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Abstract Implementations of asymmetric key algorithm
have been threatened via timing side channels due to the
behavior of the underlying branch predictors. However, the
effect of faults on such predictors and the consequences
thereof on the security of crypto-algorithms have not been
studied. Motivated by the fact that unknown branch predic-
tors of standard processors bear a strong correlationwith 2-bit
dynamic predictors, this paper develops a formal analysis of
such a bimodal predictor under the effect of faults. Assuming
a popular bit-flip fault model, the analysis shows that differ-
ences of branch misses under the effect of such faults can be
exploited to attack implementations of RSA-like asymmetric
key algorithms, based on square and multiplication oper-
ations. Furthermore, these attacks can be also threatening
againstMontgomery ladder ofCRT-RSA (RSA implemented
using Chinese Remainder Theorem) and even against fault
attack countermeasures which stop or randomize the output
in case of a fault. The theoretical claims have been substan-
tiated by detailed fault simulations, where the difference of
branch misses has been observed using the “perf” tool in
Linux.
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1 Introduction

Micro-architectural features are often captured by side
channels which unknowingly leak the states of underly-
ing hardware. Side-channel attacks allow malicious users
to access sensitive data by monitoring power consumption,
timing, or electro-magnetic radiation of the system. In mod-
ern microprocessors, there are several new sources of side
channels and the performance improvement measures which
are introduced, leak a significant amount of information.
For example, hardware prefetchers for cache memories are
shown to increase leakage in cache-timing attacks [7,17].

A leakage with respect to the branch mispredictions exists
in the system where the instruction execution depends on an
internal key. This is because the underlying branch predic-
tors are subjected to instruction sequences conditioned on
the key-dependent variables. Branch misprediction traces, a
powerful side channel, can thus be observed by an adver-
sary with respect to timing, power, or micro-architectural
channels. There has been a few works in the literature which
study branch misses with timing channels on real systems.
In [2], four different types of timing attacks were performed
on a standardRSA implementation exploiting the branch pre-
diction unit by using both synchronous and asynchronous
techniques. A further improved version of this attack [1,3]
has also been carried out with proper knowledge of under-
lying hierarchical branch target buffer architecture of the
target system. While in [6], the RSA crypto-system has
been attackedwheremodular exponentiation has been imple-
mented using both square and multiply and Montgomery
ladder and the underlying multiplication and squaring has
been implemented using Montgomery’s method. This two-
level branching has been targeted by the adversary to
subsimulate the intermediate branching decisions for known
key bits and known modulus N . But the attack in [6] does
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not work on implementations like CRT-RSA since subsimu-
lations are not possible in such algorithms. This is because
the factors p, q of the RSA modulus N (which are used as
the modulus in the two-step exponentiation in CRT-RSA)
are not known to the adversary. Thus, the attack in [6] cannot
be applied to CRT-RSA implementation. But the underly-
ing exponentiation of CRT-RSA implementation still leaks
information through the event branch misprediction. In the
presence of faults, the difference of branch mispredictions
observed over such exponentiations has the potential to leak
the underlying secret key. The fault analysis attack proposed
in this paper poses a potential threat on the contemporary
systems, and such analysis on branch predictors has never
been attempted in literature.

Fault analysis attacks are known to target the physical
implementation of the cipher and tamper with the device
to break the security mechanisms. The popular countermea-
sures to thwart the fault analysis attack randomize the cipher
output on detection of the fault. The fault attack counter-
measures attempt that the faulty output is obscured to any
adversary. In this scenario, the processor’s inbuilt special-
purpose event counters such as the hardware performance
counters (HPCs) could be a rich source of information leak-
age since they depict the internal state of the cipher execution
in the form of various event counts. HPCs are a set of special-
purpose registers to store the counts of hardware-related
activities within the microprocessor. The HPC events can be
monitored efficiently by user-space tools in spite of having
fault attack countermeasures implemented in place. In this
paper, we target event branch misses for implementations
having key-dependent branching sequences.

Interestingly, the attack in [6] claims that though theunder-
lying branch predictor is unknown; bimodal 2-bit predictor
exhibits a very strong correlation with the actual statistics
of branch misses obtained through HPCs. In this paper, we
use the approximation to simulate branch mispredictions of
branching sequences. In the presence of faults, this difference
of mispredictions has been formalized leading to a charac-
terization which can be utilized to launch a fault analysis
attack.

The commonly used exponentiation algorithm like binary
square and multiply in RSA-like public-key algorithms has
unbalanced instruction execution which can be exploited by
timing [13] and power side channels. On the contrary, if all
the control flow paths have balanced instruction sequences as
inMontgomery ladder algorithm [10], they are indistinguish-
able with respect to simple timing and power analysis. But
still as these algorithms have key-dependent instructions, the
branch miss event if monitored and analyzed properly could
leak information.

In this paper, we formalize and characterize the difference
of branch misses in the presence of bit-flip fault model. In
the recent commercially available systems, inducing bit-flip

in memory, are indeed a real threat due to the Rowhammer
vulnerability [12]. The bit-flips can be triggered by repeated
DRAM row activation, and recently, this vulnerability has
been exploited to flip bits in secret exponent in memory [5].
In the presence of such faults, the difference of branchmisses
with the knowledge of the state of the bimodal predictor leads
to unique key retrieval. The observations and the formalism
have been utilized to develop an iterative key retrieval attack.
Our attack model works even if the fault attack countermea-
sures are implemented, since the adversary is only concerned
with the information regarding branch misses for the faulty
execution. The major contributions of our paper are:

– The difference of branch misses observed through HPCs
between the correct and the faulty execution can be mod-
eled efficiently to develop a key recovery attack.

