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Abstract Microarchitectural timing channels expose hid-
den hardware states though timing. We survey recent attacks
that exploit microarchitectural features in shared hardware,
especially as they are relevant for cloud computing. We clas-
sify types of attacks according to a taxonomy of the shared
resources leveraged for such attacks. Moreover, we take a
detailed look at attacks used against shared caches. We sur-
vey existing countermeasures. We finally discuss trends in
attacks, challenges to combating them, and future directions,
especially with respect to hardware support.

Keywords Microarchitectural timing attacks · Cache-based
timing attacks · Countermeasures · Trend in the attacks

1 Introduction

Computers are increasingly handling sensitive data (banking,
voting), while at the same time we consolidate more services,
sensitive or not, on a single hardware platform. This trend
is driven by both cost savings and convenience. The most
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visible example is the cloud computing—infrastructure-as-
a-service (IaaS) cloud computing supports multiple virtual
machines (VMs) on a hardware platform managed by a
virtual machine monitor (VMM) or hypervisor. These co-
resident VMs are mutually distrusting: high-performance
computing software may run alongside a data centre for
financial markets, requiring the platform to ensure con-
fidentiality and integrity of VMs. The cloud computing
platform also has availability requirements: service providers
have service-level agreements (SLAs) which specify avail-
ability targets, and malicious VMs being able to deny
service to a co-resident VM could be costly to the service
provider.

The last decade has seen significant progress in achieving
such isolation. Specifically, the seL4 microkernel [93] has a
proof of binary-level functional correctness, as well as proofs
of (spatial) confidentiality, availability and integrity enforce-
ment [94]. Thus, it seems that the goals of strong isolation
are now achievable, although this has not yet made its way
into mainstream hypervisors.

However, even the strong assurance provided by the for-
mal proofs about information flow in seL4 remain restricted
to spatial isolation and limited forms of temporal isolation
via coarse-grained deterministic scheduling. While they, in
principle, include covert storage channels [118], there exist
other kinds of channels that they do not cover that must be
addressed informally.

Stealing secrets solely through hardware means (for exam-
ple, through differential power analysis [95,135]) has an
extensive treatment in the literature [15,96]. While some
systems, such as smartcard processors, are extensively hard-
ened against physical attacks, some degree of trust in the
physical environment will probably always be required
[109,114].
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One area that has, until recently, received comparatively
little attention is leakage at the interface between software
and hardware. While hardware manufacturers have gen-
erally succeeded in hiding the internal CPU architecture
from programmers, at least for functional behaviour, its
timing behaviour is highly visible. Over the past decade,
such microarchitectural timing channels have received more
and more attention, from the recognition that they can
be used to attack cryptographic algorithms [25,124,129],
to demonstrated attacks between virtual machines [107,
133,169,180,181]. Some recommendations from the liter-
ature have already been applied by cloud providers, e.g.
Microsoft’s Azure disables Hyperthreading in their cloud
offerings due to the threat of introducing unpredictability
and side-channel attacks [110].

We argue that microarchitectural timing channels are a
sufficiently distinct, and important, phenomenon to warrant
investigation in their own right. We therefore summarise all
microarchitectural attacks known to date, alongside existing
mitigation strategies, and develop a taxonomy based on both
the degree of hardware sharing and concurrency involved.
From this, we draw insights regarding our current state of
knowledge, predict likely future avenues of attack and sug-
gest fruitful directions for mitigation development.

Acıiçmez and Koç [3] summarised the microarchitec-
tural attacks between threads on a single core known at the
time. This field is moving quickly, and many more attacks
have since been published, also exploiting resources shared
between cores and across packages. Given the prevalence of
cloud computing, and the more recently demonstrated cross-
VM attacks [83,107,169], we include in the scope of this
survey all levels of the system sharing hierarchy, including
the system interconnect, and other resources shared between
cores (and even packages).

We also include denial-of-service (DoS) attacks, as this is
an active concern in co-tenanted systems, and mechanisms
introduced to ensure quality of service (QoS) for clients by
partitioning hardware between VMs will likely also be useful
in eliminating side and covert channels due to sharing. While
we include some theoretical work of obvious applicability,
we focus principally on practical and above all demonstrated
attacks and countermeasures.

1.1 Structure of this paper

Section 2 presents a brief introduction to timing channels, and
the architectural features that lead to information leakage.
Section 3 presents the criteria we use to arrange the attacks
and countermeasures discussed in the remainder of the paper.
Section 4 covers all attacks published to date, while Sect. 5
does the same for countermeasures. In Sect. 6, we apply our
taxonomy to summarise progress to date in the field and to
suggest likely new avenues for both attack and defence.

2 Background

2.1 Types of channels

Interest in information leakage and secure data processing
was historically centred on sensitive, and particularly cryp-
tographic, military and government systems [44], although
many, including Lampson [100], recognised the problems
faced by the tenant of an untrusted commercial comput-
ing platform, of the sort that is now commonplace. The US
government’s “Orange Book” standard [45], for example,
collected requirements for systems operating at various secu-
rity classification levels. This document introduced standards
for information leakage, in the form of limits on channel
bandwidth and, while these were seldom if ever actually
achieved, this approach strongly influenced the direction of
later work.

Leakage channels are often classified according
to the threat model: side channels refer to the accidental
leakage of sensitive data (for example an encryption key)
by a trusted party, while covert channels are those exploited
by a Trojan to deliberately leak information. Covert chan-
nels are only of interest for systems that do not (or cannot)
trust internal components, and thus have highly restrictive
information-flow policies (such as multilevel secure sys-
tems). In general-purpose systems, we are therefore mostly
concerned with side channels.

Channels are also typically classified as either storage
or timing channels. In contrast to storage channels, timing
channels are exploited through timing variation [134]. While
Wray [163] argued convincingly that the distinction is funda-
mentally arbitrary, it nonetheless remains useful in practice.
In current usage, storage channels are those that exploit some
functional aspect of the system—something that is directly
visible in software, such as a register value or the return value
of a system call. Timing channels, in contrast, can occur even
when the functional behaviour of the system is completely
understood, and even, as in the case of seL4, with a formal
proof of the absence of storage channels [118]. The precise
temporal behaviour of a system is rarely, if ever, formally
specified.

In this work, we are concerned with microarchitectural
timing channels.

Some previous publications classify cryptanalytic cache-
based side-channel attacks as time driven, trace driven or
access driven, based on the type of information the attacker
learns about a victim cipher [3,121]. In trace-driven attacks,
the attacker learns the outcome of each of the victim’s mem-
ory accesses in terms of cache hits and misses [2,56,126].
Due to the difficulty of extracting the trace of cache hits
and misses in software, trace-driven attacks are mostly
applied in hardware and are thus outside the scope of this
work.
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Time-driven attacks, like trace-driven attacks, observe
cache hits and misses. However, rather than generating a
trace, the attacks observe the aggregate number of cache hits
and misses, typically through an indirect measurement of the
total execution time of the victim. Examples of such attacks
include the Bernstein attack on AES [25] and the Evict+
Time attack of Osvik et al. [125].

Access-driven attacks, such as Prime+Probe [125,129],
observe partial information on the addresses the victim
accesses.

This taxonomy is very useful for analysing the power of
an attacker with respect to a specific cipher implementation.
However, it provides little insight on the attack mechanisms
and their applicability in various system configurations. As
such, this taxonomy is mostly orthogonal to ours.

2.2 Relevant microarchitecture

The (instruction set) architecture (ISA) of a processor is
a functional specification of its programming interface. It
abstracts over functionally irrelevant implementation details,
such as pipelines, issue slots and caches, which constitute the
microarchitecture. A particular ISA, such as the ubiquitous
x86 architecture, can have multiple, successive or concurrent,
microarchitectural implementations.

While functionally transparent, the microarchitecture con-
tains hidden state, which can be observed in the timing of
program execution, typically as a result of contention for
resources in the hidden state. Such contention can be between
processes (external contention) or within a process (internal
contention).

2.2.1 Caches

Caches are an essential feature of a modern architecture, as
the clock rate of processors and the latency of memory have
diverged dramatically in the course of the last three decades.
A small quantity of fast (but expensive) memory effectively
hides the latency of large and slow (but cheap) main mem-
ory. Cache effectiveness relies critically on the hit rate, the
fraction of requests that are satisfied from the cache. Due
to the large difference in latency, a small decrease in hit
rate leads to a much larger decrease in performance. Cache-
based side-channel attacks exploit this variation to detect
contention for space in the cache, both between processes
(as in a Prime+Probe attack, see Sect. 4.1.1) and within a
process (Sect. 4.3.2).

A few internal details are needed to understand such
attacks:

Cache lines In order to exploit spatial locality, to cluster
memory operations and to limit implementation complex-
ity, caches are divided into lines. A cache line holds one

aligned, power-of-two-sized block of adjacent bytes loaded
from memory. If any byte needs to be replaced (evicted to
make room for another), the entire line is reloaded.

Associativity Cache design is a trade-off between complex-
ity (and hence speed) and the rate of conflict misses. Ideally,
any memory location could be placed in any cache line, and
an n-line cache could thus hold any n lines from memory.
Such a fully associative cache is ideal in theory, as it can
always be used to its full capacity—misses occur only when
there is no free space in the cache, i.e. all misses are capacity
misses. However, this cache architecture requires that all lines
are matched in parallel to check for a hit, which increases
complexity and energy consumption and limits speed. Fully
associative designs are therefore limited to small, local
caches, such as translation look-aside buffers (TLBs).

The other extreme is the direct-mapped cache, where each
memory location can be held by exactly one cache line, deter-
mined by the cache index function, typically a consecutive
string of bits taken from the address, although more recent
systems employ a more complex hash function [74,112,170].
Two memory locations that map to the same line cannot be
cached at the same time—loading one will evict the other,
resulting in a conflict miss even though the cache may have
unused lines.

In practice, a compromised design—the set-associative
cache, is usually employed. Here, the cache is divided into
small sets (usually of between 2 and 24 lines), within which
addresses are matched in parallel, as for a fully associative
cache. Which set an address maps to is calculated as for a
direct-mapped cache—as a function of its address (again,
usually just a string of consecutive bits). A cache with n-line
sets is called n-way associative. Note that the direct-mapped
and fully associative caches are special cases, with 1-way and
N -way associativity, respectively (where N is the number of
lines in the cache).

For both the direct-mapped and set-associative caches, the
predictable map from address to line is exploited. In attacks, it
is used to infer cache sets accessed an algorithm under attack
(Sect. 4.1.1). In cache colouring (Sect. 5.5.4) it is exploited
to ensure that an attacker and its potential victim never share
sets, thus cannot conflict.

Cache hierarchy As CPU cycle times and RAM latencies
have continued to diverge, architects have used a growing
number of hierarchical caches—each lower in the hierarchy
being larger and slower than the one above. The size of each
level is carefully chosen to balance service time to the next
highest (faster) level, with the need to maintain hit rate.

Flushing caches is a simple software method for mitigat-
ing cache-based channels, measured by direct and indirect
cost. The direct cost contains writing back dirty cache lines
and invalidating all cache lines. The indirect cost represents
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the performance degradation of a program due to starting
with cold caches after every context switch. Therefore, the
cache level that an attack targets is important when con-
sidering countermeasures: as the L1 is relatively small, it
can be flushed on infrequent events, such as timesliced VM
switches, with minimal performance penalty. Flushing the
larger L2 or L3 caches tends to be expensive (in terms of
indirect cost), but they might be protected by other means
(e.g. colouring, Sect. 5.5.4). This hierarchy becomes more
prominent on multiprocessor and multicore machines—see
Sect. 2.2.2.

