
J Cryptogr Eng (2017) 7:255–272
DOI 10.1007/s13389-016-0146-1

REGULAR PAPER

Generic power attacks on RSA with CRT and exponent blinding:
new results

Werner Schindler1 · Andreas Wiemers1

Received: 29 March 2015 / Accepted: 19 December 2016 / Published online: 9 January 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Schindler and Itoh (Applied cryptography and
network security-ACNS 2011. Lecture Notes in Com-
puter Science, vol 6715. Springer, Berlin, pp 73–90, 2011)
and Schindler and Wiemers (J Cryptogr Eng 4:213–236,
2014. doi:10.1007/s13389-014-0081-y) treat generic power
attacks on RSA implementations (with CRT/without CRT)
and on ECC implementations (scalar multiplication with
the long-term key), which apply exponent blinding, resp.,
scalar blinding, as algorithmic countermeasure against side-
channel attacks. In Schindler and Itoh (2011) and Schindler
and Wiemers (2014), it is assumed that an adversary has
guessed the blinded exponent bits/the blinded scalar bits
independently for all power traces and for all bit positions,
and each bit guess is false with probability εb > 0. Three
main types of attacks and several variants thereof were
introduced and analysed in Schindler and Itoh (2011) and
Schindler and Wiemers (2014). The attacks on RSA with
CRT are the least efficient since the attacker has no infor-
mation on φ(p). In this paper, we introduce two new attack
algorithms on RSAwith CRT, which improve the attack effi-
ciency considerably. In particular, attacks on blinding factors
of length R = 64 have definitely become practical, and for
small error rates εb even R = 96 may be overcome.

Keywords Power analysis · Exponent blinding · RSA with
CRT

B Werner Schindler
Werner.Schindler@bsi.bund.de

Andreas Wiemers
Andreas.Wiemers@bsi.bund.de

1 Bundesamt für Sicherheit in der Informationstechnik (BSI),
Godesberger Allee 185–189, 53175 Bonn, Germany

1 Introduction

Exponent blinding [6] and scalar blinding are well-known
algorithmic countermeasures against power attacks (and
other side-channel attacks) on RSA and ECC implemen-
tations, respectively. The underlying idea is to prevent an
attacker from combining the information on the individual
power traces. Exponent blinding and scalar blinding defi-
nitely increase the attack resistance of an implementation
considerably. The relevant question is, of course: to which
degree? The most optimistic assumption would certainly be
that exponent blinding/scalar blinding lifts the resistance of
an implementation against SPA and single-trace template
attacks to a security level, which prevents any type of power
attack.

Several papers have proved that this assumption is not true
in general [2,3,7–9], etc. The papers [2,3] treat RSAwithout
CRT with short public exponents, i.e. ≤216 + 1, which is
not a serious restriction in practice. Reference [3] assumes
that the attacker knows a fraction of the exponent bits with
certainty but has no information on the other exponent bits.
This may be untypical for power attacks where usually all
guesses are to some degree uncertain. The paper [2] enhances
the attack from [3] as it assigns different error probabilities to
the particular bit guesses on the basis of single-trace template
attacks. This leads to different likelihoods for the estimated
blinding factors.

In [7] and in its extension [8] RSA (with and without
CRT) and ECC applications (scalar multiplication with the
long-term key) were considered. It was assumed that the
exponentiation, resp., the scalar multiplication, are carried
out with a square and always multiply algorithm, resp., with
a double and always add algorithm and that the attacker has
guessed the blinded exponent bits/the scalar bits indepen-
dently for each power trace (with an SPA attack or with a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-016-0146-1&domain=pdf
http://orcid.org/0000-0002-3073-0106
http://dx.doi.org/10.1007/s13389-014-0081-y

256 J Cryptogr Eng (2017) 7:255–272

single-trace template attack), and that each of the guessed
bits is false with identical probability εb > 0. An adapta-
tion to other exponentiation algorithms is possible, see [8,
Sect. 3.8]. As in [7,8] we assume identical error probabilities
εb > 0 since we treat generic attacks. It seems to be difficult
to assume a reasonable (practically relevant) probability dis-
tribution for the error probabilities origined by single-trace
template attacks.

In [8] three main attack methods were considered: the
basic attack, the enhanced attack and the alternate attack.
The enhanced attack applies to RSA and ECC but for RSA
without CRT and for ECC more efficient variants exist [8,
Sects. 3.5, 4], introduces so-called ‘alternate attacks’ for
these cases. This is due to the fact that for RSA without
CRT and for ECC the attacker knows the upper halve of the
binary representation of φ(n) or the order of the basis point,
respectively. In contrast, he has no information on φ(p) for
RSAwith CRT. For this reason, the above-mentioned attacks
from [2,3] cannot be transferred to RSAwith CRT. The paper
[9] treats elliptic curves over special prime fields.

In this paper, we introduce two new attack variants
against RSAwith CRT. Compared to the enhanced attack the
‘enhanced plus attack’ applies an additional sieving step. For
many parameter sets, this attack variant reduces significantly
the computational workload and allows larger blinding fac-
tors. On the negative side, the enhanced plus attack requires
additional memory and more power traces, which should be
of subordinate meaning in most scenarios.

The second attack method extends the alternate attack
from [8, Sect. 4.2], from RSA without CRT to RSA with
CRT. More precisely, we develop a pre-step, which applies
continued fractions to recover the most significant bits of
φ(p). After this pre-step, the situation is comparable to RSA
without CRT.

Our new attack methods allow practical attacks on blind-
ing length R = 64, and for small error rates εb even on
R = 96.

The paper is organized as follows. In Sect. 2, we intro-
duce the notation and summarize relevant properties of the
enhanced attack, which will be needed in Sect. 3. In Sects. 3
and 4, the enhanced plus attack and the continued fraction
method are introduced and thoroughly analysed. The effi-
ciency of the enhanced attack, the enhanced plus attack and
the alternate attack (essentially determined by the continued
fraction algorithm) are compared in Sect. 5.

2 The enhanced attack: central facts

In this section, we introduce the notation and summarize
central facts of the enhanced attack, which will be needed
later.

2.1 Notation and basic assumptions

In the papers [7,8], it is assumed that the target device (typ-
ically a smart card, a microcontroller or an FPGA) executes
RSA or ECC operations with an S&aM exponentiation algo-
rithm (RSA) or an D&aA algorithm (ECC), respectively.
Moreover, exponent blinding, resp., scalar blinding, is used
to thwart power attacks. The blinded exponents/the blinded
scalars are of the form

v j := d + r j y for j = 1, 2, . . . (1)

where d denotes a long-term key. For RSA with CRT, the
case we consider in the following, d = dp, i.e. d equals the
secret exponent modulo (p − 1), and y = φ(p). (For RSA
without CRT and for ECC d equals the secret (long-term) key
while y = φ(n) or y equals the order of a base point on an
elliptic curve, respectively.) The (random) blinding factor r j
for the exponentiation j is drawn uniformly from the range
{0, 1, . . . , 2R−1}. It should be noted that it suffices to recover
d = dp [8, Remark 1(i)].

Further, d < y < 2k with randomly selected integers
d and y (for ECC applications only d). In particular, we
may assume log2(d), log2(y) ≈ k. The binary representa-
tion of v j is (v j;k+R−1, . . . , v j;0)2 where leading zero digits
are allowed. On the basis of an SPA attack or a single-trace
template attack on power trace j , the attacker guesses the
blinded exponent and obtains ṽ j = (̃v j;k+R−1, . . . , ṽ j;0)2.
The correct blinded exponent v j and the guessed blinded
exponent ṽ j are related by

ṽ j = v j + e j with e j =
k+R−1
∑

i=0

e j;i2i

and e j;i ∈ {0, 1,−1} . (2)

The Hamming weight of the error vector e j in the signed
representation (2) equals the number of guessing errors. The
attacker may commit two types of guessing errors: Although
v j;i = 0 he might guess ṽ j;i = 1 (‘10-error’; i.e. e j;i = 1),
or instead of v j;i = 1 he might guess ṽ j;i = 0 (‘01-error’;
i.e. e j;i = −1). In the following, we assume that both types
of errors occur with the same probability εb.

2.2 The enhanced attack in a nutshell

In this subsection, we summarize relevant facts on the
enhanced attack where we restrict our attention to RSA with
CRT. We refer the interested reader to [8, Sect. 3]. We begin
with a definition.

Definition 1 For u > 1 let Mu := {(j1, . . . , ju) | 1 ≤
j1 ≤ · · · ≤ ju ≤ N }. For each u-tuple (j1, . . . , ju) ∈ Mu ,
we define the ‘u-sum’ Su(j1, . . . , ju) := r j1 + · · · + r ju .

123

J Cryptogr Eng (2017) 7:255–272 257

For (j1, . . . , ju), (i1, . . . , iu) ∈ Mu , wewrite (j1, . . . , ju) ∼
(i1, . . . , iu) iff Su(j1, . . . , ju) = Su(i1, . . . , iu). As usually,
N (μ, σ 2) denotes the normal distribution with mean μ and
variance σ 2, and Φ(·) denotes the cumulative distribution
function of N (0, 1).

The goal of the first phase is to find linear equations in
the blinding factors. To decide whether (j1, . . . , ju) ∼
(i1, . . . , iu) we apply the following decision strategy:

Decide for (j1, . . . , ju) ∼ (i1, . . . , iu) iff

ham(NAF(̃v j1 + · · · + ṽ ju − (̃vi1 + · · · + ṽiu))) < b0

for some b0. (3)

where b0 is a suitably selected decision boundary. The ratio-
nale is the following: If � is true the left-hand term ham(. . .)

in (3) behaves statistically similarly likeY := ham(NAF(X))

where X denotes a random variable, which is uniformly
distributed on {0, 1, . . . , d + (2R − 1)y}. In particular, all
elements are smaller than 2R y. We may assume Y is nor-
mally distributed with expectation μW = 0.333 log2(m) and
(small) variance σ 2

W = 0.075 log2(m).
In contrast, if ∼ is true for moderate error probability εb

we may assume that ham(NAF(·)) assumes much smaller
values since the underlying normal distribution has mean
value μ′

W < μW and variance σW ′ , see [8, Lemma 1(iii) and
Sect. 3.3.1]. The decision boundary b0 separates two normal
distributions with mean values μ′

W < μW .
Each decision for ‘∼’ provides a new linear equation. In

the first attack step, the attacker collects linear equations until
he has got a system of homogeneous linear equations of co-
rank 2 over the integers in the blinding factors r1, r2, . . . , rN .
In the second attack step, this system is solved, which yields
a vector (r ′

1, . . . , r
′
N) = (r1, . . . , rN) + c(1, . . . , 1) with

unknown c ∈ Z. In the third and final attack step, an error
detection and correction algorithm are applied. At first, a
maximal subset {r ′

j1
, . . . , r ′

jk+1
} of {r ′

1, . . . , r
′
N } is selected

such that r ′
ji
and r ′

ji+1
have different parity for i = 1, . . . , k.

