
J Cryptogr Eng (2018) 8:241–258
https://doi.org/10.1007/s13389-017-0163-8

SPECIAL ISSUE ON MONTGOMERY ARITHMETIC

The Montgomery ladder on binary elliptic curves

Thomaz Oliveira1 · Julio López2 · Francisco Rodríguez-Henríquez1

Received: 5 September 2016 / Accepted: 11 April 2017 / Published online: 26 April 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In this survey paper, we present a careful anal-
ysis of the Montgomery ladder procedure applied to the
computation of the constant-time point multiplication oper-
ation on elliptic curves defined over binary extension fields.
We give a general view of the main improvements and for-
mula derivations that several researchers have contributed
across the years, since the publication of Peter Lawrence
Montgomery seminal work in 1987. We also report a fast
software implementation of the Montgomery ladder applied
on a Galbraith–Lin–Scott (GLS) binary elliptic curve that
offers a security level close to 128 bits. Using our software,
we can execute the ephemeral Diffie–Hellman protocol in
just 95,702 clock cycles when implemented on an Intel Sky-
lake machine running at 4GHz.

Keywords Elliptic curves · Scalar multiplication · Software
implementation

1 Introduction

The focus of this paper is on the study of the Montgomery
ladder procedure for computing the scalar multiplication
operation on elliptic curves defined over binary extension

T. Oliveira and F. Rodríguez-Henríquez: The authors acknowledge
partial support from the CONACyT project 180421.
J. López: The author was supported in part by the Intel Labs
University Research Office and by a research productivity scholarship
from CNPq Brazil.

B Francisco Rodríguez-Henríquez
francisco@cs.cinvestav.mx

1 Computer Science Department, CINVESTAV-IPN,
Mexico City, Mexico

2 Institute of Computing, University of Campinas,
Campinas, Brazil

fields. For the important case of the Montgomery ladder
applied to elliptic curves that lie on prime fields, the reader is
referred to the previous article included in this special issue.

In this paper, a binary elliptic curve will be defined as the
set of affine points (x, y) ∈ Fq ×Fq , q = 2m that satisfy the
Weierstrass equation,

EB : y2 + xy = x3 + ax2 + b, (1)

together with a point at infinity denoted by O. The set of
points on a binary elliptic curve forms an abelian group
denoted as EB(Fq) of order #EB(Fq) = h · r , where r is
a large prime and the co-factor h is usually a small inte-
ger number. The group law of EB(Fq) is defined by the point
addition operation. Let 〈P〉 be an additivelywritten subgroup
in EB of prime order r , and let k be a positive integer such that
k ∈ [1, r − 1]. Then, the elliptic curve scalar multiplication
operation computes the multiple Q = kP , which corre-
sponds to the point resulting of adding P to itself, k−1 times.

In [49], Peter Lawrence Montgomery famously presented
a procedure that allows one to compute an elliptic curve
scalar multiplication using only the x-coordinate of the
involved points. AlthoughMontgomery conceived his ladder
for accelerating Lenstra’s ECM factorization algorithm [41],
in this paper wewill address the application of this procedure
for achieving efficient elliptic curve-based cryptography.

The key algorithmic idea of the Montgomery ladder pro-
cedure is that given the x-coordinates of the points kP
and (k + 1)P , one can apply specialized addition and dou-
bling formulas to compute the x-coordinates of the points
(2k + 1)P and 2kP. Moreover, Montgomery presented a
special form of elliptic curves that lie on large characteristic
fields, now known as Montgomery curves, which were par-
ticularly well suited for computing the scalar multiplication
at a cost of about six field multiplications and four squarings

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-017-0163-8&domain=pdf

242 J Cryptogr Eng (2018) 8:241–258

per ladder step. The case for binary elliptic curves, however,
was not addressed in [49].

In fact, a few years after its publication, the convenience
of using the Montgomery ladder procedure for binary ellip-
tic curves remained unclear. For instance, due to the lack of
an efficient projective coordinate formulation of the binary
elliptic curve arithmetic required at each ladder step, the
Montgomery ladder was deemed to be inefficient in [1,46].

It was only one decade later, after the publication ofMont-
gomery’s landmark paper that it became apparent that this
approach could be as well applied to the binary elliptic curve
case efficiently. In [43], López and Dahab presented com-
pact projective formulae for the elliptic curve arithmetic
of the Montgomery ladder, by representing the points as,
P = (X,−, Z), in an analogous way as Montgomery did it
ten years before in [49]. This projective point representation
avoids all the costly field multiplicative inversions. It was
shown in [43] that the computational cost of a binary elliptic
curve ladder step is of five field multiplications, one multi-
plication by a constant, four squarings and three additions.

Furthermore, the authors of [43] presented a formula that
permits to recover the y-coordinate of the points involved
in the Montgomery ladder procedure. This y-coordinate
retrieval formula opened the door for the full computation of
elliptic curve scalar multiplications using the Montgomery
ladder procedure.1

Binary GLS curves
Inspired in the Galbraith–Lin–Scott (GLS) elliptic curves
introduced in [21], Hankerson, Karabina and Menezes
reported in [26] a family of binary GLS curves defined over
the quadratic field Fq2 ,with q = 2m .GLS curves are crypto-
graphically interesting mainly because they come equipped
with a two-dimensional endomorphism. By carefully choos-
ing the elliptic curve parameters a, b of Eq. (1), the authors
of [26] found instances of GLS curves with an almost-prime
group order of the form #Ea,b(Fq2) = hr , with h = 2 and
where r is a (2m − 1)-bit prime number.

Taking advantage of the two-dimensional endomorphism
ψ associated with GLS curves, a point multiplication can
be computed using the Gallant–Lambert–Vanstone (GLV)
approach presented in [24] as,

Q = kP = k1P + k2ψ(P) = k1P + k2 · δP, (2)

where the subscalars |k1|, |k2| ≈ n/2, with n = �log2(r)�,
can be found by using lattice techniques [21].

λ coordinates for binary curves
In λ-affine coordinates [52] the points are represented as P =
(x, λ), x �= 0 and, λ = x + y

x . The λ-affine form of the
Weierstrass Eq. (1) becomes,

1 The analogous of this recovering formula has been recently applied
in the context of hyperelliptic curves [13,56].

Eλ : (λ2 + λ + a)x2 = x4 + 1.

λ point representation provides efficient point addition, dou-
bling and halving formulas. In [52],Oliveira et al. applied this
coordinate system into a binary GLS curve defined over the
quadratic extension of the binary field F2127 . When imple-
mented on a Haswell processor, this approach permits to
compute a constant-time variable-point multiplication in just
48, 312 clock cycles [53], which is the current speed record
for an elliptic curve designed to offer about 128 bits of secu-
rity level.

Security of Binary elliptic curves
The Pollard’s rho algorithm can be used to solve the discrete
logarithm problem (DLP) over an elliptic curve subgroup
of a prime order r with an average running time given as,
4
3

√
r
2 [20]. In the case of binary elliptic curves, by applying

the negation map, an extra small improvement acceleration
(which reduces the attack complexity by less than 2 bits), to
the above estimate can be achieved [7,63]. Using the Pol-
lard’s rho algorithm, the authors of [7] were able to compute
the current elliptic curveDLP record computation on a binary
elliptic curve defined over the field F2127 .

Given an ordinary binary elliptic curve satisfying Eq. (1),
the Gaudry–Hess–Smart (GHS) attack [15,23,25,27,47]
attempts to find an algebraic curve C of a relatively small
genus g, such that the target elliptic curve group is con-
tained in the Jacobian of C. In this case, the original elliptic
curve discrete logarithm problem can be transferred into the
Jacobian of C defined over F2l , with l|m. If the genus of
such a curve C is not too large, nor too short, then the DLP
would be easier to solve in that Jacobian, due to the avail-
ability of a relatively efficient index calculus strategy for that
group.

In general, however, the GHS strategy is difficult to
implement because of the large genus of suitable curves
C. This difficulty is so serious that the authors of [25,47]
reported that the GHS attack fails, i.e., the Pollard’s rho
attack is more effective, for all binary elliptic curves defined
over F2m , where m ∈ [160, 600] is a prime number. Fur-
ther, in [44], it was proved that the GHS attack fails for
most of the composite extensions in the range m ∈ [160,
600].

New lines of research for solving the DLP over binary
curves were presented by Semaev in 2004 [59], by intro-
ducing summation-polynomial methods (sometimes also
referred as Semaev’s polynomials). Since then, several
researchers have attempted to attack the DLP on binary
elliptic curves using this approach [18,22,60]. However, the
current status of these attempts are based on Gröbner basis
assumptions that are still not well understood, which in some
cases have led to contradictory behaviors, even for tiny exper-
iments [28].

123

J Cryptogr Eng (2018) 8:241–258 243

For a comprehensive survey of recent progress in the
computation of the elliptic curve discrete problem in charac-
teristic two, the reader is referred to the paper by Galbraith
andGaudry [20]. All in all, it is not hyperbolic to claim that at
the moment the most ominous threat to the security of binary
elliptic curves is the announced advent of quantum comput-
ers, only that this peril is shared by all elliptic curve-based
cryptography.

Aim of this paper
The aim of this paper is twofold. First, we would like to
present a recount of some of the main research findings for
the Montgomery ladder applied on binary elliptic curves.
We also present a short summary of some of the most rel-
evant software and hardware implementations reported for
this procedure. Second, we report a state-of-the-art software
implementation of the Montgomery ladder on a GLS binary
curve that can take advantage of pre-computation when the
base point is known. Using this approach, we can execute
the ephemeral Diffie–Hellman protocol in just 95,702 clock
cycles when implemented on an Intel Skylake machine run-
ning at 4GHz.

The remainder of this survey is organized as follows.
In Sect. 2, we describe the Montgomery ladder and by
using a division polynomial approach, we re-discover the
point addition and doubling formulas required for perform-
ing a Montgomery ladder step. We also re-discover the
y-coordinate retrieval formula as it was originally reported
in [43]. In Sect. 3 we describe a Montgomery ladder pro-
cedures that admit off-line pre-computation, which was a
long-standing open problem that was solved in [51] by
Oliveira et al. In Sect. 4, we report a software implemen-
tation of a Montgomery ladder point multiplication that
targets the Intel Skylake processor. In Sect. 5, we present
a selection of the most interesting implementations of the
Montgomery ladder point multiplication in software and
hardware platforms; in this section, we also present the use-
ful common-Z trick that permits valuable area savings for
light hardware implementations, and a brief description of
multi-dimensional Montgomery ladders. Finally, we draw
our concluding remarks in Sect. 6.

