). Each field
element

∑12
i=0 ai z

i can then be represented as the integer
(a12a11 · · · a0)2 in software. Field additions are carried out
by XORs between integers. Field multiplications are carried
out by the following C function.

typedef uint16_t gf;
gf gf_mul(gf in0, gf in1)
{

uint64_t i, tmp, t0=in0, t1=in1, t;
tmp = t0 * (t1 & 1);
for (i = 1; i < 13; i++)

tmp ˆ= (t0 * (t1 & (1 << i)));
t = tmp & 0x1FF0000;
tmp ˆ= (t >> 9)ˆ(t >> 10)ˆ(t >> 12)ˆ(t >> 13);
t = tmp & 0x000E000;
tmp ˆ= (t >> 9)ˆ(t >> 10)ˆ(t >> 12)ˆ(t >> 13);
return tmp & ((1 << 13)-1);

}

The squaring function is written in a similar way. Com-
puting the inverse of a field element is carried out by raising
the element to the power 213−2 using 12 squarings and 4
multiplications.

2.2 Bitsliced field operations

The field multiplication function gf_mul and the field addi-
tion shownabove are rather inefficient. The reason is that each
logical instruction deals with only a small number of bits. For
the algorithms used in our software, however, most of the
time several field operations can be performed in parallel.
We thus “bitslice” the field operations. The idea of bitslicing
is to use bitwise logical operations to simulate w copies of
a combinational circuit: the data for the i th copy are stored

void vec64_mul(uint64_t *h, uint64_t *f, uint64_t *g)
{

int i, j;
uint64_t r[2*13 - 1];
for (i = 0; i < 2*13 - 1; i++)

r[i] = 0;
for (i = 0; i < 13; i++)

for (j = 0; j < 13; j++)
r[i+j] ^= (f[i] & g[j]);

for (i = 2*13-2; i >= 13; i--)
{

r[i - 9] ^= r[i];
r[i - 10] ^= r[i];
r[i - 12] ^= r[i];
r[i - 13] ^= r[i];

}
for (i = 0; i < 13; i++)

h[i] = r[i];
}

Fig. 1 The C function for bitsliced multiplications in F213 [x]/(x13 +
x4 + x3 + x + 1) using 64-bit words

in the i th bits of the registers. In this way, the number of bits
involved in each instruction can be improved to w. Bitslic-
ing is also heavily used in [6]. We emphasize that for [6],
the w copies are from w different decryption operations. For
our software, the w copies are all from the same decryption
operation.

The function vec64_mul for bitsliced field multiplica-
tions using 64-bit words is shown in Fig. 1. Our software
uses 128-bit or 256-bit words instead. According to Fog’s
well-known performance survey [16], on the Ivy Bridge
architecture, the bitwise AND/XOR/OR instructions on the
128-bit registers (XMM registers) have a throughput of
3 per cycle, while for the 256-bit registers (YMM regis-
ters) the throughput is only 1. On Haswell, the instructions
for the 256-bit registers have a throughput of 3 per cycle.
We thus use the corresponding function vec128_mul for
Ivy Bridge and use vec256_mul as much as possible
for Haswell. Since both functions are heavily used in our
software, they are written in qhasm [4] code for the best
performance.

Many CPUs nowadays support the pclmulqdq instruc-
tion. The instruction essentially performs a multiplication
between two 64-coefficient polynomials in F2[x], so it
can be used for field multiplications. Our multiplication
function vec256_mul takes 138 Haswell cycles, which
means a throughput of 1.86 field multiplications per cycle.
The pclmulqdq instruction has a throughput of 1/2 on
Haswell. We may perform 2 multiplications between 13-
coefficient polynomials using one pclmulqdq instruction.
However, non-bitsliced representations make it expensive to
perform reductionsmodulo the irreducible polynomial g. The
throughput for pclmulqdq is only 1/8 on IvyBridge,which
makes it even less favorable.
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2.3 Transposing bit matrices

Bit-matrix transposition appears to be a well-known tech-
nique in computer programming. Perhaps due to the simplic-
ity of the method, it is hard to trace who the credit belongs
to. Below, we give a brief review on the idea.

The task is to transpose a w × w bit matrix M , where w

is a power of 2. The idea is to first divide the matrix into
4 w/2 × w/2 submatrices, i.e., the left upper, right upper,
left bottom, and right bottom submatrices. Then, a “coarse-
grained transposition” is performed on M , which simply
interchanges the left bottom and right upper submatrices.
Finally, each block is transposed recursively, until we reach
1 × 1 matrices. The idea is depicted below.

M =
(
M00 M01

M10 M11

)

�⇒
(
M00 M10

M01 M11

)

= M ′

�⇒
(
MT

00 MT
10

MT
01 MT

11

)

= MT

The benefit of this approach is that it can be carried out
efficiently in software. Suppose we are working on a w-bit
machine,where thematrix is naturally represented as an array
of ww-bit words in a row-major fashion. Observe that each
of the first w/2 rows of M ′ is the concatenation of the first
halves of two rows in M . Similarly, each of the second w/2
rows is the concatenation of the second halves of two rows in
M . Therefore, each row in M ′ can be generated using a few
logical operations. After this, in order to carry out operations
in the recursive calls efficiently, the operations involving the
upper two blocks can be handled together using logical oper-
ations on w-bit words. The same applies for the bottom two
blocks. The C code for transposing 64×64matrices is shown
in Fig. 2.