Then, the differences ṽ ji+1−ṽ ji = (r ′
ji+1

−r ′
ji
)φ(p)+(e′

ji+1
−

e′
ji
) are computed. Finally, the estimation errors are corrected

from the right to the left until the terms (r ′
ji+1

− r ′
ji
)φ(p)

remain, which completes the attack.
If εb is small essentially all decisions are correct, and

Lemma 1 (with α = 1) quantifies the minimum sample size
N , for which we may expect 2N linear equations in aver-
age. Since the system of linear equation must have co-rank
2, we need to collect at least N − 2 ≈ N linear equations.
In our efficiency prediction, we aim at 2N linear equations
to compensate linear dependencies. In a real-world attack
one may terminate the first attack step when the system of
linear equations has rank N − 2. If εb increases the mean
valueμ′

W increases, too, and both normal distributions move
closer together. Wrong linear equations spoil the system of

linear equations and thus must be prevented. Hence one has
to increase b0, accepting that some (correct) linear equations
remain undetected (false negatives). This property limits the
maximal tolerable error rate εb. Table 1 contains both the
expected number of power traces and the number of NAF
calculations for several parameter sets, which are necessary
to find 2N linear equations. It should be noted that for the
parameters (N = 16, u = 4) the sample size 16 turned out
to be too small [and should better be replaced by N = 20 [8,
Table 9]], which is due to the fact that the condition u � N
is not ‘truly’ fulfiled in this case.

Lemma 1 ([8, Lemma 2(ii), (26) and (27)]) Assume that
u � N and let α denote the fraction of detected linear
equations, i.e. α = Prob(decision for ∼|∼ is correct) =
Prob(ham(NAF(·)) < b0 |∼ is correct). To obtain 2N lin-
ear equations in average one needs N ≥ N2 power traces
with

N2 =
(

u!u!2R+2

c(u)
· 1
α

)
1

2u−1

. Sample size N2 costs (4)

≈ d(u) · (2R)1+
1

2u−1 ·
(

1

α

)1+ 1
2u−1

comparisons (NAF calculations). (5)

In particular, for u = 2, 3, 4 the constants c(u) and d(u) are

c(2) = 0.6, c(3) = 0.551, c(4) = 0.479, (6)

d(2) = 8.65, d(3) = 11.06, d(4) = 14.01 . (7)

3 The enhanced plus attack

The first attack step dominates the overall workload of the
enhanced attack. The Eqs. (4), (5) and Table 1 show that at
least for R ≤ 64 the required number of power traces is not
the bottleneck but the number of NAF calculations. In fact,
for large R nearly each evaluation of the decision rule (3)
yields the result ‘not ∼’ (‘no equation’).

In this section, we introduce and analyse a pre-step (a siev-
ing step) to Step 1 of the enhanced attack, which increases
the ratio between valid linear equations andNAFcalculations
considerably, saving a large part of the NAF calculations. On
the positive side, it consequently also increases the tolera-
ble error rate εb. Unfortunately, this sieving step also loses a
fraction of the valid linear equations, which in turn increases
the number of power traces, and additionally, considerable
memory is required. However, these disadvantages are usu-
ally of subordinate relevance. We denote the composition
of this pre-step with the enhanced attack as ‘enhanced plus
attack’. Step 2 and Step 3 of the enhanced attack are not
affected and thus not considered in the following.

123

258 J Cryptogr Eng (2017) 7:255–272

Table 1 [8, Table 5] Enhanced
attack: Minimal number of
power traces N2 to get ≥ 2N2
equations (average case) and the
number of mutual comparisons
(NAF calculations), here for
α = 1.0, i.e. if all linear
equations are detected. The
figures follow from (4) and (5)

R u = 2 u = 3 u = 4

log2(N2) log2(#NAF ops.) log2(N2) log2(#NAF ops.) log2(N2) log2(#NAF ops.)

16 6.9 24.5 4.8 22.7 4.0 22.1

32 12.2 45.8 8.0 41.8 6.3 40.4

48 17.5 67.1 11.2 61.0 8.6 58.7

64 22.9 88.5 14.4 80.3 10.9 77.0

96 33.5 131.1 20.8 118.7 15.5 113.1

3.1 Basic idea

The sieving step falls into three substeps. Substep (1d) cor-
responds to Step 1 of the enhanced attack.

(1a) The attacker guesses the exponents ṽ1, . . . , ṽN on the
basis of a power attack (SPA attack or single-trace tem-
plate attack) and saves these integers in an array L ′ of
size N .

(1b) The attacker calculates the u-sums ṽ j1 + · · · + ṽ ju for
all 1 ≤ j1 < · · · < ju ≤ N (alternatively, for all
1 ≤ j1 ≤ · · · ≤ ju ≤ N) and stores these values in an
array L .

(1c) The attacker selects a ‘window’ W of w bits, which
consists of the bitsm′+w−1, . . . ,m′ for somem′ ≥ 0.
Then he sorts the array L with regard to the binary
representation of the window W (‘window pattern’).

(1d) The decision rule (3) is only applied to those pairs of
elements of L with identical window pattern.

Rationale Assume that r j1 +· · ·+ r ju = ri1 +· · ·+ riu , and
moreover that

– the bit guesses ṽ j1,s, . . . , ṽ ju ,s, ṽi1,s, . . . , ṽiu ,s are correct
for all positions s within the selected window.

– both ṽ j1 +· · ·+ ṽ ju and ṽi1 +· · ·+ ṽiu have correct carry
bits at position m′ (right-hand border of the window)

Then ṽ j1 + · · · + ṽ ju and ṽi1 + · · · + ṽiu have the same
bit pattern wp in the selected window. Hence, in Step (1d),
the decision rule (3) is applied to this pair, and with high
probability this linear equation will be detected. On the other
hand, if� two u-sums coincide in the selectedw-bit window
only by chance.

Of course, the sieving process loses a lot of equations
(namely when guessing errors have occurred within the win-
dow) but for sample size N the number of existing equations
increases in the order of magnitude O(N 2u) [8, Lemma 2(i)].
Hence, the additionally needed power traces should usually
be of subordinate relevance since the number of power traces
usually is not the limiting factor of the enhanced attack. In

the following, we analyse the Substeps (1a) to (1c) and their
impact on Substep (1d).

3.2 Pre-correction of guessing errors

The value y = φ(pi) is even. Hence ym0−1 = · · · = y0 = 0
and ym0 = 1 for some m0 ≥ 1. Thus v j;s = ds for all
(j, s) ∈ {1, . . . , N } × {0, . . . ,m0 − 1} while both v j;m0 =
dm0 and v j;m0 = dm0 ⊕ 1 occur in about half of the blinded
exponents. Consequently, for each 0 ≤ s < m0 roughly
(1 − εb)100% of the guessed exponent bits ṽ1;s, . . . , ṽN ;s
attain the same value, namely ds . In contrast, about half of the
guesses ṽ1;m0 , . . . , ṽN ;m0 assume the value 0 and the other
half the value 1. This property allows to determine the value
m0 and to correct all guessing errors, which have been com-
mitted at the bit positions 0, . . . ,m0 − 1. The guesses at bit
positions 0, . . . ,m0−1 allow to estimate the error probability
εb (see [8], Remark 3(ii)).

Within this section, we always assume that

the windowW comprises the bitsw + m0 − 1, . . . ,m0

for somew. (8)

The pre-correction step ensures that no carry error occurs
at position m0. Hence, the second assumption of the above
rationale is always fulfiled.

3.3 The array L: sorting operations and size

We first note that the order of list entries with identical win-
dow patterns are irrelevant. For small window size, w, the
straight-forward approach is to initialize 2w subarrays, one
for each admissable window pattern wp. Each data set only
needs to be read and stored once, and thus sorting costs O(n)

operations, which is significantly better than the universally
applicable Quicksort algorithm. Of course, this sorting strat-
egy reminds of the well-known bucket sort algorithm [1,
p. 3–14f]. If w is large, the sorting procedure may be per-
formed in two stages. In the first stage, the data sets are stored
in 2w1 subarrays (corresponding to the most significant w1

bits of the window pattern), and in the second stage these
subarrays themselves are successively split into 2w−w1 sub-

123

J Cryptogr Eng (2017) 7:255–272 259

arrays. If necessary, the data sets may be stored on several
storage media.

The fact that all admissible 2w windowpatterns are equally
likely can also be exploited in the following way: Allocate
an array of integers L ′′ with 2w entries, each entry corre-
sponding to a particular window pattern. Then calculate all
u-sums and count the occurrences of each window pattern.
Replace all entries ‘0’ and ‘1’ by ‘−1’ since the correspond-
ing u-sums either do not exist or do not need to be considered
later. The goal is to write all u-sums, which assume a win-
dow pattern that occurs at least twice, sequentially in the
array L , ordered with regard to the window patterns. We
replace the positive entries in L ′′ by the storage address of
the first u-sum that occurs with this window pattern. (Exam-
ple: Let L ′′ = (4, 0, 1, 3, 2, 2 . . .). In the first step, we set
L ′′ = (4,−1,−1, 3, 2, 2, . . .), which yields the addresses
L ′′ = (add,−1,−1, add + 4 ∗ si zeof (int), add + 7 ∗
si zeo f (int), add +9∗ si zeo f (int), . . .). Here add denotes
the address of the first u-sumwithwindowpattern (0, . . . , 0).
Then, the u-sums are calculated once again. If a u-sum
has pattern wp then this u-sum is written to the position
L ′′[wp] unless L ′′[wp] = −1, and L ′′[wp] := L ′′[wp] +
si zeo f (int). This method does not need any sorting opera-
tion at all but all u-sums have to be computed twice.

For small window size, w, a third option exists: One may
better allocate a two-dimensional array with 2w rows. All
u-sums with window pattern (bw−1, . . . , b0) are stored in
the row, which is indexed with the binary representation
(bw−1, . . . , b0)2, which saves any sorting operation, and no
u-sum has to be computed twice. For large, w, both strate-
gies can be combined: In the first step the computed u-sums
are stored in a two-dimensional array with 2w′

< 2w rows,
using the most significantw′ < w bits of the window pattern
as a non-cryptographic hash value. In the second step, the
rows are sorted as explained above with regard to the lowest
w′′ = w − w′ bits of the bit pattern.

For sample size N

n ≈
(

N

u

)

≈ Nu

u! u − sums (9)

exist. The arguments given above indicate that the limiting
factor are not sorting operations but the size of the array L.
A data set has the following form

j1|| . . . || ju ||̃v j1 + · · · + ṽ ju (full data record)

memory: ≥ (4u + �(k + R + �log2(u)�)/8�) bytes.

(10)

In (10) we assume that the trace numbers ji are stored as
integers [Depending on the selected data format the u-sums
may require a little more bytes than claimed in (10)]. To save
storage space one might use ‘short data records’

j1|| . . . || ju ||wp(̃v j1 + · · · + ṽ ju) (short data record)

memory: ≥ (4u + �w/8�)bytes (11)

where wp(̃v j1 +· · ·+ ṽ ju) denotes the w-bit window pattern
of ṽ j1+· · ·+ṽ ju . The drawback is that the sums ṽ j1+· · ·+ṽ ju
and ṽi1 + · · · + ṽiu have to be calculated repeatedly to apply
the decision rule (3). Possibly even the window pattern wp
may be cancelled in the short data record (11) if wp can be
calculated from the virtual storage address.

j1|| . . . || ju (ultra short data record)

memory: = 4u bytes , (12)

Example 1 [1024-bit primes, R = 48, u = 2, w = 32]
Storage space: full data record: ≥ 8+ 1024+ 48+ 1�/8 =
143 bytes, short data record: 4 · 2+ 6 = 14 bytes, ultra short
data record: 4 · 2 = 8 bytes.