2 Montgomery ladders on binary elliptic curves

We begin this section by describing the Montgomery ladder
algorithm. Then, we use the division polynomial technique,
which was suggested by Victor Miller in [48], in order to re-
discover the point addition and doubling formulas, as well
as the y-coordinate retrieval formula, as they were reported
in [43].

2.1 The Montgomery ladder point multiplication
algorithm

Algorithm 1 describes the classical left-to-rightMontgomery
ladder approach for point multiplication [49], whose key
algorithmic idea is based on the following observation.

Algorithm 1 Left-to-right Montgomery ladder [49]
Input: P = (x, y), k = (1, kn−2, . . . , k1, k0)2
Output: Q = kP
1: R0 ← P; R1 ← 2P;
2: for i = n − 2 downto 0 do
3: if ki = 1 then
4: R0 ← R0 + R1; R1 ← 2R1
5: else
6: R1 ← R0 + R1; R0 ← 2R0
7: end if
8: end for
9: return Q = R0

Given a base point P and two input points R0 and R1,

such that their difference R0 − R1 = P is known, the x-
coordinates of the points 2R0, 2R1 and R0 + R1, can be
fully determined by the x-coordinates of P, R0 and R1.

Notice that at each iteration of Algorithm 1, the variable
R0 is updated as

R0 =
{
R0 + R1 = 2R0 + P if ki = 1,

2R0 otherwise.

From the above equation, one can easily see that R0 is
updated in the samemanner as itwould be updated by the left-
to-right double-and-add algorithm for point multiplication.
Furthermore, notice that Algorithm 1 updates R1 as

R1 =
{
2R1 if ki = 1,

R0 + R1 otherwise.

This maintains the invariant relationship R1 − R0 = P
throughout all the algorithm execution.

The formulas to compute the point addition and point dou-
bling operations included in Steps 4 and 6 of Algorithm 1,
are carefully analyzed in the following two subsections.

2.2 Montgomery point addition, Montgomery point
doubling, and y-coordinate retrieval formulae

López and Dahab presented in [43] an efficient version of
the Montgomery ladder procedure applied to binary ellip-
tic curves, deriving compact formulas for the point addition

123

244 J Cryptogr Eng (2018) 8:241–258

and point doubling operations of Algorithm 1. Moreover, the
authors of [43] presented for the first time a retrieval formula
that allows to recover the y-coordinate of the points involved
in the Montgomery ladder procedure.

Lemma 1 ([43]) Let P = (x, y), R1 = (x1, y1), and R0 =
(x0, y0) be binary elliptic curve points satisfying Eq. (1),
and assume that R1 − R0 = P, and x0 �= 0. Then, the x-
coordinate of the point (R0 + R1), x3, can be computed in
terms of x0, x1, and x as follows

x3 =
⎧
⎨
⎩
x + x0·x1

(x0+x1)2
R0 �= ±R1

x20 + b
x20

R0 = ±R1.
(3)

Moreover, the y-coordinate of R0 can be expressed in terms
of P, and the x-coordinates of R0, R1 as

y0 = x−1(x0 + x)
[
(x0 + x)(x1 + x) + x2 + y

]
+ y. (4)

Let the points R0, R1 and R0 + R1, be represented in
projective coordinates (with x = X

Z) as R0 = (X0, Z0),
R1 = (X1, Z1), R2 = 2R0 = (X2, Z2) and R3 = R0+R1 =
(X3, Z3). Notice that according with the spirit of the Mont-
gomery ladder, the y-coordinates of all the involved points
are ignored.

Then, from Lemma 1, it follows that the point doubling
operation (R2 = 2R0) can be computed as

X2 = X4
0 + b · Z4

0 = (X2
0 + √

b · Z2
0)

2

Z2 = X2
0 · Z2

0 . (5)

Furthermore, the point addition operation defined as R3 =
R0 + R1, with R0 �= ±R1, can be computed as

Z3 = (X0 · Z1 + X1 · Z0)
2

X3 = x · Z3 + (X0 · Z1) · (X1 · Z0). (6)

EachMontgomery ladder step of Algorithm 1 involves the
computation of one point addition and point doubling. Using
Eqs. (5)–(6), it follows that each ladder step of Algorithm 1
can be computed at a cost of five field multiplications, one
multiplication by a constant, four squarings and three addi-
tions.

In the following subsection, we present an alternative
approach for deriving Lemma 1, which to the best of our
knowledge has not been presented in the open literature
before.

2.3 Division polynomials

In his seminal paper [48], Victor Miller suggested that an
approach based on division polynomials could yield efficient

formulae for the computation of the scalar multiplication.
Unfortunately, he did not present a concrete algorithm.
Besides its theoretical interest, this approach has the potential
advantage of allowing a natural derivation of ladder-like for-
mulae (cf. with Proposition 1).2 Recently, the authors of [12]
presented a division polynomial analysis that allows them to
find scalarmultiplication formulae for both, binary and prime
field elliptic curves. However, the authors of [12] obtained a
rather disappointing ladder step cost of 44 field multiplica-
tions for binary elliptic curves, which is considerably more
expensive than the ladder step cost reported in [43] and in
this subsection.

In the following, we revisit division polynomials as they
apply to the case of binary curves, showing that they are
effective for deriving ladder recursive formulas used in point
multiplication computations.

A division polynomial pk ∈ F2[x, y, a, b] is a nonzero
homogeneous polynomial of total weight k2 − 1. Given
an order-r point P = (xP , yP) that belongs to the non-
supersingular binary elliptic curve: y2 + xy = x3 +ax2 +b,
one has that r P = O, if and only if pr (x, y) = 0.
The following Proposition summarizes the main properties
that these polynomials satisfy. In particular, given a point
P = (xP , yP), the coordinates of its multiple kP = (xk, yk)
for k ∈ [1, r − 1] can be computed in terms of division
polynomials.

Proposition 1 (see [35,39])

1. The division polynomials pk can be computed recur-
sively:
p1= 1, p2 = x, p3 = x4 + x3 + b, and p4 = x6 + x2b.
For k ≥ 5, define,

p2k+1 = pk+2 p
3
k + pk−1 p

3
k+1;

p2k = (pk+2 pk p
2
k−1 + pk−2 pk p

2
k+1)/x .

2. For k ≥ 1, p2k = xk p4k , where xk is the x-coordinate of
kP.

3. For k ≥ 2, the coordinates of kP = (xk, yk) are given by

xk = x + pk+1 pk−1

p2k
,

yk = y + xk + p2k+1 pk−2

xp3k
+ (x2 + y)

pk+1 pk−1

xp2k
.

Let Q = kP . In the following, wewill derive formulas for
computing the x-coordinates x2k+1 and x2k of (2k + 1)P =
2Q + P and 2kP , using division polynomials.

2 Division polynomials also play a crucial role for computing isogenies
of elliptic curves [37].

123

J Cryptogr Eng (2018) 8:241–258 245

The Montgomery ladder allows one to compute the x-
coordinate of kP by repeatedly computing either, (x2k , x2k+1)

or (x2k+1, x2(k+1)) from (xk, xk+1). Interestingly, by follow-
ing this approach, we will be able to re-discover the formulas
given in [43] for the binary Montgomery ladder algorithm.

Proposition 2 Given an integer k ≥ 1, an elliptic point
P(x, y), the x-coordinate of kP can be computed recursively
using the formulas:

x2k+1 = x + xkxk+1

(xk + xk+1)2
, x2k = x2k + b

x2k
.

Proof By Proposition 1, the x-coordinate of (2k + 1)P can
be computed using the formula

x2k+1 = x + p2k p2(k+1)

p22k+1

.

The recursive formula p2k+1 from Proposition 1 can be
expressed as follows

p2k+1 = pk+2 p
3
k + pk−1 p

3
k+1

= pk+2 pk
p2k+1

p2k p
2
k+1 + pk−1 pk+1

p2k
p2k p

2
k+1

= (x + xk+1 + x + xk)p
2
k p

2
k+1

= (xk + xk+1)p
2
k p

2
k+1.

Now, by using the recurrence relations p2k = xk p4k and
p2(k+1) = xk+1 p4k+1, x2k+1 can be written in terms of x ,
xk and xk+1 as

x2k+1 = x + p2k p2(k+1)

p22k+1

= x + xk p4k xk+1 p4k+1

(xk + xk+1)2 p4k p
4
k+1

= x + xkxk+1

(xk + xk+1)2
.

It is well known that there exists an efficient formula for com-
puting the x-coordinate of 2P in terms of the x-coordinate

of P , which corresponds to x2k = x2k + b

x2k
.3

This completes the proof. �

In the following, the y-coordinate retrieval function of the

point kP is re-discovered.

Proposition 3 Given an elliptic point P(x, y), the y-
coordinate of kP can be computed in terms of x, y, xk and
xk+1.

3 For the sake of completeness, we present in Appendix A, the deriva-
tion of the point doubling formula using division polynomials.

Proof From Proposition 1, we have:

yk = y + xk + p2k+1 pk−2

xp3k
+ (x2 + y)

pk+1 pk−1

xp2k

= y + xk + p2k+1 p
2
k−1 pk−2 pk

xp4k p
2
k−1

pk+1 pk−1

xp2k

= y + xk + (x + xk)2(x + xk−1)

x
+ x2+y+

(
x + y

x

)
xk

= xk + (x + xk)
2 + (x + xk)2

x
xk−1 + x2 +

(
x+ y

x

)
xk

= xk+x2k +
(
x + y

x

)
xk+ (x + xk)2

x

(
xk+1+ xxk

(x + xk)2

)

= x2k +
(
x + y

x

)
xk + (x + xk)2

x
xk+1

�

Remark 1 In terms of the λ representation of a point P =
(x, y), i.e, λ = x + y

x
, the formula yk can be expressed as:

xk+1 = xxk(λk + λ)

(x + xk)2
.

