
J Cryptogr Eng (2017) 7:199–211
DOI 10.1007/s13389-016-0132-7

REGULAR PAPER

Interdiction in practice—Hardware Trojan against a high-security
USB flash drive

Pawel Swierczynski1 · Marc Fyrbiak1 · Philipp Koppe1 · Amir Moradi1 ·
Christof Paar1,2

Received: 27 October 2015 / Accepted: 12 May 2016 / Published online: 7 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Aspart of the revelations about theNSAactivities,
the notion of interdiction has become known to the public:
the interception of deliveries to manipulate hardware in a
way that backdoors are introduced. Manipulations can occur
on the firmware or at hardware level. With respect to hard-
ware, FPGAs are particular interesting targets as they can be
altered by manipulating the corresponding bitstream which
configures the device. In this paper, we demonstrate the
first successful real-world FPGA hardware Trojan insertion
into a commercial product. On the target device, a FIPS-
140-2 level 2 certified USB flash drive from Kingston, the
user data are encrypted using AES-256 in XTS mode, and
the encryption/decryption is processed by an off-the-shelf
SRAM-based FPGA.Our investigation required two reverse-
engineering steps, related to the proprietary FPGA bitstream
and to the firmware of the underlying ARM CPU. In our
Trojan insertion scenario, the targeted USB flash drive is
intercepted before being delivered to the victim. The physi-
cal Trojan insertion requires themanipulation of the SPI flash
memory content, which contains the FPGA bitstream as well
as the ARM CPU code. The FPGA bitstream manipulation
alters the exploited AES-256 algorithm in a way that it turns
into a linear function which can be broken with 32 known
plaintext–ciphertext pairs. After the manipulated USB flash
drive has been used by the victim, the attacker is able to
obtain all user data from the ciphertexts. Our work indeed
highlights the security risks and especially the practical rele-
vance of bitstream modification attacks that became realistic
due to FPGA bitstream manipulations.

B Pawel Swierczynski
pawel.swierczynski@rub.de

1 Horst Görtz Institute for IT-Security, Ruhr-Universität,
Bochum, Germany

2 University of Massachusetts Amherst, Amherst, MA, USA

Keywords Hardware Trojan · Real-world attack · FPGA
security · AES

1 Introduction

In this section, we provide an overview of our research and
related previous works in the area of hardware Trojans and
Field- Programmable Gate Array (FPGA) security.

1.1 Motivation

As a part of the revelations by Edward Snowden, it became
known that the National Security Agency (NSA) allegedly
intercepts communication equipment during shipment in
order to install backdoors [28]. For instance, Glenn Green-
wald claims that firmware modifications have been made
in Cisco routers [12,18,27]. Related attacks can also be
launched in “weaker” settings, for instance, by an adversary
who replaces existing equipment with one that is backdoor-
equipped or by exploiting reprogramming/updatability fea-
tures to implant a backdoor. Other related attacks are
hardware Trojans installed by OEMs. It can be argued that
such attacks are particular worrisome because the entire
arsenal of security mechanism available to us, ranging
fromcryptographic primitives over protocols to sophisticated
access control and anti-malware measures, can be invali-
dated if the underlying hardware is manipulated in a targeted
way. Despite the extensive public discussions about alleged
manipulations by British, U.S. and other intelligence agen-
cies, the technical details and feasibilities of the required
manipulations are very much unclear. Even in the research
literature most hardware Trojans are implemented on high
level (e.g., King et al. [16]) and thus assume an attacker at
the system design phase [15,24].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-016-0132-7&domain=pdf

200 J Cryptogr Eng (2017) 7:199–211

1.2 Contribution

The goal of the contribution at hand is to provide a case study
on how a commercial product, which supposedly provides
high security, can be weakened by meaningful low-level
manipulations of an existing FPGA design. To the best of
our knowledge, this is the first time that it is being demon-
strated that a bitstream modification of an FPGA can have
severe impacts on the system security of a real-world prod-
uct. We manipulated the unknown and proprietary Xilinx
FPGA bitstream of a FIPS-140-2 level 2 certified device.
This required several steps including the bitstreamfile format
reverse-engineering, Intellectual Property (IP) core analysis,
and a meaningful modification of the hardware configura-
tion.