Virtual versus physical addressing Caches may be indexed
by either the virtual or the physical addresses. Virtual address
indexing is generally only used in L1 caches, where the
virtual-to-physical translation is not yet available, while
physically indexed caches are used at the outer levels. This
distinction is important for cache colouring (Sect. 5.5.4), as
virtual address assignment is not under operating system
(OS) control, and thus, virtually indexed caches cannot be
coloured.

Architects employ more than just data and instruction
caches. The TLB, for example, caches virtual-to-physical
address translations, avoiding an expensive table walk on
every memory access. The branch target buffer (BTB) holds
the targets of recently taken conditional branches, to improve
the accuracy of branch prediction. The trace cache on the
Intel Netburst (Pentium 4) microarchitecture was used to
hold the micro-ops corresponding to previously decoded
instructions. All these hardware features are forms of shared
caches indexed by virtual addresses. All are vulnerable to
exploitation—by exploiting either internal or external con-
tention.

2.2.2 Multiprocessor and multicore

Traditional symmetric multiprocessing (SMP) and modern
multicore systems complicate the pattern of resource shar-
ing and allow both new attacks and new defensive strategies.
Resources are shared hierarchically between cores in the
same package (which may be further partitioned into either
groups or pseudo-cores, as in the AMD Bulldozer architec-
ture) and between packages. This sharing allows real-time
probing of a shared resource (e.g. a cache) and also makes it
possible to isolate mutually distrusting applications by using
pairs of cores with minimal shared hardware (e.g. in separate
packages).

The cache hierarchy is matched to the layout of cores. In
a contemporary, server-style multiprocessor system with, for
example, 4 packages (processors) and 8 cores per package,
there would usually be 3 levels of cache: private (per-core)
L1 caches (split into data and instruction caches), unified L2
that is core private (e.g. in the Intel Core i7 2600) or shared

between a small cluster of cores (e.g. 2 in the AMD FX-8150,
Bulldozer architecture), and one large L3 per package, which
may be non-uniformly partitioned between cores, as in the
Intel Sandy Bridge and later microarchitectures.

2.2.3 Memory controllers

Contemporary server-class multiprocessor systems almost
universally feature non-uniform memory access (NUMA).
There are typically between one and four memory controllers
per package, with those in remote packages accessible over
the system interconnect. Memory bandwidth is always under-
provisioned: the total load/store bandwidth that can be
generated by all cores is greater than that available. Thus, a
subset of the cores, working together, can saturate the system
memory controllers, filling internal buses, therefore dramat-
ically increasing the latency of memory loads and stores for
all processes [117].

Besides potential use as a covert channel, this allows a DoS
attack between untrusting processes (or VMs) and needs to
be addressed to ensure QoS. The same effect is visible at
other levels: the cores in a package can easily saturate that
package’s last-level cache (LLC); although, in this case, the
effect is localised per package.

2.2.4 Buses and interconnects

Historically, systems used a single bus to connect CPUs,
memory and device buses (e.g. PCI). This bus could easily be
saturated by a single bus agent, effecting a DoS for other users
(Sect. 4.6.1). Contemporary interconnects are more sophis-
ticated, generally forming a network among components on
a chip, called networks-on-chip. These network components
are packet buffers, crossbar switches, and individual ports
and channels. The interconnect networks are still vulnera-
ble to saturation [159], being under-provisioned, and to new
attacks, such as routing-table hijacking [138]. Contention for
memory controllers has so far only been exploited for DoS
(Sect. 4.5), but exploiting them as covert channels would not
be hard.

2.2.5 Hardware multithreading

The advent of simultaneous multithreading (SMT), such as
Intel’s Hyperthreading, exposed resource contention at a finer
level than ever before. In SMT, multiple execution contexts
(threads) are active at once, with their own private state, such
as register sets. This can increase utilisation, by allowing
a second thread to use whatever execution resources are
left idle by the first. The number of concurrent contexts
ranges from 2 (in Intel’s Hyperthreading) to 8 (in IBM’s
POWER8). In SMT, instructions from multiple threads are
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issued together and compete for access to the CPU’s func-
tional units.

A closely related technique, temporal multithreading
(TMT), instead executes only one thread at a time, but rapidly
switches between them, either on a fixed schedule (e.g.
Sun/Oracle’s T1 and later) or on a high-latency event (an
L3 cache miss on Intel’s Montecito Itanium); later Itanium
processors switched from TMT to SMT.

Both hardware thread systems (SMT and TMT) expose
contention within the execution core. In SMT, the threads
effectively compete in real time for access to functional units,
the L1 cache, and speculation resources (such as the BTB).
This is similar to the real-time sharing that occurs between
separate cores, but includes all levels of the architecture. In
contrast, TMT is effectively a very fast version of the OS’s
context switch, and attackers rely on persistent state effects
(such as cache pollution). The fine-grained nature though
should allow events with a much shorter lifetime, such as
pipeline bubbles, to be observed. SMT has been exploited in
known attacks (Sects. 4.2.1, 4.3.1), while TMT, so far, has
not. (Presumably because it is not widespread in contempo-
rary processors.)

2.2.6 Pipelines

Instructions are rarely completed in a single CPU cycle.
Instead, they are broken into a series of operations, which
may be handled by a number of different functional units
(e.g. the arithmetic logic unit, or the load/store unit). The
very fine-grained sharing imposed by hardware multithread-
ing (Sect. 2.2.5) makes pipeline effects (such as stalls)
and contention on non-uniformly distributed resources (such
as floating-point-capable pipelines) visible. This has been
exploited (Sect. 4.2.1).

2.2.7 The sharing hierarchy

Figure 1 gathers various of the contended resources we have
described, grouped by the degree of sharing, for a represen-
tative contemporary system (e.g. Intel Nehalem). The lowest
layer, labelled system shared, contains the interconnect
(Sect. 2.2.4), which is shared between all processes in the sys-
tem, while the highest layer contains the BTB (Sect. 2.2.1),
and the pipelines and functional units (Sect. 2.2.6); these
are thread shared—only shared between hardware threads
(Sect. 2.2.5) on the same core. The intermediate layers
are more broadly shared, the lower they are: core-shared
resources, such as the L1/L2 caches and TLB; package-
shared resources, the L3 cache; and the NUMA- shared
memory controllers (per package, but globally accessed,
Sect. 2.2.3).

In Table 1, we survey published attacks at each level.
Those at higher levels tend to achieve higher severity by

Fig. 1 Contended resources in a hierarchical multicore system

exploiting the higher-precision information available, while
those at lower levels (e.g. the interconnect) are cruder, mostly
being DoS. Simultaneously, thanks to the smaller degree of
sharing, the thread-shared resources are the easiest to protect
[by disabling Hyperthreading (Sect. 5.5.1), for example].

2.3 Time and exploitation

Exploiting a timing channel naturally requires some way of
measuring the passage of time. This can be achieved with
access to real wall-clock time, but any monotonically increas-
ing counter can be used. A timing channel can be viewed,
abstractly, as a pair of clocks [163]. If the relative rate of
these two clocks varies in some way that depends on sup-
posedly hidden state, a timing channel exists. These clocks
need not be actual time sources; they are simply sequences of
events, e.g. real clock ticks, network packets, CPU instruc-
tions being retired.

In theory, it should be possible to prevent the exploita-
tion of any timing channel, without actually eliminating the
underlying contention, by ensuring that all clocks visible to a
process are either synchronised (as in deterministic execution
or instruction-based scheduling, see Sect. 5.3.1), or suffi-
ciently coarse (or noisy) that they are of no use for precise
measurements (as in fuzzy time, see Sect. 5.2). In practice,
this approach is very restrictive and makes it very difficult to
incorporate real-world interactions, including networking.

3 Taxonomy

We arrange the attacks and countermeasures that we will
explore in the next two sections along two axes: Firstly,
according to the sharing levels indicated in Fig. 1, and sec-

123



6 J Cryptogr Eng (2018) 8:1–27

Table 1 Known microarchitectural timing attacks

Multicore Hardware threading Time slicing

Thread shared Section 4.2.1 Section 4.2.2

– Multiplier S, C [9,157] – FPU S, C [16,73]

– BTB S [5,6] – BP S, C [4,41]

– Trace Cache D [62] – BTB S [52]

– Cache Banks S [171] – RSB S [37]

Core shared Section 4.3.1 Section 4.3.2

– L1(I) S [1,7] – L1(I) S [1,8,180]

– L1(D) S, C [35,125,129,143] – L1(D) S, C
[10,25,30,73,82,120,125,143–
145,150,160,161]

– TLB S [74]

Package shared Section 4.4.1 Section 4.4.2

– Bus C, D [38,162] – LLC S, C [57,64,71,73,74,81,83,
89,123,129,133,167]

– LLC S, C, D
[12,24,38,63,65,76,85,105,107,113,
147,162,165,167–169,177,181]

NUMA shared Section 4.5.1 Section 4.5.2

– Memory controller D [117,177] – Intel TSX S [87]

– DRAM row buffer C, S [130]

System shared Section 4.6.1

– Bus C, S, D [72,155,162,165,177]

– Processor interconnect C, D [86,138]

– PCI D [132]

– IPI D [180]

S, C, and D denote side channel, covert channel, and DoS attacks

ondly by the degree of concurrency used to exploit the
vulnerability.

As we shall see, the types of attack possible vary with
the level of sharing. At the top level, the attacker has very
fine-grained access to the victim’s state, while at the level
of the bus, nothing more than detecting throughput variation
is possible. The degree of concurrency, either full concur-
rency (i.e. multicore), timesliced execution on a single core,
or hardware threading (e.g. SMT, which is intermediate), also
varies predictably with level: the lower-level attacks require
true concurrency, as the bus has no real persistent state. Like-
wise, the top-level (fine-grained) attacks also require a high
degree of concurrency and are usually more effective under
SMT than time slicing, as the components involved (L1, TLB,
BTB) have relatively small states that are rapidly overwrit-
ten. The intermediate levels (those targeting the L3 cache,
for example) are exploitable at a relatively coarse granular-
ity, thanks to the much larger persistent state. The attacks are
presented in Table 1. Table 2 lists cache-based side-channel
attacks due to resource contention between processes or VMs
in more detail, as they form the largest class of known attacks.

Table 3 presents the known countermeasures, arranged in
the same taxonomy. The shaded cells indicate where known
attacks exist, giving a visual impression of the coverage of
known countermeasures against known attacks. The type of
countermeasure possible naturally varies with the physical
and temporal sharing level. Tables 1 and 3 link to the sec-
tions in the text where the relevant attacks or countermeasures
are discussed in detail. In Table 4, we list the known coun-
termeasures that are deployed on current systems, based on
published information. However, our list may not be com-
plete, as product details may not be fully disclosed. We note
that developers of cryptographic packages usually provide
patches for published attacks.