3 Montgomery ladders with pre-computation

Since Montgomery proposed his ladder strategy in 1987,
there was no published work on a variant of this algorithm
admitting an efficient off-line pre-computation phase. Pre-
computation is a customary acceleration technique (at the
price of memory storage) that is especially valuable for the
so-called fixed point, also referred to as known-point sce-
nario, where the base point being processed by a scalar
multiplication algorithm is established in advance. It was
only until 2014, when Oliveira et al. introduced in [51] a
ladder variant that admits an off-line pre-computation phase.
This feature can be applied to further accelerate the main
on-line point multiplication.

In this section, we analyze and compare several efficient
ladder algorithms that calculate a constant-time scalar multi-
plication bypre-computingmultiples of the input pointwhich
are later processed in a right-to-left fashion.

3.1 Background

Let f (x) ∈ F2[x] be a monic polynomial of prime degree
m, irreducible over F2. Then, F2m ∼= F2[x]/ f (x) is a binary
extension field of 2m elements.

Next, consider a binary elliptic curve E/F2m and its
cyclic additively written group of points E(F2m) of order
#E(F2m) = h · r , with prime r . Then we have a subgroup

123

246 J Cryptogr Eng (2018) 8:241–258

G ⊂ E(F2m) of order r , where n = �log2 r�, and for any
point P ∈ G, with P �= O, P is a generator of G. That is,
G = 〈P〉.

The scalar multiplication algorithms discussed in this sec-
tion receive as input a generator point P ∈ G, and an n-bit
scalar k ∈ {1, . . . , r − 1} and return the point Q = kP ,
which, as mentioned in the introduction of this article, is the
process of adding P to itself k − 1 times.

3.2 A right-to-left Montgomery ladder

In addition to the traditional left-to-right approach presented
in Algorithm 1, one can compute the Montgomery ladder by
processing the scalar k from the least to the most significant
bit. This method is denominated Montgomery right-to-left
double-and-add, and it is shown in Algorithm 2.

Algorithm 2 Montgomery right-to-left double-and-add [51]

Input: P = (x, y) ∈ G, k = (kn−1, kn−2, . . . , k1, k0)2 ∈ Zr
Output: Q = khP

1: Initialization: Select an order-h point S ∈ E(F2m) \ G
2: R0 ← P , R1 ← S, R2 ← P − S
3: for i ← 0 to n − 1 do
4: if ki = 1 then
5: R1 ← R0 + R1
6: else
7: R2 ← R0 + R2
8: end if
9: R0 ← 2R0
10: end for
11: return Q = hR1

The rationale of Algorithm 2 can be explained as follows.
At the beginning of the iteration i , with i ∈ {0, . . . , n−1}, R0

stores the point 2i P ,4 whichwill be added to the accumulator
R1 if the scalar digit ki is equal to one.

As discussed in Sect. 2, in order to perform the Mont-
gomery addition (Step 5), we need to know the difference
between the accumulator R1 and the point R0. However,
unlike the classical left-to-right ladder, this difference is not
fixed, but may vary at each iteration; more specifically, it will
change whenever the digit ki is equal to zero. For that rea-
son, we have to occasionally update and store this varying
difference in the point R2 (Step 7).

In other words, if the bit ki is one, R0 is added to the
accumulator R1 and their difference does not need to be
updated because the addition is compensated in Step 9 as
2R0 = R0 + R0. On the other hand, if the digit ki is zero,
R0 is not added to the accumulator. As a consequence, the

4 According to Algorithm 2, at the end of the iteration n − 1, 2n P
is assigned to R0. The point 2n P is never used in the unknown-point
scenario; therefore, this assignation can be avoided in practical imple-
mentations.

difference between R1 and R0 increases by R0, and R2 must
be updated.

There are (at least) three particularities in the right-to-left
algorithm worth to be mentioned. First, we should guarantee
that, at every iteration, R0 �= R1 and R0 �= R2, so that the
point additions (Steps 5 and 7) are valid. We can achieve this
by initializing R1 as a point S ∈ E(F2m)\G of order h. At the
end of the algorithm, the point can be subtracted (Step 11).56

Note that this issue can be disregarded for curveswhose addi-
tion law’s formulas are complete (e.g., binaryEdwards curves
[8]).

Second, given that the difference point R2 = R0 − R1 is
volatile and must be updated via a Montgomery addition, its
coordinates should be represented in projective coordinates,
where the Z -coordinate will generally have a value different
than one.As a result, theMontgomery addition R3 = R0+R1

(with R2 = R0−R1) is more expensive when compared with
Eq. (6), and it is calculated as,

T = (X0 · Z1 + X1 · Z0)
2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · (X1 · Z0), (7)

costing six field multiplications, one squaring and two addi-
tions. In the case where the multiplication by the curve
parameter c = √

b is cheap, it is preferred to compute the
addition via the following formula

T = (X0 + Z0) · (X1 + Z1)

A = X0 · Z0

B = X1 · Z1

Z3 = Z2 · (T + A + B)2

X3 = X2 · (A + c · B)2, (8)

which costs five field multiplications, one multiplication by
the parameter c, two squarings and five additions.

Finally, after the execution of the n iterations of Algorithm
2, the y-coordinates of the points R0, R1 and R2 are unknown.
Therefore, it is not possible to retrieve the y-coordinate of the
resulting point Q using the approach given in [43]. This hin-
drance is of no concern for the Diffie–Hellman key exchange
and digital signature protocols, since their outputs are derived
only from the x-coordinates of the resulting points [30].

In the fixed-point scenario, it is indeed possible to retrieve
the y-coordinate, since we can pre-compute the y-coordinate
of the last assignation to R0: R0 ← 2n P . Nonetheless, if the

5 In binary fields, the value of h can be as low as 2. Thus, the process
of subtracting S is merely a Montgomery point doubling.
6 In fixed-point scenarios, the y-coordinate of R1 can be retrieved. Con-
sequently, Step 11 can be alternatively computed as Q = R1 − S.

123

J Cryptogr Eng (2018) 8:241–258 247

point P is known beforehand, Algorithm 2 can be further
optimized by pre-computing and storing the multiples 2i P .
This approach is analyzed in the next section.

3.3 Montgomery ladders with pre-computation

Algorithm 2 can be adapted by adding an initial pre-
computation phase where the multiples 2i P , with i ∈
{0, . . . , n}, are calculated and stored in the internal memory.
This approach is shown in Algorithm 3.

Algorithm 3 Montgomery right-to-left double-and-add with pre-
computation

Input: P = (x, y) ∈ G, k = (kn−1, kn−2, . . . , k1, k0)2 ∈ Zr
Output: Q = khP

1: Pre-computation: Calculate Pi = 2i P , for i ∈ {0, . . . , n}
2: Initialization: Select an order-h point S ∈ E(F2m) \ G
3: R0 ← P , R1 ← S, R2 ← P − S
4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0 + R1
7: else
8: R2 ← R0 + R2
9: end if
10: R0 ← Pi+1
11: end for
12: return Q = hR1

Concisely, Algorithm 3 pre-computes in Step 1 the multi-
ples 2i P that are used in the ladder iterations. Thosemultiples
are computed through theMontgomery doubling formula (5),
which returns the projective coordinates X and Z . For that
reason, it is required amemory storage of approximately 2mn
bits.7 Next, instead of performing on-line point doublings in
Step 10, the algorithm just access the appropriate point Pi
from the lookup table pre-computed in Step 1.

Themost immediate advantage of this algorithm is that, in
the fixed-point scenario, one can save all the point doubling
computations at the price of memory storage and two extra
field multiplications per iteration, which are embedded in the
modifiedMontgomery addition, Eq. (7). In addition, one can
further optimize Algorithm 3 by applying the GLV method
discussed in the introduction of this paper.

Let us consider a binary curve E/F2m equipped with an
efficiently computable endomorphism ψ that allows degree-
2 decompositions (e.g., binary GLS curves [26]), where k ≡
k0 + k1δ (mod r), with |k1|, |k2| ≈ n/2 and ψ(P) = δP .
Then, Algorithm 3 can be combined with the GLV method,
as shown in Algorithm 4.

7 In the fixed-point setting, one can store the multiples in the affine
form. As a result, only mn bits of storage is needed.
8 If the order h is prime, then one can return instead the point Q =
h(R1,0 + ψ(R1,1)).

Algorithm 4 Montgomery 2-GLV right-to-left double-and-add with
pre-computation

Input: P = (x, y) ∈ G, k ∈ Zr
Output: Q = khP

1: Pre-computation: Calculate Pi = 2i P , for i ∈ {0, . . . , n
2 }

2: Initialization: Decompose the scalar k as k ≡ k0 + k1δ (mod r)
via the GLV method. Select an order-h point S ∈ E(F2m) \ G

3: R0 ← P , R1, j ← S, R2, j ← P − S, for j ∈ {0, 1}
4: for i ← 0 to n

2 − 1 do
5: for j ← 0 to 1 do
6: if ki, j = 1 then
7: R1, j ← R0 + R1, j
8: else
9: R2, j ← R0 + R2, j
10: end if
11: end for
12: R0 ← Pi+1
13: end for
14: return Q = (hR1,0) + ψ(hR1,1)

8

Here, the number of point doublings were reduced by half,
which results in less computing time and less required storage
resources; here, only nm bits of memory space are necessary.
Note that even in the unknown-point scenario, one can profit
from this algorithm, by exchanging a smaller number of point
doublings with a more expensive point addition. The feasi-
bility of this trade will be evaluated in Sect. 3.6.

In the remaining of this section, it is shown how to use the
point halving operation to reduce the cost of the right-to-left
point additions.

3.4 The point halving operation

In 1999, Knudsen [34] and Schroppel [57,58] proposed the
application of the point halving operation to compute scalar
multiplications. Given a point P ∈ E(F2m), the point halving
operation consists of computing a point R such that P =
2R. The interested reader is referred to [3,19,51,52] for a
discussion on how to implement point halvings efficiently.

Let k ∈ Zr be a scalar of n bits. Then, in order
to perform a scalar multiplication with point halvings, k
must be first manipulated as k′ = 2n−1k mod r . Con-
sequently, k ≡ ∑n

i=1 k
′
n−i/2

i−1 (mod r), and therefore,

kP = ∑n
i=1 k

′
n−i (

P
2i−1). This implies that we can compute

Q = kP by performing consecutive point halvings on P .
Thismethod is called halve-and-add and is presented inAlgo-
rithm 5.