Our target device is a Data Traveler 5000, an overall FIPS-
140-2 level 2 certified1 Universal Serial Bus (USB) flash
drive from Kingston. It utilizes a Xilinx FPGA for high-
speed encryption and decryption of the stored user data.
As indicated before, we implant a hardware Trojan through
manipulating the proprietary bitstreamof the FPGA resulting
in a maliciously altered AES-256 IP core that is susceptible
to cryptanalysis.

By the underlying adversary model, it is assumed that
the adversary can provide a manipulated USB flash drive to
the victim. For accessing the (seemingly strongly encrypted)
user data, the adversary can obtain the device by stealing
it from the victim. Alternatively, it is also imaginable that a
covert, remote channel can be implanted in the target system.
Due to our manipulations, the adversary can easily recover
all data from the flash drive. It seems highly likely that the
attack remains undetected, because the cryptographic layer is
entirely hidden from the user. Similar attacks are possible in
all settings where encryption and decryption are performed
by the same entity, e.g., hard disk encryption or encryption
in the cloud.

1.3 Related work

Two lines of research, which have been treated mainly sep-
arately so far, are particularly relevant to our contribution,
i.e., FPGA security and hardware Trojans. FPGAs are repro-
grammable hardware devices which are used in a wide
spectrum of applications, e.g., network routers, data cen-
ters, automotive systems as well as consumer electronics and
security systems. In 2010, more than 4 billion devices were
shipped worldwide [19]. Surprisingly, many of these appli-
cations are security sensitive; thus, modifications of designs
exhibit a crucial threat to real-world systems. Despite the
large body of FPGA security research over the past two
decades, cf. [10], the issue of maliciously manipulating a

1 Many categories even fulfill the qualitative security level 3, cf. [4].

commercial and proprietary third-party FPGA design—with
the goal of implanting a Trojan that weakens the system
security of a commercial high-security device—has never
been addressed to the best of our knowledge. SRAM-based
FPGAs, for which the configuration bitstream is stored in
external (flash) memory, dominate the industry. Due to its
volatility, SRAM-based FPGAs have to be re-configured at
every power-up. Hence, in a scenario where an adversary
can make changes to the external memory chip, the inser-
tion of hardware Trojans becomes a possible attack vector.
It is known for long time that an FPGA bitstream manipula-
tion is applicable, but the complexity of maliciously altering
the given hardware resources of a third-party FPGA config-
uration has not been addressed in practice. However, from
an attacker’s point of view, the malicious manipulation of a
third-party FPGA bitstream offers several practical hurdles
that must be overcome. Among the main problems is the
proprietary bitstream format that obfuscates the encoding of
the FPGA configuration: There is no support for parsing the
bitstream file to a human-readable netlist, i.e., the internal
FPGA configuration cannot be explored. However, previ-
ous works have shown that Xilinx’ proprietary bitstream file
format can be reverse-engineered back to the netlist represen-
tation up to a certain extent [7,26,30]. In general, it seems to
be a safe assumption that a determined attacker can reverse-
engineer all (or at least the relevant) parts of the netlist from
a given third-party bitstream. As the next crucial steps, the
adversary must detect and manipulate the hardware design.
To the best of our knowledge, the only publicly reported
detection and malicious manipulation of cryptographic algo-
rithms targeting a third-party bitstream is by Swierczynski
et al. [29], which is also the basis of our work. The related
work by Chakraborty et al. [8] demonstrated the accelerated
aging process of an FPGA by merging a ring-oscillator cir-
cuitry into an existing bitstream. Furthermore, the presented
attack cannot change the existing parts (described as “Type
1 Trojan” in their work, e.g., the relevant parts of a crypto-
graphic algorithm or access control mechanism) and hence
is not applicable to undermine the system security of our
targeted device. Thus, we cover and demonstrate the theo-
retically described “Type 2 Trojan” defined by Charkaborty
et al. [8]. Such Trojans are able to alter the existing hard-
ware resources and expectedly require more analysis of the
design.