– We develop an iterative attack strategy, which simulates
the branches corresponding to partially known exponent
bits and observes the difference of branch misses from
HPCs to reveal the next bit.

– The theoretical simulations are validated on secret key-
dependent modular exponentiation algorithms as well as
on CRT-RSA implementation.

The experimental validations are performed on the simulated
fault model on several Intel platforms with 1024-bit key, and
the results demonstrate that we are able to retrieve the secret
bits uniquely.

The organization of the paper is as follows. The following
Sect. 2 provides brief description on HPCs and vulnerability
of HPCs in fault analysis attacks scenario. In Sect. 3, we for-
malize the differential of 2-bit predictor in fault attack setup.
Section 4 establishes the formalism in context to the asym-
metric key algorithms, and Sect. 4.2 explains the proposed
attack algorithm. Section 4.4 provides the experimental val-
idations for the attack strategy with simulated faults, and the
final section contains conclusion of the work we present.

2 Differential analysis of the branch predictor

Branchmisses are caused due to the branch predictors present
in the underlying architecture. State machine of the 2-bit
dynamic predictor in Fig. 1 has been extensively used as an
underlying predictor in Intel family of microprocessors [9].
In real systems, the branch predictor hardware is much
advanced and complicated compared to the above primi-
tive model. The actual details of such architecture are not
disclosed by the processor manufacturing companies. HPCs
provide an interface to observe the number of branch misses
from the underlying hardware.

Approximating a real-life branch predictor with a 2-bit
dynamic predictor has been first demonstrated in [6]. This
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Fig. 1 Dynamic 2-bit predictor state machine

approximation works successfully for our attack, because we
perform a differential analysis.While the actual value of the
branch misses is not important, what is used in our attack is
the relative orderingof branchmisses of twoprocesses. Itmay
be stressed that while we develop the formal analysis using
a simplistic model of the branch predictor, we later validate
the attack and the claims thereof on an actual branch predic-
tor of a real-life computing platform. This paper focuses on
the vulnerability of hardware event counts in fault analysis
setups. HPCs being present in wide range of processors from
embedded to standard desktop machines, exploiting secrets
from a system by introducing fault is an unexplored area of
research.

2.1 User accessibility of HPCs

HPCs contain rich source of information of the internal
activities of the processor. The performance-optimizing tools
monitor theHPCs and provide these information to processes
or users in the aim to improve the performance of systems.
Events, such as CPU cycles, cache misses, branch instruc-
tions, branch misses, page faults, context switches, are some
of the many events whose counts are provided by the HPCs.
On the occurrence of such hardware or software events the
counter registers are incremented by one.

A handle on these HPCs can be easily obtained with the
commonly used PC profiling tool “Perf” in Linux for statis-
tical profiling of event “branch miss” from HPCs. In 2009,
“perf” subsystem was added to the Linux kernel, and this
makes user access to performance counters less clumsy,with-
out kernel patches or re-compiles. The merge of perf event
source with the main Linux kernel source tree has provided
an easy access to the Linux users to hardware counters for
the first time [20].

The values of the event counters which are available to
user-level processes through Linux perf utility actually leaks
a significant amount of information about the concurrently
running processes in the system. We emphasize on this with
a simple experimental scenario, where two users share the
same hardware and have two different processes running:
an unprivileged user running a multiplication operation and
privileged user is performing exponentiation which is dom-
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Fig. 2 Branch miss monitoring from an unprivileged user

inated mostly with conditional if-else statements. We have
performed the experiments such that the unprivileged user
observes Perf statistics for the user-level multiplication pro-
cess concurrent to the privileged exponentiation process. As
illustrated in Fig. 2, it has been observed on an Ubuntu 16.04
system that there is an unexpected increase in number of
branch misses in the perf stat of the user process while the
execution of exponentiation is performed. If the unprivileged
user runs the multiplication process and observes the num-
ber of branch misses for the multiplication process, then it
encounters around 200–220 branch misses. As in Fig. 2, we
observe that the time from which there is an increase in the
number of branch misses (as observed by the user process),
coincides with the time when the exponentiation algorithm
begins. This simple experiment shows how an unprivileged
user process residing on same system as the privileged pro-
cess cangain access to sensitive informationof the privileged,
or more generally any other user’s process execution.

2.2 Effect of faults on HPCs and cryptographic
implementations

When the secret key gets corrupted either due to memory
corruptions or faulty computations in the key generation
algorithm, the phenomenon manifests as a fault. However, a
fault can also be introduced by skipping some target instruc-
tions [4]. Flips in the bit of conditional variables, often the
keys itself, can lead to a branch being taken improperly.
This wrong branching leads to instruction skips, thus having
an equivalent effect on program executions. On platforms
such as Xilinx Microblaze where the HPC accesses are pro-
vided [15], the instruction skip phenomenon can thus be
exploited to create effects equivalent to bit-flips by altering
the statistics of branching and thus leading to revelations of
the secret keys.