Computing the scalar multiplication via point halvings is
usually more efficient than the traditional double-and-add
algorithm. This is because we need about five field multi-
plications and four squarings to compute the point doubling
with λ-projective coordinates, while only one half-trace, one
square root and one field multiplication are required to cal-
culate a point halving. For that reason, the halve-and-add

123

248 J Cryptogr Eng (2018) 8:241–258

Algorithm 5 Halve-and-add as described in [19]

Input: P = (x, y) ∈ G, k ∈ Zr
Output: Q = kP

1: Initialization: Compute scalar k′ = 2n−1k mod r =
(k′

n−1, k
′
n−2, . . . , k

′
1, k

′
0)2

2: Q ← O
3: for i ← n − 1 downto 0 do
4: if k′

i = 1 then
5: Q ← Q + P
6: end if
7: P ← P/2
8: end for
9: return Q

Table 1 Ratio between the cost of selected finite field F2254 arithmetic
operations and the field multiplication

Operation Ratio op./mul

Multiplication (mul) 1.00

Squaring (sqr) 0.62

Square root (sqt) 0.62

Half-trace (hft) (quadratic equation solver) 4.58

became a popular approach for implementing fast point mul-
tiplication algorithms on binary elliptic curves.9

To illustrate the performance of the point halving opera-
tion, a concrete comparison using our software implemen-
tation of the field F2254 arithmetic in a 64-bit Intel Skylake
processor is reported next.

In Table 1, we present the ratio of the costs, measured
in clock cycles, between the finite field elementary arith-
metic functions required for computing the point doubling
and point halving, and the field multiplication, which is the
most crucial operation in the design of efficient point multi-
plication implementations.

According to the estimations presented in the previous
paragraphs, doubling a point using λ-projective coordinates
would cost 7.48 mul, while a point halving costs only 6.20
mul, which is about 17.11% faster. Another advantage of the
point halving function is that its output is given in λ-affine
coordinates. As a result, we can compute faster point addi-
tions in right-to-left point multiplication algorithms, since
the Z -coordinates of the points P/2i will all be equal to 1.

3.5 An efficient halve-and-add Montgomery ladder

Applying the point halving to theMontgomery ladder context
is not straightforward. The main reason being the fact that
the only known efficient formulas for computing R = P/2
assume that the input point is given in affine coordinates. On
the other hand, Montgomery ladder algorithms manipulate

9 It is not known how to efficiently half a point in elliptic curves defined
over prime fields.

accumulator points in projective coordinates in order to avoid
the costly field multiplicative inversions.

The authors of [50] partially solved this problem by con-
verting the accumulator point from projective to affine rep-
resentation at every ladder step. Nevertheless, this approach
is too expensive, since it requires one inversion per iteration,
with an associated cost of about 29.38 mul, which becomes
prohibitive for most scenarios.

TheMontgomery halve-and-addmethod presented in [51]
was the first to apply the point halving operation on Mont-
gomery ladders without the necessity of performing the
expensive inversion function over finite fields. This was
achieved by combining the pre-computation approach of
Algorithm 3 with the halve-and-add procedure shown in
Algorithm 5. The resulting procedure is presented in Algo-
rithm 6.

Algorithm 6 Montgomery halve-and-add (right-to-left)

Input: P = (x, y) ∈ G, k ∈ Zr
Output: Q = khP

1: Pre-computation: Compute and store only the x-coordinates of
Pi = P

2i
, for i ∈ {0, . . . , n − 1}

2: Initialization: Compute scalar k′ = 2n−1k mod r =
(k′

n−1, k
′
n−2, . . . , k

′
1, k

′
0)2. Select an order-h point S ∈ E(F2m) \ G

3: R1 ← S, R2 ← Pn−1 − S
4: for i ← 0 to n − 1 do
5: R0 ← Pn−1−i
6: if k′

i = 1 then
7: R1 ← R0 + R1
8: else
9: R2 ← R0 + R2
10: end if
11: end for
12: return Q = hR1

In themain loop, right after pre-computing n halved points
(Step 1), one can manipulate them in a backwards fashion,
by simulating a Montgomery right-to-left double-and-add
algorithm with pre-computation. The main advantage of this
approach is that the coordinates of R0 = Pi are represented
in λ-affine coordinates, that is, Z0 is always equal to 1. As
a result, the Montgomery addition formula [see Eq. (7)] can
be simplified as shown the following equation:

T = (X0 · Z1 + X1)
2

Z3 = Z2 · T
X3 = X2 · T + Z2 · (X0 · Z1) · X1, (9)

which costs five field multiplications, one squaring and two
additions. Similarly, Eq. (9) leads to a faster addition, if the
multiplication by the elliptic curve parameter b is cheap.

Given that R0 is represented in λ-affine coordinates, we
can retrieve the R1 y-coordinate in the fixed- and variable-
point scenarios. At the end of the algorithm, we only have

123

J Cryptogr Eng (2018) 8:241–258 249

Table 2 Point arithmetic costs
in terms of field multiplications
over the field F2254

Operation Cost

F2254 functions F2254 mult.

Montgomery point doubling (DBL) (Eq. (5)) 1.6 mul† + 3 sqr 3.46 mul

Point halving (HLV) [34,57] 1 mul + 1 sqt + 1 h f t 6.20 mul

Montgomery point addition (ADA) (Eq. (6)) 4 mul + 1 sqr 4.62 mul

Montgomery point addition (ADF) (Eq. (7)) 6 mul + 1 sqr 6.62 mul

Montgomery point addition (ADM) (Eq. (9)) 5 mul + 1 sqr 5.62 mul

† The multiplication by the term
√
b [see Eq. (5)] can be performed via one multiplication in the base field

F2127 [51], which costs about 0.60 mt

to compute R0 ← 2P10 and apply the retrieval function of
[43].

The Montgomery halve-and-add algorithm can be com-
bined with the 2-GLV decomposition method as well. In that
case, the number of pre-computed halved points would be
reduced by a factor of two. Given that the halved points
are represented in λ-affine coordinates, the required pre-
computing memory space of this approach is of only mn

2
bits.

3.6 Comparison

In this subsection, we compare the algorithms and operations
previously discussed. First, in Table 2, we show an analysis
of the costs of different point arithmetic operations used in
Montgomery ladders in terms of the field arithmetic func-
tions described in Table 1 and the field multiplication. The
field additions were disregarded since, for binary fields, this
operation can be implemented via an exclusive or logical
operator, which is nearly free of cost in high-end desktop
architectures.11

At first glance, Table 2 shows that substituting Mont-
gomery point doublings by point halvings is not a good
idea, since the latter costs 2.74 mul more than the for-
mer. However, in the 2-GLV method, both operations are
shared in the ‘parallel’ computation of k0P and k1P (see
Algorithm 4). Since only n

2 of such operations are required,
we can conclude that the cost per iteration of DBL and
HLV in the 2-GLV algorithms are 1.73 mul and 3.10 mul,
respectively. Now, the HLV is only 1.37 mul more expen-
sive than DBL . Given that the Montgomery addition for
halve-and-add (ADM) is cheaper than the point addition for
double-and-add (ADF) by 15.11%, we can expect similar
timings for the two approaches.

10 In Algorithm 6, R0 is updated after R1 and R2.
11 The latency and the throughput of the vector instruction pxor in
current desktop architectures are of 1 and 0.33 clock cycles, respec-
tively [31].

In Table 3, we report the cost estimates, in terms of the
point operations listed in the previous table and also in terms
of field multiplications, for the ladder algorithms described
in this section considering the variable-point scenario.

In the first place, it is important to stress that, for the
unknown-point scenario, the pre-computation phase does
not bring any improvement (besides the fact that it sup-
ports the halve-and-add approach), since this technique
only transfers the work of computing the multiples of the
base point P from the main loop to the initial part of the
algorithm.

Also, in such scenario, it is convenient to consider the 2-
GLV method, since it results in significant improvements on
the double-and-add and halve-and-add algorithms. Regard-
ing the former, it improves Algorithms 2 and 3 by 22.69%,
while Algorithm 6 is improved by 26.23%.

Finally, Table 3 shows that the classical double-and-add
left-to-right ladder is the state-of-the-art approach for the
variable-point setting, surpassing the 2-GLV double-and-add
and halve-and-add ladder procedures by a tiny difference of
3.23 and 7.22%, respectively.

In Table 4, we examine the fixed-point setting. In this sce-
nario, the most efficient cases are clearly the Montgomery
ladder algorithms with a pre-computation phase. Because
of its faster point addition (ADM), the halve-and-add sur-
passes the right-to-left double-and-add method by 15.11%.
Moreover, the 2-GLV halve-and-add approach achieves the
most efficient storage requirement within ladders based
on pre-computation. A memory comparison is given in
Table 5.

When computing one scalar multiplication with scalars of
approximately 256 bits on curves defined over a field of the
same size, the 2-GLV halve-and-add method requires about
4.28KB, while 8.31KB are necessary in the double-and-add
analogue. This represents storage space savings of more than
48%.

Hence, we can conclude that the Montgomery halve-and-
add method is the most efficient in terms of CPU speed
and memory consumption in the fixed-point scenario. In the
variable-point setting, the classical double-and-add left-to-
right algorithm is still the most convenient alternative.

123

250 J Cryptogr Eng (2018) 8:241–258

Table 3 Montgomery ladder
scalar multiplication costs in the
variable-point scenario. See
Table 2 for the definition of the
point arithmetic operations

Ladder algorithm Cost per iteration

Point arithmetic F2254 mult.

Double-and-add left-to-right (Algorithm 1) DBL + ADA 8.08 mul

Double-and-add
right-to-left

No-GLV (Algorithm 2) DBL + ADF 10.08 mul

2-GLV 1
2 DBL + ADF 8.35 mul

Double-and-add
right-to-left with
pre-comp.

No-GLV (Algorithm 3) DBL + ADF 10.08 mul

2-GLV (Algorithm 4) 1
2 DBL + ADF 8.35 mul

Halve-and-add right-to-left No-GLV (Algorithm 6) HLV + ADM 11.82 mul

2-GLV 1
2 HLV + ADM 8.72 mul

Table 4 Montgomery ladder
scalar multiplication costs in the
fixed-point scenario. See Table 2
for the definition of the point
arithmetic operations

Ladder algorithm Cost per iteration

Point arithmetic F2254 mult.