3.4 Sample size N and number of NAF calculations

In Substep (1d) for each window pattern wp (a w-bit string),
the belonging guessed exponents are compared pairwise by
decision strategy (3). At first, we determine the expected
number of NAF calculations for sample size N .

Definition 2 For a positive integer, x , we defineχw,m0 (x) :=
(xw+m0−1 . . . , xm0)2, i.e. the integer that corresponds to the
binary representation of (xw+m0−1, . . . , xm0). Moreover, for
an integer m > 1 we define Zm := {0, . . . ,m − 1}. If b ≡
c mod m and c ∈ Zm we write b(mod m) = c.

Lemma 2 For window sizew ≤ R and sample size N ≤ 2w

E(#NAF calculations) ≈ N 2u

u!u!2
−(w+1) . (13)

Proof Recall that (8) holds where m0 is defined as in
Sect. 3.2. Clearly, χw,m0(rφ(p)) = rχw,m0(φ(p))(mod
2w). Since χw,m0(φ(p)) is odd then r1χw,m0(φ(p)) ≡
r2χw,m0(φ(p)) mod 2w iff r1 ≡ r2 mod 2w, and since
w ≤ R the mapping r �→ χw,m0(rφ(p)) transforms the uni-
form distribution on Z2R to the uniform distribution on Z2w .
Hence for j = 1, . . . , N we may interpret χw,m0(v1), . . . ,

χw,m0(vN) and thus χw,m0 (̃v1), . . . , χw,m0 (̃vN) as realiza-
tions of independent random variables X1, . . . , XN , which
are uniformly distributed on Z2w . Due to the pre-correction
step from Sect. 3.2 for all u-tuples (j1, . . . , ju) the sum
ṽ j1+· · ·+ṽ ju has identical carry value cam0 ∈ {0, . . . , u−1}
at positionm0. Hence,χw,m0 (̃v j1+· · ·+ṽ ju) = χw,m0 (̃v j1)+
· · · + χw,m0 (̃v ju) + cam0(mod 2w) may be viewed as a real-
ization of a random variable Y j1,..., ju = X j1 + · · · X ju +
camm0(mod2w), which is uniformly distributed on Z2w .
For { j1, . . . , ju} �= {i1, . . . , iu} there exists an index it /∈
{ j1, . . . , ju}, and thus Y j1,..., ju and Yi1,...,iu are independent.

123

260 J Cryptogr Eng (2017) 7:255–272

After relabelling, we view the projections χw,m0 (̃v j1 +· · ·+
ṽ ju) as realizations of mutually independent random vari-
ables Y1, . . . ,Yn , which are uniformly distributed on Z2w.
Within the proof we use the abbreviation n = (N

u

)

. Since the
Y j are uniformly distributed on Z2w we conclude

E(#NAF calculations)

=
2w−1
∑

j=0

E(#NAF calculations, (wp)2 = j)

= 2wE(#NAF calculations, (wp)2 = j0)

for some j0 ∈ {0, . . . , 2w − 1} (14)

For the moment let ψ : Z2w → {0, 1}, ψ(jo) = 1 and = 0
else. Then the random variables Zi := ψ(Yi) are mutually
independent and binomially B(1, p)-distributed with p =
2−w. Elementary computations yield

E(#NAF calculations) = 2wE

((

Z1 + · · · + Zn
2

))

(15)

= 2w 1

2

⎛

⎝

n
∑

j=1

E(Z2
j) + 2

∑

1≤i< j≤n

E(Zi Z j) −
n

∑

j=1

E(Z j)

⎞

⎠

= 2w 1

2

(

(n2 − n)2−2w
)

= n

2

(

(n − 1)2−w
) ≈ n22−(w+1).

(16)

since the first and the last summand of the third term compen-
sate each other. Finally, (9) completes the proof of Lemma 2.

��

Lemma 3 (i) Theprobability that the u-sum ṽ j1+· · ·+ṽ ju
has the correct window pattern equals

β := Prob(χw,m0 (̃v j1 + · · · + ṽ ju)

= χw,m0(v j1 + · · · + v ju))

≥ Prob(̃v jk ;s = v jk ;s for all (k, s) ∈ {1, . . . , u}
×{m0, . . . , w + m0 − 1})

= (1 − εb)
uw =: β0 (17)

(ii) [special case u = 2] For a randomly selected window
pattern wp, we obtain the average probability

β = (

1 0 0 0
)

⎛

⎜

⎜

⎝

(1 − εb)
2 ε2b/4 ε2b/4 2εb − ε2b/2

εb(1 − εb) εb(1 − εb) 0 1 − 2εb(1 − εb)

εb(1 − εb) 0 εb(1 − εb) 1 − 2εb(1 − εb)

0 0 0 1

⎞

⎟

⎟

⎠

w

×

⎛

⎜

⎜

⎝

1
1
1
0

⎞

⎟

⎟

⎠

. (18)

Proof Formula (17) is obvious since the condition ṽ jk ;s =
v jk ;s for all (k, s) ∈ {1, . . . , u} × {m0, . . . , w + m0 − 1}
implies χw,m0 (̃v j1 + · · · + ṽ ju) = χw,m0(v j1 + · · · + v ju).
Equation (17) follows from the assumed independence of the
bit guesses. For the proof of (ii), we assume that ṽ j1 + ṽ j2 is
computed as in the schoolbook, bit by bit from the right to the
left. Due to the pre-correction of the guesses ṽ j1 and ṽ j2 the
lowest m0 bits of their sum and the carry c̃am0 ∈ {0, 1} are
correct. At bit s ∈ {m0, . . . , w +m0 −1} the addition opera-
tion is in one of four possible states Ω := {0,+,−,∞}. For
the states 0,+,−, the bits s−1, . . . , 0 of the sum ṽ j1+ṽ j2 are
correct, i.e. coincide with those of v j1 +v j2 . For state 0 (resp.,
for state +, resp., for state −) additionally c̃as = cas (resp.,
c̃as = cas +1, resp., c̃as = cas −1) holds. State∞ (absorb-
ing state)means that some bit t ∈ {0, . . . , s−1} of ṽ j1+ṽ j2 is
wrong, which excludes χw,m0 (̃v j1 + ṽ j2) = χw,m0(v j1 +v j2).
Of course, (v j1;s, v j2;s) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, and
all four cases occur with probability 1/4. We exemplarily
treat the conditional probability Prob(0 | +) where ‘+’
means the state at bit s and ‘0’ the state at bit s + 1.
For (v j1;s, v j2;s) = (0, 0) this transition is impossible,
for (v j1;s, v j2;s) ∈ {(0, 1), (1, 0)} this transition occurs
when (̃v j1;s, ṽ j2;s) = (0, 0) while finally (̃v j1;s, ṽ j2;s) ∈
{(0, 1), (1, 0)} ensures this transition for (v j1;s, v j2;s) =
(1, 1). The weighted sum of the four transition probabili-
ties gives the conditional probability εb(1 − εb). The other
transition probabilities can be treated likewise. The transition
matrix in (18) can be expressed as 0.25(P00+P01+P10+P11)
where Pik denotes the transition matrix if (v j1;s, v j2;s) =
(i, k). Hence, (18) computes the average probability β. ��
Remark 1 [Exact probabilities]

(i) The Eq. (18) gives the (exact) average probability that
the 2-sum of two guessed blinded exponents, ṽ j1 + ṽ j2 ,
has the same window pattern as the 2-sum of the true
blinded exponents, v j1 + v j2 . In the proof of Lemma 3 it
became clear that for a fixed word pattern wp the corre-
sponding probabilityβ maydiffer fromβ since the values
{(v j1;s, v j2;s) | m0 ≤ s ≤ w + m0 − 1} determine the
sequence of transitionmatrices Pik . Formoderate param-
eters (w, εb), the relative difference (β −β0)/β0 is small
(c.f. Example 2). Anyway, β ≥ β0.

(ii) Of course, for u > 2 pendants to (18) can be derived
analogously. Then, Ω = {0,+1, . . . ,+u−1,−1, . . . ,

−u−1,∞} where ‘+a’ means c̃as = cas + a, etc. As
for u = 2 one might assume that the relative difference
between β and its approximation β0 is small.

Example 2 (i) Let (u, w, εb) = (2, 46, 0.07). By (17) and
(18) β = 1.28 · 10−3, β0 = 1.26 · 10−3, and β/β0 =
1.01.

123

J Cryptogr Eng (2017) 7:255–272 261

(ii) Let (u, w, εb) = (2, 46, 0.10). Then β = 6.4 · 10−5,
β0 = 6.2 · 10−5, and β/β0 = 1.04.

If (j1, . . . , ju) ∼ (i1, . . . , iu) then in particular
χw,m0(v j1 + · · · + v ju) = χw,m0(vi1 + · · · + viu). The u-
sums ṽ j1 + · · · + ṽ ju and ṽi1 + · · · + ṽiu are compared in
Step (1d) iff the same window pattern is assigned to both u-
sums. Lemma 3 considers the probability that all bit guesses
within the window are correct and, more generally, that the
window pattern for a u-tuple is correct. Of course, guessing
errors in the summands of two u-sums might compensate
one another, yielding false but identical guessed window pat-
terns. Then, the enhanced plus attack would detect a linear
equation anyhow. This would be the case, for instance, if
e j1;s = eiu ;s = 1 for some s ∈ {m0,m0+1, . . . ,m0+w−1}
while all other bit guesses within the window are correct.
Lemma 4 illuminates this scenario.

Lemma 4 Let {Fj,i | 1 ≤ j ≤ 2u, 0 ≤ i ≤ w−1} denote a
family of iid random variables with Prob(Fj,i = 0) = 1−εb
and Prob(Fj,i = 1) = Prob(Fj,i = −1) = εb/2. Further,
G j := ∑w−1

i=0 Fj,i2i for 1 ≤ j ≤ 2u and Hi := ∑2u
j=1 Fj,i .

Then

νH (x) := Prob(Hi = x)

=
∑

0≤t≤2u;
0≤v≤2u−t;t−v=x

(

2u

(2u − t − v), v

)

(1 − εb)
2u−t−v

(εb

2

)t+v

.

(19)

for x ∈ {−2u,−2u + 1, . . . , 0, . . . , 2u} while νH (x) = 0
for |x | > 2u. Let

pridpat := Prob(χw,m0 (̃v j1 + · · · + ṽ ju)

= χw,m0 (̃vi1 + · · · + ṽiu) | (j1, . . . , ju)

∼ (i1, . . . , iu)}. (20)

If j1, . . . , ju, i1, . . . , iu are mutually distinct

pridpat := Prob
(

G1 + · · · + G2u ≡ 0 mod 2w
)

. (21)

Let P = (

pω1,ω2

)

ω1,ω2∈Ω
a transition matrix of a homoge-

neousMarkov chainon the state spaceΩ ={0, 1, . . . , 2u,∞}
where ∞ denotes an absorbing state. In particular, pa,b =
νH (2b − a) + νH (−2b − a) for a ∈ {0, . . . , 2u} and
b ∈ {1, . . . , 2u}. For a ∈ {0, . . . , 2u} further pa,0 = νH (a),
pa,∞ = ∑

x≡a+1 mod 2 νH (x), p∞,a = 0 and p∞,∞ = 1. If
j1, . . . , ju, i1, . . . , iu are mutually distinct then

pridpat = (1, 0 . . . , 0)Pw

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
1
...