Another related work was done by Aldaya et al. [5]. The
authors demonstrated a key recovery attack for all AES key
sizes by tamperingT-boxeswhich are stored in the blockRam
(BRAM) of Xilinx FPGAs. It is a ciphertext-only attack, and
it was demonstrated that various previously proposed FPGA-
based AES implementations are vulnerable to their proposed
method.

One other practical hurdle for injecting a Trojan into an
FPGA bitstream is an encrypted bitstream that ensures the

123

J Cryptogr Eng (2017) 7:199–211 201

integrity and confidentially of a design. The two market
leaders Xilinx and Altera both provide bitstream encryp-
tion schemes to prevent IP theft and the manipulation of the
proprietary bitstream. Nevertheless, it has been shown that
those encryption schemes can be broken by means of side-
channel analysis. Once these attacks are pre-engineered, this
countermeasure can be broken in approximately less than
one day, cf. the works of Moradi et al. [21–23]. In these
attacks, the power consumption can be exploited during the
encryption/decryption process to reveal the cryptographic
keys under which the bitstream is encrypted. Subsequently,
the bitstream can be decrypted, modified, and re-encrypted.
Thus, current bitstream encryption mechanisms only pro-
vide low additional security against a determined adversary
and would not hinder us to perform our presented bitstream
modification attack for the most available FPGA device fam-
ilies.

Another relevant strand of research is the hardware Tro-
jan. Malicious hardware manipulations, aka Trojans, have
come in the spotlight of the scientific community after a
report by the US DoD in 2005 [3]. A general taxonomy
for Trojan insertion, functionality, and activation was intro-
duced by Karri et al. [15]. Besides theoretical descriptions
of hardware Trojans, the majority of research focused on
the detection of malicious circuits. An overview of hard-
ware Trojan detection approaches and their inherent problem
of coverage is presented by Narasimhan et al. [24]. There
are only very few research reports that address the design
and implementation aspects of hardware Trojans. Most
hardware Trojans (FPGAs and ASICs) from the academic
literature are implemented using high-level (register transfer
level) tools and hence assume a different, and considerably
stronger attacker model—namely Trojan insertion during
system design—compared to our low-level Trojan inser-
tion.

In the area of hardwareTrojans, FPGAs constitute an inter-
esting special case because an attacker can accomplish a
hardware modification by altering the deployed bitstream
prior to the FPGA power-up. The bitstream contains the
configuration rules for programmable logic components and
programmable interconnections. One can agree that it is
arguablewhether FPGATrojans are “true” hardwareTrojans.
On the other hand, the bitstream controls the configuration of
all hardware elements inside the FPGA, and attacks as shown
in this paper lead to an actual change in the hardware config-
uration. Thus, even though they represent a corner case, we
believe it is justified to classify FPGA Trojans as hardware
Trojans.

It should be noted that our strategy is considerably differ-
ent when compared to the BadUSB attack presented by Nohl
et al. [25]. In our settings, we needed to bypass the security
mechanisms of a protected and special-purpose high-security
USB flash drive to be able to alter the existing cryptographic

circuitry of a proprietary third-party FPGA design. Com-
pared to our contribution, the BadUSB attack mainly targets
the reprogramming of unprotected low-cost USB peripherals
that can distribute software-based malware, e.g., by emu-
lating a keyboard device. Hence, the BadUSB attack is not
related to the given and less explored threats of FPGA hard-
ware Trojans.

2 Proceeding of inserting an FPGA Trojan

In the following, we assume that the attacker is able to inter-
cept a device during the shipping delivery before it arrives
at the actual end user. As indicated before, this is not an
imaginary scenario as according to the Edward Snowden
documents it is known as interdiction [28]. Subsequently,
we present a method of how to explore third-party FPGA
bitstreams.

2.1 Attack scenario: interdiction

The process of interdiction is illustrated by Fig. 1. Ordered
products (e.g., an USB flash drive) of an end user are secretly
intercepted by an intelligence service during the shipment.
The target device is modified or replaced by a malicious ver-
sion, e.g., one with a backdoor. The compromised device is
then delivered to the end user. Intelligence agencies can sub-
sequently exploit the firmware or hardware manipulation.