Double-and-add left-to-right (Algorithm 1) DBL + ADA 8.08 mul

Double-and-add
right-to-left

No-GLV (Algorithm 2) DBL + ADF 10.08 mul

2-GLV 1
2 DBL + ADF 8.35 mul

Double-and-add
right-to-left with
pre-comp.

No-GLV (Algorithm 3) ADF 6.62 mul

2-GLV (Algorithm 4) ADF 6.62 mul

Halve-and-add right-to-left No-GLV (Algorithm 6) ADM 5.62 mul

2-GLV ADM 5.62 mul

Table 5 Memory requirement
(in bits) for different
Montgomery ladder algorithms.
Assume an n-bit scalar and a
binary finite field of 2m elements

Algorithm Memory required (in bits)†

Pi R0 R1 R2 Total

Double-and-add left-to-right (Algorithm 1) m 2m 2m × 5m

Double-and-add
right-to-left

No-GLV (Algorithm 2) × 2m 2m 2m 6m

2-GLV × 2m 4m 4m 10m

Double-and-add
right-to-left w/ pre-comp.

No-GLV (Algorithm 3) 2 nm 2m 2m 2m (2n + 6)m

2-GLV (Algorithm 4) nm 2m 4m 4m (n + 10)m

Halve-and-add right-to-left No-GLV (Algorithm 6) nm m 2m 2m (n + 5)m

2-GLV nm
2 m 4m 4m (n2 + 9)m

† The points required to recover the y-coordinate of Q = kP are not considered in this summary

4 A software implementation of Montgomery
ladder-based elliptic curve protocols

In this section, software implementations for different 128-
bit secure Montgomery ladder scalar multiplication algo-
rithms on binary GLS curves are presented.12

12 The implementation to be described here closely follows the one
presented by Oliveira et al. in [51].

4.1 Field and curve parameters

The base field F2127
∼= F2[x]/(f (x)) was generated using

the irreducible polynomial,

f (x) = x127 + x63 + 1.

The quadratic field F2254
∼= F2127 [u]/(g(u)) is constructed

by means of the degree-2 irreducible polynomial,

123

J Cryptogr Eng (2018) 8:241–258 251

g(u) = u2 + u + 1.

In the following, the parameters of the binary GLS curve

Ea,b/F2254 : y2 + xy = x3 + ax2 + b,

are presented. All the polynomials representing the field ele-
ments will be given using integer hexadecimal numbers:

a = 0x1u,

b = 0x54045144410401544101540540515101.

The rationale for selecting the b parameter was based on
the X -coordinate computation in theMontgomery projective
doubling R3 = 2R1. Let us recall that its formula requires
one multiplication by the square root of b,

X3 = X4
1 + b · Z4

1 = (X2
1 + √

b · Z2
1)

2.

Since our software architecture provides a 64-bit carry-
less multiplier, we selected b such that its square root

√
b =

0xE2DA921E91E38DD1 is also of a size of 64 bits. Thanks
to this choice, we could save one carry-less multiplication
and many logical operations in the field multiplication by
this constant.

Lastly, our base point P belongs to a subgroup G ⊂
Ea,b(F2254) of prime order r of about 253 bits given by

r = 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

A6B89E49D3FECD828CA8D66BF4B88ED5.

The coordinates of P = (x, y) are,

x =0x4A21A3666CF9CAEBD812FA19DF9A3380

+ 0x358D7917D6E9B5A7550B1B083BC299F3 · u,

y =0x6690CB7B914B7C4018E7475D9C2B1C13

+ 0x2AD4E15A695FD54011BA179D5F4B44FC · u.

4.2 Constant-time implementation

The Montgomery ladder technique is quite appropriate for
implementing a constant-time scalar multiplication algo-
rithm, since the number of operations executed in each
iteration of themain loop does not depend on the scalar digits
ki . Namely, in terms of operations, the algorithm structure is
inherently constant. There is no need to perform any extra
computation in order to process the scalar digits regularly.

Nevertheless, the digits ki actually determine the order of
how the points Ri are loaded from and stored to the memory.
This issue can be exploited by cache-based attacks to obtain
sensitive information from the scalar k [36]. For that reason,

it is necessary to design a data veil mechanism to secure such
vulnerability.

Consider the Montgomery left-to-right double-and-add
procedure (Algorithm 1). We can reduce the two possible
Montgomery additions (Steps 4 and 6) to the following pat-
tern:

Rki ← Rki + R1−ki , R1−ki ← 2R1−ki , with ki ∈ {0, 1}.

Now, let M0 and M1 be two memory locations in the
RAM whose contents will probably be cached during the
execution of the scalar multiplication algorithm. Next, we
rewrite the Montgomery additions in terms of fixed memory
locations as

M0 ← M0 + M1, M1 ← 2M1.

Then, instead of having two possible set of instructions with
different operands (depending on the scalar bit ki), we have
only one set, written as operations over constant memory
locations.

As a result, the only thing that will vary with the bits ki
are the contents ofM0 andM1. That is, when the digit ki is
zero,M0 ← R0 andM1 ← R1; otherwise,M0 ← R1 and
M1 ← R0. Nonetheless, since the only data holding places
that we have are M0 and M1, then these assignments are,
in practice, data swaps.

Our data veil mechanism initializes M0 ← R0 and
M1 ← R1. Also, it sets a flag named switch with the
value 1. After that, at each loop iteration i , we compute

switch ← switch ⊕ ki .

This updated flag generates a 128-bit maskwhich determines
via logical instructions whether the contents of the memory
locations M0 and M1 will be swapped or not.

The procedure is described in Algorithm 7. Here, [α, β]
denotes a 128-bit vector register that stores two 64-bit values
α and β. Also, the symbols ∧ and ⊕ represents the logical
instructions ‘and’ (pand) and exclusive or (pxor), respec-
tively. The logical conjunction with negation (¬) of the first
operand is implemented through the instruction pandn.

Algorithm 7 Data veil procedure

Input: Memory locations M0,M1, switch flag, bit ki
Output: The contents of the points R0, R1 stored inM0,M1 accord-

ing to ki
1: one ← [0x1, 0x1]
2: switch ← switch ⊕ ki
3: mask ← [switch, switch] - one
4: M0 ← (mask ∧ M0) ⊕ (¬mask ∧ M1)

5: M1 ← (mask ∧ M1) ⊕ (¬mask ∧ M0)

6: Proceed to the Step 6 or 4 of Algorithm 1

123

252 J Cryptogr Eng (2018) 8:241–258

Table 6 Point arithmetic timings (in clock cycles)

Operation Cycles

λ-projective point doubling [52] 135

Point halving (HLV) [34,57] 177

Montgomery point doubling (DBL) (Eq. (5)) 66

Montgomery point addition (ADA) (Eq. (6)) 133

Montgomery point addition (ADM) (Eq. (9)) 157

For right-to-left Montgomery ladders, the data veil coun-
termeasure is similar. The only difference is that, in these
algorithms, the addition operation is fixed as

M0 ← R0 + M0.

Then, the content of one of the points R1, R2 is temporarily
stored in an auxiliary memory location.

4.3 Timings

The software implementation presented in this work was
designed for 64-bit desktop architectures equipped with 64-
bit carry-less multipliers and 128-bit vector instructions. The
librarywas benchmarked in an Intel Core i7-6700K4.00GHz
(Skylake) machine, coded in GNU11 C/Assembly and com-
piled with the clang frontend for the LLVM compiler version
3.8 with the following optimization flags:

-march=skylake -O3 -fomit-frame-pointer.

First, we report in Table 6 the timings for the distinct point
arithmetic functions presented in Table 2.

Contrary to the estimations presented in Sect. 3.4, the λ-
projective point doubling is 23.73% faster than the point
halving. One possible explanation is that, in practice, the
latency and throughput of the carry-less multiplier instruc-
tion (pclmulqdq) overcomes the cost of multiple memory
access on pre-computed tables, inherent in the half-trace
(h f t) computation. This observation could also explain the
fact that the point halving operation is about 2.68 times as
costly as the computation of one Montgomery point dou-
bling.

Also, the extra field multiplication in the ADM addition,
when compared to the ADA corresponds to only 24 clock
cycles, which amounts to an extra cost of 15.29%.

Next, we compare in Table 7 the timings of the different
phases of the classicalMontgomery left-to-right double-and-
add and the halve-and-add approach introduced in Sect. 3.4.

Here we can verify that, in the variable-point scenario,
the traditional Montgomery double-and-add is the fastest
approach, surpassing the Montgomery halve-and-add with

Table 7 Montgomery ladder scalar multiplication timings (in clock
cycles). The terms ‘Pre’ and ‘Mxy’ stand for the pre-computation phase
and the y-coordinate retrieval function, respectively

Montgomery
ladder-based
algorithm

Cycles

Pre Main loop Mxy Total

Double-and-add
left-to-right
(Algorithm 1)

n/a 50823 1203 52026

Halve-and-add
right-to-left,
No-GLV
(Algorithm 6)

42395 44879 88477

Halve-and-add
right-to-left,
2-GLV

22288 68370

andwithout the 2-GLVmethod by 23.91 and 41.20%, respec-
tively.

In fixed-point scenarios, such as the one that occurs in
the key pair generation phase of the Diffie–Hellman key
agreement protocol [30], the halves of the base point can be
pre-computed off-line. In this situation, the halve-and-add
algorithm has an on-line cost of just 46, 082 clock cycles (by
disregardingTable 7 column ‘Pre’),which is about 1.13 faster
than the double-and-add method. Furthermore, this implies
that the full computation of the Diffie–Hellman protocol,
whose two main operations are one fixed- and one variable-
point multiplication, can be computed in less than 100, 000
clock cycles [cf. with Table 8].

5 Survey of papers implementing the Montgomery
ladder for binary elliptic curves

In this section, we present a selection of several research
papers that have implemented the Montgomery ladder on
binary elliptic curves. Our survey includes both hardware
and software implementations that presented a number of
research novelties in the ladder computation with respect to
efficiency and/or side-channel protections.