1
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(22)

Proof Formula (19) is obvious. Due to the pre-correction
step from Sect. 3.2 we may assume es;i = 0 for s ∈
{ j1, . . . , ju, i1, . . . , iu} and i = 0, . . . ,m0 − 1. Hence
χw,m0 (̃v j1 + · · · + ṽ ju) = χw,m0 (̃vi1 + · · · + ṽiu) iff

v j1 + e j1 + · · · + v ju + e ju − (

vi1 + ei1 + · · · + viu + eiu
)

e j1 + · · · + e ju − (

ei1 + · · · + eiu
) ≡ 0 mod 2m0+w.

Since the blinding factors r j1, . . . , riu were selected ran-
domly we may assume that the bits vs,m0 , . . . , vs,m0+w−1

are realizations of iid uniformly distributed {0, 1}-valued
random variables. Consequently, es;m+i be interpreted as
a realization of the random variable Fs,i . Hence pridpat =
Prob(G1 + · · · + Gu − Gu+1 − · · · − G2u ≡ 0 mod 2w).
Since the randomvariables Fj,i are symmetrically distributed
with regard to 0 this is also valid for the random variables
G j and Hi , which proves (21).

Now G1 + · · ·G2u = ∑w−1
i=0 Hi2i ≡ 0 mod 2w iff

∑s
i=0 Hi2i ≡ 0 mod 2s+1 for s = 0, . . . , w − 1. The sec-

ond condition is equivalent to (Hs + cas)2s ≡ 0 mod 2s+1

(resp., to Hs + cas ≡ 0 mod 2) for s = 0, . . . , w − 1 with

cas =
⌊

∑s−1
i=0 Hi2i/2s

⌋

. Further, cas+1 = (cas + Hs)/2�.
By induction, |cas | ≤ 2u. We may interpret the values
ca0, ca1, . . . , caw as realizations of a finite Markov chain on
the state space Ω ′ := {−2u,−2u + 1, . . . , 2u − 1, 2u,∞}
with transition matrix P ′ = (p′

ω′
1,ω

′
2
)ω′

1,ω
′
2∈Ω ′ . In particular,

∞ is an absorbing state, which is reached when cas + Hs ≡
1 mod 2 for some s ∈ {0, . . . , w−1}. (Then cas+1, . . . , caw

do not represent carry values but assume the value ∞.) Fur-
ther, pa,b := νH (2b − a) for −2u ≤ a, b ≤ 2u since a
transition from state a to state b occurs iff a + Hs = 2b.
Finally, pa,∞ = ∑

x≡a+1 mod 2 νH (x).
Consider the partition {−2u, 2u}, {−2u+1, 2u−1}, . . . ,

{1,−1}, {0}, {∞} of Ω ′: Since the random variables Hi are
symmetrically distributed with regard to 0 we conclude that
pa,b + pa,−b = p−a,b + p−a,−b for a, b /∈ {0,∞}. Further,
pa,0 = p−a,0 and pa,∞ = p−a,∞ for a �= ∞ since a + x ≡
−a + x mod 2. Thus, the Markov chain on Ω ′ is lumpable
with regard to this partition, see [5], Definition 6.3.1 and
Theorem 6.3.2. This means that the stochastic process on this
partition, which is induced by the mapping a �→ {−a, a} for
a /∈ {0,∞} and 0 �→ {0} and∞ �→ {∞} is itself Markovian.
If we identify {a,−a} with a, {0} with 0 and {∞} with ∞
this yields the Markov chain on the state space Ω , which
is defined after (21). Formula (22) finally follows from the
fact that G1 + · · ·G2u �≡ 0 mod 2w iff the Markov chain
assumes the absorbing state ∞ after w steps. ��

While the relative difference between the probability β

and its approximation β0 usually is small (c.f. Remark 1) the
relative difference between pridpat and β2

0 usually is not and
thus has significant impact on the estimated overall workload
of the attack. In particular, one should not proceed with β2

0 in

123

262 J Cryptogr Eng (2017) 7:255–272

Table 2 Several ratios pridpat/β2
0 for exemplary parameter sets under the condition that j1, . . . , ju , i1, . . . , iu are mutually distinct. The ratio

increases when the window size w or the error rate εb increase

(εb, w, u) (0.06,32,2) (0.08,32,2) (0.10,32,2) (0.12,32,2) (0.14,32,2)
pridpat

β2
0

1.58 2.42 4.52 10.69 33.36

(εb, w, u) (0.10,48,2) (0.06,32,3) (0.07,32,3) (0.07,36,3) (0.05,24,4)
pridpat

β2
0

9.46 3.36 5.68 7.02 3.26

place of pridpat although it is easy to calulate. Table 2 contains
figures for some parameter vectors (εb, w, u). Recall that
the term β2

0 equals the probability that es;i = 0 for s ∈
{ j1, . . . , ju, i1, . . . , iu} and i ∈ {m0, . . . ,m0 + w − 1}.

Lemma 5 quantifies the minimum value for the sample
size N , which is needed to obtain sufficiently many linear
equations.

Lemma 5 Assume that u � N while α and pridpat are
defined as in Lemma 1 and in Lemma 4, respectively. In par-
ticular, the probability pridpat is given by (22).

(i) For sample size, N , we expect

E(#linear equations) ≈ N 2u

2u!u!
c(u)αpridpat

2R
. (23)

(ii) To get 2N linear equations in average, one needs N ≥
N2 power traces with

N2 =
(

u!u!2R+2

c(u)
· 1

αpridpat

)
1

2·u−1

.

The array L then contains (24)

≈ Nu
2

u! =
(

u!u!2R+2

c(u)
· 1

αpridpat

)
u

2·u−1 1

u!
table entries. (25)

This costs ≈
(

u!u!2R+2

c(u)
· 1

αpridpat

)
2u

2·u−1 2−(w+1)

u!u!
NAF calculations. (26)

Proof Formula (26) in [8] says that for N power traces one
may expect that the enhanced attack detects ≈ α(N 2uc(u))/

(2u!u!2R) linear equations. For a realistic parameter N
the condition ’ j1, . . . , ju, i1, . . . , iu are mutually distinct’
should be fulfiled for almost all of these equations. Hence,
we may expect that in Step (1d) of the enhanced plus attack
a fraction of ≈ pridpat of these linear equations are detected,
where pridpat is given by (22), which verifies (23). Solving
the equation 2N ≤ N 2uc(u)pridpatα/(2u!u!2R) yields (24)
while (25) and (26) are immediate consequences of (24), (9)
and Lemma 2. ��

Assume for the moment that the parameters k, R, εb, b0
are fixed. Since pridpat is a function of ε,w and u we
write pridpat(ε, w, u) for the moment. For window size,
w (9) and (24) imply that the array L contains constL ·
(1/pridpat(εb, w, u))2u/(2u−1) elements in average. Similarly,
(26) the expected number of NAF calculations is constN ·
(1/pridpat(εb, w, u))2u/(2u−1)2−w. It is natural to ask where
the limits of the enhanced plus attack are and whether it
is superior to the enhanced attack for each error rate εb
since more and more equations get lost in Step (1d) when
εb increases.

Due to (22) we may assume that the term
pridpat1/w(εb, w, u) converges rapidly to some limit ρ(εb, u)

as w increases (mainly driven by the second largest eigen-
value of P). Of course, if 2(2u−1)/2uρ(εb, u) < 1 increasing
the window size w increases the number of NAF calcula-
tions. This boundary value for εb constitutes an upper bound
for the limits of the enhanced plus method because the best
an attacker then can do is to select a small window size w.
Numerical experiments show that the critical values for εb
are ≈ 0.15 (for u = 2), 0.125 (for u = 3) and 0.105 (for
u = 4), respectively. It should be noted that the enhanced
plus attack requires more power traces than the enhanced
attack and, in particular, much more memory and sorting
operations are necessary. Table 3 shows that the enhanced
plus attack is usually superior to the enhanced attack while
(k, R, εb) = (1024, 32, 0.14) is an exception.

3.5 Attack efficiency (Step 1)

In this subsection, we compare Step 1 of the enhanced
attack with Step 1 of the enhanced plus attack. The Substeps
(1b), (1c) and in particular (1d) the enhanced plus attack
determine the non-experimental workload. Table 3 contains
figures for many parameter sets. The term |L| denotes the
number of elements of the array L . The storage size for L
depends on the type of the data sets, c.f. (10), (11), (12).
For Table 3 we applied (4), (5), (24), (25) and (26). As
in [8], we estimated μW ′ and σW ′ experimentally on basis
of numerical simulation experiments. We express the deci-
sion boundary in the form b0 = μW − c0σW . The expected
number of false positives (erroneously collected false lin-
ear equations) is ≈ Φ(−c0) · #{NAF operations}, while

123

J Cryptogr Eng (2017) 7:255–272 263

Table 3 Enhanced plus attack versus enhanced attack: figures for exemplary parameter sets

k R lεb Enhanced plus attack Enhanced attack

u w c0 log2(N) log2(|L|) log2(# NAF) u c0 log2(N) log2(# NAF)

1024 32 0.05 2 28 6.0 14.8 28.7 28.3 2 8.0 12.2 45.8

1024 32 0.05 4 28 6.5 8.4 29.0 29.1 4 7.5 6.3 40.4

1024 32 0.10 2 26 7.0 16.9 32.8 38.5 2 8.0 12.2 45.9

1024 32 0.10 2 30 7.0 17.3 33.6 34.2 2 8.0 12.2 45.9

1024 32 0.11 2 32 7.0 18.5 36.0 39.0 2 8.0 12.4 46.7

1024 32 0.12 2 24 7.5 17.7 34.4 43.8 2 8.0 12.9 48.6

1024 32 0.13 2 20 8.0 18.2 35.4 49.7 2 8.5 14.2 53.9

1024 32 0.14 2 20 9.5 21.7 43.5 62.0 2 9.0 16.2 61.8

1024 48 0.05 3 36 7.5 14.1 39.8 42.7 4 9.0 8.6 58.8

1024 48 0.07 3 36 8.0 15.2 43.0 49.0 3 9.5 11.4 62.2

1024 48 0.09 2 32 9.0 22.8 44.6 56.1 2 9.5 17.5 67.2

1024 48 0.10 2 32 9.0 23.4 45.8 58.6 2 9.5 17.7 68.0

1024 48 0.11 2 32 9.5 24.6 48.2 63.3 2 10.0 18.7 71.6

1024 48 0.12 2 32 9.5 26.1 51.2 69.4 2 10.0 19.9 76.6

1024 64 0.05 3 32 9.5 17.0 48.5 63.9 4 10.5 11.0 78.0

1024 64 0.06 3 32 9.5 17.5 49.9 66.8 3 10.5 14.4 80.4

1024 64 0.07 3 32 10.0 18.2 52.0 71.0 3 10.5 14.8 82.8

Usually, there is no window size w, which is simultaneously optimal with regard to the key performance indicators log2(N), log2(|L|) and
log2(# NAF); c.f. the parameter sets (k, R, εb, u, w, c0) = (1024, 32, 0.10, 2, 26, 7.0) and (k, R, εb, u, w, c0) = (1024, 32, 0.10, 2, 30, 7.0), for
instance

α = Φ((b0 − μW ′)/σW ′) quantifies the fraction of detected
correct equations. Since false positives need to be detected
and removed for attack step 2 [8, Sect. 3.3.3] for Table 3 we
selected factors c0 such that the expected number of false
positives is smaller than 1, for most of the parameter sets it
is even significantly below 1. For fixed (k, R, u) the sam-
ple size, the memory and the number of NAF computations
increase when the error rate εb increases. This is due to the
fact that the ratio α of detected linear equations decreases,
which limits the tolerable error rate. Hence, one may assume
that in Table 3 the results for large error rates are more sensi-
tive to statistical deviations of the estimates for μW ′ and σW ′
than for small εb.