The same technique can be easily generalized to deal with
non-squarematrices.Our softwaremakes use of functions for
transposing 64× 128 and 128× 64 matrices, where instruc-
tions such as psrlq, psllq, psrld, pslld, psrlw, and
psllw are used to shift the 128-bit registers.

3 The Beneš network

As described in [6], a “permutation network” uses a sequence
of conditional swaps to apply an arbitrary permutation to
an input array S. Each conditional swap is a permutation-
independent pair of indices (i, j) together with a permutation-
dependent bit c; it swaps S[i]with S[ j] if c = 1.Our software
uses a specific type of permutation network, called the Beneš
network [8], to perform secret permutations for the code-
based encryption system.

const uint64_t m[6][2] =
{

{0X5555555555555555, 0XAAAAAAAAAAAAAAAA},
{0X3333333333333333, 0XCCCCCCCCCCCCCCCC},
{0X0F0F0F0F0F0F0F0F, 0XF0F0F0F0F0F0F0F0},
{0X00FF00FF00FF00FF, 0XFF00FF00FF00FF00},
{0X0000FFFF0000FFFF, 0XFFFF0000FFFF0000},
{0X00000000FFFFFFFF, 0XFFFFFFFF00000000}

};
for (j = 5; j >= 0; j--)
{

s = 1 << j;
for (p = 0; p < 32/s; p++)
for (i = 0; i < s; i++)
{

idx0 = p*2*s + i;
idx1 = p*2*s + i + s;
x = (in[idx0] & m[j][0]) | ((in[idx1] & m[j][0]) << s);
y = ((in[idx0] & m[j][1]) >> s) | (in[idx1] & m[j][1]);
in[idx0] = x;
in[idx1] = y;

}
}

Fig. 2 The C code for transposing 64 × 64 bit matrices. The matrix to
be transposed is stored in the array in. The transposition is performed
in-place

The McBits paper uses a “sorting network” for the same
purpose but notes that it takes asymptotically more condi-
tional swaps than the Beneš network: O(n log2 n) versus
O(n log n) for array size n = 2m . We found that the Beneš
network is more favorable for our implementation because
it is easier to use the internal parallelism due to its sim-
ple structure. This section introduces the structure of the
Beneš network, as well as how it is implemented in our soft-
ware.

3.1 Conditional swaps: structure

The Beneš network for 2m elements consists of a sequence
of 2m − 1 stages, where each stage consists of exactly 2m−1

conditional swaps. The set of index pairs for these 2m−1 con-
ditional swaps is defined as

{
(α · 2s+1 + β, α · 2s+1 + 2s + β) | 0 ≤ α < 2m−1−s,

0 ≤ β < 2s
}
,

where s is stage dependent. The sequence of s is defined as

0, 1, . . . ,m − 2,m − 1,m − 2, . . . , 1, 0.

To visualize the structure, the size-16 Beneš network is
depicted in Fig. 3.

The Beneš network is often defined in a recursive way,
in which case the size-2m Beneš network is viewed as the
combination of the first and last stage, plus 2 size-2m−1 Beneš
networks in the middle.
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Fig. 3 The size-16 Beneš network with 7 stages. Each horizontal line
represents an element in the array. Each vertical line segment illustrates
a conditional swap involving the array elements corresponding to the
end points

3.2 Conditional swaps: implementation

Consider the Beneš network for an array S of 2m bits where
m = 13. We consider S as a 128 × 64 matrix M such that

Mi, j = S[i + 128 j].

In each of the first and last 7 stages, the index pairs always
have an index difference that is in

{1, 2, 4, 8, 16, 32, 64}.

This implies that in each of these stages, Mi, j is always con-
ditionally swapped with Mi ′, j , where i ′ depends only on i .
This implies that the conditional swaps can be carried out
by performing bitwise logical operations between the rows
(and the vectors formed by the corresponding conditions): a
conditional swap between Mi, j and Mi ′, j with condition bit
c can be carried out by 4-bit operations

y ← Mi, j ⊕ Mi ′, j ;
y ← cy;
Mi, j ← Mi, j ⊕ y;
Mi ′, j ← Mi ′, j ⊕ y;

asmentioned in [6]. Likewise, the 11 stages in themiddle can
be carried out by using bitwise logical operations between
columns.

Because of the relationship between M and S, in our
implementation M is naturally stored in a column-major
fashion at the beginning. In order to perform the opera-
tions between the rows in the first 7 stages, we transpose the
matrix (using the technique described in Sect. 2) to obtain the
row-major representation. In order to perform the operations
between the columns in the middle stages, another transposi-
tion is performed to obtain the column-major representation.
Similarly, another transposition is performed at the end of the

middle stages, and the last transposition is performed afters
all the stages.

Note that there are 4 transpositions in total. In the imple-
mentation for [14], the first and last transpositions are
omitted. Omitting the transpositions are fine, as all we need
is to redefine M and S. For this paper, we decide not to omit
the transposition to make the relationship easy to define.