According to the Snowden revelations, hardware Trojans
are placed, e.g., in monitor or keyboard cables with hidden
wireless transmitters, allowing for video and key logging
[28]. Also, it can be assumed that a Personal Computer (PC)
malware can be distributed with the help of a compromised
firmware of an embedded device as recently demonstrated
by Nohl et al. [25]. This can have severe impacts such as an
unwanted secret remote access by a malicious third party or
decryption of user data on physical access.

Normal Shipment

Intercepted Shipment

Order

End
User

Fig. 1 Interdiction attack conducted by intelligence services

123

202 J Cryptogr Eng (2017) 7:199–211

It is relatively easy to alter the firmware of microcontrollers,
ARM CPUs, or other similar platforms if no readout protec-
tion is given or no self-tests are utilized.

In contrast, altering hardware such as an Application-
Specific Integrated Circuit (ASIC) is a highly complex
procedure. Recently, Becker et al. [6] demonstrated how a
malicious factory can insert a hardware Trojan by chang-
ing the dopant polarity of existing transistors in an ASIC.
However, this requires a different and considerably stronger
attacker scenario than the one shown in Fig. 1, because the
modification takes place during the manufacturing process.
This is a time-consuming, difficult, and expensive task and
therefore less practical.

On the contrary, at first glance, attacking an FPGA also
seems to be similarly challenging because the bitstream file
is proprietary and no tools are publicly available that con-
vert the bitstream back to a netlist (for a recent scientific
work, see [9]). However, the recent work [29] has shown that
a bitstream modification attack may indeed be successfully
conducted with realistic efforts depending on the realization
of the FPGA design.

In our case, we conducted the scenario of Fig. 1 bymanip-
ulating the bitstreamof an FPGAcontained in a high-security
USB flash drive that utilizes strong cryptography to protect
user data. After the manipulated USB flash drive has been
forwarded to and utilized for a certain amount of time by the
end user, the attacker is able to obtain all user data.

2.2 Attack scenario: exploitation and reconfigurability

Wewant to highlight that interdiction is not the only realistic
scenario for implanting an FPGA hardware Trojan. Mod-
ern embedded systems provide a remote firmware update
mechanism to allow changes and improvements after the
development phase. Such functionality exhibits an attractive
target for an attacker to undermine the system security by
means of exploits or logical flaws in the update mechanism.
Thus, an attacker may remotely implant an FPGA hardware
Trojan. To sum up, in several settings an attacker must not
necessarily have physical access to the target device.

2.3 Exploring third-party FPGA designs

Onemajor hurdle of altering third-party FPGAdesigns is due
to the proprietary bitstream file. Without any knowledge of
the bitstream encoding, an adversary cannot analyze a third-
party FPGA bitstream as the hardware configuration remains
a black box for him/her. Therefore, the adversary is not able
to replace the configuration of any hardware components in
a meaningful way. Thus, the first important prerequisite is
to learn the configuration from the proprietary bitstream. As
mentioned above, previous works [7,26,30] have shown that
the bitstream encoding of several Xilinx FPGAs can be (par-

Place and route

Create bitstream
and learn

bitstream encoding

Create circuitry
(high-level)

Improve
detec�on
methods

Extrac�ng bitstream informa�on

Observe
configura�on

(low-level)

Detec�on and maniupla�on

Apply
detec�on
methods

3rd-party
bitstream

no
 su

cc
es

s

success

Replace
logic

read

writeModified
3rd-party
bitstream

1

2

3

4

Fig. 2 Strategy of partially replacing an FPGA configuration

tially) reverse-engineered. Once themeaning of the bitstream
encoding is revealed, an attacker can translate the bitstream to
a human-readable netlist that serves for further analysis. This
netlist contains all information of how Configurable Logic
Block (CLBs), Input Output Block (IOBs), Digital Signal
Processing (DSPs), or BRAMs are configured and intercon-
nected.