Depending on (k, R, u), there exists a threshold eps such
that α ≈ 1 for all εb ≤ eps. Formulae (4) and (5) imply
that the workload of the enhanced attack is essentially the
same for all these εb and increases when εb exceeds eps. For
(k, R, u) = (1024, 32, 2) figures from Table 3 verify this
property experimentally.

In contrast, the enhanced plus attack is very sensitive
against changes of εb. As the error rate increases, the frac-
tion of linear equations decreases, which are detected in
Substep (1d). This phenomenon is quantified by the prob-
ability pridpat. The enhanced plus attack is superior to the
enhanced attack formost of the error rates εb butmay be infe-

rior for large εb. This is certainly the case for (k, R, εb) =
(1024, 32, 0.14). The choice of a suitable window size w is
a trade-off between the sample size, the memory size and the
computational workload.

An important question clearly is for which parameter sets
the enhanced attack and the enhanced plus attack are practi-
cal. In the very end thismeans that one has to decidewhether a
(powerful) attacker is able (ormaybemore precisely:whether
he iswilling) to spend sufficient resources to performapartic-
ular attack. It is hardly possible to define a clearcut boundary
between practicability and impracticability. In our opinion
by all necessary caution log2(|L|) ≤ 60 is a reasonable
threshold for the number of elements in the array L since this
requires ≈ 224 TB memory (for short data records) or even
≈ 227 TB memory (for full data records), which is gigantic.
For the average number of NAF Hamming weight computa-
tions, a threshold between 270 and 275 seems to be reasonable
due to the general uncertainties of a side-channel attack, here
especially due to the variance of the number of computations
and possible deviations from the estimated error probability
εb, which would also affect the number of NAF Hammning
weight computations.

In Sect. 5, we compare the efficiency of the enhanced
attack, the enhanced plus attack and the alternate attack,
which is analysed in Sect. 4.

123

264 J Cryptogr Eng (2017) 7:255–272

4 Alternate attack on RSA with CRT

In [8, Sect. 4.2], the so-called alternate attack onRSAwithout
CRT was introduced. In the first attack step, blinding factors
are guessed, and in the second step y = φ(n) is recovered
with the error detection and correction Algorithm 2 in [8],
which coincides with Step 3 of the enhanced attack. The first
attack step exploits the fact that the upper halve of the bits of
y = φ(n) ≈ n is known, which is not the case for RSA with
CRT.

In this section, we introduce an algorithm (continued frac-
tionmethod),which allows to recover themost significant 2R
bits of y = φ(p) for RSA with CRT. After this pre-step, the
above-mentioned alternate attack can be applied to RSAwith
CRT, too (although only the ≈ 2R most significant bits of y
are known here).

Section 4.1 explains the basic idea of the continued
fraction attack method, and Sect. 4.2 formulates the con-
tinued fraction algorithm. Justifications of this algorithm
and explanations, efficiency considerations and simulation
results follow in the subsequent subsections. Finally, Sect. 4.5
reconsiders the alternate attack from [8, Sect. 4.2], which
constitutes the second attack step in our case.

4.1 Basic idea

Recall that d and y are unknown.We consider the three equa-
tions

v1 = r1y + d, v2 = r2y + d, v3 = r3y + d . (27)

with 0 ≤ r1, r2, r3 < 2R and 2k−1 ≤ y < 2k . The attacker
only knows guesses ṽ1, ṽ2, ṽ3 of the blinded exponents
v1, v2, v3, If he knew the correct values v1, v2, v3 recovering
y would be rather simple since y|GCD(|v1 − v2|, |v1 − v3|).
For simplicity, we assume that GCD(|r1−r2|, |r1−r3|) = 1,
which implies

y = GCD(|v1 − v2|, |v1 − v3|) . (28)

(Remark 4 discusses the case ’>1’.) Then y can be com-
puted with the well-known Euclidean algorithm. Some basic
observations:

1. Usually, the first steps of the computation of GCD(|v1 −
v2|, |v1−v3|) should only depend on the most significant
bits of the values |v1 − v2| and |v1 − v3|.

2. The GCD-computation stops when the remainder 0
occurs. The extended Euclidean algorithm yields a rep-
resentation

λ1(v1 − v2) + λ2(v1 − v3) = 0

with λ1 = ±(r1 − r3) and λ2 = ±(r1 − r2) . (29)

3. Finally, y can be computed by

y =
∣

∣

∣

∣

v1 − v3

r1 − r3

∣

∣

∣

∣

=
∣

∣

∣

∣

v1 − v3

λ1

∣

∣

∣

∣

. (30)

4.2 Recovering the most significant bits of y

In this section, we formulate the main algorithm, which
applies continued fraction expansion. For the moment, we
fix the integers N , s and m0.

Algorithm 1 Continued fraction attack (aims at the most
significant bits of y = φ(p))

1. Set S = {}.
(a) Choose a new triple of three ordered indices 1 ≤

j1 < j2 < j3 ≤ N , which is different to the choices
before.

(b) Generate all triples (v∗
j1
, v∗

j2
, v∗

j3
), which differ in

each component in atmostm0 bits from (ṽ j1, ṽ j2 , ṽ j3)

within the most significant bits beginning with posi-
tion s.

(c) Compute the continued fraction expansion (
pμ

qμ
)μ of

the rational quotient

∣

∣

∣

∣

∣

v∗
j1

− v∗
j2

v∗
j1

− v∗
j3

∣

∣

∣

∣

∣

(31)

Take the best approximation μ0 = pμ0/qμ0 , i.e.
which minimizes the difference
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v∗
j1

− v∗
j2

v∗
j1

− v∗
j3

∣

∣

∣

∣

∣

− pμ

qμ

∣

∣

∣

∣

∣

(32)

subject to the conditions pμ ≤ 2R and qμ ≤ 2R .
(d) For this approximation, calculate

xq :=
⌊∣

∣

∣

∣

∣

v∗
j1

− v∗
j3

qμ0

∣

∣

∣

∣

∣

⌋

and xp :=
⌊∣

∣

∣

∣

∣

v∗
j1

− v∗
j2

pμ0

∣

∣

∣

∣

∣

⌋

.

(33)

If qμ0 ≥ pμ0 , set x := xq , else set x := xp. Set
S := S ∪ {x}, if 2k−1 < x < 2k .

2. Identify clusters within the set S. The most significant
bits of their elements are the candidates for the most sig-
nificant bits of y (c.f. Sect. 4.3 for details).

4.3 Justification and explanations

In this subsection, we motivate Algorithm 1 and illuminate
its background. For basic facts and properties of continued

123

J Cryptogr Eng (2017) 7:255–272 265

fractions, we refer the interested reader, e.g. to [4], Chapter
X.

Remark 2 [Memory and sorting operations]

(i) Since the numbers pμ and qμ increase during the con-
tinued fraction expansion Step 1(c) of Algorithm 1 can
be computed efficiently.

(ii) Algorithm 1 stores N ′ data sets of the form

j1|| j2|| j3||x (full data record)

storage space: ≥ (4 · 3 + �k/8�) bytes . (34)

The memory per data set is nearly the same as for
(10). In order to save memory, the component x might
be replaced by (e.g.) its 3R most significant bits (c.f.
Remark 6(ii)). In this case, the memory per data set
drops down to ≈ 4 · 3 + �3R/8� bytes.

(iii) In Step 2 of Algorithm 1 the set S contains N ′ ele-
ments (with N ′ = # of continued fraction expansions),
which have to be sorted with regard to their last com-
ponents. The situation is less comfortable than for the
enhanced plus attack since S must be totally sorted, and
it is not clear whether the elements of S are (at least
nearly) uniformly distributed on their range. Similarly
as in Sect. 3.3 one may try to reduce the number of sort-
ing operations below O(N ′ log(N ′)), which is needed
by the Quicksort algorithm (with some small constant
in the average case). On basis of the w′ most signifi-
cant bits of x one may assign a data set (j1, j2, j3, x)
directly to one of 2w′

subarrays. If these subarrays
are sorted with the Quicksort algorithm in the best
case O(N ′ log(N ′2−w′

)) operations are needed. If the
sizes of these 2w′

subarrays are very different the sort-
ing workload will be larger. (Our experiments did not
show indicators therefor.) Moreover, as in Sect. 3.3 one
might to try to put each tuple (j1, j2, j3, x) close to its
final position within the subarray. Altogether, the over-
all number of sorting operations should be somewhere
between O(N ′) and O(N ′ log(N ′)).

Algorithm 1 can only be successful if certain conditions
are met. In the following, we will discuss the situation. Let
ζ > 0 be a real number, A and B positive integers with
GCD(A, B) = 1. If the approximation A/B occurs within
the continued fraction expansion of ζ , i.e.

if
A

B
= pμ

qμ

for a suitable index μ then B|Bζ − A| ≤ 1

(35)

by [4], Theorem 163. On the other hand, in a certain sense
[4], Theorem 184, guarantees the converse:

If B|Bζ − A| ≤ 1

2
then

A

B
can be computed by the continued fraction expansion of ζ.

(36)

If the values v∗
1 , v

∗
2 and v∗

3 in Step 1 ofAlgorithm 1 are correct
at the bit positions k + R − 1, . . . , s (i.e. in the (k + R − s)
most significant bits) then

|v∗
j1 − v∗

j2 | = |r j1 − r j2 |y + δ1 and

|v∗
j1 − v∗

j3 | = |r j1 − r j3 |y + δ2 with |δ j | ≈ 2s . (37)

This gives

|v∗
j1

− v∗
j2
|

|r j1 − r j2 |
= y + δ1

|r j1 − r j2 |
and

|v∗
j1

− v∗
j3
|

|r j1 − r j3 |
= y + δ2

|r j1 − r j3 |
with

δ1

|r j1 − r j2 |
,

δ2

|r j1 − r j3 |
≈ 2s−R (38)

This observationmotivates Step 1(d) of Algorithm 1. In order
tominimize the deviation to y,we always decide for the larger
of the two values |r j1 − r j2 | and |r j1 − r j3 |. Multiplying the
equations in (37) by |r j1 −r j3 | and by |r j1 −r j2 |, respectively,
and subtracting the second from the first leads to

∣

∣

∣|r j1 − r j3 | · |v∗
j1 − v∗

j2 | − |r j1 − r j2 | · |v∗
j1 − v∗

j3 |
∣

∣

∣

= ∣

∣|r j1 − r j3 | · δ1 − |r j1 − r j2
∣

∣ · δ2| ≈ 2s+R (39)

If additionly GCD(|r j1 −r j2 |, |r j1 −r j3 |) = 1 wemay expect
that the set S contains a good approximation of y as long
as s ≤ k − R. In fact, as already deduced in (38) |(v∗

j1
−

v∗
j3
)/(r j1 − r j3) − y| = |δ2|/(r j1 − r j3) ≈ 2s−R . This is

roughly the bound of [4], Theorem 184. We set s = k − R in
the following. Due to (38), we may expect to learn the ≈ 2R
most significant bits of y from Algorithm 1.