For the middle stages, we store each column in a 128-
bit word, and the operations are carried out using bitwise
logical instructions on XMM registers. For the first and last
7 stages, each row is merely 64 bits, so a straightforward
way is to perform bitwise logical instructions on the general-
purpose 64-bit registers. We do better by combining two 64-
bit logical operations into one logical operation on XMM
registers.

4 The Gao–Mateer additive FFT

Given a predefined F2-linear basis {β1, β2, . . . , βk} ⊂ F2m

and an �-coefficient input polynomial

f =
�−1∑

i=0

fi x
i ∈ F2m [x]

such that � ≤ 2k ≤ 2m , the Gao–Mateer FFT evaluates f
at all the subset sums of the basis. In other words, the FFT
outputs the sequence

f (e1), f (e2), . . . , f (e2k ),

where

(e1, e2, e3, e4, e5, . . . ) = (0, β1, β2, β1 + β2, β3, . . . ).

Such an FFT will be called a size-2k FFT.
Assuming that βk = 1. The idea is to compute two poly-

nomials f (0) and f (1) such that

f = f (0)(x2 + x) + x f (1)(x2 + x),

using the “radix conversion” described in [6, Section 3]
(this is called “Taylor expansion” in [17]). Note that f (0)

is a ��/2�-coefficient polynomial, while f (1) is a �/2�-
coefficient polynomial. Observe that α2 + α = (α + 1)2 +
(α + 1). This implies that once t0 = f (0)(α2 + α) and
t1 = f (1)(α2 + α) are computed, f (α) can be computed
as t0 + α · t1, and f (α + 1) can be computed as f (α) + t1.
Observe that the output of the FFT is the sequence

f (e1), f (e2), . . . , f (e2k−1),

f (e1 + 1), f (e2 + 1), . . . , f (e2k−1 + 1),
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and e1, . . . , e2k−1 form all subset sums of

{β1, . . . , βk−1} .

Therefore, two FFT recursive calls are carried out to evaluate
f (0) and f (1) at all subset sums of

{
β2
1 + β1, . . . , β

2
k−1 + βk−1

}
.

Finally, f (ei ) and f (ei +1) are computed by using f (0)(e2i +
ei ) and f (1)(e2i + ei ) from the recursive calls, for all i from
1 to 2k−1.

In the case where βk �= 1, the task is reconsidered as
evaluating f (βk x) at the subset sums of

{β1/βk, β2/βk, . . . , 1}.

This is called “twisting” in [6]. Note that it takes � − 1
multiplications to compute f (βk x). To summarize, the Gao–
Mateer additive FFT consists of 4 steps: (1) twisting, (2) radix
conversion, (3) two FFT recursive calls, and (4) combining
outputs from the recursive calls.

In order to find the roots of an error locator, we need to
evaluate at every field element in F213 . The corresponding
basis is defined as
{
β1 = z12, β2 = z11, . . . , β13 = 1

}
.

Having β13 = 1 means that the first twisting can be skipped.
Since we use t = 128, the error locator for our system is
a 129-coefficient polynomial. However, for implementation
of the FFT algorithm it is more convenient to have a 128-
coefficient input polynomial. We therefore consider the error
locator as x128+ f and compute α128+ f (α) for allα ∈ F213 .
Below,we explain how theGao–Mateer additive FFT for root
finding, as well as the corresponding “transposed” FFT for
syndrome computation, are implemented in our software.

4.1 Radix conversions and twisting

In [6], it is described that the first step of the radix conversion
is to compute polynomials Q and R from the 4n-coefficient
(n is a power of 2) input polynomial f = ∑4n−1

i=0 fi xi :

Q = ( f2n + f3n) + · · · + ( f3n−1 + f4n−1)x
n−1

+ f3nx
n + · · · + f4n−1x

2n−1,

R = ( f0) + · · · + ( fn−1)x
n−1 + ( fn + f2n + f3n)x

n

+ · · · + ( f2n−1 + f3n−1 + f4n−1)x
2n−1,

so that f = Q(x2n + xn) + R. Then, Q and R are fed
into recursive calls to obtain the corresponding R(0), R(1),

Q(0), Q(1). Finally, the routine outputs f (0) = R(0)+xnQ(0)

and f (1) = R(1)+xnQ(1). The recursion endswhenwe reach
a 2-coefficient polynomial f0+ f1x , in which case f (0) = f0
and f (1) = f1.

Here is a straightforward way to implement the routine.
First of all, represent the input polynomial f as a 4n-element
array in of datatype gf (see Sect. 2) such that fi is stored
in in[i]. Then, perform 4n XORs

for (i = 0; i < n; i++) in[2*n+i] ˆ= in[3*n+i];
for (i = 0; i < n; i++) in[1*n+i] ˆ= in[2*n+i];

to store Ri in in[i] and Qi in in[2*n+i]. Likewise, the
additions in the recursive calls can be carried out by in-place
XORs between array elements. Eventually, we have f (0)

i in

in[2*i] and f (1)
i in in[2*i+1].