In recent processors, Rowhammer is a term coined for
disturbances observed in DRAM devices, where repeated
row activation causes the DRAM cells to electrically interact
within themselves [12,21]. These result in flipping bits [12]
in DRAM due to discharging of the cells in the adjacent
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rows. The authors in [12] show that Rowhammer vulner-
ability exists in majority of the recent commodity DRAM
chips and is most prevalent for sub 40nm memory technol-
ogy. Recently, authors in [5] have exploited this Rowhammer
vulnerability to flip secret exponent bits residing in the mem-
ory of a x86 system. They provide a series of steps which can
locate the secret in DRAM and repeated hammering induces
bit-flips in the secret key. This motivates the study of differ-
ential analysis of HPCs when there are bit-flip faults.

In fault analysis attacks as well as their countermeasures,
the adversary may be prevented in getting useful informa-
tion, but the hardware events reflects the systems internal
state which may have a dependence on the secret. The HPCs
reveal the hardware event counts such as cache misses and
branch misses, which may provide a runtime statistics to the
adversary at the user-privilege level. For this reason, HPCs
can be of potential threat with respect to fault analysis attacks
and more notably against their countermeasures. In order to
exploit the effect of event branch misses in situations of fault
attack and their countermeasure, we target RSA-like ciphers,
and in the fault attack scenario, we exploit the HPCs to reveal
the secret exponents.

2.3 Case study for asymmetric key ciphers

In RSA-like crypto-systems, modular exponentiation is per-
formed via square and multiply and Montgomery ladder
implementations as illustrated inAlgorithms 1 and 2. Though
the Montgomery ladder algorithm prevents simple side-
channel leakages, however, the instruction flow being condi-
tioned on secret exponent leads to a leakage due to branch
misprediction penalty.

Algorithm 1: Square and Multiply Algorithm

Input: y, x = (xw−1, xw−2, . . . , x0), n

Output: s = yx (mod n)
begin

Let s = 1
for i = w − 1 down to 0 do

Let s = s2 mod n.
if (xi = 1) then

Let s = (s ∗ y) mod n.
end

end
Return s.

end

The fault analysis attack presented in this paper has been
extended for RSA-CRT implementations as well. The popu-
lar fault attack countermeasures for RSA-CRT include fault
detection logic before the output is produced [8,11]. How-
ever, with such countermeasures implemented in place, the
branch predictor observes branch statements over different
key sequences during exponentiation and hence results in a
different branch prediction statistics. In our fault attack, we
show that the statistics can be observed via HPCs which can
be exploited to reveal the secret key.

Algorithm 2: Montgomery Ladder Algorithm

Input: y, x = (xw−1, xw−2, . . . , x0), n

Output: s = yx (mod n)
begin

Let s0 = 1, s1 = y.
for i = w − 1 down to 0 do

if (xi = 0) then
Let s1 = s0 ∗ s1, s0 = (s0)2.

end
else

Let s0 = s0 ∗ s1, s1 = (s1)2.
end

end
Return s0.

end

2.4 Targeting the ith secret bit

In public-key exponentiation algorithms as in Algorithms 1
and 2, the conditional multiplication statements depend on
the secret key bits. In the presence of fault, the execution
following the faulty exponent leads to a faulty output. Inter-
estingly, we provide the relation of the exponent sequences
and branchmisses in brief. Let the n bit secret key be denoted
as (k0, k1, . . . , ki , . . . , kn−1) and the fault induced key as
(k0, k1, . . . , ki , . . . , kn−1) differing only in the i th bit ki . The
multiplication statement of the square andmultiply algorithm
being conditioned on the secret key bits, the trace of taken
or not-taken branches is conditioned on secret key bits and
expressed as (b0, b1, . . . , bn−1).

– If a particular key bit say k j is 1, then the conditional
multiplication statement in the square and multiply algo-
rithm1gets executed. Thus, the condition is checkedfirst,
and if the particular key bit is set then its immediate next
statement, i.e., multiplication gets executed. Since this is
a normal flow of execution, the branch is considered as
not-taken, i.e., b j = 0 in this case.

– While when k j = 0, the multiplication statement is
skipped and the execution continues with the next squar-
ing statement. Thus, in this case branch is taken, i.e.,
b j = 1.

2.5 Effect of compiler optimization options

In order to validate our understanding for conditional branch-
ing, we performed some experiments to observe the effect of
optimization options in gcc on the conditional if-else struc-
ture of code. Similar to the exponentiation structure as in
Montgomery ladder, we show an example of assembly gen-
eration for a simple conditional if-else code. The code prints
“hello” if the “if” clause is true otherwise it prints “hi.”

.LC3:

.string "hello"

.LC4:

.string "hi"
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Table 1 Assembly generated using various optimization options in gcc

So intuitively, if the “if” statement is true then the immediate
next statement gets into the instruction pipeline, and thus,
the branch is not-taken. On the contrary, if the “else” part is
getting executed, then the branching is true and the branch
statement is taken in such case. Table 1 shows the assembly
translation of the code under various levels of optimizations.
It is evident from all of these cases that, in spite of varying
the optimization options, the conditional statement assembly
remains the same.