5.1 The Montgomery ladder on Binary Edwards curves

Let d1, d2 ∈ Fq , such that d1 �= 0 and d2 �= d21 + d1. The
Edwards form of a binary elliptic curve is defined as,13

EBE : d1(x+y)+d2(x
2+y2) = xy+xy(x+y)+x2y2. (10)

13 We stress that binary Weierstrass and Edward curves are birational
equivalent [8].

123

J Cryptogr Eng (2018) 8:241–258 253

In binary Edwards curves, an affine point can be repre-
sented using w-coordinates by using the mapping (x, y) →
(w), where w = x + y. However, in order to minimize
the field multiplicative inversion operations, the most effi-
cient formulas for Edward curves are defined using a mixed
coordinate point representation where an extra coordinate
Z , is defined so that (x, y) → (w) → (W, Z), where
w = x + y = W

Z .

Binary Edward curves were presented by Bernstein et al.
at CHES 2008 [8]. The authors reported complete formulas
for point addition and doubling that allow one to compute a
Montgomery ladder step at the price of five field multiplica-
tions, two multiplications by a constant and four squarings.
In [38], the authors corrected the formulas presented by Kim
et al in [33], thus reporting more efficient formulas than the
ones given in [8]. Indeed, by choosing d1 = d2 in Eq. (10),
the authors of [38] reported a ladder step cost of just five
field multiplications, one multiplication by a constant and
four squarings. Remarkably, this result exactly matches the
cost of the ladder step for the Weierstrass form of binary
elliptic curves.

Algorithm 8 Montgomery ladder step: point addition and
doubling

Input: P1 = (X1, Z1), P2 =
(X2, Z2) a base point P =
(x, y).

Output: P1 = P1 + P2.
1: T1 ← x;
2: X1 ← X1 · Z2;
3: Z1 ← Z1 · X2;
4: T2 ← X1 · Z1;
5: Z1 ← Z1 + X1;
6: Z1 ← Z2

1
7: X1 ← Z1 · T1;
8: X1 ← X1 + T2;
9: return (X1, Z1).

Input: P2 = (X2, Z2) a curve
parameter c = √

b.
Output: P2 = 2 · P2.
10: T1 ← c;
11: X2 ← X2

2;
12: Z2 ← Z2

2;
13: T1 ← T1 · Z2;
14: T1 ← X2 + T1;
15: Z2 ← X2 · Z2;
16: X2 ← T 2

1 ;
17: return (X2, Z2).

5.2 Common-Z trick

As shown in Algorithm 8, in a conventional implementa-
tion of the Montgomery ladder one requires seven registers
(x, X1, Z1, X2, Z2, T1, T2) to compute a ladder step. How-
ever, when dealing with light hardware implementations that
must be deployed over constrained and highly constrained
environments, registers can take up to 80% of the gate
area [40]. So, there is a compelling reason for reducing the
number of registers and simplify the register file manage-
ment.

In [45],Meloni proposed formulas for the common-Z pro-
jective coordinate system. His formulas were derived in the
context of elliptic curves defined over prime fields. Soon
after, Lee et al. presented in [40] an adaptation of this idea

to the context of binary elliptic curves, which is based on the
following observation.

Two different points P1 = (X1, Z1), P2 = (X2, Z2) can
be forced to have the same Z -coordinate by applying the
following trick,

X1 ← X1 · Z2;
X2 ← X2 · Z1; (11)

Z ← Z1 · Z2.

By assuming that the points P1 and P2 share the same
Z -coordinate, one has that the original Montgomery formu-
lation for point addition [cf. Eq. (6)],

ZADD = (X1 · Z2 + X2 · Z1)
2;

XADD = x · ZADD + X1 · Z2 · X2 · Z1,

becomes,

ZADD = (X1 + X2)
2;

XADD = x · ZADD + X1 · X2,

whenever Z1 = Z2. Now, since at each ladder step a point
doubling must be computed, one needs to re-apply Eq. (11)
to assure that the point that has just been doubled (either P1
or P2), still shares the same Z -coordinate with the other point
(either P2 or P1).

Algorithm 9 computes a Montgomery ladder step using
seven field multiplications, four squarings and three addi-
tions. This has to be compared with the cost of the original
formulation, whose cost is of six field multiplications, five
squarings and three additions.

In other words, by trading one field multiplication by a
field squaring, one is able to reduce the number of registers
fromseven to just six. This saving is usually quite valuable for
hardware implementations over constrained environments.

Algorithm 9 Common-Z point addition and doubling
trick [40]

Input: P1 = (X1, Z), P2 =
(X2, Z) a base point P =
(x, y). A curve parameter c =√
b.

Output: P1 = P1 + P2, P2 =
2 · P2.

1: T2 ← X1 + X2;
2: T2 ← T 2

2 ;
3: T1 ← X1 · X2;
4: X1 ← x;
5: X1 ← T2 · X1;
6: X1 ← X1 + T1;

7: X2 ← X2
2;

8: Z ← Z2;
9: T1 ← c;
10: T1 ← Z · T1;
11: Z ← Z · X2;
12: X2 ← X2 + T1;
13: X2 ← X2

2;
14: X1 ← X1 · Z;
15: X2 ← X2 · T2;
16: Z ← Z · T2;
17: return (X1, Z), (X2, Z).

123

254 J Cryptogr Eng (2018) 8:241–258

5.3 Multi-dimensional Montgomery ladders

Several elliptic curve-based protocols must compute simul-
taneously two or more scalar multiplications. This situation
is fairly common in a number of protocols proposed in the lit-
erature. For example, in the case of the ECDSA verification
procedure [2], one step in the procedure implies the com-
putation of u1P + u2Q. Moreover, as it was mentioned in
the previous sections, for those elliptic curves having a two-
dimensional endomorphism, a scalar multiplication can be
calculated by means of the GLV trick, as the simultaneous
computation of two scalar multiplications each one of them
associated with two subscalars that have half the size of the
original scalar [See Eq. (2) in the Introduction].

By using differential addition chains, Bernstein presented
in [5], a Montgomery ladder algorithm that can compute this
two-dimensional scalar multiplication operation more effi-
ciently than a straightforward approach that would compute
the above operation by performing two independent Mont-
gomery ladders. The basic idea in [5] is that at each ladder
step, exactly two Montgomery additions and one Mont-
gomery doubling must be calculated, where the three points
whose x-coordinates are computed at each iteration have dif-
ferences of the form ±P ± Q.

It is noticed that the procedure presented in Algorithm 4
exhibits also a regular pattern of exactly two Montgomery
point additions and one Montgomery point doubling per
ladder step. However, Algorithm 4 can only be used in
the context where a computation à la GLV of the form
Q = kP = k1P + k2ψ(P) = k1P + k2 · δP, must be per-
formed. One advantage of Algorithm 4 over the procedure
presented in [5], is that the former admits a pre-computation
step for the fixed-point scalar multiplication scenario.

In [11,29,61], the case where one wants to compute three
ormore scalarmultiplications simultaneouslywas addressed.
The applications of such simultaneous scalar multiplications
emerge on several protocols and possibly, when one wants
to perform batch elliptic curve operations more efficiently.

5.4 Side-channel attacks on Montgomery ladders

Due to its regular pattern execution and the absence of
dummy operations, Montgomery ladders are inherently pro-
tected against several side-channel attacks in both software
andhardware implementations. In the case of software imple-
mentations, the interested reader is referred to [6,9] and the
discussion given in this work in Sect. 4.2 for protective algo-
rithmic countermeasures.

In the case of hardware implementations, adversaries have
much more room for launching attacks that in some cases
might be devastating [16,17,32]. In [17], the authors reported
a careful analysis of the known side-channel attacks and
countermeasures for elliptic curve implementations on hard-

ware platforms. As it happens, it is often true that a given
countermeasure against one specific attack might make the
designvulnerable to other kinds of attacks. In [16],Karaklajić
et al. discuss a number of fault attacks against Montgomery
ladder hardware implementations. The authors also state
that the computation of the Montgomery ladder without
y-coordinate retrieval can actually protect a hardware imple-
mentation against several attacks, such as safe error and sign
change attacks.

5.5 Fast and compact Montgomery ladder hardware
implementations

Montgomery ladders over binary elliptic curves is a favorite
choice for hardware designers. The main reasons of this lie
in the advantage of providing basic protection against simple
power analysis (SPA) [17], the high efficiency of the Mont-
gomery ladder step, namely, only five multiplications and
four squarings are required, and a total of seven registers are
needed if the Lopez–Dahab algorithm [43] is implemented
in a conventional way.

Finally, for many protocols, such as the elliptic curve
Diffie–Hellman protocol, the y-coordinate recovering is not
necessary, and the absence of the y-coordinate computation
can provide further protection against certain fault attacks.

Among the fastest and most compact hardware accelera-
tors that use theMontgomery ladder on binary elliptic curves,
we can mention [42,55] and [38,40], respectively.

5.5.1 Fast designs

In [55], the authors presented a hardware accelerator that
computes scalar multiplications on binary elliptic curves
defined over F2233 that hardly offers a security level of 112
bits. Their design can compute a scalar multiplication in
12.5µS. In [42], the authors targeted NIST standardized
binary curves defined over the fields F2163 , F2233 , and F2283 .

For the latter field, the pipelined architecture presented in [42]
achieved a latency of less than 11µS.

In [54], the authors present a design that manipulates the
clock signal so that their design can operate at its maximum
frequency at different steps of the Montgomery ladder point
multiplication. This design achieves a performance of just
6.84µS for a scalar multiplication computed over a binary
elliptic curve defined over the field F2233 .

In [4], Ay et al. report a hardware accelerator that com-
putes a constant-time variable-base point multiplication over
a GLS elliptic curve that lies in the field F22·127 . The prime
order subgroup of this curve offers a security level of about
127 bits. The authors report a timing delay of just 3.98µS for
computing one scalar multiplication on an Xilinx Kintex-7
FPGA device running at 253MHz.

123

J Cryptogr Eng (2018) 8:241–258 255

5.5.2 Compact designs

The authors of [40] reported a hardware architecture that can
compute a scalar multiplication on Edwards curves defined
over the fields F2163 ,F2233 and F2283 . The area and time
performance reported by the authors rank among the most
efficient hardware accelerators for constrained environments.
The authors in [38] adopted the aforementioned common-Z
trick to reduce the number of registers required to carry out
one Montgomery ladder step.