Representing the polynomials as arrays in gf is, how-
ever, expensive for twisting: as mentioned in Sect. 2, the
function gf_mul is not efficient. Therefore in our software,
the polynomials are represented in bitsliced format. In this
case, the additions can be simulated by using bitwise logi-
cal instructions and shifts. As a concrete example, let f be
a 64-coefficient input polynomial in F213 [x], which is repre-
sented as a 13-element array of type uint64_t. Then, the
following code applies the radix conversion on f .

const uint64_t mask[5][2] =
{

{0x8888888888888888, 0x4444444444444444},
{0xC0C0C0C0C0C0C0C0, 0x3030303030303030},
{0xF000F000F000F000, 0x0F000F000F000F00},
{0xFF000000FF000000, 0x00FF000000FF0000},
{0xFFFF000000000000, 0x0000FFFF00000000}

};
for (k = 4; k >= 0; k--)
for (i = 0; i < 13; i++)
{

in[i] ˆ= (in[i] & mask[k][0]) >> (1 << k);
in[i] ˆ= (in[i] & mask[k][1]) >> (1 << k);

}

In the end, the coefficients of f (0) are represented by the
even bits of the words, while the coefficients of f (1) are
represented by the odd bits.

The same technique can also be used to complete the radix
conversions in the FFT recursive calls. Since a twisting oper-
ation simply multiplies fi by β i

k , they are carried out using
bitsliced multiplications. See Fig. 4 for the code for all the
radix conversions and twisting operations, including those in
the FFT recursive calls. Note that the first twisting operation,
which should take place before the first radix conversion, is
already skipped in the code. Our software uses similar code
but replaces 64-bit words by 128-bit words.

4.2 Butterflies

The reader might have noticed that the last 4 stages of Fig. 3
are similar to the well-known butterfly diagram for standard
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multiplicative FFTs. In a standard multiplicative FFT, f is
written as f (0)(x2) +x f (1)(x2) so that f (α) and f (−α)

can be computed using f (0)(α2) and f (1)(α2) obtained from
recursive calls. The similarity (between multiplicative FFTs
and additive FFTs) in the ways of rewriting f results in the
same “butterfly” structure.

In the case of a “full-size” additive FFT, where � = 2k , the
whole butterfly diagram has to be carried out. The technique
used for carrying out the Beneš network (see Sect. 3) can be
easily generalized to carry out the diagram. For decoding,
however, � is usually much smaller than 2k = 2m . As the
result, we only need to carry out the last log2 � stages of the
complete butterfly diagram.

As described in Sect. 3, we carry out the second half of
the Beneš network by using a bit-matrix transposition in the
middle. In the case of additive FFT butterflies, there will
be m bit-matrix transpositions. The ideal case is that the �

is small enough so that the transpositions can be avoided.
The corresponding code using 64-bit words for m = 12 is
presented in Fig. 5. For the parameters � = 128 andm = 13,
we are close to this ideal case but need to carry out 1 or 2 extra
stages. The extra stages can be carried out by interleaving the
128-bit or 256-bit words.

4.3 The bottom level of recursion

As shown in Fig. 4, when carrying out the radix conversions
and twisting operations, wemaintain a list of �field elements.
On the other hand, as shown in Fig. 5, when carrying out
the FFT butterflies, we maintain a list of 2m field elements.
Apparently, some operations are required to transit from the
�-element representation to the 2m-element representation.
This has to do with how the bottom level of recursion is
defined.

The straightforward way to end the recursion is to check
whether the input polynomial has only 1 coefficient; if so, the
output is simply copies of the coefficient (the constant term).
This is exactly the case for Figs. 4 and 5: after running the
code in Fig. 4, we simply prepare the bitsliced representation
of 64 copies of each elements and store them in out, and
then, Fig. 5 can be run to complete the FFT.

We do better by using the idea in [6, Section 3] to end the
recursion when the input is a 2-coefficient polynomial. Let
the input be f = f0 + f1x and the basis be {β1, . . . , βk}.
The idea is to first prepare a table containing f1βi for all
i , and then, each output element can be computed using at
most one field addition. To implement the idea, we perform
the radix conversions and twisting operations as in Fig. 4
but stop when we reach 2-coefficient polynomials. At this
moment, the �/2 elements corresponding to f0 would lie in
the lower �/2 bits of the �-bit words, while those for f1 would
lie in the higher �/2 bits. The outputs of the lowest-level FFTs
can then be obtained by carrying out bitslicedmultiplications

for (j = 0; j <= 4; j++)
{

for (i = 0; i < 13; i++)
for (k = 4; k >= j; k--)
{

in[i] ^= (in[i] & mask[k][0]) >> (1 << k);
in[i] ^= (in[i] & mask[k][1]) >> (1 << k);

}
vec64_mul(in, in, s[j]); // twisting

}

Fig. 4 The code for performing the twisting operations and radix con-
version in the FFT for a 64-coefficient polynomial f ∈ F213 [x]

for (i = 0; i <= 5; i++)
{

s = 1 << i;
for (j = 0; j < 64; j += 2*s)
for (k = j; k < j+s; k++)
{

vec64_mul(tmp, out[k+s], consts[ ptr + (k-j) ]);
for (b = 0; b < 13; b++)

out[k][b] ^= tmp[b];
for (b = 0; b < 13; b++)

out[k+s][b] ^= out[k][b];
}
ptr += (1 << i);

}

Fig. 5 Butterflies in the additive FFT

and additions using bitwise logical operations between the
�/2-bit words.