3 Formalizing the differential of 2-bit predictor
in faulty attack setup

In our work, we modeled the effect of the bimodal predictor
to exploit the side-channel leakage of branch misses from
the performance counters. In the following discussion, we
characterize the differential of branch misses from correct
and faulty branching sequences based on the behavior of 2-
bit predictor. Various parameters used during the analysis
are defined as follows: There is a sequence of n branches
denoted as (b0, b1, . . . , bn−1) generated from execution of
the algorithm under attack. A fault at the i th execution of
the algorithm changes the branching decision for the i th
instance.

The difference in branch misses (Δi ) between the correct
branching sequence (b0, b1, . . . , bi , . . . , bn−1) and the faulty
sequence (b0, b1, . . . , bi , . . . , bn−1) simulated theoretically
over a 2-bit predictor algorithm can be at least −3 and at
most 3.1 The simulated difference for any branch sequence
will always take a value in the range [−3, 3], and this depends
on the subsequent branching sequences starting from the i th
flipped branch. This effectively means that the branching
decision for the i th instance have a great impact in deter-
mining the range of Δi .

In the following discussion, wewill analyze the difference
in branch missesΔi depending on the branching decision bi .
All symbols used through out our analysis are detailed in

1 We explain the upper bound of 3 at the end of this section. The lower
bound can be similarly established.

Table 2 Tabular representation of symbols

Symbols Meanings with respect to their analysis

(b0, b1, . . . , bi−1) Sequence of taken or not-taken known branches

St Kj State of 2-bit predictor after j conditional
branches with respect to the correct
sequence

St Fij State of 2-bit predictor after j conditional
branches with respect to the faulty sequence

PK
j+1 Branch predicted by 2-bit predictor for

branch statement corresponding to
( j + 1)th bit of correct sequence

PFi
j+1 Branch predicted by 2-bit predictor for

branch statement corresponding to
( j + 1)th bit of faulty sequence

Table 2. Let K denote the actual branching sequence and Fi
denote the faulty branch sequence differing from the actual
at the i th branching instance. The state of the 2-bit predic-
tor after encountering j branches is St Kj and for the faulty

sequence is St Fij . The 2-bit predictor predicts for the branch

statement corresponding to the ( j + 1)th instance as PK
j+1

on the basis of previous j branch decisions for the cor-
rect sequence and similarly for the faulty sequence as PFi

j+1.
We state 2 properties using the state transition of the 2 bit
dynamic predictor.

Property 1 If St Ki−1 = S0 or St Ki−1 = S2, then PK
i = PF

i =
bi−1.

– This follows from the fact that the fault is only in the i th
branch, and thus, there is no effect till this instance. Also,
from Fig. 1, for states S0&S2, the branch statement for
last input branch, i.e., the (i − 1)th branch is same as the
i th predicted branch.

Property 2 If St Ki−1 = S0 or St Ki−1 = S2, then there are
guaranteed mispredictions for branch statement at the
i th instance for either K or Fi . If the branch statement
corresponding to (i +1)th instance is not same as the pre-
dicted PK

i , then there is a mismatch between the correct
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and the faulty sequence in the predictor’s output for the
(i + 2)th position as PK

i+2 �= PFi
i+2.

– Either bi or bi results in amisprediction for the i th branch
of the correct or the faulty sequence. Since bi−1 = PK

i , at
least two mispredictions are required at i, (i + 1)th posi-
tion to make PK

i+2 �= PFi
i+2. Thus, if bi+1 �= PK

i+1, then
therewill be two consecutivemispredictions at i, (i+1)th
position either for the secret or the faulty sequence result-
ing in PK

i+2 �= PFi
i+2.

Using the stated properties, we formally model the probable
values for simulated differential Δi given the i th branching
decision bi . In the following discussion, we provide an anal-
ysis for St Ki−1 = S0,

1. If St Ki−1 = S0 and bi = 0 then Δi ∈ {0, 1, 2, 3}
– PK

i = PF
i , since every predicted branches from 2-

bit branch predictor for 0th to i th bit are same for both
correct and faulty sequence. By Property 1, since the state
is either S0/S2 the (i − 1)th, input bit is same as the
predicted branch for the i th bit, bi−1 = PK

i = PF
i = 0.

– Case 1(a): The i th branching decision bi is chosen
to be 0,

– Thus, for the correct sequence, i th branch is same as
the predicted branch bi = PK

i = 0, and branch miss
does not increase.

– Again for the correct sequence, predictor on getting
bit bi = PK

i , predicts PK
i+1 = PK

i = 0 same as the
previous predicted branch value.

– Case 1(b): On the contrary, for i th bit of the faulty
sequence

– bi = 1 �= PF
i , and branch miss increases by 1.

– Again, since bi−1 = 0 �= bi and bi �= PFi
i , there is

a single misprediction for the i th bit. A single mis-
prediction is not enough to cause the mismatch in
the predicted branch output of the correct and the
faulty sequence bits. Thus, the predicted branch for
the i+1th bit for the faulty sequence does not change
as PF

i+1 = 0 = PF
i = bi . This makes the interme-

diate difference in branch misses upto the i th bit as
1.

–Case 1(c): If bi+1 = 0,

– For the i + 1th bit, if and only if bi+1 = 0, (i + 1)th
predicted branch PK

i+1 = PF
i+1 = bi+1 = 0, and the

further changes in branchmisswould not get reflected
in their difference.