We set

f :=
∣

∣

∣

∣

|r j1 − r j3 |δ1 − |r j1 − r j2 |δ2
y + δ2/|r j1 − r j3 |

∣

∣

∣

∣

(40)

We demand f ≤ 1/2. By (36) then (with ζ = |v∗
j1

−
v∗
j2
|/|v∗

j1
− v∗

j3
|, A = |r j1 − r j2 | and B = |r j1 − r j3 |) we

know that the correct values |r j1 − r j2 |, |r j1 − r j3 | will occur
within the continued fraction expansion of ζ provided that
GCD(|r j1 − r j2 |, |r j1 − r j3 |) = 1. However, it is not true
that this fraction is automatically the best approximation in
Step 1(c) of Algorithm 1.

Remark 3 By looking deeper into the computation of the
continued fraction expansion, we can illustrate this effect:

123

266 J Cryptogr Eng (2017) 7:255–272

During the computation, the approximations pμ/qμ are given
as a 2 × 2-matrix

(

pμ pμ−1

qμ qμ−1

)

(41)

A basic property of the continued fraction algorithm is that
the inverse of this matrix multiplied by the vector (|v∗

j1
−

v∗
j2
|, |v∗

j1
− v∗

j3
|)T just gives the intermediate values of the

GCD-computation. If the correct approximation is computed
in step μ, the corresponding matrix is

(|r j1 − r j2 | E1

|r j1 − r j3 | E2

)

where (E1, E2) is exactly one of the pairs of Bezout’s iden-
tity:

|r j1 − r j2 | · E2 − |r j1 − r j3 | · E1 = ±1

with 0 < E1 < |r j1 − r j2 | and 0 < E2 < |r j1 − r j3 |. The
intermediate values of the GCD-computation in step μ are
given by

(|r j1 − r j2 | E1

|r j1 − r j3 | E2

)−1
(

|v∗
j1

− v∗
j2
|

|v∗
j1

− v∗
j3
|

)

.

which gives the intermediate values

y ± (E2δ1 − E1δ2) and f · (y + δ2/|r j1 − r j3 |)

Therefore, the subsequent GCD-step is of the form

y ± (E2δ1 − E1δ2) = F · f · (y + δ2/|r j1 − r j3 |)
+ remainder

The left side of this equation is in the range of y, so that F
is in the range of 1/ f . The next approximation is given by

(|r j1 − r j2 | E1|r j1 − r j3 | E2
)(

F 1
1 0

)

=
(|r j1 − r j2 | · F + E1 |r j1 − r j2 ||r j1 − r j3 | · F + E2 |r j1 − r j3 |

)

If the entries of the left column of this matrix are both ≤ 2R

thenAlgorithm1will not output the correct values for r j1−r j2
and r j1 −r j3 . In fact, the candidate x as computed in Step (1d)
of Algorithm 1 will - very likely - not fulfil the condition
2k−1 < x < 2k . The probability of this event dependsmainly
on the size of F and |r j1 − r j2 |, |r j1 − r j3 |. In particular, if
|r j1 − r j2 | or |r j1 − r j3 | are near to 2R or f is small, the
success rate of Algorithm 1 is very good.

With the same arguments as above we derive an approx-
imation of y in the GCD-computation in the form of y ±

(E2δ1 − E1δ2). Note that this approximation is in general
much worse than computing the quotient

∣

∣

∣

∣

∣

v∗
j1

− v∗
j3

qμ0

∣

∣

∣

∣

∣

(42)

in Step 1(d) of Algorithm 1.We know that y±(E2δ1−E1δ2)

lies in the range of y. But we can quantify this approximation
further in dependence of f : Note that

E2δ1 − E1δ2 = det

(

δ1 E1

δ2 E2

)

The absolute value of the determinant of a 2 × 2-matrix is
the area of the parallelogram spanned by the columns of the
matrix. Therefore, we have

| det(v w)| = ‖v‖ · ‖w‖ · | sin(αv,w)|

where αv,w is the angle between the 2-dimensional vectors
v and w. Using the elementary inequality | sin(α + β)| ≤
| sin(α)| + | sin(β)|, we can easily derive the upper bound

|E2δ1 − E1δ2| ≤ f · (y + δ2/|r j1 − r j3 |)

+
√

δ21 + δ22

(r j1 − r j2)
2 + (r j1 − r j3)

2

The last formula suggests that the relative difference of y ±
(E2δ1 − E1δ2) to y mainly depends on f .

Remark 4 [GCD > 1] Algorithm 1 may be adjusted that it
also covers the case GCD(|r j1 − r j2 |, |r j1 − r j3 |) = λ >

1. As long as λpμ0 ≤ 2R and λqμ0 ≤ 2R in Step 1(d) of
Algorithm 1 we compute the value (if qμ0 ≥ pμ0)

xq =
⌊∣

∣

∣

∣

∣

v∗
j1

− v∗
j3

λqμ0

∣

∣

∣

∣

∣

⌋

. (43)

If 2k−1 < xq < 2k then S := S∪{xq}. To prevent that the set
S becomes too large we restrict ourselves to small factors,
e.g. λ ≤ 5.

Remark 5 [Valuation of clusters] We need a suitable valua-
tion method to detect and evaluate clusters in S (Step 2 of
Algorithm 1). As an ad hoc approach we could simply count
multiple occurrences of the roughly 2R most significant bits
of our candidates x in S. In our experiments, we actually
used another valuation function for the following reason:
Let R1, R2, R3,Δ1,Δ2,Δ3 denote three independent ran-
dom variables that are uniformly distributed on the interval

123

J Cryptogr Eng (2017) 7:255–272 267

[0, 1]. We define the random variable Z by

Z =
⎧

⎨

⎩

|Δ3−Δ1||R3−R1| if |R3 − R1| > |R2 − R1|
|Δ2−Δ1||R2−R1| else.

(44)

We computed the probability density function fZ (τ) of Z as

fZ (τ) =
⎧

⎨

⎩

11
12 − 31τ

60 if τ < 1
− 1

12 + τ
60 + 2

3τ 2
− 1

5τ 4
if 1 ≤ τ < 2

4
3τ 3

− 1
τ 4

if 2 ≤ τ .

(45)

This formula requires elementary but long and careful cal-
culations. To save space we omit the details. We assume that
the elements of S are sorted in increasing order. For each xi
in S, we compute its valuation

Val(xi) =
∑

j �=i,|i− j |≤k0

fZ

(∣

∣

∣

∣

xi − x j
2k−2R

∣

∣

∣

∣

)

, (46)

and we select that xi as a candidate for y with the largest
Val(xi). In the sum, we restrict ourselves to the k0 nearest
neighbours of xi from below and the k0 nearest neightbours
from above within the ordered set S. The threshold k0 should
be selected with regard to the number of expected good
approximations of y. We mention that the maximum val-
uation can be computed efficiently by defining a suitable
threshold value and applying an ‘early abort’ strategy.

Note: If we consider differences of neighboured candi-
dates xi+1 − xi as independent random variables, one is
let to replace the sum in Val(xi) by a product, e.g. by
∏

j,i+1≤ j≤i+k0 fZ (| x j−x j−1

2k−2R |) for all i and all small k0. Since
this product is very sensitive to the choice of the parameter
k0 we decided for the more robust valuation function (46).

4.4 Choice of the parameters, workload and simulation
results

In this subsection, we discuss the choice of m0 and N for
Algorithm 1, its workload and success rates. We provide fig-
ures for many parameter sets and give simulation results.

The term

pm0 :=
∑

m≤m0

(

2R

m

)

εmb (1 − εb)
2R−m (47)

quantifies the probability that at most m0 guessing errors
occur in the 2R most significant bits of a ṽ j . Moreover, we
set

M0 :=
∑

m≤m0

(

2R

m

)

, (48)

and the number of iterations of Algorithm 1 is M3
0

(N
3

)

where
N again stands for the number of randomized exponents.
Apart from the sorting operations mentioned in Remark 2(ii)
Algorithm 1 computes M3

0

(N
3

)

continued fraction expan-
sions. The expected number of ṽ j , which can be corrected in
the most significant 2R bits by flipping at most m0 errors is

Npm0 ≈ t1 (49)

Since Algorithm 1 considers triples (v∗
j1
, v∗

j2
, v∗

j3
), we can

expect to obtain

1

2

(

t1
3

)

≈ t2 (50)

good approximations for y. On the left-hand side of (50), we
introduced the factor 1/2 to take the condition GCD(|r j1 −
r j2 |, |r j1 − r j3 |) = 1 into account. Note that for large R
the term 6/π2 ≈ 0.6 provides a very good approximation
for the probability that two randomly selected integers in
{0, . . . , 2R − 1} are coprime [4, Theorem 332]. Since the
size of R does not affect this approximation we used the
reduction factor 1/2 for a coarse estimate for the probability
of the above-mentioned GCD condition (which motivates
the correction factor 1/2) although the terms |r j1 − r j2 | and
|r j1 − r j3 | are neither uniformly distributed nor independent.
For small R, the factor might be computed exactly. As in [8,
Sect. 4], we pose the second condition

M3
0

(

N

3

)

≤ (t2!)1/t2 · 2(t2−1)2R/t2 , (51)

which shall limit the expected number of t2-birthdays of false
candidates (here: nearly neighboured wrong candidates for
y) to a value ≤ 1. We note that if m0 < εb2R then roughly

pm0 ≈
(

2R

m0

)

ε
m0
b (1 − εb)

2R−m0 and M0 ≈
(

2R

m0

)

, (52)

which provides a coarse but simple lower bound for the exe-
cution time of Algorithm 1 in terms of continued fraction
expansions.

M3
0

(

N

3

)

≈ M3
0N

3/6 ≥ t31M
3
0

6p3m0

≈ t31
6

ε
−3m0
b (1 − εb)

−6R+3m0

≥ t31
6

(1 − εb)
−6R . (53)

If condition (51) is fulfiled we may reach the lower bound if
we can choose m0 = 0.

Remark 6 [Success probability of Algorithm 1]

(i) The workload of Algorithm 1 depends on (R, ε) and on
the choice of m0 but not on the prime length k.