After this, we have the bitsliced representation (an array of
m �/2-bit words) for the first output elements of the lowest-
level FFTs, the representation for the second output elements,
and so on; in total there are 2m/(�/2) such arrays. In order
to group the output elements that belong to the same lowest-
level FFT, we perform a sequence of m transpositions on
2m/(�/2) × (�/2) = 128 × 64 bit matrices, using the tech-
nique described in Sect. 2. Finally, the FFT butterflies can be
performed using code similar to Fig. 5.

4.4 The transposed additive FFT

As described in [6, Section 4], a linear algorithm can be
represented as a directed graph, and an algorithm that per-
forms the transposed linear map can be obtained by reversing
the edges in the graph. The way we implement the FFT
makes it easy to imagine the structure of the graph and
program the corresponding transposed FFT. As shown in
Figs. 4 and 5, each inner loop in our FFT code essentially
applies a simple linear operation on the values in in or
out. In general, it suffices to modify the loops to reverse
the order that the inner loop is iterated and then replace
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for (i = 5; i >= 0; i--)
{

s = 1 << i;
ptr -= s;
for (j = 0; j < 64; j += 2*s)
for (k = j; k < j+s; k++)
{

for (b = 0; b < 13; b++) out[k][b] ^= out[k+s][b];
vec64_mul(tmp, out[k], consts[ ptr + (k-j) ]);
for (b = 0; b < 13; b++) out[k+s][b] ^= tmp[b];

}
}

:
:
:

for (j = 4; j >= 0; j--)
{

vec64_mul(in, in, s[j]); // twisting
for (k = j; k <= 4; k++)
for (i = 0; i < 13; i++)
{

in[i] ^= (in[i] & (mask[k][1] >> (1 << k)))
<< (1 << k);

in[i] ^= (in[i] & (mask[k][0] >> (1 << k)))
<< (1 << k);

}
}

Fig. 6 Transposed FFT code with respect to Figs. 4 and 5

the inner loop by its transpose. The transposed additive
FFT code with respect to Figs. 4 and 5 is shown in Fig. 6
(the code for transposing the bottom level of recursion is
skipped).

5 The Berlekamp–Massey algorithm

The description of the originalBerlekamp–Massey algorithm
(BM) can be found in [19]. In each iteration of the algo-
rithm, a field inversion has to be carried out. To perform
the inversion in constant time, we may use the square-and-
multiply algorithm, but this is rather expensive as discussed
in Sect. 2. To avoid the problem, our implementation fol-
lows the inversion-free version of the algorithm as described
in [27].

The algorithmbeginswith initializingpolynomialsσ(x) =
1, β(x) = x ∈ F2m [x], � = 0 ∈ Z, and δ = 1 ∈ F2m .
The input syndrome polynomial is denoted as S(x) =∑2t−1

i=0 Si xi . Then in iteration k (from 0 to 2t − 1), the vari-
ables are updated using operations in Fig. 7. Note that � and
δ are just an integer and a field element, and multiplying a
polynomial by x (to update β(x)) is rather cheap. Therefore,
the algorithm is bottlenecked by computing d and updating
σ(x). We explain below how the algorithm is implemented
in our software.

d ←
t∑

i=0

σiSk−i

[
σ(x), β(x), �, δ

]
←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
δσ(x) − dβ(x), xβ(x), �, δ

]
,

d = 0 or k < 2�.

[
δσ(x) − dβ(x), xσ(x), k − � + 1, d

]
,

otherwise.

Fig. 7 Iteration k in the inversion-free BM

5.1 General implementation strategy

Assume that there are (t + 1)-bit general-purpose registers
on the target machine. For example, one can assume that
t = 63 and that we are working on a 64-bit machine. We
store polynomials σ(x) and β(x) in the bitsliced format, each
using an array of m(t + 1)-bit words. The constant terms σ0
and β0 are stored in the most significant bits of the words;
σ1 and β1 are stored in the second significant bits; and so on.
We also use an array S′ ofm(t+1)-bit words to store at most
t + 1 coefficients of S(x). This array is maintained so that
Sk is stored in the most significant bits of the words; Sk−1 is
stored in the second significant bits; and so on.

To compute d, we first perform a bitsliced field multi-
plication between σ(x) and S′. The result is the bitsliced
representation of σ0Sk , σ1Sk−1, etc. The element d can then
be computed as the parities of the m (t + 1)-bit words. After
this, Sk+1 is inserted to the most significant bits of the words
in S′, which will be used in the next iteration.

To update σ(x), we need to perform two scalar multipli-
cations δ · σ(x) and d · β(x). The bitsliced representations
of t + 1 copies of δ and d are first prepared, and then, bit-
slicedmultiplications are carried out to compute the products.
Updating β(x) is done by conditionally replacing the value
of β(x) by σ(x) (which can be easily represented as logical
operations) and then shifting each word to the right by one
bit to simulate the multiplication by x .

The implementation strategy pretty much simulates the
circuit presented in [27, Figure 1]. Using the strategy, (each
iteration of) the BM algorithm can be represented as a fixed
sequence of instructions. In particular, the load and store
instructions always use the samememory indices. As a result,
the implementation is fully protected against timing attacks.