– Thus, if Sti−1 = S0 and (bi , bi+1) = (0, 0), then
Δi = 1.
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i−1 bits
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Fig. 3 Variation of simulated branch misses on the i th branching deci-
sion having Sti−1 = S0. a Δi = 1, b Δi = 2

The sequence of the subsequent bits when Δi = 1 is
depicted in Fig. 3a.

–Case 1(d): Again if bi+1 = 1,

– if bi+1 = 1 = bi , then branch miss for both
sequences increases by 1 and does not add up to the
difference.

– but by Property 2, for the two consecutive mis-
predictions of faulty key at the i, i + 1th position,
(bi = bi+1 = 1 �= PF

i+1 = 0 = PK
i+1) prediction for

the correct and the faulty sequence for the (i + 2)th
branch differs as PF

i+2 = 1 �= PF
i+1 = PK

i+2 = 0.

– Case 1(e): If we assume bi+2 = PK
i+2 = 0, so there is

no increase in branch misses for correct sequence. While
PF
i+2 = 1 �= bi+2 = 0, increasing intermediate differ-

ence of branch miss to 2.

– Thus, if Sti−1 = S0 and (bi , bi+1, bi+2) = (0, 1, 0),
then the intermediate difference in branch miss
becomes 2.

– And for this case, PK
i+3 = 0 �= PF

i+3 = 1.

The scenariowhere the differential of bit sequencesΔi =
2 is shown in Fig. 3b.

– Case 1(f): On the other hand if bi+2 = 1,

– bi+2 = 1 �= PK
i+2 = 0, so there is an increase in

branch misses for correct sequence.
– But for the faulty sequence PF

i+2 = 1 = bi+2, thus
the intermediate difference becomes 0.

Figure 4a illustrates the scenario when Δi = 0.
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Fig. 4 Variation of simulated branch misses on the i th branching deci-
sion having Sti−1 = S0. a Δi = 0, b maximum variation

– Case 1(g): Considering the case, (bi , bi+1, bi+2) =
(0, 1, 0), and if bi+3 = 0

– bi+3 = PK
i+3 = 0, so there is no increase in branch

misses for correct sequence.
– While PF

i+3 = 1 �= bi+3 = 0, increasing the inter-
mediate difference of branch miss to 3.

– Thus, for (bi , bi+1, bi+2, bi+3) = (0, 1, 0, 0) the dif-
ference in branch miss Δi = 3

This is the maximum difference in branch miss that can
be obtained as in Fig. 4b. Since for the (i + 4)th bit for
correct and faulty sequence,

– Finally, for the (i + 4)th branch, the predicted value
for faulty sequence flips, PF

i+4 �= PF
i+2

– Thus, for both for the correct sequence and the
faulty sequence, the predicted value becomes equal
as PK

i+4 = PF
i+4, the next bits being identical for both

the sequence, has no effect in changing the difference
value.

In all of the above cases, we assumed that bi = 0, and for
all of these cases, the simulated difference can be either
0 or +ve. Thus, we state that, if St Ki−1 = S0 and bi = 0
then Δi ∈ {0, 1, 2, 3}.

2. If St Ki−1 = S0 and bi = 1 then Δi ∈ {0,−1,−2,−3}
Similar to the previous analysis,
– PK

i = PF
i , since every predicted branches from 2-

bit branch predictor for 0th to i th bit are same for both
correct and faulty sequence.

–ByProperty 1, since the state is St Ki−1 = S0, the (i−1)th
input bit is same as the predicted branch for the i th bit,
bi−1 = PK

i = PF
i = 0.

–Case 2(a): Now, the i th branching decision bi is cho-
sen to be 1,

– Thus, for the correct sequence, i th branch is not same
as the predicted branch bi = 1 �= PK

i = 0, and
branch miss increases by 1.

– Again, for the correct sequence, predictor on getting
a single misprediction bit bi �= PK

i , also predicts
PK
i+1 = PK

i = 0 same as the previous predicted
branch value, since a single misprediction is not
enough to change the prediction output.

– Case 2(b): On the contrary, for i th bit of the faulty
sequence

– bi = 0 = PF
i , and branch miss does not increase.

– Again, since bi−1 = 0 = bi and bi = PFi
i , there is a

no misprediction for the i th bit. Thus, the predicted
branch for the i +1th bit for the faulty sequence does
not change as PF

i+1 = 0 = PF
i = bi . This makes the

intermediate difference in branch misses upto the i th
bit as −1.

The analysis is apparent for St Ki−1 = S0 and bi = 1 hav-
ing Δi = −1. This analysis can be extended using the
previous reasoning and the fact can be similarly estab-
lished that if St Ki−1 = S0 and bi = 1 then the simulated
differential either becomes negative or at most 0 and
can never be greater than 0. Thus, reconstructing the
steps in the previous analysis, we can demonstrate that
if St Ki−1 = S0 and bi = 1 then Δi ∈ {0,−1,−2,−3}.
Alternatively, an analysis can be provided for Sti−1 = S2
for the i th branching decision bi , where

– PK
i = PF

i = 1, since Sti−1 = S2 and every pre-
dicted branches from 2-bit branch predictor for 0th to
i th bit are same for both correct and faulty sequence.

– By Property 1, since the state is St Ki−1 = S2 the (i −
1)th input bit is same as the predicted branch for the
i th bit, bi−1 = 1 = PK

i = PF
i = 1.