The second challenging hurdle is the detection of (com-
binatorial) logic within a large and complex circuitry. The
detection is conducted at a very low level since the circuitry
can be build by thousands of lookup table (LUTs) or flip
flop (FFs), which are interconnected by millions of wires
along the FPGA grid. As long as it is unclear to the adver-
sary how all those low-level elements (LUTs, FFs, wires,
etc.) construct a circuitry and as long as he/she has no access
to more information (e.g., the corresponding VHDL file),
it is unlikely that he/she can successfully detect and replace
parts of the logic. During a profiling phase, which only needs
to be conducted once per FPGA device, the adversary cre-
ates and observes different variants of how specific functions
are commonly synthesized, placed, and routed in the target
FPGA grid (low-level device description).
Once this investigation is conducted, the adversary knows
how to detect specific circuitry from a given hardware con-
figuration. If the relevant bitstream encoding part is unknown
to the adversary, he/she can learn the bitstream encoding
of a reference circuitry by creating and comparing the cor-
responding bitstreams of all possible configurations. This
strategy is illustrated in Fig. 2.

123

J Cryptogr Eng (2017) 7:199–211 203

Once pre-engineered, the attack itself can be conducted
within approximately one day. Hence, FPGAs should not
be used as security device or trust anchor in a commercial
product unless the bitstream integrity is not ensured.

3 Real-world target device

To demonstrate our FPGA Trojan insertion, we selected
the Kingston DataTraveler 5000 [17] as the target, which
is a publicly available commercial USB flash drive with
strong focus on data security. This target device is overall
FIPS-140-2 level 2 certified [4]. It uses Suite B [2] crypto-
graphic algorithms, in particular AES-256, SHA-384, and
Elliptic Curve Cryptography (ECC). All user data on our
targeted USB drive are protected by an AES-256 in XEX-
based Tweaked-codebook with ciphertext Stealing (XTS)
mode. A PC software establishes a secured communication
channel to the USB flash drive and enforces strong user pass-
words.

Due to the FIPS-140 level 2 certification, the device has to
fulfill certain requirements of tamper resistance on the phys-
ical, hardware and software levels as well as on detecting
physical alterations. The Printed Circuit Board (PCB) of the
Kingston DataTraveler 5000 is protected with a titanium-
coated, stainless-steel casing and is surrounded by epoxy
resin to prevent the undesired access to its internal hardware
components.

3.1 Initial steps and authentication process

When plugging the USB flash drive into a USB port for the
first time, an unprotected partition drive is mounted making
the vendor’s PC software available to the user. Meanwhile,
in the background, this software is copied (only once) to a
temporary path from which it is always executed, c.f., the
upper part of Fig. 6.

In an initial step, the end user needs to set a password.
Afterward, the user must be authenticated to the device using
the previously-set password. This means that the key materi-
als must be somewhere securely stored, which is commonly
a multiple-hashed and salted password.

On every successful user authentication (mainly per-
formed by theARMCPU and the PC software), the protected
partition drive is mounted allowing access to the user data.
Any data written to the unlocked partition is encrypted with
AES by the Xilinx FPGA and the corresponding ciphertexts
are written into the sectors of the micro- SD card as indicated
in Fig. 6.

When unplugging the USB flash drive and for the case
that an adversary has stolen this device, he/she is not able to
access the user datawithout the knowledge of the correspond-
ing password. According to [17], after 10 wrong password

attempts, the user data are irrevocably erased to prevent an
attacker from conducting successful brute-force attempts.

3.2 Physical attack—Revealing the FPGA bitstream

To conduct an FPGA hardware Trojan insertion, we need to
have access to the bitstream. Thus, in the first step we were
able to remove the epoxy resin. Indeed, this procedure was
much easier than expected. We locally heated up the epoxy
resin to 200◦ C (by a hot-air soldering station) turning it to a
soft cover and removed the desired parts by means of a sharp
instrument, e.g., a tiny screwdriver (see Fig. 3).

By soldering out all the components, exploring the double-
sided PCB and tracing the wires, we detected that an ARM
CPU configures the Xilinx FPGA through an 8-bit bus. We
also identified certain points on the PCB by which we can
access each bit of the aforementioned configuration bus.
Therefore, we partially removed the epoxy resin of another
operating identical target (USB flash drive) to access these
points and then monitored this 8-bit bus during the power-up
(by plugging the target into a PC USB port) and recorded
the bitstream sent by the ARM CPU (cf., Fig. 4). Note that
SRAM-based FPGAs must be configured at each power-up.
By repeating the same process on several power-ups as well
as on other identical targets, we could confirm the validity
of the revealed bitstream and its consistency for all targets.
We should emphasize that the header of the bitstream iden-
tified the type and the part number of the underlying FPGA
matched with the soldered-out component.