5.2 Haswell Implementation for t = 128

Exactly, the same implementation strategy cannot be used for
t = 128 on Haswell for there are no (128 + 1)-bit registers.
To solve this problem, our strategy is to store σ0 and Sk in
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two variables of datatype gf. The elements σ1, . . . , σ128 and
Sk−1, . . . , S0 are still stored in the bitsliced format, using two
arrays of 128-bit words. To compute d, the product σ0Sk is
computed separately. Similarly, to update σ(x), the product
σ0δ is computed separately. Note that β0 is always 0, so we
simply store β1, . . . , β128 in the bitsliced format.

We also need a way to update S′ and β(x)without generic
shift instructions for 128-bit registers. Our solution is tomake
use of the shrd instruction. Given 64-bit registers r1, r0 as
arguments, the shrd instruction is able to shift the least sig-
nificant bit of r1 into the most significant bit of r0. Therefore,
with 2 shrd instructions, we can shift a 128-bit word by one
bit to the right. In particular, the second shrd shifts one bit
into the most significant bit of the 128-bit word. Therefore,
we update S′ by setting this bit to bits of Sk and update β by
setting this bit to 0 or bits of σ0 (depending on the condition).

To optimize the speed for Haswell, we combine the two
vec128_mul function calls for δ ·σ(x) and d ·β(x) to form
one vec256_mul. As discussed in Sect. 2, this is better
because 256-bit logical instructions have the same through-
put as the 128-bit ones.

We also use 256-bit logical instructions to accelerate
vec128_mul.Afieldmultiplication canbeviewedas amul-
tiplication between 13-coefficient polynomials, followed by
a reduction modulo g. Let the polynomials be f and f ′; the
idea is to split the polynomial multiplication into two parts
f ( f ′

0 + · · · + f ′
6x

6) and f ( f ′
7 + · · · + f ′

12x
5 + 0x6). In this

way, we create two bitsliced multiplications for computing
d, and the two can be combined as what we do for δ · σ(x)
and d · β(x). Note that for combining the two products and
the reduction part we still use 128-bit logical instructions.
By using 256-bit logical instructions, we improve the cycle
counts of vec128_mul from 137 to 94 Haswell cycles.

As a minor optimization, we also combine the computa-
tion of σ0Sk and σ0δ. This is achieved by using the upper 32
bits of the 64-bit variables in gf_mul for another multipli-
cation. In this way, two field multiplications can be carried
out in roughly the same time as gf_mul.

As discussed in Sect. 4, the input of the FFT function for
root finding is the bitsliced representation of f0, . . . , f127;
f128 is not stored since it is assumed to be 1. In fact, at the end
of the Berlekamp–Massey algorithm we have fi = σ128−i .
Therefore, we perform a field inversion for σ0 and bitsliced
multiplications to force a monic output polynomial for the
Berlekamp–Massy algorithm.

6 The complete cryptosystem

The core of ClassicMcEliece, as inMcBits, is essentially the
Niederreiter cryptosystem. We briefly show below the how
McBits and Classic McEliece achieve public-key encryption
andkey encapsulationusingNiederreiter. For readerswhoare

interested in the detailed specification of Classic McEliece,
please refer to [5]. We also show below how key-pair gen-
eration, encapsulation, and decapsulation are implemented
in our software using the building blocks introduced in
the previous sections, with focus on the Niederreiter-related
operations.

6.1 McBits

In [6, Section 6], a complete public-key encryption sys-
tem is described. The cryptosystem uses a KEM/DEM-like
structure, where the KEM is based on the Niederreiter
cryptosystem. To send a message, the sender first uses the
receiver’s Niederreiter public key to compute the syndrome
of a random weight-t error vector. Then, the error vector
is hashed to obtain two symmetric keys. The first symmetric
key is used for a stream cipher to encrypt the arbitrary-length
message. The second symmetric key is used for a message
authentication code to authenticate the output generated by
the stream cipher. The syndrome, the stream-cipher output,
and the authentication tag are then sent to the receiver.

The receiver first decodes the syndrome using the Nieder-
reiter secret key. The resulting error vector is then hashed to
obtain the symmetric keys, and the receiver verifies (using
the tag) and decrypts the stream-cipher output. Note that the
receiver can fail in decoding or verification. The decryption
algorithm should be carefully implemented such that others
cannot distinguish (for example, by using timing informa-
tion) what kind of failure the receiver encounters.

6.2 Classic McEliece

The specification of the keys and ciphertexts in Classic
McEliece is a bit different from that of McBits:

– The secret key contains a random n-bit string s in addition
to the Goppa polynomial and the support, and

– the ciphertext C = (C0,C1) contains a hash value C1 of
the error vector e, in addition to the Niederreiter cipher-
text C0.

C1 serves as a “confirmation”: it is assumed that C1 cannot
be computed without knowledge of e.