For Sti−1 = S2, the similar analysis as in Sti−1 = S0 can
be reconstructed and modeled in exact same steps, and
in this case, we can state that,

3. If St Ki−1 = S2 and bi = 0 then Δi ∈ {0,−1,−2,−3},
and

4. If St Ki−1 = S2 and bi = 1 then Δi ∈ {0, 1, 2, 3}

The above analysis shows that mispredictions simulated
over the branching sequences from the 2-bit predictor shows
a unique classification of Δi values when classified based
on i th branching decision. In the following subsection, we
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observe the similar classification using branch mispredic-
tions from HPCs. For developing an iterative algorithm to
recover the key, the differential statistics obtained by moni-
toring the HPC should be according to the analysis presented
in Sect. 3.We simulate the fault model in software and subse-
quently utilize it to performa fault analysis in the next section.

4 Implication of fault in the key for asymmetric
key algorithms

In this section, we aim to analyze observations using data
from HPCs on exponentiation algorithms depending on the
i th branching decision. In the subsequent discussion, we
describe the entire analysis in the presence of a fault model
on public-key exponentiation algorithms of key length n bits.

4.1 Fault model

The fault model we assume in the subsequent work is that the
adversary is capable of introducing a bit-flip fault in the secret
keystream. This transient fault flips the target bit of the key
only for the current computation in the system, but when the
execution is repeated the fault vanishes, and the subsequent
executions proceed with the original secret key. The adver-
sary follows a “bit-flip model" which means that if a key bit
at i th position is 1 then it flips to 0, likewise if 0 then becomes
1. Thus, the branching sequence can be eventually modified
by introducing a fault at the i th bit position of the key. This
has indeed become more relevant with the recent practical
fault model in contemporary x86 systems supporting DDR3
DRAM modules due to the recent threat of the Rowhammer
attacks. The Rowhammer attacks flipping bits in memory
are powerful in causing privilege escalation [18], changing
control flow of ongoing processes [19] and also inducing
bit-flip in a secret exponent residing in memory [5]. Also,
as stated in Sect. 2 the effect of altering branching decision
can be alternatively achieved with an instruction skip model.
In comparison with the bit-flip model, the instruction skip
paradigm is often more practical in embedded soft-core pro-
cessors like Xilinx Microblaze [16].

4.1.1 Differential behavior of HPC due to an i th bit fault

We consider a scenario, where there are a large number of
candidate keys and their faulty counterparts. The secret and
faulty sequences only differ at the i th bit, the previous 0th to
(i − 1)th bits being same for both the exponents, the branch
sequences corresponding to secret and its faulty counterpart
varies only at the i th bit. The following observation is made
whenboth the secret and faulty key sequences have branching
decisions such that after simulating 0th to i − 1th branch
the predictor state is at S0. At this point, there may be two
possible values of i th bit.

– If the i th bit is 0, then the branch corresponding to this
bit is taken (1) and alternatively for the faulty exponent
this results in a not-taken (0) branch (because of the flip
at the i th position).

– Again if the i th secret bit is 1, then the secret exponent
branch is not-taken (0) while the branch for the faulty
exponent is taken (1).

Following the formalism in Sect. 3, theΔi ≥ 0 for bi = 0
and Δi ≤ 0 for bi = 1 and the difference of simulated
branch misses range from (−3, 3). While validating this for-
mal analysis with the actual event counts from the HPCs,
the exponentiation operations are run on both the correct
sequence and the faulty sequences on an Intel i5 system run-
ning Ubuntu 14.04 LTS. The branch miss counts as reported
from the perf tool are noted.

In the first step, the number of branch misses for exponen-
tiation operation is observed using the secret exponent from
the HPCs. In the next step, exponentiation is performed over
the faulty sequence, simultaneously observing the number of
branch misses from HPCs. The difference of branch misses
obtained through HPCs is denoted as δi . Figure 5a is plotted
with differences of branch mispredictions from HPCs (δi )
and two different colors highlight the behavior of two sepa-
rate distribution based on the i th branching decision of the
secret exponent assuming the state of the 2-bit dynamic pre-
dictor for the known i−1 branches is S0. From the figure, it is
apparent that if the i th branch of the secret key is not-taken
then the difference has a strict positive bias. Alternatively,
if the i th branch of the key is taken, then the difference of
branch misses has a negative bias. Formally, if St Ki−1 = S0,

– If bi = 0, then δi > 0
– Else if bi = 1, then δi < 0

The values of branch misses in Fig. 5 are observed using
the perf utility in Linux. The differences as appears in the
figure ranges much higher than the range we simulated. This
feature can be attributed due to the background processes
running, since the values reported by perf is naturally affected
by various other processes running in the system other than
the exponentiations. However, the nature of the variation of
the branch miss events reported by the performance counters
conforms with the developed theory.

A similar observation is made with St Ki−1 = S2, and
Fig. 5b is plotted for i th branching decision with the state
of the 2-bit dynamic predictor for the known i − 1 branches
is S2. Alternative to the previous observation, if i th branch of
the secret key is not-taken then the difference has a strict neg-
ative bias and if the i th branch of the secret key is taken then
the difference of branch misses has a positive bias. Precisely,
if St Ki−1 = S2,
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Fig. 5 Variation of branch misses from performance counters based
on the i th branching decision. a When St Ki−1 = S0, b St Ki−1 = S2

– If bi = 0, then δi < 0
– Else if bi = 1, then δi > 0

Thus, we conclude that the properties of differential of
branch misses obtained by theoretical simulation also holds
for the statistics observed through HPCs.