We also identified an Serial Peripheral Interface Bus (SPI)
flash among the components of the PCB.Aswehave soldered
out all the components, we could easily read out the content
of the SPI flash. Since such components are commonly used
as standalone nonvolatile memory, no readout protection is
usually integrated. At first glance, it became clear that the

Fig. 3 Epoxy removal of Kingston DT 5000 with screwdriver

123

204 J Cryptogr Eng (2017) 7:199–211

Fig. 4 Eavesdropping the bitstream of Kingston DT 5000 with opened
case

Unused
0xFF ... FF

Unencrypted
FPGA Bitstream

Testvectors

Security Header Fields

2nd ARM Image

Unused
0xFF ... FF

1st ARM Image

0xFFFFF

0x6FA00

0x2A400

0x28B78

0x2A200

0x10000

0x048C0

0x00000

Fig. 5 Address space layout of the SPI flash

SPI flash contains the main ARM firmware (second ARM
image). We also found another image (first ARM image)
initializing the necessary peripherals of the microcontroller.
Furthermore, we identified that the bitstream, which we have
revealed bymonitoring the configuration bus, has been stored
in the SPI flash (cf., Fig. 5).

Motivated by these findings, we continued to analyze all
other components of the USB flash drive and thus describe
our results in the following.

3.3 Overview and component details

Based on our accomplishments described above, we could
identify the following main components placed on the
double-sided PCB:

FPGA
device

ARM
ProcessorSPI flash

PCB

ARM code

FPGA
bitstream

Micro SD
Card (2GB)

1 MB

HSM

Configura�on Encrypt/Decrypt

SPI
r/w

Self-
tests

Secure
USB

channel

PC So�ware

DLL file

encrypted

User Password

AES

AES

AES

Fig. 6 Overview of revealed circuit of our target device

– NXPLPC3131with embeddedARM926EJ-SCPUoper-
ating at 180MHz

– Xilinx Spartan-3E (XC3S500E) FPGA
– HSM from SPYRUS (Rosetta Micro Series II) providing
ECDH, DSA, RSA, DES, 3-DES, AES, SHA-1, etc.

– 2GB Transcend Micro-SD card (larger versions also
available)

– 1MB (AT26DF081A) SPI flash

We revealed the layout of the circuit through reverse-
engineering. The whole circuit is depicted in Fig. 6. This
step was conducted by tracing the data buses of the PCB
and by decompiling the PC software as well as the identi-
fied ARMfirmware. Both executables were decompiled with
Hex-Rays [1]. The resulting source code served for further
reverse-engineering.

Themain task of the identified ARMCPU (master device)
is to handle the user authentication, while the Xilinx FPGA
(slave device) is mainly responsible for the user data encryp-
tion and decryption. It should be noted that the FPGA is also
partially involved in the authentication process and exhibits
our main target for manipulation. We could not confirm the
key storage location, but we assume that the key materials
are securely stored in the Hardware Security Module (HSM)
(c.f., Fig. 6). As we demonstrate in this paper, we need nei-
ther any access to the key materials nor any knowledge of the
key derivation function to be able to decrypt sensitive user
data.

As stated before, both images (ARMCPUcode and FPGA
bitstream) were discovered in the SPI flash that are loaded
and executed during the power-up of the USB flash drive.

3.4 Unlinking FPGA Trojan from the authentication
process

During our FPGATrojan insertion,we identified severalAES
cores, as shown in Fig. 6:

123

J Cryptogr Eng (2017) 7:199–211 205

Fig. 7 User authentication
(dashed) and user data (solid)
dependencies before
modification

DLL

FPGA

ARM
AES

AES

AES User
data

1. AES core in the PC Software: used during user authenti-
cation.

2. AES core in the ARM code: used during user authentica-
tion.

3. AES core in the FPGA: used during user authentication
(partially) aswell as for encrypting user data at high speed
(main purpose).