During encapsulation, we compute C1 = H(2, e) and
K = H(1, e,C), whereH is a hash function. C = (C0,C1)

is then outputted as the ciphertext, and K is then outputted as
the session key.During decapsulation, the received ciphertext
C is first parsed as (C0,C1). Then, a decoding algorithm is
performed on C0; the result of decoding is either an error
vector e or ⊥. In case of ⊥, e is set to the random secret
string s. We then compute C ′

1 = H(2, e) and set e to s if
C ′
1 �= C1. A bit b is set to 0 if the decoding algorithm outputs
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⊥ or C ′
1 �= C1; b is set to 1 otherwise. Finally, the session

key K is set to beH(b, e,C).

6.3 Private-key generation

The private key of the system consists of two parts: (1) a
sequence (α1, . . . , αn) of n distinct elements in F2m and
(2) a square-free degree-t polynomial g ∈ F2m [x] such that
g(αi ) �= 0 for all i .

For our implementation, g is generated as a uniform ran-
dom degree-t monic irreducible polynomial in F2m [x]. To
generate g, we first generate a random element α in the
extension field F2mt . The polynomial g is then defined as
the minimal polynomial of α in F2m [x], if the degree is t .
To find the minimal polynomial, we view F2mt as the vec-
tor space (F2m )t and try to find linear dependency between
1, α, α2, . . . , αt using Gaussian elimination. A description
of the algorithm can be found in, for example, [26, Sec-
tion 17.2].

The benefit of this approach is that it is easy tomakeGaus-
sian elimination constant time: [6] already shows how this
can be achieved in the case of bit matrices. Note that the algo-
rithm can fail to find a degree-t irreducible polynomial when
α ∈ F2mt ′ such that t ′ is a divisor of t . For our parameters
m = 13 and t = 128, the probability of failure is only 2−832.

Recall that we use n = 2m . Let φ be a permuta-
tion function such that φ(α̂1, . . . , α̂2m ) = (α1, . . . , α2m ),
where (α̂1, . . . , α̂2m ) is the standard order of field elements
introduced by the FFT (see Sect. 4). In our software, the
permutation function is defined using the condition bits in
the corresponding size-2m Beneš network. We comment that
there are (2m−1)2m−1 = m2m −2m−1 condition bits in the
Beneš network, while a list of 2m field elements takes m2m

bits. In other words, representing (α1, . . . , αn) as condition
bits actually saves the size of secret keys.

Instead of generating the sequence αi and then figure out
the condition bits, in [14] the condition bits are simply gen-
erated as random bits in the current implementation. This
approach is convenient for implementation. However, as dis-
cussed in [6, Section 5], this distribution of the sequence of
field elements is not uniform, whichmight potentially lead to
vulnerability (even though there has not been any evidence
that the attacker can exploit the bias).

In order to avoid the problem, we decide to first generate a
uniform randomsequence and thenfigure out the correspond-
ing condition bits. Generating the sequence can be done by
first generating the list of all field elements and then attaching
to each field element a random32-bit integer.We then sort the
list according to the 32-bit integers to obtain the sequence of
field elements. The 32-bit numbers are checked so that there
is no repetition; in case repetition is found, a new list of 32-bit
numbers will be generated.

For figuring out the condition bits, we follow the approach
given in the paper by Lev et al. [18]. The paper reduces the
problem of generating the condition bits for a Beneš network
to a coloring problem for a graph. A main building block
in the Lev–Pippenger–Valiant algorithm is sorting. We use
a piece of optimized constant-time code by Bernstein for
Batcher’s odd-even sorting network [3] as a subroutine of
condition-bit generation.

6.4 Public-key generation

Let H be the bit matrix obtained by replacing each entry in
the matrix

⎛

⎜
⎜
⎜
⎝

1/g(α1) 1/g(α2) · · · 1/g(αn)

α1/g(α1) α2/g(α2) · · · αn/g(αn)
...

...
. . .

...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

⎞

⎟
⎟
⎟
⎠

by a column ofm bits from the standard-basis representation.
The receiver computes the row-reduced echelon form of H .
If the result is of the form

[
I |H ′], the public key is set to H ′;

otherwise, a new secret key is generated.
In our implementation, the images g(α̂1), . . . , g(α̂n) are

first generated using the FFT implementation described in
Sect. 4. After this, the inversions of all these images are
computed, usingMontgomery’s trick [21] with bitsliced field
multiplications. Now we have the bitsliced representation of
the first row of the matrix

⎛

⎜
⎜
⎜
⎝

1/g(α̂1) 1/g(α̂2) · · · 1/g(α̂n)

α̂1/g(α̂1) α̂2/g(α̂2) · · · α̂n/g(α̂n)
...

...
. . .

...

α̂t−1
1 /g(α̂1) α̂t−1

2 /g(α̂2) · · · α̂t−1
n /g(α̂n)

⎞

⎟
⎟
⎟
⎠

.

The remaining rows are then computed one by one using
bitsliced field multiplications. Since all the rows are repre-
sented in the bitsliced format, thematrix can be easily viewed
as the correspondingmt ×n bit matrix. Then, the Beneš net-
work is applied to each row of the bit matrix to obtain H .
Finally, we follow [6, Section 6] to perform a constant-time
Gaussian elimination. The public key is then the row-major
representation of H ′ (one can of course use a column-major
representation instead).