4.2 Developing the attack algorithm

The observations regarding the i th branching decision illus-
trated in previous Sect. 3 can be efficiently modeled in the
form of an attack algorithm. The attack algorithm to reveal
secret of length n bits is developed on the basis of the fol-
lowing assumptions:

1. The bit-length n of the key is known to the adversary.
2. The adversary starts from themost significant bit (always

1), recovering the subsequent bits one bit at a time.
3. A fault introduced at the i th position of the key sequence

eventually flips the i th bit of the key.
4. The already retrieved i−1 bits can be simulated by using

the 2-bit predictor algorithm and reveals the state Sti−1 ∈
{S0, S1, S2, S3}.

5. The difference in branch misses (δi ) for the secret key
(K) and the faulty key (Fi ) is monitored by executing
exponentiation algorithms on actual systems.

The adversary attackmodel observes the difference of branch
misses from the secret key and its corresponding faulty key
andgradually retrieves oneunknownkeybit at a time from the
most significant bit (left) to the least significant bit (right). To
determine the i th bit value from the left, the adversary already

has the knowledge of the previous i − 1 bits. Following the
2-bit predictor algorithm, i − 1 branch transitions over the
states S0, S1, S2, S3 can be traced by the adversary.

Let δi be the differences of branch misses over the secret
and faulty exponent observed from theHPCs. The state St Ki−1
after i − 1 transitions on the partially known key bits can be
determined by simulating over the 2-bit dynamic predictor.
We determine the next bit nbi as,

1. If St Ki−1 = S0/S2:

– If δi < 0,
– nbi = 0, if St Ki−1 = S2 and
– nbi = 1, when St Ki−1 = S0.

– Else if δi > 0
– nbi = 0, if St Ki−1 = S0 and
– nbi = 1, when St Ki−1 = S2.

2. Else if, St Ki−1 = S1/S3:
For states S1 and S3, if we flip the (i − 1)th bit, the state
upto (i − 1)th bit changes to S0 or S2. Now, following
the classification as described for S0 and S2 the difference
can uniquely reveal the i th secret bit. So a solution which
already appears for S0 or S2 can be adopted for Sti−1 =
S1/S3 since it will make the attack algorithm easier.

– the characteristic property for Sti−1 = S1/S3 is such
that bi−2 = Pi−1 = Pi �= bi−1.

If we inject a fault at (i − 1)th position, then branch-
ing decision bi−1 gets complemented. Effectively, if
St Ki−1 = S1 previously then after fault St Fi−1

i−1 becomes
S0. Similarly, if St Ki−1 = S3 previously then after fault

St Fi−1
i−1 becomes S2.

Let δi−1,i be the differences of branch misses over the
faulty exponents observed from the HPCs. We determine
the next bit nbi as,

– If δi−1,i < 0,
– nbi = 0, if St Ki−1 = S3 and
– nbi = 1, when St Ki−1 = S1.

– Else if δi−1,i > 0
– nbi = 0, if St Ki−1 = S1 and
– nbi = 1, when St Ki−1 = S3.

Before starting the actual validation of above attack algo-
rithm, we analyze the branch misprediction statistics gener-
ated by HPCs on the exponentiation algorithms.

4.3 Modeling the system noise

The modeling of data generated by the HPCs is purely
implementation dependent. The algorithm under consider-
ation must have key-dependent execution sequences which
are captured by the HPCswhile execution is performed on an
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Fig. 6 Variation of branch misses from performance counters. a Due
to exponentiation on secret exponent, b due to environmental processes
running in the system

input. We considered square and multiply and Montgomery
ladder algorithmic implementations running on a sample of
inputs, and the distribution of branchmisses generated shows
an interesting pattern. Branch misprediction observed from
the HPCs over exponentiations on the secret exponent bits
over 10000 randomly generated inputs can be observed as a
mixture of multiple Gaussian distributions. One such distri-
bution of branch misses is shown in Fig. 6a. The distribution
can be observed as a combination of three Gaussian distri-
butions having three separate statistics.

A similar experiment is carried out, but this time the
conditional multiplication statement in the exponentiation
is removed from the code. This effectively means that the
recent executable does not posses any conditional statement
dependent on the exponent bit values. Branchmispredictions
are also monitored for this executable, but in this scenario
since there are no conditional statement in the executable,
the branch mispredictions accounted by the HPCs are due
to the environmental processes running in the system. One
such distribution is shown in Fig. 6b. Interestingly, this dis-
tribution of branch misprediction due to the environmental
processes also constitutes of three Gaussian distributions.
The reason for this three overlapping Gaussian distributions
may be accounted by the Operating System policies in mul-
titasking systems. Several environmental processes running
in the system are responsible for this environmental branch
mispredictions (which are not due to the target executable for
which they are accounted). Figure 6a shows similar nature to
this noise distribution with a shift in the respective statistics
with an increase in branch misprediction due to the condi-
tional statements from the secret exponents.
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Fig. 7 Distribution of branch misses of secret and faulty exponent on
square and multiply implementation from HPCs having Sti−1 = S0. a
bi = 0 and δi = 14.014, b bi = 1 and bi = 1 and δi = −35.79