4 Attacks

This section presents all known microarchitectural timing
attacks. Section 4.1 summarises the common strategies used,
while Sect. 4.2 through Sect. 4.6 list attacks, arranged first
by sharing level (thread shared through system shared) and
then by degree of temporal concurrency used in the reported
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Table 2 Timing side channel attacks due to cache contention between hardware threads, processes or VMs

Attack Method Cache Target Experimental system Features leveraged

[129] P L1-D RSA (OpenSSL 0.9.7c) Pentium 4 SMT

[120] P L1-D AES (using a separate
lookup table in the last
round)

Not specified in the paper Pre-empting the AES
process in short intervals

[125,143] P L1-D AES (OpenSSL 0.9.8) Pentium 4E SMT

[125,143] P L1-D AES (OpenSSL 0.9.8,
Linux 2.6.11 dm-crypt)

Athlon 64, Pentium 4E Virtual and physical
addresses of lookup tables

[125,143] E L1-D AES (OpenSSL 0.9.8) Athlon 64 Virtual and physical
addresses of lookup tables

[1] P L1-I RSA (OpenSSL 0.9.8d) Proof of concept SMT or pre-empting the
RSA process in short
intervals

[8] P L1-I RSA (OpenSSL 0.9.8e) Simulation Embedding spy process into
the RSA process, calling
spy routine with a certain
frequency

[35] P L1-D ECDSA (OpenSSL 0.9.8k) Pentium 4, Atom SMT

[133] P LLC Detecting co-residency,
estimating traffic rates,
keystroke timing attack

Amazon EC2 –

[7] P L1-I DSA (OpenSSL 0.9.8d) Intel Atom SMT

[71] F LLC AES (OpenSSL 0.9.8n) Pentium M, Linux 2.6.33.4 Shared library, completely
fair scheduler in Linux

[180] P L1-I ElGamal (GnuPG v.2.0.19,
libgcrypt v.1.5.0)

Core 2 Q9650, Xen 4.0 Inter-processor interrupts
deliveries in Xen’s credit
scheduler

[74] E LLC Kernel address space layout
(Windows 7 Enterprise,
Ubuntu Desktop 11.10)

Intel i7-870, Intel i7-950,
Intel i7-2600, AMD
Athlon II X3 455,
VMWare Player 4.0.2 on
Intel i7-870

Large page or physical
address of eviction buffer

[169] F LLC RSA (GnuPG 1.4.13) Intel Core i5-3470 (Ivy
Bridge), Intel Xeon
E5-2430, VMware
ESXi5.1, KVM

Memory mapping or page
de-duplication

[81] F LLC AES (OpenSSL 1.0.1f) Intel i5-3320M, VMware
ESXi5.5.0

Page de-duplication

[12,24,147,168] F LLC ECDSA (OpenSSL 1.0.1e) Intel Core i5-3470 Memory mapping

[181] F LLC Activities of co-residential
victim VMs (e.g. number
of items in user’s
shopping cart)

Platform-as-a-Service
Cloud (DotCloud)

Shared libraries

[85] F LLC TLS, DTLS (PolarSSL
1.3.6, CyaSSL 3.0.0,
GnuTLS 3.2.0)

Intel i5-650, VMware
ESXi5.5.0

Page de-duplication

[63] F LLC Keystroke, AES (OpenSSL
1.0.2)

Windows, Linux Shared libraries

[107] P LLC ElGamal (GnuPG 1.4.13
and 1.4.18)

Xen 4.4 (Intel Xeon E5
2690), VMware ESXi 5.1
(Intel Core i5-3470)

Huge page

[83] P LLC AES (OpenSSL 1.0.1f) Intel i5-650, Xen 4.1
VMware ESXi5.5

Huge page

[123] P LLC User behaviours Firefox 34 running on
Ubuntu 14.01 inside
VMWare Fusion 7.1.0

high-resolution time and
typed array in HTML5
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Table 2 continued

Attack Method Cache Target Experimental system Features leveraged

[76] P LLC Cloud co-location, ElGamal
(GnuPG 1.4.18)

Amazon EC2 Huge page

[105] F LLC User behaviours Android on Krait-400 and
ARM Cortex-A53

Shared libraries

[105] P LLC AES (Bouncy Castle) Android on ARM
Cortex-A53

–

[89] P LLC AES Intel Sandy Bridge Completely fair scheduler

[57] F LLC DSA in OpenSSL Intel Haswell (Core
i5-4570)

Shared libraries

P, E, and F denote Prime+Probe , Evict+Time and Flush+Reload attacks

exploit, from truly concurrent attacks exploiting multicores,
through hardware-thread-based attacks, to those only requir-
ing coarse interleaving (e.g. pre-emptive multitasking). Refer
to Table 1 for an overview.

4.1 Attack types

4.1.1 Exploiting caches

Prime and probe (Prime+Probe) This technique detects the
eviction of the attacker’s working set by the victim: The
attacker first primes the cache by filling one or more sets
with its own lines. Once the victim has executed, the attacker
probes by timing accesses to its previously loaded lines, to
see if any were evicted. If so, the victim must have touched
an address that maps to the same set.

Flush and reload (Flush+Reload) This is the inverse of
prime and probe and relies on the existence of shared virtual
memory (such as shared libraries or page de-duplication) and
the ability to flush by virtual address. The attacker first flushes
a shared line of interest (by using dedicated instructions or by
eviction through contention). Once the victim has executed,
the attacker then reloads the evicted line by touching it, mea-
suring the time taken. A fast reload indicates that the victim
touched this line (reloading it), while a slow reload indicates
that it did not. On x86, the two steps of the attack can be
combined by measuring timing variations of the clflush
instruction. The advantage of Flush+Reload over Prime+
Probe is that the attacker can target a specific line, rather
than just a cache set.

Evict and time (Evict+Time ) This approach uses the tar-
geted eviction of lines, together with overall execution time
measurement. The attacker first causes the victim to run, pre-
loading its working set and establishing a baseline execution
time. The attacker then evicts a line of interest and runs the
victim again. A variation in execution time indicates that the
line of interest was accessed.

Covert channel techniques To use the cache as a covert chan-
nel, the parties employ a mutual Prime+Probe attack. The
sender encodes a bit by accessing some number of cache sets.
The receiver decodes the message by measuring the time to
access its own colliding lines. Covert channels have been
demonstrated at all cache levels.

Denial of service When a lower-level cache is shared by
multiple cores, a malicious thread can compete for space
in real time with those on other cores. Doing so also satu-
rates the lower-level cache’s shared bus. The performance
degradation suffered by victim threads is worse than that in
a time-multiplexed attack [162]. If the cache architecture is
inclusive, evicting contents from a lower-level cache also
invalidates higher-level caches on other cores.

Unmasking the victim’s layout In order to perform a cache-
contention-based attack, the attacker needs to be able to
collide in the cache with the victim. In order to know which
parts of its own address spaces will do so, it needs to have
some knowledge about the virtual and/or physical layout of
the victim. This was historically a simple task for the virtual
address space, as this was generally set at compile time, and
highly predictable. The introduction of address space lay-
out randomisation (ASLR, initially to make code-injection
attacks harder to achieve) made this much harder. Hund et
al. [74] demonstrated that contention in the TLB can be
exploited to expose both the kernel’s and the victim’s address
space layout.

4.1.2 Exploiting real-time contention

Real-time attacks exploit resource contention by maliciously
increasing their consumption of a shared resource. For
instance, adversaries can exhaust shared bus bandwidth, with
a large number of memory requests [155]. Other currently
running entities suffer serious performance effects: a DoS
attack.
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Table 3 Published countermeasures

gnicilsemiTgnidaerhterawdraHerocitluM

Thread shared – Disable hardware threading
(Sect. 5.5.1) [110,129]

– Constant-time techniques
(Sect. 5.1) [16,131]

– Auditing (Sect. 5.6) [140] – Cache flushing (Sect. 5.4.1)
[60,149,179]

– Lattice scheduling (Sect. 5.4.2)
[44,73]

Core shared – Hardware cache partition
(Sect. 5.5.3) [42,46,128,158]

– Hardware cache partition

– RPCache (Sect. 5.2) [97,158] – Execution leases (Sect. 5.4.6)
[141,142]

– Random fill cache
(Sect. 5.2) [106]

– Minimum timeslice
(Sect. 5.4.3) [149]

– Disable Hardware Threading – Auditing (Sect. 5.6) [179]

– RPCache

– Random fill cache

– Cache flushing

– Lattice scheduling

Package shared gnirahsegapelbasiD–noititrapehcacerawdraH–
(Sect. 5.5.2) [152,182]

– Cache colouring (Sect. 5.5.4)
[41,59,92,136]

– Kernel address space isolation
(Sect. 5.4.7) [64]

– Quasi-partitioning (Sect. 5.5.5)
[182]

– Auditing (Sect. 5.6) [39,65,178]

– Auditing (Sect. 5.6) [178 snoititrapehcacerawdraH–]

gniruolocehcaC–ehcaCPR–

gninoititrap-isauQ–ehcacllfimodnaR–

– Execution leases

– RPCache

– Random fill cache

– Lattice scheduling

NUMA shared – Memory controller
partitioning(Sect. 5.4.5) [156]

–Kernel address space isolation

– Auditing (Sect. 5.6) [177]

System shared – Auditing (Sect. 5.6) [177]

– Netoworks-on-chip partitioning
(Sect. 5.4.4) [155,159]

– Spatial network partitioning
(Sect. 5.5.6) [155]

– Minimum Timeslice

Table 4 Table countermeasures
employed on current systems

Countermeasure System

Constant-time techniques (Sect. 5.1) Commonly used (at least to some extent) in many
cryptographic libraries

Instruction set extension for AES (Sect. 5.1.1) Intel (from Westmere), AMD (from Bulldozer),
ARM (from V8-A)

SPARC (from T4), and IBM (from Power7+)

PCLMULQDQ instruction (Sect. 5.1.1) Intel (from Westmere)

Lattice scheduling (Sect. 5.4.2) VAX/VMM security kernel, seL4

Disable hardware threading (Sect. 5.5.1) A standard BIOS feature for x86-based machine.
Used in Microsoft’s Azure

Disable page sharing (Sect. 5.5.2) VMware ESXi

Hardware cache partitions (Sect. 5.5.3) Intel’s Cache Allocation Technology,

ARM cache lockdown through the L2 cache
controller
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4.2 Thread-shared state

4.2.1 Hardware threads

Contention between hardware threads on the multiplier unit
is detectable and exploitable. Wang and Lee [157] demon-
strated its use to implement a covert channel, and Acıiçmez
and Seifert [9] further showed that it in fact forms a side
channel, allowing a malicious thread to distinguish multipli-
cations from squarings in OpenSSL’s RSA implementation.
These attacks both measure the delay caused by competing
threads being forced to wait for access to functional units
(here the multiplier).

Acıiçmez et al. [5] presented two attacks that exploit con-
tention on the BTB (Sect. 2.2.1). The first is an Evict+Time
attack (Sect. 4.1.1). that selectively evicts entries from the
BTB by executing branches at appropriate addresses and then
observes the effect on the execution time of an RSA encryp-
tion (in OpenSSL 0.9.7e). The second attack improves on
the first by also measuring the time required to perform the
initial eviction (thus inferring whether OpenSSL had previ-
ously executed the branch), thereby reducing the number of
observations required from 107 to 104. Shortly thereafter,
the same authors presented a further improved attack, simple
branch prediction analysis (SBPA), that retrieved most key
bits in a single RSA operation [6]. All three attacks rely on
the fine-grained sharing involved in SMT.

Yarom et al. [171] presented CacheBleed, a side-channel
attack that exploits cache-bank collisions [54,77] to create
measurable timing variations. The attack is able to iden-
tify the cache bank that stores each of the multipliers used
during the exponentiation in the OpenSSL “constant time”
RSA implementation [34,68], allowing a complete private
key recovery after observing 16,000 decryptions.