If only the functionality of the FPGA AES core is manipu-
lated, the target device would not operate properly anymore
because all three AES cores need to be consistent due to the
identified authentication dependencies. To be more precise,
all three AES cores are involved in the same authentication
process.

As our goal is to insert a hardware Trojan by manipulat-
ing the AES core of the FPGA, we first needed to unlink
the dependency (of the AES cores) between the ARM CPU
and the Xilinx FPGA (cf., Fig. 7). Therefore, we eliminated
this dependency by altering parts of the ARM firmware, but
we realized that any modification is detected by an integrity
check.We identified several self-tests that are conducted—by
the ARM CPU—on every power-up of the USB flash drive.

Further analyses revealed the presence of test vectors.
They are used to validate the correctness of the utilized
cryptography within the system. The utilized self-tests are
explained in Sect. 6.1 in more detail. In Sect. 6.2, we
demonstrate how to disable them and how to unlink the afore-
mentioned dependencies.

To sum up, our intended attack is performed using the
following steps:

1. Identify and disable the self-tests,
2. Unlink the AES dependency between the ARM and

FPGA, and
3. Patch (reprogram) the FPGA bitstream meaningfully.

Figures 7 and 8 illustrate the impact of these steps. As
can be seen, canceling the dependency allows us to alter the
AES core and add an FPGA Trojan. The details of how we
could successfully alter the FPGAbitstream to realize a hard-
ware Trojan are presented in Sect. 4. Below, we discuss why
modifying a bitstream is more elegant for planting an FPGA
Trojan than replacing the whole bitstream.

Fig. 8 User authentication
(dashed) and data (solid)
dependencies after modification

DLL

FPGA
Trojan

ARM
AES

AES

AES User
data

3.5 Modifying bitstream vs. replacing whole bitstream

Wewant to pinpoint that replacing the completeFPGAdesign
to insert a Trojan does not necessarily mean that an attack
is less complicated to be performed. Replacing the whole
FPGA bitstream by a completely new design is a more
challenging task. The attacker would need to further reverse-
engineer and fully understand the whole FPGA environment
(ARM code, data buses, protocols, etc.) and re-implement all
functions to ensure the system’s compatibility. It even turned
out to be the easier and faster approach, since wewere able to
modify this third-party IP core without the need to reverse-
engineer or modify any part of the routing.

Thus, we only focus on detecting and replacing the rel-
evant parts of the utilized FPGA design. By doing so, we
secretly insert a stealth FPGA Trojan that turns the AES
encryption and decryption modules into certain compatible
weak functions (c.f., Sect. 5).

3.6 Manipulation—Master vs. slave

To be fair, on one hand the Kingston DataTraveler 5000 is
not the best target device to demonstrate an FPGA hardware
Trojan insertion because the embedded ARM CPU acts as
the master device containing all control logic. The FPGA
is merely used as an accelerator for cryptographic algo-
rithms. In order to preserve the functionality of the USB flash
drive with an active FPGA hardware Trojan the ARM CPU
firmware—as previously explained—has to be customized
too, i.e., the integrity check of the ARM CPU code needs to
be disabled (explained in Sect. 6). At this point, the attacker
can alter the firmware to not encrypt the user data at all, turn-
ing the device into a nonsecure drive accessible to everyone.
As another option, the attacker can secretly store the encryp-
tion keywhichwould result in a conventional software-based
embedded Trojan.

On the other hand, there are solutions which contain
only an FPGA used as the master device [11]. Conventional
software-based embedded Trojans are not applicable in those
systems.Our attack is a proof of concept that FPGAhardware
Trojans are practical threats for the FPGA-based systems
where no software Trojan can be inserted. Our attack also
highlights the necessity of embedded countermeasures on
such systems to detect and defeat FPGA hardware Trojans.

123

206 J Cryptogr Eng (2017) 7:199–211

4 Building the FPGA Trojan

In this section, we present the information which can be
extracted from the given bitstream file followed by our con-
ducted modification on the AES-256 core. The impact of
this modification—considering the utilized XTS mode of
operation—is described in Sect. 5.