123

268 J Cryptogr Eng (2017) 7:255–272

Table 4 Continued fraction attack: in particular, M0 = 1, q(2) = 4, and q(3) = q(4) = 5

R εb m0 t2 log2(N) log2
(

(M0N)3

6

)

Prob(X ≥ q(t2)) t2 log2(N) log2
(

(M0N)3

6

)

Prob(X ≥ q(t2))

32 0.05 0 2 6.7 17.5 0.55 2 7.5 19.9 0.91

32 0.10 0 2 11.6 32.2 0.50 3 12.7 35.5 0.89

32 0.12 0 3 13.7 38.5 0.51 3 14.6 41.2 0.92

32 0.13 0 4 15.1 42.7 0.51 4 15.9 45.1 0.91

32 0.14 0 4 16.2 46.0 0.53 4 16.9 48.1 0.89

48 0.05 0 2 9.0 24.4 0.51 2 9.9 27.1 0.92

48 0.07 0 2 12.0 33.4 0.54 2 13.1 36.7 0.92

48 0.10 0 2 16.6 47.2 0.57 2 17.0 48.4 0.86

48 0.12 0 3 19.6 56.2 0.51 3 20.5 58.9 0.92

64 0.05 0 2 11.4 31.6 0.53 2 12.2 34.0 0.90

64 0.07 0 2 15.4 43.6 0.57 2 16.2 46.0 0.92

64 0.09 0 2 19.3 55.3 0.50 2 20.2 58.0 0.91

96 0.05 0 2 16.1 45.7 0.51 2 17.0 48.4 0.91

96 0.06 0 2 19.1 54.7 0.55 2 19.9 57.1 0.91

96 0.07 0 2 22.0 63.4 0.51 2 22.9 66.1 0.92

96 0.10 0 2 31.1 90.7 0.52 2 32.0 93.4 0.92

128 0.05 0 2 20.9 60.1 0.54 2 21.7 62.5 0.90

For m0 = 0 the term (M0N)3/6 simplifies N 3/6. This equals the number of continued fraction expansions

(ii) As derived in the previous subsection (c.f. (38) and the
following explanations)wemayexpect thatAlgorithm1
outputs a candidate x0 for y, which coincides with y in
its ≈ 2R most significant bits. In the following, we
view the continued fraction attack step as successful if
x0 and y coincide in their 2R most significant bits. This
information is used in the second attack step, which
shall recover the blinding factors (Sect. 4.5, c.f. also
Remark 7(i)).

(iii) The Equation (49) defines and (50), (51), (53) work
with the average number t1 of correctable guessed
exponents. Since Algorithm 1 needs some correctable
exponents and since the factual number of correctable
exponents varies around its mean value t1 a closer
look is necessary. Since t1 � N the number of cor-
rectable guessed exponents ṽ j may be viewed as a
realization of a Poisson distributed random variable X
with parameter t1 = Npm0 . Hence Prob(X ≥ q) =
1 − e−t1

(

1 + t1 + t21 /2 + · · · + tq−1
1 /(q − 1)!

)

, and

this probability increases as the sample size N increases.
Taking the ‘security factor’ 0.5 from (50) into account,
we should have q(2) ≥ 4 correctable exponents if we
aim at t2 = 2-birthdays, and q(t2) ≥ 5 if we aim at
t2 = 3 or t2 = 4-birthdays.

(iv) A precise analysis of the success probability of Algo-
rithm 1 is much more complicated than for the basic
attack and for enhanced (plus) attack. Based on the
argumentation from (iii) we use Prob(X ≥ q(t2)) as a
coarse but simple estimate for the success probability of

Algorithm 1. The simulation results in Table 5 support
this assumption. We point out that doubling the sam-
ple size N (if necessary) doubles the Poisson parameter
t1, which in turn promises more (hopefully then suffi-
ciently many) correctable guessed exponents ṽ ji . The
workload then increases by factor 23 but stays in the
same order of magnitude.

Table 4 provides figures for several parameter sets. The
term (M0N)3/6 ≈ M3

0

(N
3

)

quantifies the number of contin-
ued fraction expansions within Algorithm 1. Because of the
factor M3

0 we choose the value m0 as small as possible. For
this reason, in Table 4 and Table 5 we concentrated on the
parameterm0 = 0 so thatM0 = 1.Anumerical examplemay
illustrate this effect: For (R, εb,m0, t2) = (32, 0.05, 0, 2),
for example, one needs about 27.4 power traces and 219.9

continued fraction expansions to ensure a success rate of ≈
90% (see Table 4). In contrast, the choice m0 = 1 (thus
M0 = 2R + 1) saves power traces but requires much more
continued fraction expansions for similar success rates. For
t2 = 4 we have N ≈ 25.8 but one needs ≈ 232.5 continued
fraction expansions.

We point out that figures in Table 4 do not depend on
the parameter k (typically k = 1024 in real-life scenarios).
Algorithm 1 requires an array with (M0N)3/6 entries and
between O(N ′) and O(N ′ log(N ′)) sorting operations (with
N ′ = (M0N)3/6, c.f. Remark 2(iii)). The term Prob(X ≥
q(t2)) quantifies the probability that at least q(t2) guessed
exponents ṽ ji are correctable in the most significant 2R bits

123

J Cryptogr Eng (2017) 7:255–272 269

Table 5 Continued fraction attack: simulation results for the parameter set (k, R, εb,m0) = (1024, 32, 0.05, 0)

k R εb t2 m0 N log2
(

N3

6

)

Prob(X ≥ 4) 32 -bit coincidence 64 -bit coincidence

Success rate Average # of msb’s Minimum # of msb’s Success rate

1024 32 0.05 2 0 50 14.2 0.12 7/100 66 58 3/100

1024 32 0.05 2 0 80 16.3 0.35 39/100 73 61 34/100

1024 32 0.05 2 0 100 17.3 0.51 43/100 75 59 38/100

1024 32 0.05 2 0 120 18.1 0.65 73/100 77 54 65/100

1024 32 0.05 2 0 170 19.6 0.88 90/100 76 57 79/100

For the valuation function Val(·) we used k0 = 4. In the columns under ‘32-bit coincidence’ we counted an attack successful if at least the most
significant 32 bits of y and x0 coincides. The last column provides the success rate if a successful attack requires that at least the 64 most significant
bits of y and x0 coincide

by flipping at most m0 bits. For m0 = 0 this means that
the most significant 2R bits are correct. The values q(t2) are
defined as in Remark 6(iii).

A fair comparisonbetween the efficiencies of the enhanced
attack, the enhanced plus attack and of the continued frac-
tion attack in terms of operations is not easy since Table 3
counts the number ofNAFcomputationswhileTable 4 counts
the number of continued fraction expansions. Of course, a
continued fraction expansion is much more costly than a
NAF computation. We come back to this issue in Sect. 5.
We already mentioned in Sect. 3.5 that it is very difficult to
define a sharp threshold that separates practical attacks from
impractical attacks. For the continued fraction method, we
selected the threshold of 260 continued fraction expansions.
By Remark 2(ii) this costs at least 265 bytes of memory and
by Remark 2(iii) about 266 sorting operations (for w′ = 10
and the small constant 2 in O(N ′(log(N ′2−w′

))).
As a proof of concept, we simulated this attack 100 times

for the parameter set (k = 1024, R = 32, εb = 0.05,m0 =
0, t2 = 2) and for different sample sizes N . For this param-
eter set Table 4 considers the sample sizes N = 26.7 = 104
and N = 27.4 = 169. To quantify the size of clusters in the
ordered set S, we applied the valuation function Val(·) (46)
with k0 = 4. As stated in Remark 6(ii) we count a simulation
experiment successful if the candidate y0 from Algorithm 1
coincide with y in its ≈ 2R most significant bits.

Table 5 contains simulation results for different sam-
ple sizes. The success rate fits pretty well to Prob(X ≥
4), our coarse estimate for the success probability from
Remark 6(iv).

We point out that in average (but only in average) suc-
cessful attacks may determine more than the 2R = 64 most
significant bits of y. The last column in Table 5 considers
the definition of success from Remark 6(ii). Apart from that
Table 5 also considers aweaker success criterionwhereAlgo-
rithm 1 outputs a candidate x0, which coincides in its 32 msb
(in place of ≥ 64 msb) with the correct value y = φ(p).
Table 5 provides the average number and the minimum num-

ber of most significant bits for which the candidate x0 and
y coincide among the successful trials (in this sense). Inter-
estingly, 32 correct bits usually imply that in fact ≈ 60 msb
of x0 are correct. We point out that in average (but only in
average!) successful attacks may determine more than the
2R = 64 most significant bits of y.

4.5 Recovering the blinding factors

In the following, we assume that Algorithm 1was successful,
which means that it has output a good approximation x0 of
y = φ(p). We set y0 = x0. We then have t triples (j1, j2, j3)
forwhich the≈ 2Rmost significant bits of v∗

j1
, v∗

j2
and v∗

j3
are

correct. (Form0 = 0 clearly v∗
ji

= ṽ ji .) Then v∗
j1

= v j1 +δ j1

and y0 = y + δ′
j1
with |δ j1 | ≈ 2k−R and |δ′

j1
| ≈ 2k−2R .

Consequently,

⌊

v∗
j1

y0

⌋

=
⌊

v j1 + δ j1

y
· 1

1 + δ′′
j1

⌋

≈
⌊

r j1 y + d + δ j1

y

(

1 − δ′′
j1

)

⌋

=
⌊

r j + d + δ j1

y

(

1 − δ′′
j1

)

− r j1δ
′′
j1

⌋

with
∣

∣

∣δ
′′
j1

∣

∣

∣ ≈ 2−2R . (54)

Since |δ j1/y|, |r jδ′′
j1
| ≈ 2−R (54) equals r j with overwhelm-

ing probability, and consequently

d0 := v∗
j1 −r j1 y0 = d +r j1(y− y0)+ δ j1 = d −r j1δ

′
j1 + δ j1

(55)

is a good approximator of d. Due to the preceding, we may
expect that d and d0 coincide in the≈ R−1 most significant
bits.

We apply Algorithm 4 from [8, Sect. 4.2], with s = k −
R + 2. This value is a little bit smaller than the boundary

123

270 J Cryptogr Eng (2017) 7:255–272

position k − R in order to nullify or at least reduce the effect
of possible carries in (55). In this second attack step, we
again consider all N guessed exponents from the beginning.
For ease of reading, we list this algorithm (Algorithm 2). The
choice of the integer-valued threshold t0 will be motivated
below.

Algorithm 2 Algorithm 4 from [8] (aims at blinding factors
r j) For j = 1 to N do

1. The guess ṽ j = α′
j2

k−1 + β ′
j defines the pair (α′

j , β
′
j).

Generate all values α∗
j that differ in at most n0 bits from

α′
j .

2. For each α∗
j and each w ∈ {0, 1} set

r∗
w, j := α∗

j 2
k−1/y0� + w and calculate (56)

e∗
w, j := (r∗

w, j y0 + d0) ⊕ (α∗
j 2

k−1 + β ′
j) (57)

Set s := k − R + 2. If ham(e∗
w, j/2

s�) ≤ t0 then output
r∗
w, j as a candidate for r j .

Rationale Step 1 and Step 2 of Algorithm 2 are executed

N
n0
∑

j=0

(

R + 1

j

)

or 2N
n0
∑

j=0

(

R + 1

j

)

times, respectively.

(58)

If α∗
j is correct then rw, j = r j for w = 0 or w = 1, and

we may expect that (r∗
w, j y0 + d0) coincides with the blinded

exponent v j in the bits k−2, . . . , s = k−R+2. In particular,
ham(e∗

w, j/2
s�) should count the guessing errors in β ′

j/2
s�.