Handling exceptions on behalf of one thread can also
cause performance degradation for another SMT thread, as
the pipeline is flushed during handling. Further, on the Intel
Pentium 4, self-modifying code flushes the trace cache (see
Sect. 2.2.1), reducing performance by 95%. Both of these
DoS attacks were demonstrated by Grunwald and Ghiasi
[62].

4.2.2 Time slicing

Saving and restoring CPU state on a context switch is not free.
A common optimisation is to note that most processes do not
use the floating-point unit (FPU), which has a large inter-
nal state, and save and restore it only when necessary. When
switching, the OS simply disables access to the FPU and
performs the costly context switch if and when the process
causes an exception by attempting a floating-point opera-
tion. The latency of the first such operation after a context
switch thus varies depending on whether any other process

is using the FPU (if it was never saved, it need not be
restored). Hu [73] demonstrated that this constitutes a covert
channel.

Andrysco et al. [16] demonstrated that the timings of
floating-point operations vary wildly, by benchmarking each
combination of instructions and operands. In particular, mul-
tiplying or dividing with subnormal values causes slowdown
on all tested Intel and AMD processors, whether using
single instruction multiple data (SIMD) or x87 instruc-
tions [79]. With such measurable effects, they implemented
a timing attack on a scalable vector graphics (SVG) fil-
ter, which reads arbitrary pixels from any victim web
page though the Firefox browser (from version 23 though
27).

Acıiçmez et al. [4] argued that the previously published
SBPA attack [6] should work without SMT, instead using
only pre-emptive multitasking. This has not been demon-
strated in practice, however.

Cock et al. [41] discovered that the reported cycle counter
value on the ARM Cortex A8 (AM3358) varies with branch
mis-predictions in a separate process. This forms a covert
channel and might be exploitable as a side-channel by using
SBPA attack.

Evtyushkin et al. [52] implemented a side-channel attack
on BTB collisions, which can find both kernel-level and user-
level virtual address space layout on ASLR enabled Linux
platforms. Firstly, they found that different virtual addresses
in the same address space can create a BTB collision, because
Haswell platforms use only part of the virtual address bit as
hash tags. Secondly, they found that the same virtual address
from two different address spaces can also create a BTB
collision.

Bulygin [37] demonstrated a side-channel attack on the
return stack buffer (RSB). The RSB is a small rolling cache
of function-call addresses used to predict the return address of
return statements. By counting the number of RSB entries,
a victim replaces the attack can detect the case of an end
reduction in the Montgomery modular multiplication [115]
which leads to breaking RSA [36]. Bulygin [37] also showed
how to use the RSB side channel to detect whether software
executes on an hypervisor.

4.3 Core-shared state

4.3.1 Hardware threads

A number of attacks have exploited hardware threading to
probe a competing thread’s L1 cache usage in real time.
Percival [129] demonstrated that contention on both the L1
(data) and L2 caches of a Pentium 4 employing Hyperthread-
ing can be exploited to construct a covert channel, and also
as a side channel, to distinguish between square and mul-
tiply steps and identify the multipliers used in OpenSSL
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0.9.7c’s implementation of RSA, thus leaking the key. Simi-
larly, Osvik et al. [125] and Tromer et al. [143] attacked AES
in OpenSSL 0.9.8 with Prime+Probe on the L1 data-cache
(D-cache). Acıiçmez [1] used L1 instruction-cache (I-cache)
contention to determine the victim’s control flow, distin-
guishing squares and multiplies in OpenSSL 0.9.8d RSA.
Brumley and Hakala [35] used a simulation (based on empir-
ical channel measurements) to show that an attack against
elliptic-curve cryptography (ECC) in OpenSSL 0.9.8k was
likely to be practical. Aciiçmez et al. [7] extended their
previous attack [1] to digital signature algorithm (DSA) in
OpenSSL 0.9.8l, again exploiting I-cache contention, this
time on Intel’s Atom processor employing Hyperthreading.

4.3.2 Time slicing

As part of the evaluation of the VAX/VMM security oper-
ating system, Hu [73] noted that sharing caches would lead
to channels. Tsunoo et al. [144] demonstrated that timing
variations due to self-contention can be used to cryptanalyse
MISTY1. The same attack was later applied to DES [145].

Bernstein [25] showed that timing variations due to self-
contention can be exploited for mounting a practical remote
attack against AES. The attack was conducted on Intel Pen-
tium III. Bonneau and Mironov [30] and Aciiçmez et al.
[10] both further explored these self-contention channels in
AES in OpenSSL (versions 0.9.8a and 0.9.7e). Weiß et al.
[160] demonstrated that it still works on the ARM Cortex
A8. Irazoqui et al. [82] demonstrated Bernstein’s correlation
attack on Xen and VMware, lifting the native attack to across
VMs. More recently, Weiß et al. [161] extended their previ-
ous attack [160] on the microkernel virtualisation framework,
using the PikeOS microkernel [88] on ARM platform.

Neve and Seifert [120] demonstrated that SMT was not
necessary to exploit these cache side channels, again suc-
cessfully attacking AES’s S-boxes. Similarly, Prime+Probe
and Evict+Time techniques can also detect the secret key of
AES through L1 D-cache, with knowledge of the virtual and
physical addresses of AES’s S-boxes [125,143]. Aciiçmez
[1] presented an RSA attack using the Prime+Probe tech-
nique on the L1 I-cache, assuming frequent pre-emptions on
RSA processes. Aciiçmez and Schindler [8] demonstrated
an RSA attack based on L1 I-cache contention. In order to
facilitate the experiment, their attack embeds a spy process
into the RSA process and frequently calling the spy routine.
According to Neve [119], embedded spy process attains sim-
ilar empirical results with standalone spy process, therefore
Acıiçmez and Schindler [8] argued that their simplified attack
model would be applicable in practice. Zhang et al. [180]
took the SMT-free approach and showed that key-recovery
attacks using L1 I-cache contention were practical between
virtual machines. Using inter-processor interrupts (IPIs) to

frequently displace the victim, they successfully employed a
Prime+Probe attack to recover ElGamal keys [51].

Vateva-Gurova et al. [150] measured the signal of a
cross-VM L1 cache covert channel on Xen with different
scheduling parameters, including load balancing, weight,
cap, timeslice and rate limiting.

Hund et al. [74] showed that TLB contention allows an
attacker to defeat ASLR [29], with a variant of the Flush+
Reload technique (Sect. 4.1.1): they exploited the fact that
invalid mappings are not loaded into the TLB, and so a sub-
sequent access to an invalid address will trigger another table
walk, while a valid address will produce a much more rapid
segmentation fault. Hund et al. [74] evaluated this technique
on Windows 7 Enterprise and Ubuntu Desktop 11.10 on three
different Intel architectures, with a worst-case accuracy of
95% on the Intel i7-2600 (Sandy Bridge).

4.4 Package-shared state

4.4.1 Multicore

Programs concurrently executing on multicores can generate
contention on the shared LLC, creating covert channels, side
channels or DoS attacks. Xu et al. [167] evaluated the covert
channel bandwidth based on LLC contention with Prime+
Probe technique, improving the transmission protocol of the
initial demonstration by [133] to the multicore setting. Xu et
al. [167] not only improved the protocol, but also improved
the bandwidth from 0.2 b/s to 3.2 b/s on Amazon EC2. Wu
et al. [165] stated the challenges of establishing a reliable
covert channel based on LLC contention, such as schedul-
ing and addressing uncertainties. Despite demonstrating how
these can be overcome, their cache-based covert channel is
unreliable as the hypervisor frequently migrates virtual CPUs
across physical cores. They invented a more reliable protocol
based on bus contention (Sect. 4.6.1).

Yarom and Falkner [169] demonstrated a Flush+Re-
load attack on the LLC (Intel Core i5-3470 and Intel Xeon
E5-2430) for attacking RSA, requiring read access to the
in-memory RSA implementation, through either memory
mapping or page de-duplication. Yarom and Benger [168],
Benger et al. [24] and Van de Pol et al. [147] used similar
attacks to steal ECDSA keys. Moreover, Zhang et al. [181]
demonstrated that the same type of attack can steal granular
information (e.g. the number of items in a user’s shopping
cart) from a co-resident VM on DotCloud [47], a commer-
cial platform-as-a-service (PaaS) cloud platform. Gruss et al.
[63] further generalised the Flush+Reload technique with
a pre-computed cache template matrix, a technique that pro-
files and exploits cache-based side channels automatically.
The cache template attack involves a profile phase and a
exploitation phase. In the profiling phase, the attack gen-
erates a cache template matrix for the cache-hit ratio on a
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target address during processing of a secret information. In
the exploitation phase, the attack conducts Flush+Reload
or Prime+Probe attack for constantly monitoring cache hits
and computes the similarity between collected traces and the
corresponding profile from the cache template matrix. The
cache template matrix attack is able to perform attacks on data
and instructions accesses online, attacking both keystrokes
and the T-table-based AES implementation of OpenSSL.

Because the LLC is physically indexed and tagged, con-
structing a prime buffer for a Prime+Probe attack requires
knowledge of virtual-to-physical address mappings. Liu et al.
[107] presented a solution that creates an eviction buffer with
large (2 MiB) pages, as these occupy contiguous memory. By
probing on one cache set, they demonstrated a covert chan-
nel attack with a peak throughput of 1.2 Mb/s and an error
rate of 22%. Based on the same Prime+Probe technique,
they conducted side-channel attacks on both the square-
and-multiply exponentiation algorithm in ElGamal (GnuPG
1.4.13) and the sliding-window exponentiation in ElGamal
(GnuPG 1.4.18). Zhang et al. [76] demonstrated that the same
Prime+Probe technique can be used in a real cloud envi-
ronment. They used the attack on the Amazon EC2 cloud to
leak both cloud co-location information and ElGamal private
keys (GnuPG 1.4.18). Maurice et al. [113] also demonstrated
a Prime+Probe attack on a shared LLC, achieving covert
channel throughput of 1291 b/s and 751 b/s for a virtualised
set-up. The attack assumes an inclusive LLC: a sender primes
the entire LLC with writes, and a receiver probes on a single
set in its L1 D-cache.

Gruss et al. [63] suggested a variant of Flush+Reload
that combines the eviction process of Prime+Probe with
the reload step of Flush+Reload . This technique, called
Evict+Reload , is much slower and less accurate than
Flush+Reload; however, it obviates the need for dedi-
cated instructions for flushing cache lines. Lipp et al. [105]
demonstrated the use of the Evict+Reload attack to leak
keystrokes and touch actions on Android platforms running
on ARM processors.

Flush+Flush [65] is another variant of
Flush+Reload, which measures variations in the execution
time of the x86 clflush instruction to determine whether
the entry was cached prior to being flushed. The advantages
of the technique over Flush+Reload are that it is faster,
allowing for a higher resolution, and that it generates less
LLC activity which can be used for detecting cache timing
attacks. Flush+Flush is, however, more noisy than Flush+
Reload , resulting in a slightly higher error rate. Gruss et al.
[65] demonstrated that the technique can be used to imple-
ment high-capacity covert channels, achieving a bandwidth
of 496 KiB/s.