4.4 Validation of the attack algorithm

We present the validation of previous discussion through
experiments on RSA algorithm, the exponents being 1024
bits. The fault model is simulated on software and the
experiments target data from HPCs on various Intel pro-
cessors like Intel Core-2 Duo E7400, Intel Core i3 M350
and Intel Core i5-3470. Initially, the attack is performed
on the square and multiply exponentiation implementation.
Figure 7a illustrates the distributions of branch misses from
the square and multiply exponentiation over the secret and
faulty exponent having Sti−1 = S0 for bi = 0 and the
fault being introduced at i = 1019th position. The distri-
butions in Fig. 7a have the mean difference δi = 14.014.
Since Sti−1 = S0, and with positive value of δi , according to
the Attack Algorithm the next branch is decided as nbi = 0
which actually matches with correct branch bi = 0, thus the
secret exponent is uniquely retrieved as ki = bi = 1. Sim-
ilarly, Fig. 7b illustrates the distribution of branch misses
where we target i = 548th location of the same exponent
having branch taken, i.e., bi = 1 and Sti−1 = S0. The
mean difference of branch misses observed from HPCs are
δi = −35.79 which correctly decides the i th branch to be
1.

The above figures are the distributions of branch misses
from the secret and its faulty counterpart for a single ran-
domly chosen target location. This can be easily performed
on all subsequent bits to recover all 1024 bits of RSA expo-
nent.
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Fig. 8 Distribution of branch misses of secret and faulty exponent on
Montgomery ladder implementation from HPCs having Sti−1 = S0. a
bi = 0 and δi = 9.828, b bi = 1 and δi = −139.086

4.4.1 Attacks on Montgomery ladder algorithm

A popular countermeasure of simple side-channel leakages
from the unbalanced instruction execution of square andmul-
tiply algorithm is the Montgomery ladder implementation as
in Algorithm 2. This algorithm is having balanced instruc-
tions conditioned on the secret key bits. The differential fault
analysis for square and multiply similarly holds for Mont-
gomery ladder implementation. Figure 8a, b illustrates the
differential by using data from performance counters and
using Montgomery ladder exponentiation as the underlying
exponentiation algorithm. Figure 8a illustrates a situation
having ki = 1 for i = 248 where Sti−1 = S0, bi = 0 and
the branch misses from HPCs δi = 9.828 reveals a positive
difference correctly identifying nbi = 0, thus correctly iden-
tifying the secret exponent bit.While Fig. 8b shows anegative
difference, δi = −139.086 correctly identifying k1 = 0 for
i = 337.

4.4.2 Attacks on CRT-RSA implementation

Experimentations on CRT-RSA also reveal that the attack
algorithm can successfully identify the exponent bits. Sim-
ilar to the square and multiply and Montgomery ladder
algorithms, Fig. 9a, b shows illustrations of two instances
of the CRT-RSA implementation with square and mul-
tiply implementation where the fault is induced in dp,
while exponentiation for dq is computed unaffected. In
both situations, the target exponent bits of dp are shown
to be retrieved correctly and uniquely. Similarly, expo-
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Fig. 9 Distribution of branch misses of secret and faulty exponent on
CRT-RSA implementation from HPCs having Sti−1 = S0. a dpi = 0
and δi = 243.212, b dpi = 1 and δi = −136.029

nent bits for dq can also be retrieved. A probabilistic
poly(log N ) time algorithm to factorize Modulus N [14]
on the basis of the knowledge of N , e, dp, dq already
exists which can factorize N in probabilistic poly(log N )

time.
Thepopular fault attack countermeasures of theRSA-CRT

algorithm performs a comparison of the correct compu-
tation with a faulty computation. So in all of the coun-
termeasures while the exponentiation operation is being
performed on the secret as well as the faulty exponent,
the branch miss events recorded in the performance coun-
ters can be potentially used to reveal secret exponents
dp and dq . Thus, the fault attack featuring differences
of branch misses by modeling the 2-bit predictor algo-
rithm can be utilized to a great extent to attack the square
and multiply, Montgomery ladder and RSA-CRT algo-
rithms.

5 Conclusion

In this paper, we formalize a differential fault analysis on
the branch predictor behavior to show that the difference of
branch misses for a 2-bit predictor can be utilized to reveal
information of the key bits. The attack exploits the strong
correlation of the 2-bit dynamic predictor to the unknown
underlying branch predictor of the system. Subsequently, we
perform validation of our observation in a simulated fault
environment on actual computing platforms and show that
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the difference of branch mispredictions observed via the
performance monitors can be observed by adversaries to
determine critical information of secret key bits. Detailed
real-life experiments have been performed on several fla-
vors of 1024-bit RSA programs running on Intel platforms
where flipping bits in memory is indeed a practical threat.
The attacks can be similarly adapted to embedded soft-core
processors with practical faults being introduced by instruc-
tion skips. Interestingly, fault attack countermeasures which
stop or randomize the output when a fault occurs can still be
attacked using these techniques. The work raises the ques-
tion of secured implementation of ciphers in the presence
of HPCs in modern processors where fault inductions are
feasible.
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