We do not expect nonzero bits in the binary representation of
ew, j at the positions k+R−1, . . . , k−1 since rw, j is derived
from α∗. Consequently, we essentially have to distinguish
between the binomial distributions B(R − 3, εb) (if rw, j =
r j) and B(R−3, 0.5) (if rw, j �= r j). The threshold t0 should
be selected such that essentially no false candidates for r j are
output. Of course, for sample size N we expect ≈ Np′

n0,t0
candidates where

p′
n0,t0 =

(

∑

m≤n0

(

R + 1

m

)

εmb (1 − εb)
R−m

)

·
(

∑

m≤t0

(

R − 3

m

)

εmb (1 − εb)
R−m−2

)

. (59)

The two brackets quantify the probabilities that (under the
above assumptions) α′

j and the relevant bits of β ′
j contain at

most n0 or t0 guessing errors, respectively.

Remark 7 (i) In Remark 6(ii) we counted an attack as suc-
cessful if y = φ(p) and the output of Algorithm 1, x0,

coincide at least in their 2R most significant bits. Alter-
natively, in place of 2R a smaller threshold 2R − m
might be selected. This would increase the success rate
of Algorithm 1 but at the same time reduce the number
of bits in Algorithm 2, which can be used to distinguish
between the two cases rw, j = r j and rw, j �= r j from
R−3 to R−3−m. For large R and small εb, this may
be an option to increase the success probability of the
overall attack.

(ii) By Remark 6 Algorithm 1 shall be applied with param-
eters (N ,m0) such that 4 or 5 correctable traces occur
with high probability. For Algorithm 2 parameters
(n0, t0) shall be used for which p′

n0,t0/pm0 exceeds
some threshold between 10 and 40 (depends on the
error rate εb, c.f. [8, Table 11]). Usually n0 = m0 + 2
or n0 = m0 + 3 fulfil this condition. Altogether, the
workload of Algorithm 1 dominates the workload of
the overall attack.

(iii) Step 2 of Algorithm 2 has to carried out 2N
(R
n0

)

times.

Again, as a proof of concept for the second attack step,
we simulated this attack step for the parameter set

k = 1024, R = 32, εb = 0.1, n0 = 2, t0 = 2,

s = k − R + 2 = 994 . (60)

By (59) one may expect ≈ 0.15N candidates for unknown
blinding factors fromAlgorithm2. If rw, j �= r j we expect the
Hamming weight 15 with standard deviation ≈ 2.7, which
makes the acception of a false candidate rw, j extremely
unlikely. A simulation experiment confirmed these consid-
erations. For sample size N = 1000 Algorithm 2 output
candidates for 137 blinding factors, and all these guesses
were correct. Due to Table 11 in [8] even half of this number
are enough to recover y = φ(p)with Algorithm 2 in [8] with
high probability.

5 A brief comparison: enhanced attack versus
enhanced plus attack versus alternate attack

The enhanced attack needs only negligible memory to store
the guessed exponents ṽ1, . . . , ṽN and no sorting operations.
The enhanced plus attack and the continued fraction method
(Algorithm 1) need much more memory. The enhanced plus
attack needs to store Nu/u! data sets and the continued frac-
tionmethod (NM0)

3/6 data setswhere N denotes the sample
size for the respective attack variant. For the enhanced plus
attack, each data set requires between 4u bytes (ultra short
data record) and ≈ (4u + �(k + R + �log2(u)�)/8�) bytes
(full data record)(c.f. Sect. 3.3 for details). For the exem-
plary parameter set (k, R, u) = (1024, 32, 2), these are
8 bytes and ≈ 133 bytes, respectively. The data sets for

123

J Cryptogr Eng (2017) 7:255–272 271

Algorithm 1 comprise between 4 · 3 + �3R/8� bytes and
4 · 3 + �k/8� bytes, i.e. between 24 and 140 bytes for the
exemplary parameter set (k, R, u) = (1024, 32, 2). For large
parameters (R, εb), the required memory may be a limiting
factor for both the enhanced plus attack and the continued
fraction method. Additionally, in the best case, the con-
tinued fraction method requires between O((M0N)3) and
O((M0N)3 log((M0N)32−w)) sorting operations.

As already worked out in Sect. 3.5 for nearly all error
rates εb the enhanced plus attack is superior to the enhanced
attack, and this allows to attack larger blinding lengths R. The
increased number of power traces and the required memory
should be of subordinate meaning in many scenarios. For
large εb, however, the enhanced attack might be superior to
the enhanced plus attack.

A simple comparison between the pure number of oper-
ations (NAF Hamming weight computations vs. continued
fraction expansions) would indicate that the continued frac-
tion method is superior to the enhanced (plus) attack for
nearly all parameter sets. However, the problem is much
more difficult. We point out that a NAF representation can be
computed very fast. By [10], Theorem 10.24 (with r = 2),
NAF(x) = ∑

j≥0(α j+1 − β j+1)2 j where (α j) j≥0 and
(β j) j≥0 denote the binary representation of the integers 3x
and x , respectively. Since we are not interested in the NAF
representation itself but only in its Hamming weight we may
exploit the obvious equality ham(NAF(x)) = ham(3x ⊕ x),
which speeds up the computation even further.

Simulation experiments indicate that a continued fraction
expansion,which shall determine themost significant 2R bits
of y, costs roughly 0.6R steps, each comprising an integer
division with remainder. We mention that the estimate 0.6R
fitswell to the expected number of divisionswhen computing
the GCD of two R-bit numbers with the Euclidean algo-
rithm, namely ≈ 0.58R; c.f. the asymptotic formula [11],
p. 52. Recall that in the end we are only interested in the
most significant 2R bits of y = φ(p) (c.f. Remark 6(ii) and
Remark 7(i)). Instead of calculating the continued fraction
expansion for |v∗

1 − v∗
2 | and |v∗

1 − v∗
3 | one might consider

the continued fraction expansion of the two integers, which
are given by their most significant 3R bits (leading zeroes
included). This should speed up the computations in Algo-
rithm 1.

These considerations underline that a fair comparison
between the different attack variants is a difficult task. As
pointed out in Remark 2 for identical array size the contin-
ued fraction method costs more sorting operations than the
enhanced plus attack. The enhanced attack only needs neg-
ligible memory.

For the parameters (k, R) = (1024, 32), the situa-
tion is inhomogeneous. Tables 3 and 4 (applying the fig-
ures from the right-hand side) suggest that for (R, εb) ∈
{(32, 0.05), (32, 0.14)} the continued fraction method is

most efficientwhile for (R, εb) ∈ {(32, 0.10), (32, 0.12)} the
enhanced plus attack is superior. For (R, εb) = (32, 0.13) the
enhanced plus attackmay bemore efficient, too. For R ≥ 48,
the continued fraction method seems to be superior for all
parameter sets, which are considered in both tables.

In Sects. 3.5 and 4.4 with all due caution we have already
defined and justified thresholds for the enhanced plus attack
and the continued fraction method, which shall mark the
boundary between practicability and impracticability. We
decided for 260 table entries in both cases, which corresponds
to the number of data sets or the number of continued fraction
expansions, respectively.

Keeping the other parameters fixed by (5) and (26) for
both the enhanced attack and for the enhanced plus attack
the limiting factor, namely the number of NAF calculations
increases exponentially in the blinding length R. The num-
ber of continued fraction expansions grows exponentially in
R, too. (Let R′ = cR ≥ R and assume m0 = 0 for simplic-
ity. To maintain the expected number of guessed exponents
t1, which are correct in the most significant 2R′ bits, the
number of power traces N (needed for parameter R) has to
be increased by factor (1 − εb)

−2R(c−1) and the number of
continued fraction expansions by factor (1− εb)

−6R(c−1). If
the condition (51) should not be fulfiled this costs additional
power traces.) However, figures from Table 3 and Table 4
indicate that at least in the range of parameters with practi-
cal relevance the continued fraction method scales better for
increasing R than the enhanced attack and the enhanced plus
attack.

6 Conclusion

We have introduced and analysed thoroughly two new attack
variants onRSAwithCRT, ormore precisely, twopre-steps to
known attacks [8]. These pre-steps allow new attacks, which
are often significantly more efficient than the attacks in [7,8].
In particular, for moderate error rates attacks on blinding
factors of length R = 64 are practical, and for small error
rates εb even R = 96 may be overcome.

References

1. Atallah, M. (ed.): Algorithms and Theory of Computation Hand-
book. CRC Press, Boca Raton (1998)

2. Bauer, S.: Attacking exponent blinding in RSA without CRT. In:
Schindler, W., Huss, S. (eds.) Constructive Side-Channel Analysis
and Secure Design—COSADE 2012. Lecture Notes in Computer
Science 7275, pp. 82–88. Springer, Berlin (2012)

3. Fouque, P., Kunz-Jacques, S., Martinet, G., Muller, F., Valette,
F.: Power attack on small RSA public exponent. In: Goubin,
L., Matsui, M. (eds.) Cryptographic Hardware and Embedded
Systems—CHES 2006. Lecture Notes in Computer Science 4249,
pp. 339–353. Springer, Berlin (2006)

123

272 J Cryptogr Eng (2017) 7:255–272

4. Hardy, G.H.,Wright, E.M.: An Introduction to the Theory of Num-
bers, 5th edn. Clarendon Press, Oxford (1994)

5. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Berlin
(1976)

6. Kocher, P.: Timing attacks on implementations of Diffie–Hellman,
RSA, DSS and other systems. In: Koblitz, N. (ed.) Advances in
Cryptology—CRYPTO ‘96. Lecture Notes in Computer Science
1109, pp. 104–113, Springer, Berlin (1996)

7. Schindler,W., Itoh, K.: Exponent blinding does not always lift (par-
tial) SPA resistance to higher-level security. In: Lopez, J., Tsudik,
G. (eds.) Applied Cryptography and Network Security—ACNS
2011. Lecture Notes in Computer Science, vol 6715, pp. 73–90.
Springer, Berlin (2011)

8. Schindler, W.,Wiemers, A.: Power attacks in the presence of expo-
nent blinding. J. Cryptogr. Eng. 4, 213–236 (2014). doi:10.1007/
s13389-014-0081-y

9. Schindler,W.,Wiemers,A.: Efficient side-channel attacks on scalar
blinding on elliptic curves with special structure. In: Workshop
on Elliptic Curve Cryptography Standards, June, Gaithersburg,
USA. http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/
session6-schindler-werner (2015)

10. van Lint, J.H.: Introduction to Coding Theory, 2nd edn. Springer,
Berlin (1991)

11. von zurGathen, J., Gerhard, J.:ModernComputerAlgebra, Second
edn. Cambridge University Press, Cambridge (2003)

123

http://dx.doi.org/10.1007/s13389-014-0081-y
http://dx.doi.org/10.1007/s13389-014-0081-y
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session6-schindler-werner
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session6-schindler-werner

	Generic power attacks on RSA with CRT and exponent blinding: new results
	Abstract
	1 Introduction
	2 The enhanced attack: central facts
	2.1 Notation and basic assumptions
	2.2 The enhanced attack in a nutshell

	3 The enhanced plus attack
	3.1 Basic idea
	3.2 Pre-correction of guessing errors
	3.3 The array L: sorting operations and size
	3.4 Sample size N and number of NAF calculations
	3.5 Attack efficiency (Step 1)

	4 Alternate attack on RSA with CRT
	4.1 Basic idea
	4.2 Recovering the most significant bits of y
	4.3 Justification and explanations
	4.4 Choice of the parameters, workload and simulation results
	4.5 Recovering the blinding factors

	5 A brief comparison: enhanced attack versus enhanced plus attack versus alternate attack
	6 Conclusion
	References