Both LLCs and internal buses are vulnerable to DoS
attacks. Woo and Lee [162] showed that by causing a high
rate of L1 misses, an attacker can monopolise LLC band-

width (L2 in this case), to the exclusion of other cores. Also,
by sweeping the L2 cache space, threads on other cores suffer
a large number of L2 cache misses. Cardenas and Boppana
[38] demonstrated the brute-force approach—aggressively
polluting the LLC dramatically slows all other cores. These
DoS attacks are much more effective when launched from
a separate core, as in the pre-emptively scheduled case, the
greatest penalty that the attacker can enforce is one cache
refill per timeslice. Allan et al. [12] showed that repeat-
edly evicting cache lines in a tight loop of a victim program
slows the victim by a factor of up to 160. They also demon-
strated how slowing a victim down can improve the signal of
side-channel attacks. Zhang et al. [177] conducted the cache
cleansing DoS attack that generated up to 5.5x slowdown for
program with poor memory locality and up to 4.4x slowdown
to cryptographic operations. Because x86 platform imple-
ments the inclusive LLC, replacing a cache line from LLC
can also evicts its copy from upper-level caches (Sect. 4.1.1).
To build this attack, the attacker massively fetched cache lines
into LLC sets, causing the victim suffering from a large num-
ber of cache misses due to cache conflicts.

4.4.2 Time slicing

The LLC maintains the footprint left by previously run-
ning threads or VMs, which is exploitable as a covert or
a side channel. Hu [73] demonstrated that two processes can
transmit information by interleaving on accessing the same
portion of a shared cache. Although Hu did not demonstrate
the attack on a hardware platform, the attack can be used
on the shared LLC. Similarly, Percival [129] explored covert
channels based on LLC collisions. Ristenpart et al. [133]
explored the same technique on a public cloud (Amazon
EC2), achieving a throughput of 0.2 b/s. Their attack demon-
strated that two VMs can transmit information through a
shared LLC.

The LLC contention can be used for detecting co-
residency, estimating traffic rates and conducting keystroke
timing attacks on the Amazon EC2 platform [133].

Gullasch et al. [71] attacked AES in OpenSSL 0.98n with
a Flush+Reload attack, leveraging the design of Linux’
completely fair scheduler to frequently pre-empt the AES
thread. With the Flush+Reload technique, Irazoqui et al.
[81] broke AES in OpenSSL 1.0.1f with page sharing enabled
on an Intel i5-3320M running VMware ESXi5.5.0. More
recently, García et al. [57] demonstrated the Flush+Re-
load attack on the DSA implementation in OpenSSL, the
first key-recovery cache timing attack on transport layer secu-
rity (TLS) and secure shell (SSH) protocols.

Hund et al. [74] detected the kernel address space lay-
out with the Evict+Time technique, measuring the effect of
evicting a cache set on system-call latencies on Linux.
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Gruss et al. [64] discovered that the prefetch instruc-
tions not only expose the virtual address space layout via
timing but also allow prefetching kernel memory from user-
space because of lack of privilege checking. Their discoveries
were applicable on both x86 and ARM architectures. They
demonstrated two attacks: the translation-level oracle and
address-translation oracle. Firstly, the translation-level ora-
cle measures execution time for prefetching on a randomly
selected virtual address and then compares against the cal-
ibrated execution time. To translate the virtual address into
a physical address, the prefetch instruction traverses multi-
ple levels of page directories (4 levels for PML4E on x86),
and terminates as soon as the correct entry is found. There-
fore, the timing reveals at which level does address lookup
terminates, revealing the virtual address space layout even
though ASLR is enabled. Secondly, the address-translation
oracle verifies if two virtual addresses p and q are mapped to
the same physical address by flushing p, prefetching q, and
then reloading p again. If the two addresses are mapped to
the same physical address, reloading p encounters a cache
hit. Also, the prefech instructions can be conducted on any
virtual address, including kernel addresses, and thus can be
used to locate the kernel window that contains direct physical
mappings to further implement return-oriented programming
attack [90].

To conduct a Prime+Probe attack on the LLC, Irazo-
qui et al. [83] additionally took advantages of large pages
for probing on cache sets from the LLC without solv-
ing virtual-to-physical address mappings (Sect. 2.2.1). The
attack monitors 4 cache sets from the LLC and recovers
an AES key in less than 3 min in Xen 4.1 and less than
2 min in VMware ESXI 5.5. Oren et al. [123] implemented
a Prime+Probe attack in JavaScript by profiling on cache
conflicts with given virtual addresses. Rather than relying on
large pages, they created a priming buffer with 4 KiB pages.
Furthermore, the attack collects cache activity signatures of
target actions by scanning cache traces, achieving covert
channel bandwidth of 320 kb/s on their host machine and
8 kb/s on a virtual machine (Firefox 34 running on Ubuntu
14.01 inside VMWare Fusion 7.1.0). A side channel version
of this attack associates user behaviour (mouse and network
activities) with cache access patterns. Kayaalp et al. [89] also
demonstrated a probing technique that identifies LLC cache
sets without relying on large pages. They used the technique
in conjunction with the Gullasch et al. [71] attack on the
completely fair scheduler for attacking AES.

Targeting the AES T-tables, Lipp et al. [105] showed that
the ARM architecture is also vulnerable to the Prime+Probe
attack.

4.5 NUMA-shared state

4.5.1 Multicore

Shared memory controllers in multicore systems allow DoS
attacks. Moscibroda and Mutlu [117] simulated an exploit
of the first-come first-served scheduling policy in memory
controllers, which prioritises streaming access to impose a
2.9-fold performance hit on a program with a random access
pattern. Zhang et al. [177] demonstrated a DoS attack by gen-
erating contentions on either bank or channel schedulers in
memory controllers on the testing x86 platform (Dell Pow-
erEdge R720). The attacker issued vast amount of memory
accesses from a DRAM bank, causing up to 1.54x slowdown
for a victim that accesses from either the same bank or a
different bank in the same DRAM channel.

Modern DRAM comprises a hierarchical structure of
channels, DIMMs, ranks and banks. Inside each bank, the
DRAM cells are arranged as a two-dimensional array, located
by rows and columns. Also, each bank has a row buffer that
caches the currently active row. For any memory access,
the DRAM firstly activates its row in the bank and then
accesses the cell within that row. If the row is currently active,
the request is served directly from the row buffer (a row
hit). Otherwise, the DRAM closes the open row and fetches
the selected row to the row buffer for access (a row miss).
According to experiments conducted on both x86 and ARM
platforms, a row miss leads to a higher memory latency than
a row hit, which can be easily identified [130].

Pessl et al. [130] demonstrated how to use timing variances
due to row buffer conflicts to reverse-engineer the DRAM
addressing schemes on both x86 and ARM platforms. Based
on that knowledge, they implemented a covert channel based
on row buffer conflicts, which achieved a transfer rate of up
to 2.1 Mb/s on the Haswell desktop platform (i7-4760) and
1.6 Mb/s on the Haswell-EP server platform (2x Xeon E5-
2630 v3).

Furthermore, Pessl et al. [130] conducted a cross-CPU
side-channel attack by detecting row conflicts triggered by
keystrokes in the Firefox address bar. In the preparation stage,
a spy process allocates a physical address s that shares the
same row of the target address v in a victim process. Also, she
allocates another physical address q that maps to a different
row in the same bank. To run the side-channel attack, the
spy firstly accesses q and then waits for the victim to execute
before measuring the latency of accessing s. If the victim
accessed v, the latency of accessing s is much less than a row
conflict. Therefore, the spy can infer when the non-shared
memory location is accessed by the victim.
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4.5.2 Time slicing

Jang et al. [87] discovered that Intel transactional synchro-
nisation extension (TSX) contains a security loophole that
aborts a user-level transaction without informing kernel. In
addition, the timing of TSX aborts on page faults reveals the
attributes of corresponding translation entires (i.e. mapped,
unmapped, executable or non-executable). They successfully
demonstrated a timing channel attack on kernel ASLR of
mainstream OSes, including Windows, Linux and OSx.

4.6 System-shared state

4.6.1 Multicore

Hu [72] noted that the system bus (systems of the time had
a single, shared bus) could be used as a covert channel, by
modulating the level of traffic (and hence contention). Wu
et al. [165] demonstrated that this type of channel is still
exploitable in modern systems, achieving a rate of 340 b/s
between Amazon EC2 instances.

Bus contention is clearly also exploitable for DoS. On
a machine with a single frontside bus, Woo and Lee [162]
generated a DoS attack with L2 cache misses in a simulated
environment. Zhang et al. [177] shown that an attacker can
use atomic operations on either unaligned or non-cacheable
memory blocks to lock the shared system bus on the testing
x86 platform (Dell PowerEdge R720), therefore slow down
the victim (up to 7.9x for low locality programs).

While many-core platforms increase performance, pro-
grams running on separated cores may suffer interfer-
ence from competing on on-chip interconnections. Because
networks-on-chip (Sect. 2.2.4) share internal resources, a
program may inject network traffic by rapidly generating
memory fetching requests, unbalancing the share of internal
bandwidth. Wang and Suh [155] simulated both covert chan-
nels and side channels though network interference. A Trojan
encodes a “1” bit through high and a “0” bit through low traf-
fic load. A spy measures the throughput of its own memory
requests. For the side channel, their simulation replaces the
Trojan program with an RSA server. This side-channel attack
simulated an RSA execution where every exponentiation exe-
cution suffers cache misses, resulting in memory fetches for
“1 ” bits in the secret key. By monitoring the network traf-
fic, the spy program observes that the network throughput is
highly related to the fraction of bits “1” in the RSA key.

Song et al. [138] discovered a security vulnerability con-
tained in the programmable routing table in a Hypertranport-
based processor-interconnect router on AMD processors [14].
With malicious modifications to the routing tables, Song et
al. demonstrated degradation of both latency and bandwidth
of the processor interconnect on an 8-node AMD server (the
Dell PowerEdge R815 system).

Irazoqui et al. [86] demonstrated that due to the cache
coherency maintained between multiple packages, variants
of the Flush+Reload attack can be applied between pack-
ages. They used the technique to attack both the AES
T-Tables and a square-and-multiply implementation of ElGa-
mal.

Lower-level buses, including PCI Express, can also be
exploited for DoS attacks. Richter et al. [132] showed that
by saturating hardware buffers, the latency to access a Gigabit
Ethernet network interface controller, from a separate VM,
increases more than sixfold.

Zhang et al. [180] demonstrated that the slow handling of
inter-processor interrupts (IPIs), together with their elevated
priority, allows for a cross-processor DoS attack.

5 Countermeasures

5.1 Constant-time techniques

A common approach to protecting cryptographic code is
to ensure that its behaviour is never data dependent: that
the sequence of cache accesses or branches, for example,
does not depend on either the key or the plaintext. This
approach is widespread in dealing with overall execution
time, as exploited in remote attacks, but is also being applied
to local contention-based channels. Bernstein [25] noted the
high degree of difficulty involved.

We look at the meaning of “sequence of cache acceses”
as an example of the complexities involved. The question
is at what resolution the sequence of accesses needs to be
independent of secret data. Clearly, if the sequence of cache
lines accessed depends on secret data, the program can leak
information through the cache. However, some code, e.g. the
“constant-time” implementation of modular exponentiation
in OpenSSL, can access different memory addresses within
a cache line, depending on the secret exponent. Brickell [32]
suggested not having secret-dependent memory access at
coarser than cache line granularity, hinting that such an
implementation would not leak secret data. However, Osvik
et al. [124] warned that processors may leak low-address-bit
information, i.e. the offset within a cache line. Bernstein and
Schwabe [26] demonstrated that under some circumstances
this can indeed happen on Intel processors. This question
has been recently resolved when Yarom et al. [171] demon-
strated that the OpenSSL implementation is vulnerable to the
CacheBleed attack.