5.6 Fast Montgomery ladder software implementations

Table 8 presents the performance timings of some of the
fastest Montgomery ladders recently reported in the open
literature. For the sake of a broader perspective, several
Montgomery ladders operating over prime fields have been
included in this comparison. Notice also that this comparison
cannot be quite fair, since the software libraries included in
Table 8 were implemented in different Intel processors, with
different capabilities.

Taking into account this consideration,we decided tomea-
sure timings of our code in various machines that represent
the architectures in which the recent works on Montgomery
ladders were implemented: Intel Core i7-2600K 3.40GHz
(Sandy Bridge), Intel Core i7-4700MQ 2.40GHz (Haswell)
and Intel Core i5-5200U 2.20GHz (Broadwell).

The Intel Skylake software implementation described in
this work achieves the fastest Montgomery ladder perfor-
mance for a constant-time scalar multiplication at the 128-bit
security level. Furthermore, from the timings reported in
Table 7, it can be seen that the execution of the ephemeral
Diffie–Hellman protocol can be computed by our software
in just 95,702 clock cycles.14

At last, the second part of Table 8 shows that the timings
for the Sandy Bridge are significantly above the ones in the
other architectures. For instance, the cost for computing the
Montgomery double-and-add is 3.16 times higherwhen com-
pared to the Skylake architecture. Themain point here is that,
compared to the other architectures, the cost of the carry-less
multiplication instruction in the Sandy Bridge machines is
more than twice [31]. As a result, to achieve optimal timings
in this architecture, the field arithmetic functions have to be
properly designed with alternative instructions.

6 Conclusion

Since the publication in 1987 of theMontgomery ladder pro-
cedure, there has been an ever increasing number of research

14 As the Diffie–Hellman protocol does not need the y-coordinate of
any point, the y-coordinate retrieval function was not considered in this
estimation.

Table 8 Timings (in clock cycles) for 128-bit-level Montgomery lad-
der variable-point multiplication software implementations in the Intel
Sandy Bridge (Sbr), Ivy Bridge (Ivy), Haswell (Has), Broadwell (Brd)
and Skylake (Skl) architectures

Method Cycles Arch.

State-of-the-art implementations

Curve2251-Montgomery
ladder (binary) [62]

225,000 Sbr

NIST B233-Montgomery-
Parallel
(binary) [50]

149,117 Sbr

Montgomery-DJB-chain
(prime) [14]

148,000 Ivy

Random-Montgomery-LD
ladder (binary) [9]

135,000 Has

Genus-2-Kummer
(prime) [10]

122,000 Ivy

Koblitz-Montgomery-LD
double-and-add
(binary) [51]

122,000 Has

Koblitz-Montgomery-LD
ladder (binary) [9]

118,000 Has

GLS-Montgomery-LD-2-
GLV halve-and-add
(binary) [51]

80,800 Has

Genus-2-Kummer
Montgomery ladder
(prime) [6]

72,200 Has

GLS-Montgomery-LD
double-and-
add (binary) [51]

70,800 Has

Method Cycles

Sbr Has Brd Skl

This work

Montgomery left-to-right
double-and-add
(Algorithm 1)

164,532 66,076 52,020 52,026

Montgomery 2-GLV
halve-and-add
(Algorithm 6)

157,504 77,668 66;760 68,370

Montgomery 2-GLV
halve-and-add fixed point
(Algorithm 6)

130,872 56,080 44,492 46.082

Ephemeral Diffie–Hellman
(Algorithm 6 & Alg. 1)†

290,388 119,572 94,128 95,702

† The costs for retrieving the y-coordinate in the architectures Sbr, Has
and Brd are 2508, 1292 and 1192 cc, respectively

works devoted to analyze and present algorithmic improve-
ments to Peter Montgomery’s original idea.

In this survey paper, we have striven to present a
panoramic review of the main algorithmic ingredients asso-
ciated withMontgomery ladders and their applications to the
fast, side-channel secure and constant-time implementation
of the binary elliptic curve scalar multiplication.

123

256 J Cryptogr Eng (2018) 8:241–258

Appendix: Further formula derivations using divi-
sion polynomials

A.1 Point doubling formula

The point doubling formula x2k = x2k + b
x2k

can be obtained

from division polynomials.

p2k+1 = pk+2 p
3
k + pk−1 p

3
k+1

= pk+2 pk
p2k+1

p2k p
2
k+1 + pk−1 pk+1

p2k
p2k p

2
k+1

= (x + xk+1 + x + xk)p
2
k p

2
k+1

= (xk + xk+1)p
2
k p

2
k+1.

Similarly, p2(k−1)+1 = (xk−1 + xk)p2k−1 p
2
k . Then,

x2k = x + p2k−1 p2k+1

p22k

= x + (xk−1 + xk)p2k−1 p
2
k (xk + xk+1)p2k p

2
k+1

(xk p4k)
2

= x + (xk + xk−1)(xk+1 + xk)(x + xk)2

x2k

= x +
(
xk + xk+1 + xxk

(x + xk)2

)
(xk+1 + xk)

(x + xk)2

x2k

= x2k + x2 + x2k+1 + x2x2k+1

x2k
+ xxk+1

xk

= x2k + x2 + 1
x2[(λk + λ)2 + (λk + λ)](xk + x)2

(x + xk)4

= x2k + x2 + x2(x2k + x2)

(x + xk)2
; /x2 = (x4 + b)/x2

Now, from the relation x2k(x + xk)2 = (x + xk)4 + x2(x2k +
x2), one gets x2k = x2k + b

x2k
.

A.2 x-coordinate addition of the points (k + 1)P and
(k − 1)P

Proposition 4 The x-coordinates xk, xk−1, x and xk+1 sat-
isfy the relation:

xk+1 + xk−1 = xxk
(x + xk)2

.

Proof This relation follows directly from both relations:
p2k = (pk+2 pk p2k−1 + pk−2 pk p2k+1)/x and p2k = xk p4k .�

References

1. Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An implementation of
elliptic curve cryptosystems over F2155 . IEEE J. Sel. Areas Com-
mun. 11(5), 804–813 (1993)

2. ANSI X9.62:2005. Public key cryptography for the financial
services industry: The elliptic curve digital signature algorithm
(ECDSA). American National Standards Institute (2005)

3. Aranha, D.F., López, J., Hankerson, D.: Efficient software imple-
mentationof binaryfield arithmetic usingvector instruction sets. In:
Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010, LNCS,
vol. 6212, pp. 144–161. Springer (2010)

4. Ay, A.U., Öztürk, E., Rodríguez-Henríquez, F., Savas E.: Design
and implementation of a constant-time FPGA accelerator for fast
elliptic curve cryptography. In: Athanas, P. M., Cumplido, R.,
Feregrino C., Sass R. (eds.) International Conference on ReCon-
Figurable Computing and FPGAs, ReConFig 2016 pp. 1–8. IEEE
(2016)

5. Bernstein, D.J.: Differential addition chains. http://cr.yp.to/ecdh/
diffchain-20060219.pdf. Accessed Mar 2017

6. Bernstein,D.J., Chuengsatiansup,C., Lange, T., Schwabe, P.:Kum-
mer strikes back: new dh speed records. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, LNCS, vol. 8873, pp. 317–337. Springer
(2014)

7. Bernstein, D. J., Engels, S., Lange, T., Niederhagen, R., Paar,
C., Schwabe, P., Zimmermann, R.: Faster discrete logarithms on
FPGAs. Cryptology ePrint Archive, Report 2016/382, 2016. http://
eprint.iacr.org/2016/382

8. Bernstein, D.J., Lange, T., Farashahi, R.: Binary Edwards curves.
In: Oswald, E., Rohatgi, P. (eds.) CHES 2008, LNCS, vol. 5154,
pp. 244–265. Springer (2008)

9. Bluhm, M., Gueron, S.: Fast software implementation of binary
elliptic curve cryptography. J. Cryptogr. Eng. 5(3), 215–226 (2015)

10. Bos, J.W., Costello, C., Hisil, H., Lauter, K.E.: Fast Cryptography
in genus 2. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013, LNCS, vol. 7881, pp. 194–210. Springer (2013)

11. Brown,D.R.L.:Multi-dimensionalmontgomery ladders for elliptic
curves. IACR Cryptology ePrint Archive, Report 2006/220. http://
eprint.iacr.org/2006/220 (2006)

12. Chen, B., Hu, C., Zhao, C-A.: A note on scalar multiplication using
division polynomials. IACR Cryptology ePrint Archive, Report
2015/284. http://eprint.iacr.org/2015/284 (2015)

13. Chung, P.N., Costello, C., Smith, B.: Fast, uniform, and compact
scalar multiplication for elliptic curves and genus 2 Jacobians with
applications to signature schemes. (2015). arXiv:1510.03174

14. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman:
endomorphisms on the x-line. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014, LNCS, vol. 8441, pp. 183–200. Springer
(2014)

15. Enge, A., Gaudry, P.: A general framework for subexponential dis-
crete logarithm algorithms. Acta Arith. 102, 83103 (2002)

16. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Ver-
bauwhede, I.: State-of-the-art of secure ECC Implementations: A
survey on known side-channel attacks and countermeasures. In:
IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST 2010), pp. 76–87. IEEE (2010)

17. Fan, J., Verbauwhede, I.: An updated survey on secure ECC imple-
mentations: Attacks, countermeasures and cost. In: Naccache, D.
(ed.) Cryptography and Security: LNCS, vol. 6805, pp. 265–282.
Springer (2012)

18. Faugère, J. Perret, L., Petit, C., Renault G.: Improving the com-
plexity of index calculus algorithms in elliptic curves over binary
fields. In: EUROCRYPT 2012, LNCS, vol. 7237, p. 2744. Springer
(2012)

123

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://eprint.iacr.org/2016/382
http://eprint.iacr.org/2016/382
http://eprint.iacr.org/2006/220
http://eprint.iacr.org/2006/220
http://eprint.iacr.org/2015/284
http://arxiv.org/abs/1510.03174

J Cryptogr Eng (2018) 8:241–258 257

19. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion
and point halving revisited. IEEE Trans. Comput. 53(8), 1047–
1059 (2004)

20. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve
discrete logarithm problem. Des. Codes Cryptogr. 78(1), 51–72
(2016)

21. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster ellip-
tic curve cryptography on a large class of curves. J. Cryptol. 24,
446–469 (2011)

22. Galbraith, S. D., Gebregiyorgis, S. W.: Summation polyno-
mial algorithms for elliptic curves in characteristic two. In:
INDOCRYPT 2014, LNCS, vol. 8885, pages 409427. Springer
(2014)

23. Galbraith, S. D., Smart, N. P.: A Cryptographic application of weil
descent. In Cryptography andCoding, LNCS, vol. 1746, p. 191200.
Springer (1999)

24. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: faster point multipli-
cation on elliptic curves with efficient endomorphisms. In: Kilian,
J. (ed.) CRYPTO 2001, LNCS, vol. 2139, pp. 190–200. Springer
(2001)

25. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive
facets of Weil descent on elliptic curves. J. Cryptol. 15, 1946
(2002)

26. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the
Galbraith-Lin-Scott point multiplication method for elliptic curves
over binary fields. IEEE Trans. Comput. 58(10), 1411–1420
(2009)

27. Hess, F.: Generalising the GHS attack on the elliptic curve discrete
logarithm problem. LMS J. Comput. Math. 7, 167192 (2004)

28. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: On generalized
first fall degree assumptions. IACRCryptol. ePrint Arch. 2015, 358
(2015)

29. Hutchinson, A., Karabina, K.: Constructing multidimensional dif-
ferential addition chains and their applications. IACR Cryptol.
ePrint Arch. 2017, 311 (2017)

30. Igoe, K., McGrew, D.A., Salter, M.: Fundamental elliptic curve
cryptography algorithms. RFC 6090. https://rfc-editor.org/rfc/
rfc6090.txt. (2015)

31. Intel corporation: Intel intrinsics guide. https://software.intel.com/
sites/landingpage/IntrinsicsGuide/. Accessed Mar 2017

32. Karaklajić, D., Fan, J., Schmidt, J-M., Verbauwhede, I.: Low-
cost fault detection method for ECC using Montgomery powering
ladder. Design, automation and test in Europe, DATE 2011 pp.
1016–1021. IEEE (2011)

33. Kim, K.H., lee, C.O., Nègre, C.: Binary Edwards curves revis-
ited. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014,
LNCS, vol. 8885, pp. 393–408. Springer (2014)

34. Knudsen, E.: Elliptic scalar multiplication using point halving. In:
Lam, K.Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 99, LNCS,
vol. 1716, pp. 135–149. Springer (1999)

35. Koblitz, N.: Constructing elliptic curve cryptosystems in charac-
teristic 2. In:Menezes, A., Vanstone, S. (eds.) CRYPTO 90, LNCS,
pp. 156–167. Springer (1991)

36. Kocher, P. C.: Timing attacks on implementations of Diffie–
Hellman, RSA, DSS, and other systems. In: CRYPTO 96, LNCS,
vol. 1109, pp. 104–113. Springer (1996)

37. Koher, D.: Endomorphism rings of elliptic curves over finite
fields. PhD thesis, University of California Berkeley, (1996).
http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf. Accessed
Apr 2017

38. Koziel, B., Azarderakhsh, R., Mozaffari Kermani, M.: Low-
resource and fast binary edwards curves cryptography. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015, LNCS, vol.
9462, pp. 347–369. Springer (2015)

39. Lang, S.: Elliptic Curves Diophantine Analysis. Springer, New
York, USA (1978)

40. Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic-
curve-based security processor for RFID. IEEE Trans. Comput.
57(11), 1514–1527 (2008)

41. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann.
Math. 126(3), 649–673 (1987)

42. Li, L., Li, S.: High-performance pipelined architecture of elliptic
curve scalar multiplication over GF(2m). IEEE Trans. VLSI Syst.
24(4), 1223–1232 (2016)

43. López, J., Dahab, R.: Fast multiplication on elliptic curves over
GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.)
(eds.) CHES 99, LNCS, vol. 1717, pp. 316–327. Springer (1999)

44. Maurer, M., Menezes, A., Teske, E.: Analysis of the GHS weil
descent attack on the ECDLP over characteristic two finite fields
of composite degree. In INDOCRYPT 2001, LNCS, vol. 2247, p.
195213. Springer (2001)

45. Meloni, N.: New point addition formulae for ECC applications.
In: Carlet, C., Sunar, B. (eds.) WAIFI 2007, LNCS, vol. 4547, pp.
189–201. Springer (2007)

46. Menezes,A.,Vanstone, S.A.: Elliptic curve cryptosystems and their
implementations. J. Cryptol. 6(4), 209–224 (1993)

47. Menezes, A., Qu,M:Analysis of theWeil descent attack ofGaudry,
Hess and Smart. In CT-RSA 2001, vol. 2020 of LNCS, p. 308318.
Springer (2001)

48. Miller, V.S.: Use of Elliptic curves in cryptography, advances in
cryptology. In: Williams, H.C. (ed.) CRYPTO 85, LNCS, vol. 218,
pp. 417–426. Springer (1986)

49. Montgomery, P.L.: Speeding the pollard and elliptic curve methods
of factorization. Math.Comput. 48, 243–264 (1987)

50. Nègre, C., Robert, J.-M.: New parallel approaches for scalar mul-
tiplication in elliptic curve over fields of small characteristic. IEEE
Trans. Comput. 64(10), 2875–2890 (2015)

51. Oliveira, T., Aranha, D.F., López-Hernández, J., Rodríguez-
Henríquez, F.: Fast point multiplication algorithms for binary
elliptic curves with and without precomputation. In: Joux, A.,
Youssef, A. M. (eds.) SAC 2014, LNCS, vol. 8781, pp. 324–344.
Springer (2014)

52. Oliveira, T., Aranha, D.F., López-Hernández, J., Rodríguez-
Henríquez, F.: Two is the fastest prime: Lambda coordinates for
binary elliptic curves. J. Cryptogr. Eng. 4(1), 3–17 (2014)

53. Oliveira, T., Aranha, D.F., López-Hernández, J., Rodríguez-
Henríquez, F.: Improving the performance of the GLS254. http://
tinyurl.com/CHES16-Rump

54. Rashidi, B., Sayedi, S.M., Farashahi, R.R.: High-speed hardware
architecture of scalar multiplication for binary elliptic curve cryp-
tosystems. Microelectron. J. 52, 49–65 (2016)

55. Rebeiro, C., Sinha Roy, S., Mukhopadhyay, D.: Pushing the lim-
its of high-speed GF(2m) Elliptic curve scalar multiplication on
FPGAs. In: Prouff, E., Schaumont, P. (eds.) CHES 2012, LNCS,
vol. 7428, pp. 494–511. Springer (2012)

56. Renes, J., Schwabe, P., Smith, B., Batina, L.: μ Kummer: Efficient
hyperelliptic signatures and key exchange on microcontrollers. In:
Gierlichs, B., Poschmann, A. Y. (eds.) CHES 2016, LNCS, vol.
9813, pp. 301–320. Springer (2016)

57. Schroeppel, R.: Elliptic curve point halving wins big. In: 2nd Mid-
west Arithmetical Geometry in Cryptography Workshop (2000)

58. Schroeppel, R.: Automatically solving equations in finite fields.
US patent 2002/0055962 A1 (2002)

59. Semaev, I.: Summation polynomials and the discrete logarithm
problem on elliptic curves. Cryptology ePrint Archive, Report
2004/031, 2004. http://eprint.iacr.org/2004/031

60. Semaev, I: New algorithm for the discrete logarithm problem on
elliptic curves. Cryptology ePrint Archive, Report 2015/310, 2015.
http://eprint.iacr.org/2015/310

61. Subramanya Rao, S.R.: Three dimensional montgomery ladder,
differential point tripling on montgomery curves and point quin-
tupling on Weierstrass’ and Edwards curves. In: Pointcheval, D.,

123

https://rfc-editor.org/rfc/rfc6090.txt
https://rfc-editor.org/rfc/rfc6090.txt
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf
http://tinyurl.com/CHES16-Rump
http://tinyurl.com/CHES16-Rump
http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2015/310

258 J Cryptogr Eng (2018) 8:241–258

Nitaj, A., Rachidi T. (eds.) AFRICACRYPT 2016, LNCS, vol.
9645, pp. 84–106. Springer (2016)

62. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-
Henríquez, F., Hankerson, D., López, J.: Speeding scalar mul-
tiplication over binary elliptic curves using the new carry-less
multiplication instruction. J. Cryptogr. Eng. 1(3), 187–199 (2011)

63. Wenger, E., Wolfger, P.: Harder, better, faster, stronger: Elliptic
curve discrete logarithmcomputations onFPGAs. J. Cryptogr. Eng.
6(4), 287297 (2016)

123

	The Montgomery ladder on binary elliptic curves
	Abstract
	1 Introduction
	2 Montgomery ladders on binary elliptic curves
	2.1 The Montgomery ladder point multiplication algorithm
	2.2 Montgomery point addition, Montgomery point doubling, and y-coordinate retrieval formulae
	2.3 Division polynomials

	3 Montgomery ladders with pre-computation
	3.1 Background
	3.2 A right-to-left Montgomery ladder
	3.3 Montgomery ladders with pre-computation
	3.4 The point halving operation
	3.5 An efficient halve-and-add Montgomery ladder
	3.6 Comparison

	4 A software implementation of Montgomery ladder-based elliptic curve protocols
	4.1 Field and curve parameters
	4.2 Constant-time implementation
	4.3 Timings

	5 Survey of papers implementing the Montgomery ladder for binary elliptic curves
	5.1 The Montgomery ladder on Binary Edwards curves
	5.2 Common-Z trick
	5.3 Multi-dimensional Montgomery ladders
	5.4 Side-channel attacks on Montgomery ladders
	5.5 Fast and compact Montgomery ladder hardware implementations
	5.5.1 Fast designs
	5.5.2 Compact designs

	5.6 Fast Montgomery ladder software implementations

	6 Conclusion
	Appendix: Further formula derivations using division polynomials
	A.1 Point doubling formula
	A.2 x-coordinate addition of the points (k+1)P and (k-1)P

	References