6.5 Encapsulation

The encapsulation begins with generating the error vector e
of weight t . This is carried out by first generating a sequence
of t random m-bit values, which indicates the positions of
the errors. The t values are then checked for repetition. If a
repetition is found, we simply regenerate the t random m-bit
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Algorithm 1 The decoding procedure
1: function Decoding(ŝ, g, φ)
2: r ← (ŝ1, . . . , ŝmt , 0, 0, . . . , 0) ∈ F

n
2

3: r ← φ−1(r)
4: β = (β1, . . . , βn) ← FFT(g) � β ∈ F

n
2m

5: s ← FFT_tr(r1/β2
1 , r2/β2

2 , . . . , rn/β2
n ) � s ∈ F

2t
2m

6: f ← BM(s) � f ∈ F2m [x]
7: r ′ ← FFT( f ) � f ∈ F

n
2m

8: Compute e ∈ F
n
2 such that ei = 1 iff r ′

i = 0
9: s′ ← FFT_tr(e1/β2

1 , e2/β2
2 , . . . , en/β2

n ) � s′ ∈ F
2t
2m

10: if |e| �= t or s �= s′ then return ⊥
11: else return φ(e)
12: end if
13: end function

values; otherwise, we convert the indices into the error vector
as a sequence of n/8 bytes.

To compute each bit of the syndrome, each 128-bit word in
the corresponding row is first ANDedwith the corresponding
128-bit word in the error vector. The 128-bit results are then
XORed together to form one single 128-bit word. We make
use of the popcnt instruction to compute the parity of the
128-bit word, and the syndrome bit is set to the parity. Finally,
after processing all the rows of the public key, we deal with
the identity matrix by XORing the first mt/8 bytes of the
error vector into the syndrome.

6.6 Decapsulation

As explained in [6], decoding consists of 5 stages: the initial
permutation, syndrome computation, key-equation solving,
root finding, and the final permutation. This is why the “total”
column in [6, Table 1] is essentially

“perm” × 2 + “synd” + “key eq” + “root”.

The “all” column in Table 1, however, is computed as

“perm” × 2 + “synd” × 2 + “key eq” + “root” × 2.

In other words, we count one extra “root” and one extra
“synd.”

The reason we count “root” one more time is a matter of
implementation choice. To perform syndrome computation,
each of the 2m input bits is required to be scaled by 1/g(α)2,
where α is the corresponding point for evaluation. Since
1/g(α)2 depends only on g, [6] uses them as pre-computed
values. This strategy saves time but enlarges the size of secret
keys. We decide to save the size of secret keys and com-
pute all 1/g(α)2 on the fly, using “root” for computing g(α),
Montgomery’s trick for simultaneous inversions [21] with
bitsliced multiplications, and bitsliced squarings.

The reason we count “synd” one more time is for re-
encryption. A decoding algorithm is only required to decode

when the input syndrome corresponds to an error vector of
weight t . For CCA-secure KEM, however, we need addition-
ally the ability to reject invalid inputs. We therefore check
the weight of the error vector and perform “synd” again
to compute the syndrome of the error vector. The decod-
ing is considered successful only if the weight is exactly
t and the syndrome matches the output of the first “synd”
stage.

We summarize the whole decoding procedure in Algo-
rithm 1. The algorithm takes as input the syndrome ŝ
(ciphertext for Niederreiter), the Goppa polynomial g, and
the secret permutation φ. The algorithm’s output is either a
weight-t error vector e which results in ŝ, or ⊥.

The algorithm starts with generating a vector r that has
syndrome ŝ with respected to

[
I |H ′], by simply appending

ŝ with 0’s. The next step is to compute the syndrome s of r
with respect to

⎛

⎜
⎜
⎜
⎝

1/g2(α1) 1/g2(α2) · · · 1/g2(αn)

α1/g2(α1) α2/g2(α2) · · · αn/g2(αn)
...

...
. . .

...

α2t−1
1 /g2(α1) α2t−1

2 /g2(α2) · · · α2t−1
n /g2(αn)

⎞

⎟
⎟
⎟
⎠

.

This is achieved by first replacing r by φ−1(r) (“perm”),
scaling each entry ri by 1/g2(α̂i ), and then multiplying the
result by

M =

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
α̂1 α̂2 · · · α̂n
...

...
. . .

...

α̂2t−1
1 α̂2t−1

2 · · · α̂2t−1
n

⎞

⎟
⎟
⎟
⎠

.

The computation of g(α̂i ) is carried out by the additive FFT
(“root”), which is denoted as FFT in Algorithm 1, and the
multiplication by M is carried out by the transposed additive
FFT (“synd”), which is denoted as FFT_tr. The syndrome s
is then fed into the Berlekamp-Massey algorithm (“key eq”)
to generate the error locator f . From f , the corresponding
error vector e is computed using the additive FFT (“root”).
As we discussed above, it is necessary to check whether e’s
syndrome s′ is the same as s. As for computing s, each entry
ei is first scaled by 1/g2(α̂i ), and then, the scaled vector is
multiplied by M to obtain s′. Note that only one transposed
additive FFT (“synd”) is required here, as there is no need
to compute g(α̂i ) again. Finally, the algorithm outputs ⊥ if
the weight of e is not t or if s �= s′; otherwise, the algorithm
outputs φ(e) (“perm”).
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