Even a stronger form, where the sequence of memory
accesses does not depend on secret information, may not be
sufficient to prevent leaks. Coppens et al. [43] listed several
possible leaks, including instructions with data-dependent
execution times, register dependencies and data dependen-
cies through memory. No implementation is yet known to
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be vulnerable to side-channel attacks through these leaks.
Coppens et al. instead developed a compiler that automati-
cally eliminates control-flow dependencies on secret keys of
cryptographic algorithms (on x86).

To guide the design of constant-time code, several authors
have presented analysis tools and formal frameworks: Lan-
gley [101] modified the Valgrind [146] program analyser
to trace the flow of secret information and warn if it is
used in branches or as a memory index. Köpf et al. [99]
described a method for measuring an upper bound on the
amount of secret information that leaks from an implemen-
tation of a cryptographic algorithm through timing variations.
CacheAudit [48] extended their work to provide better
abstractions and a higher precision. FlowTracker [137] mod-
ified the LLVM compiler [102] to use information-flow
analysis for side channel leak detection.

Constant-time techniques are used extensively in the
design of the NaCl library [27], which is intended to avoid
many of the vulnerabilities discovered in OpenSSL.

For addressing the timing channel on floating-point opera-
tions, Andrysco et al. [16] designed a fix-point constant-time
math library, libfixedtimefixpoint. On the testing platform
(Intel Core i7 2635QM at 2.00GHz), the library performs
constant-time operations, which take longer than optimised
hardware instructions. Later, Rane et al. [131] presented
a compiler-based approach, by utilising SIMD lanes in
x86 SSE and SSE2 instruction sets to provide fixed-time
floating-point operations. Their key insight is that the latency
of a SIMD instruction is determined by the longest run-
ning path in the SIMD lanes. Their compiler pairs original
floating-point operations with dummy slow-running sub-
normal inputs. After the SIMD operations is executed,
the compiler only preserves the results of the authentic
inputs. Their evaluation shown a 0–1.5% timing varia-
tion of floating-point operations with different types of
inputs on the testing machine (i7-2600). This compiler-
based approach introduced 32.6x overhead on SPECfp2006
benchmarks.

The main drawback of the constant-time approach is that a
constant-time implementation on one hardware platform may
not perform constantly on another hardware platform. For
example, Cock et al. [41] demonstrated that the constant-time
fix for mitigating Lucky 13 attack (a remote side-channel
attack, [11]) in OpenSSL 1.0.1e still contains a side channel
on the ARM AM3358 platform.

5.1.1 Hardware support

One approach to avoiding vulnerable table lookups is to
provide constant-time hardware operations for important
cryptographic primitives, as suggested by Page [127]. The
x86 instruction set has now been extended in exactly this
fashion [66,67], which provides instruction support for AES

encryption, decryption, key expansion and all modes of oper-
ations. At current stage, Intel (from Westmere) [166], AMD
(from Bulldozer) [13], ARM (from V8-A) [19], SPARC
(from T4) [122] and IBM (from Power7+) [172] processor
architectures all support AES with instruction extensions.
Furthermore, Intel introduced PCLMULQDQ instruction
that is available from microarchitecture Westmere [69,70].
With the help from the PCLMULQDQ instruction, the AES
in Galois Counter Mode can be efficiently implemented using
the AES instruction extension.

5.1.2 Language-based approaches

In order to control the externally observable timing chan-
nels, language-based approaches invent specialised language
semantics with non-variant execution length, which require
a corresponding hardware design [175]. The solutions in this
category propose that timing channels should be handled at
both hardware level and software level.

5.2 Injecting noise

In theory, it should be possible to prevent the exploitation of
a timing channel without eliminating contention, by ensuring
that the attacker’s measurements contain so much noise as to
be essentially useless. This is the idea behind fuzzy time [72],
which injects noise into all events visible to a process (such
as pre-emptions and interrupt delivery), as a covert channel
countermeasure.

In a similar vein, Brickell et al. [33] suggested an
alternative AES implementation, including compacting, ran-
domising and preloading lookup tables. This introduced
noise to the cache footprint left by AES executions, thus
defending against cache-based timing attacks. As a result, the
distribution of AES execution times follows a Gaussian dis-
tribution over random plaintexts. These techniques incurred
100–120% performance overhead.

Wang and Lee [158] suggested the random permutation
cache (RPcache), which provides a randomised cache index-
ing scheme and protection attributes in every cache line. Each
process has a permutation table to store memory-to-cache
mappings, and each cache line contains an ID representing
its owner process. Cache lines with different IDs cannot evict
each other. Rather, the RPcache randomly selects a cache
set and evicts a cache line in that set. Simulation results
suggest a small (1%) performance hit in the SPEC2000
benchmark. Kong et al. [97] suggested an explicitly requested
RPCache implementation, just for sensitive data such as AES
tables. Simulations again suggest the potential for low over-
head.

Vattikonda et al. [151] modified the Xen hypervisor to
insert noise into the high-resolution time measurements
in VMs by modifying the values returned by the rdtsc
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instruction. Martin et al. [111] argued that timing chan-
nels can be prevented by making internal time sources
inaccurate. Consequently, they modified the implementa-
tion of the x86 rdtsc instruction so it stalls execution
until the end of a predefined epoch and then adds a ran-
dom number between zero and the size of the epoch,
thus fuzzing the time counter. In addition, they proposed
a hardware monitoring mechanism for detecting software
clocks, for example inter-thread communication through
shared variables. The paper presents statistical analysis
that demonstrates timing channel mitigation. However, the
effectiveness of this solution is based on two system
assumptions: that external events do not provide suffi-
cient resolution to efficiently measure microarchitecture
events and that their monitoring makes software clocks pro-
hibitive.

Liu and Lee [106] suggested that the demand-fetch policy
of a cache is a security vulnerability, which can be exploited
by reuse-based attacks that leverage previously accessed data
in a shared cache. To address these attacks, they designed
a cache with random replacement. On a cache miss, the
requested data are directly sent to processor without allo-
cating a cache line. Instead, the mechanism allocates lines
with randomised fetches within a configurable neighbour-
hood window of the missing memory line.

Zhang et al. [176] introduced a bystander VM for injecting
noise on the cross-VM L2-cache covert channel with a con-
figurable workload. With a continuous-time Markov process
to model the Prime+Probe-based cache covert channel, they
analysed the impact of bystander VMs on the error rate of
cache-based covert channels under the scheduling algorithm
used by Xen. They found that as long as the bystander VMs
only adjust their CPU time consumption, they do not sig-
nificantly impact cross-VM covert channel bandwidth. For
effectively introducing noise into the Prime+Probe chan-
nel, the bystander VMs must also modulate their working
sets and memory access rates.

However, noise injection is inefficient for obtaining high
security [41]. Although anti-correlated “noise” can in prin-
ciple completely close the channel, producing such compen-
sation is not possible in many circumstances. The amount
of actual (uncorrelated) noise required increases dramati-
cally with decreasing channel capacity. This significantly
degrades system performance and makes it infeasible to
reduce channel bandwidth by more than about two orders
of magnitude [41].

5.3 Enforcing determinism

As discussed in Sect. 2.3, it should be possible to elim-
inate timing channels by completely eliminating visible
timing variation. There are two existing solutions that attempt

this, virtual time (Sect. 5.3.1) and black-box mitigation
(Sect. 5.3.2).

5.3.1 Virtual time

The virtual time approach tries to completely eliminate
access to real time, providing only virtual clocks, whose
progress is completely deterministic, and independent of
the actions of vulnerable components. For example, Deter-
minator [23] provides a deterministic execution framework
for debugging concurrent programs. Aviram et al. [22]
repurposed Determinator to provide a virtual time cloud
computing environment. Ford [55] extended this model with
queues, to allow carefully scheduled IO with the outside
world, without importing real-time clocks. Wu et al. [164]
further extended the model with both internal and external
event sequences, producing a hypervisor-enforced determin-
istic execution system. It introduces the mitigation interval;
if this is 1 ms, the information leakage rate is theoretically
bounded at 1 Kb/s. They demonstrated that for the 1 ms
setting, CPU-bound applications were barely impacted com-
pared to executing on QEMU/KVM, while network-bound
applications experienced throughput degradation of up to
50%.

StopWatch [103] instead runs three replicas of a system,
and attempts to release externally visible events at the median
of the times determined by the replicas, virtualising the x86
time-stamp counter.

Because it virtualises both internally and externally vis-
ible events, complete system-time virtualisation is effective
against all types of timing channels, in principle. How-
ever, it cannot prevents cross-VM DoS attacks, as gen-
erating resource contentions will still be possible on a
shared platform. The first downside is that these systems
pay a heavy performance penalty. For StopWatch, latency
increases 2.8 times for network-intensive benchmarks and
2.3 times for computate-intensive benchmarks [103]. Sec-
ondly, systems such as Determinator [23] rely on custom-
written software and cannot easily support legacy applica-
tions.

Instruction-based scheduling (IBS) is a more limited form
of deterministic execution that simply attempts to prevent the
OS’s pre-emption tick providing a clock source to an attacker.
The idea is to use the CPU’s performance counters to generate
the pre-emption interrupt after a fixed number of instruc-
tions, ensuring that the attacker always completes the same
amount of work in every interval. Dunlap et al. [49] proposed
this as a debugging technique, and it was later incorporated
into Determinator [22]. Stefan et al. [139] suggested it as
an approach to eliminating timing channels. Cock et al. [41]
evaluated IBS on a range of platforms and reported that the
imprecise delivery of exceptions on modern CPUs negatively
affects the effectiveness of this technique. In order to sched-
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ule threads after executing a precise number of instructions,
the system has to configure the performance counters to fire
earlier than the target instruction count, then single-steps the
processor until the target is reached [50]. In Deterland [164],
single-stepping adds 30% overhead to CPU-bound bench-
marks for a 1-ms mitigation interval, and 5% for a 100-ms
interval.

5.3.2 Black-box mitigation

Instead of trying to synchronise all observable clocks with the
execution of individual processes, this approach attempts to
achieve determinism for the system as a whole, by controlling
the timing of externally visible events. It is thus only applica-
ble to remotely exploitable attacks that depend on variation in
system response time. This avoids much of the performance
cost of virtual time, and the thorny issue of trying to track
down all possible clocks available inside a system.

Köpf and Dürmuth [98] suggested bucketing, or quantis-
ing, response times, to allow an upper bound on information-
theoretic leakage to be calculated. Askarov et al. [21]
presented a practical approach to such a system, using expo-
nential back-off to provide a hard upper bound on the amount
that can ever be leaked. This work was later revised and
extended [174]. Cock et al. [41] showed that such a policy
could be efficiently implemented, using real-time schedul-
ing on seL4 to provide the required delays, in an approach
termed scheduled delivery (SD). SD was applied to mitigate
the Lucky 13 attack on OpenSSL TLS [11], with better per-
formance than the upstream constant-time implementation.

Braun et al. [31] suggested compiler directives that anno-
tate fixed-time functions. For such functions, the compiler
automatically generates code for temporal padding. The
padding includes a timing randomisation step that masks
timing leaks due to the limited temporal resolution of the
padding.

5.4 Partitioning time

Attacks which rely on either concurrent or consecutive access
to shared hardware can be approached by either providing
timesliced exclusive access (in the first case) or carefully
managing the transition between timeslices (in the second).

5.4.1 Cache flushing

The obvious solution to attacks based on persistent state
effects (e.g. in caches) is to flush on switches. Zhang and
Reiter [179] suggested flushing all local state, including BTB
and TLB. Godfrey and Zulkernine [60] suggested flushing
all levels of caches during VM switches in cloud computing,
when CPU switches security domains. There is obviously
a cost to be paid, however. Varadarajan et al. [149] bench-

marked the effect of flushing the L1 cache: They measured
an 8.4µs direct cost, and a substantial overall cost, resulting
in a 17% latency increase in the ping benchmark that issues
ping command at 1-ms interval. The experimental hardware
is a 6 core Intel Xeon E5645 processor.

Flushing the top-level cache is not unreasonable on a VM
switch. The sizes of L1 caches are relatively small (32 KiB on
x86 platforms), and the typical VM switch rates are low, e.g.
the credit scheduler in Xen normally makes scheduling deci-
sions every 30 ms [180]. Therefore, there is a low likelihood
of a newly scheduled VM finding any data or instructions hot
in the cache, which implies that the indirect cost (Sect. 2.2.1)
of flushing the L1 caches on a VM switch is negligible. For
the much larger lower-level caches, flushing is likely to lead
to significant performance degradation.

5.4.2 Lattice scheduling

Proposed by Denning [44], and implemented in the VAX/
VMM security kernel [73], lattice scheduling attempts to
amortise the cost of cache flushes on a context switch, by lim-
iting them to switches from sensitive partitions to untrusted
ones. In practice, this approach is limited to systems with
a hierarchical trust model, unlike the mutually distrusting
world of cloud computing. Cock [40] presented a verified
lattice scheduler for the domain-switched version of seL4.

5.4.3 Minimum timeslice

Some attacks, such as the Prime+Probe approach of Zhang
et al. [180], relied on the ability to frequently inspect the vic-
tim’s state by triggering pre-emptions. Enforcing a minimum
timeslice for the vulnerable component, as Varadarajan et al.
[149] suggested, prevents the attacker inspecting the state in
the middle of a sensitive operation, at the price of increased
latency. As this is a defence specific to one attack, it is likely
that it can be circumvented by more sophisticated attacks.

5.4.4 Networks-on-chip partitioning

To prevent building a covert channel by competing on on-
chip interconnects (Sect. 4.6.1), network capacity can be
dynamically allocated to domains by temporally partition-
ing arbitrators. Wang and Suh [155] provided a priority-based
solution for one-way information-flow systems, where infor-
mation is only allowed to flow from lower to higher security
levels. Their design assigns strict priority bounds to low-
security traffic, thus ensuring non-interference [61] from
high-security traffic.

Furthermore, time multiplexing shared network compo-
nents constitute a straightforward scheme for preventing
interference on network throughput, wherein the packets of
each security domain are only propagated during time periods

123



18 J Cryptogr Eng (2018) 8:1–27

allocated to that domain. Therefore, the latency and through-
put of each domain are independent of other domains. The
main disadvantage of this scheme is that latency scales with
the number of available domains, D, as each packet waits for
D − 1 cycles per hop [159]. An improved policy transfers
alternate packets from different domains, such that packets
are pipelined in each dimension on on-chip networks [159].

5.4.5 Memory controller partitioning

In order to prevent attacks that exploit contention in the mem-
ory controller [117], Wang et al. [156] suggested a static
time-division multiplexing of the controller, to reserve band-
width to each domain. Their hardware simulation results
suggest a 1.5% overhead on SPEC2006, but up to 150%
increase in latency, and a necessary drop in peak through-
put.

5.4.6 Execution leases

Tiwari et al. [141] suggested a hardware-level approach to
sharing execution resources between threads, leasing execu-
tion resources. A new hardware mechanism would guarantee
bounds on resource usage and side effects. After one lease
expires, a trusted entity obtains control, and any remaining
untrusted operations are expelled. Importantly, the prototype
CPU is an in-order, un-pipelined processor, containing hard-
ware for maintaining lease contexts. Further, the model does
not permit performance optimisations that introduce timing
variations, such as TLBs, branch predictors, making the sys-
tem inherently slow. Tiwari et al. [142] later proposed a
system based on this work with top-to-bottom information-
flow guarantees. The prototype system includes a Star-CPU,
a microkernel, and an I/O protocol. The microkernel contains
a simple scheduler for avionic systems with context switch-
ing cost of 37 cycles.

5.4.7 Kernel address space isolation

Gruss et al. [64] proposed isolating kernel form user address
space by using separated page directories for each, so switch-
ing context between user and kernel spaces includes switch-
ing the page directory. This technique is designed to mitigate
the timing attack on prefetch instructions (Sect. 4.4.2).

5.5 Partitioning hardware

Truly concurrent attacks can only be prevented by partition-
ing hardware resources among competing threads or cores.
The most visible target is the cache, and it has received the
bulk of the attention to date.

5.5.1 Disable hardware threading

Percival [129] advocated that Hyperthreading (Sect. 2.2.5)
should be disabled to prevent the attack he described. This
has since become common practice on public cloud services,
including Microsoft’s Azure [110]. This eliminates all attacks
that rely on hardware threading (Sects. 4.2.1, 4.3.1), at some
cost to throughput.

5.5.2 Disable page sharing

Because the Flush+Reload attack and its variations depend
on shared memory pages, preventing sharing mitigates the
attack. VMware Inc. [152] recommends disabling the trans-
parent page sharing feature [154] to protect against cross-VM
Flush+Reload attacks. CacheBar [182] prevents concur-
rent access to a shared pages by automatically detecting
such access and creating multiple copies. The scheme they
invented is called copy-on-access, which creates a copy of
a page while another security domain is trying to access on
that page.

5.5.3 Hardware cache partitions

Hardware-enforced cache partitions would provide a power-
ful mechanism against cache-based attacks. Percival [129]
suggested partitioning the L1 cache between threads to
eliminate the cache contention (Sect. 4.3.1). While some,
including Page [128], have proposed hardware designs, no
commercially available hardware provides this option.

Wang and Lee [158] suggested an alternative approach,
described as a partition-locked cache (PLcache). They aim
to provide hardware mechanisms to assign locking attributes
to every cache line, allowing sensitive data such as AES tables
to be selectively and temporarily locked into the cache.

A series of ARM processors support cache lockdown
through the L2 cache controller, such as L2C-310 cache con-
troller [20] on ARM Coretex A9 platforms.

Domnister et al. [46] suggested reserving for each hyper-
thread several cache lines in each cache set of the L1 cache.

Intel’s Cache Allocation Technology (CAT) provides
an implementation of a similar technique which prevents
processes from replacing the contents of some of the ways
in the LLC [80]. To defeat LLC cache attacks that conduct
Prime+Probe and Evict+Time techniques (Sects. 4.4.1
and 4.4.2), CATalyst [108] partitions the LLC into a hybrid
hardware and software managed cache. It uses CAT to cre-
ate two partitions in the LLC, a secure partition and a
non-secure partition. The secure partition only stores cache-
pinned secure pages, whereas the non-secure partition acts as
normal cache lines managed by hardware replacement algo-
rithms. To store secure data, a user-level program allocates
secure pages and preloads the data into the secure cache par-
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tition. As the secure data are locked in the LLC, the LLC
timing attacks caused by cache line conflicts are mitigated.
Liu et al. [108] demonstrated that the CATalyst is effective in
protecting square-and-multiply algorithm in GnuPG 1.4.13.
Furthermore, the system performance impact is insignificant,
an average slowdown of 0.7% for SPEC and 0.5% for PAR-
SEC.

The trend towards QoS features in hardware is en-
couraging—it may well be possible to repurpose these for
security, especially if the community is able to provide early
feedback to manufacturers, in order to influence the design
of these mechanisms. We return to this point in Sect. 6.

Colp et al. [42] used the support for locking specific cache
ways on ARM processors to protect encryption keys from
hardware probes, and this approach will also protect against
timing attacks.

5.5.4 Cache colouring

The cache colouring approach exploits set-associativity to
partition caches in software. Originally proposed for improv-
ing overall system performance [28,91] or performance of
real-time tasks [104] by reducing cache conflicts, cache
colouring has since been repurposed to protect against cache
timing channels.

Figure 2 (reproduced from Cock et al. [41]) demonstrates
how colouring operates, using as an example a cache of 2048
sets and a line size of 32 B on a processor with a 4 KiB
page size (e.g. the 1MiB 16-way associative L2 cache of the
Exynos4412 processor, featuring ARM Cortex A9 cores).

The bits that belong to both the cache selector and the
frame number are the colour bits—addresses (frames) that
differ in any of these bits can never collide in the cache. In
this example, the 5 least significant bits (4–0) of the physical
address index 32 B cache lines, while the next 11 bits (15–5)
maps a cache line to one of 2048 cache sets. The 20 most sig-
nificant bits (31–11) identify a 4 KiB physical frame. Physical
frames whose addresses diverge in any of these cache colour-
ing bits are not mapped to the same cache set and thus never
conflict. Cache colouring implementations divide memory
into coloured memory pools and allocate memory from dif-
ferent pools to isolated security domains.

Shi et al. [136] designed a dynamic cache colouring solu-
tion for protecting cryptographic algorithms with threads

Fig. 2 Cache colouring on the Exynos4412, showing colour bits 15–
12, where frame number and cache set selector overlap

running in the hypervisor, but did not demonstrate its effec-
tiveness against cache-based timing attacks.

StealthMem [92] implemented a limited form of colour-
ing, providing a small amount of coloured memory that is
guaranteed to not contend in the cache. The aim is to provide
stealth pages for storing security-sensitive data, such as the
S-boxes of AES encryption. StealthMem reserves differ-
ently coloured stealth pages for each core. It disallows the
usage of memory frames that have same colours as stealth
pages, or monitors access to those pages through what they
call the page table alert (PTA) scheme. This exploits the
cache replacement algorithm to pin stealth pages in the LLC,
much like the PLcache approach of Wang and Lee [158]
(Sect. 5.5.3).

Specifically, the PTA scheme assumes that the cache
implements a k-LRU replacement policy, where a miss
is guaranteed not to evict any of the k most recently
accessed lines. The authors experimentally determine the
implementation-specific value of k for the target proces-
sor (Xeon W3520). They reserve a small number of cache
colours and for each of these locks k page frames in the LLC.
This is achieved through the MMU, by ensuring that attempts
to access other pages of the reserved colours trigger a pro-
tection fault, which invokes StealthMem. Reserving cache
colours reduces the amount of cache available to applica-
tions, which results in a relatively small overhead for SPEC
2006 CPU, measured as 5.9% for StealthMem, and 7.2%
for PTA due to handling extra page faults. The overhead of
using stealth pages is 2–5% for three block ciphers, AES,
DES and Blowfish.

Godfrey [59] integrated cache colouring into Xen’s mem-
ory management module and demonstrated that cache colour-
ing completely closed a side channel between a pair of virtual
machines. Godfrey established that the cost of colouring is
roughly what would be expected given a smaller cache—a
50% performance cost for an Apache [17] macrobenchmark,
and no significant penalty for benchmarks with small work-
ing sets. One significant drawback of cache colouring is
the inability to use large pages. Many modern processors
support large pages (up to 1 GiB on x86), to reduce TLB pres-
sure. With large pages, there is less (frequently no) overlap
between frame number and cache-selector bits in the address,
reducing the number of available colours (often to one).

Cock et al. [41] evaluated the effectiveness of cache
colouring for eliminating cache-based covert channels. The
technique is more effective on cores with simpler structures
(iMX.31, AM3358 & DM3730), comparing against cores
with more complex structures (Exynos4412 & E6550). The
residual bandwidth in the latter cases was principally due to
TLB contention, which is solved by flushing the TLB on a
VM switch.

An emerging challenge is the move away from simple
direct-mapped assignment to cache sets. On recent Intel

123



20 J Cryptogr Eng (2018) 8:1–27

processors, the LLC is partitioned among cores, which are
connected by a ring bus. Locating the cache line for a
physical address is thus divided into two parts: address-
ing a cache block and addressing a set within that block.
Sandy Bridge and newer Intel microarchitectures apply a
hash function to locate blocks [77]. Without the knowl-
edge of the hash function, the number of available colours
is restricted by colours within a cache block [170]. Several
authors have reverse-engineered the hash function of multi-
ple processor models [74,76,84,112,170], supporting the use
of more colours; however, this may not be possible for future
CPUs.

5.5.5 Quasi-partitioning

Preventing the attacker from monopolising resources reduces
the contention and with it the effectiveness of side-channel
attacks. CacheBar [182] actively evicts memory contents
from the cache to ensure that protection domains only occupy
a limited number of ways in each cache set. CacheBar
allocates a budget per cache set to each security domain,
representing its cacheable allowance on that set. To record
occupancy, CacheBar maintains a least recently used queue
per security domain for a monitored cache set; only blocks
listed in the queue are mapped to the cache set. This is, essen-
tially, a software implementation of the countermeasure that
Domnister et al. [46] suggested.

5.5.6 Spatial network partitioning

Spatial network partitioning separates hardware components
used for transmitting network traffic of security domains,
where domains are located on disjoint subsets of cores on
a many-core system [155]. Although it eliminates network
interference, system resources may not be dynamically allo-
cated according to actual demands from domains. Therefore,
one part of the system may have excess network band-
width, while the rest of the system is suffering bandwidth
starvation.

5.5.7 Migrating VMs

To mitigate information leakage across co-resident VMs,
Nomad [116] implemented a migration-as-a-service cloud
computing service model that runs placement algorithm for
deployment model configured by cloud provider. Nomad
takes current and past VM assignments in the past epochs
as inputs, deciding the next placement. In order to minimise
the impact of service running on VMs, Nomad provides client
API allowing clients to identify non-relocatable VMs.

5.6 Auditing

A completely different approach to side-channel attacks and
one mandated by older standards [45] is auditing. Fiorin et
al. [53] designed a monitoring system for networks-on-chip
(Sect. 2.2.4), providing online data collection for bandwidth
consumption from entities. Based on traffic analyses, a sys-
tem can design a network security manager for detecting any
malicious usage of shared networks.

Zhang and Reiter [179] analysed the impact of periodi-
cally flushing the L1 instruction and data caches in kernel-
level threads and automatically switched to a defensive mode
once malicious pre-emption behaviour is detected [179]. This
approach is also able to audit attacks that generate frequent
system pre-emptions, such as that of Zhang et al. [180].

Tan et al. [140] proposed a hardware technique to defend
against branch prediction analysis attacks [5], which employs
a spy record table and an extra locking attribute in BTB
entries. The spy record table contains the occupancy ratio of
BTB entires. Once a suspicious thread is recognised as a spy,
BTB entries most recently used by other threads are locked,
meaning that they can only be replaced by their owner.

Both Gruss et al. [65] and Chiappetta et al. [39] sug-
gested using the performance monitoring unit (PMU) to
detect LLC side-channel attacks. Similarly, Zhang et al. [178]
presented a system to detect cross-VM cache-based side-
channel attacks using PMU counters to monitor cache miss
or hit rates while protected VM executing cryptographic
operations. They demonstrated the effectiveness on detecting
Prime+Probe and Flush+Reload cache attacks. More-
over, Zhang et al. [177] developed a mechanism to monitor
memory usage (cache misses, or bus bandwidth) of a pro-
gram to detect abnormal memory accessing behaviours that
can lead to DoS attacks. If the monitored memory usage dif-
fers significantly from the reference distribution, the system
flags the monitored program as potentially malicious.

Each of these auditing techniques employs monitoring to
identify activity consistent with an attack. Thus, auditing nec-
essarily suffers from the well-understood problems of false
positives (benign behaviour incorrectly identified as mali-
cious) and false negatives (malicious behaviour incorrectly
identified as benign). While statistical approaches may be
useful against new attacks whose behaviour, when viewed by
the monitor, is similar to existing attacks, monitoring cannot
defend against an attacker who modulates their attack specif-
ically to avoid being identified as malicious.

6 Discussion

6.1 Trend in attacks

There is a clear trend in attacks to go “down the stack”,
from highly local (thread- and core-level) shared resources
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to system-shared resources. This is not surprising: the high-
level shared resources are easiest to exploit, and as coun-
termeasures are deployed, attackers move to the next target.
We clearly observe this trend from published cache-based
side-channel attacks listed in Table 2.

At the beginning, attackers targeted shared L1 caches
on hardware threading enabled platforms [1,7,35,125,129,
143], which are mitigated by disabling hardware thread-
ing [129]. Disabling hardware threading also advocated by
cloud service providers, including Microsoft’s Azure [110].
Therefore, thread-level attacks seem to be pretty much done
to death, operators just disable hardware multithreading on
shared machines.

Meanwhile, attackers also explored L1 caches without
hardware threading support, by generating cache contentions
between processes [1,8,120,125,143] or VMs [180]. For
addressing these attacks, system designers proposed hard-
ware cache partitioning mechanism [129,158], RPcache [97,
158], random fill cache [106] and minimum timeslice tech-
niques [149]. Core-level attacks are still fairly easy, but also
easy to defend against. The simplest defence is not to share
cores, at least between different owners, which may not be
completely unreasonable in clouds. Even with sharing cores,
it should be easy to prevent sharing the L1 caches: given
the small size of the L1, and the coarse granularity of VM
“world” switches (typical rates are 33 Hz or less [180]), the
probability of any data being hot in the cache after a world
switch is very low, and thus the indirect cost (Sect. 2.2.1)
of flushing the L1 on a world switch is negligible. Similar
arguments hold for the TLB. The main obstacle here is that
on x86 hardware, which is presently the de facto standard
architecture in clouds, the architecture does not support a
selective flush of the L1. Flushing the complete cache hierar-
chy, even on the coarse granularity of world switches, incurs
a significant performance penalty. Hardware support for L1
flushes should be easy to add and would go a long way to
making core sharing safer. This would still have to be com-
plemented by preventing VMs from forcing frequent world
switches.

Later, attacks moved to LLC, the cache shared by
processes on a platform. High-resolution, cross-core attacks
through the LLC can be classified into two groups. Some
attacks rely on shared memory [24,63,71,81,105,147,168,
169,181], e.g. library code. While VMs do not directly share
memory, the hypervisor may artificially create such sharing
through memory de-duplication in order to increase mem-
ory utilisation [18,154]. This is a bad idea from the security
point of view, and hypervisor providers now advise against
it [153].

High-resolution LLC attacks that do not rely on shared
memory are a recent development [83,105,107,123]. Some
countermeasures against such attacks have been proposed,
for example hardware cache partitions (Sect. 5.5.3) and cache

colouring (Sect. 5.5.4). However, more work is required to
evaluate these countermeasures both in terms of protection
and in terms of performance overhead.

6.2 Challenges for defenders

Defences based on completely virtualising time are not
applicable in the cloud context—it is just not feasible to
deny access to real time to a cloud tenant [58]. Therefore,
any defence must be based on resource isolation.

Fundamentally, clouds represent a classical trade-off
between security and economics. It would be most secure
not to share hardware between distrusting tenants, but the
cloud business model is inherently based on the economic
benefits of sharing resources. With per-package core counts
increasing, the likelihood of an attacker being co-located on
the same processor with a VM worth attacking is increasing
too. All the attacker has to do is pay for some processing
time.

We already mentioned the lack of a selective L1 cache
flush on x86 as an impediment to reducing sharing. Cache
colouring is not applicable to the L1 cache, as it is virtually
indexed (Sect. 2.2.1) and on practically all recent proces-
sors is too small to colour (i.e. consists of a single colour).
Colouring could be applied to other caches. However, as,
by definition, successive pages are of different colour, this
implies that the hypervisor would have to assign physical
frames to VMs in a checkerboard fashion. This rules out the
use of large page mappings in the hypervisor (as well as the
TLB even if the guest uses large mappings). Large pages
significantly reduce TLB pressure and are therefore gener-
ally used by hypervisors to improve the performance of the
virtual memory system.

Memory controllers and interconnects have been used for
DoS attacks and covert channels, although no side-channel
attacks through the interconnect have been demonstrated
yet. Besides, time multiplexing (Sect. 5.4.4) and spatial net-
work partitioning (Sect. 5.5.6), techniques introduced by the
real-time community to improve temporal isolation, such as
budgets for bus time [173], could be used to prevent DoS
attacks. Side-channel attacks though the interconnect seem
very hard to execute, but, given the lack of effective defences,
are a promising target and might appear in the future.

Alternatively, by forcing contention on a shared resource
and measuring the throughput, attackers can detect the vic-
tim’s use of the resource, creating a side channel [171].

6.3 Future directions for countermeasures

Improved resource isolation between cloud tenants is not
only good for security, but also predictability of performance,
so something providers should be economically motivated to
pursue.
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For example, resource-freeing attacks provide the poten-
tial for a malicious tenant to improve its own performance
by bottlenecking another [148].

Fundamentally, improving isolation without undue perfor-
mance degradation will require improved hardware support.
At present, however, the opposite frequently happens: hard-
ware manufacturers are still too focussed on average-case
performance, and in the process of optimising the microar-
chitecture, frequently introduce new channels [41].

Existing hardware mechanisms that could be used often
lack some of the features to make them effective for security.
For example, the widely available PMU allows measuring
relevant events, but does not provide sufficient information on
whose execution triggered those events. For example, Inam
et al. [75] demonstrated a scheduling algorithm for equally
distributing bus bandwidth by monitoring bus usage through
PMU. However, due to limitations in the information pro-
vided by the PMU, the approach requires an interrupt for
every bus request, clearly impractical for a general-purpose
system.

Some help may come from developments that are designed
to support QoS isolation. For example, Intel recently intro-
duced CAT, which associates particular ways of the set-
associative cache with a class of service (COS) [78,80]. How-
ever, the size of the LLC introduces the upper bound on the
amount of data that can be concurrently locked in the cache.

7 Conclusions

Microarchitectural timing attacks can be used in cloud sce-
narios for purposes ranging from malicious performance
interference to stealing encryption keys. They have moved
from the easy targets (using hardware multithreading to
attack local resources) down the hierarchy to system-wide
shared resources, where they are harder (and less economi-
cal) to defend against.

We expect this trend to continue. The economic model of
clouds is fundamentally based on sharing of hardware, and
sharing is likely to increase with the growing number of cores
per processor package, ruling out most simple defences based
on reducing sharing. Satisfying both economics of clouds
and security will require improved hardware support for par-
titioning hardware.
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