4.1 Analysis of the extracted bitstream

Based on themethod presented in Sect. 2, we could dump and
analyze the initial memory configuration of each block RAM
of the extracted bitstream. The Spartan-3E FPGA contains
up to 20 block RAMs. We figured out that only 10 out of
20 block RAMs are used by the extracted FPGA design. We
observed that the block RAMs are organized in a byte-wise
manner fitting well to the structure of the AES state.

Our analysis revealed the presence of multiple instances
of certain precomputed substitution tables. After investi-
gating the extracted data in more detail, we obtained a
structure for each table. We refer to the four identified tables
whose details are depicted in Table 1. Each substitution
table stores 256 entries that can be accessed using the input
x ∈ {0, 1, ..., 255}. Our analysis revealed that the following
precomputed substitution tables are stored in several block
RAMs:

˜T (x) = 01 ◦ S(x)||01 ◦ S−1(x)||02 ◦ S(x)||03 ◦ S(x)
MC−1(x) = 09 ◦ x ||11 ◦ x ||13 ◦ x ||14 ◦ x

S(x) = S(x)
S−1(x) = S−1(x)

In other words, we identified the tables which realize
the inverse MixColumns transformation MC−1(·), the Sub-
Bytes S(·) and inverse SubBytes S−1(·). However, ˜T (·) is not
equivalent to any T-box (T0, . . . , T3), cf., [14], but exhibits
a very similar structure: One entry includes the S-box, the
inverse S-box, and the S-box multiplied by two and three
(02 ◦ S(·) and 03 ◦ S(·)). In particular, ˜T (·) combines the
SubBytes andMixColumns transformations and thus has the
same purpose as one T-box, but one remarkable difference
is the storage of the inverse S-box S−1(·). Note that all four
T-boxes T0, . . . , T3 can be easily derived from ˜T .

4.2 Modifying the third-party FPGA design

Our main goal is to replace all AES S-boxes to the identity
function (cf., Sect. 5). For this purpose, we have to replace
all identified lookup table instances of Table 1. We need to
replace all S-box values such that S(x) := x and the inverse
S-box to S−1(x) := x . This is essential in order to synchro-
nize the encryption and decryption functions. Hence, it leads
to the following precomputation rules for x ∈ {0, 1, ..., 255}:

Table 1 Identified substitution tables stored in block RAM
Detected tables Identified block RAM Data

000: S(00)||S−1(00)||02 ◦ S(00)||03 ◦ S(00)
16 ˜T (x) instances 001: S(01)||S−1(01)||02 ◦ S(01)||03 ◦ S(01)
(1024 bytes each) . . .

0FF: S(FF)||S−1(FF)||02 ◦ S(FF)||03 ◦ S(FF)
000: 09 ◦ 00||11 ◦ 00||13 ◦ 00||14 ◦ 00

16 MC−1(x) instances 001: 09 ◦ 01||11 ◦ 01||13 ◦ 01||14 ◦ 01
(1024 bytes each) . . .

0FF: 09 ◦ FF||11 ◦ FF||13 ◦ FF||14 ◦ FF
000: S(00)

4 S(x) instances 001: S(01)
(256 bytes each) . . .

0FF: S(FF)
000: S−1(00)

4 S−1(x) instances 001: S−1(01)
(256 bytes each) . . .

0FF: S−1(FF)

˜T (x) = 01 ◦ x ||01 ◦ x ||02 ◦ x ||03 ◦ x
MC−1(x) = 09 ◦ x ||11 ◦ x ||13 ◦ x ||14 ◦ x

S(x) = x
S−1(x) = x

Note that the modifications must be applied on all detected
instances of the look-up tables in the bitstream file (c.f.,
Table 1).

In the next step, we updated the SPI flash with this new
malicious bitstream and powered up the USB flash drive by
plugging it into the PC. We could observe that the FPGA
modification is successful as the encryption and decryption
still work. This is true only when all instances of the rele-
vant substitution tables (S-box and its inverse) are modified
appropriately.

From now on, we consider that the malicious AES core is
running on the FPGA. Hence, in the next section, we explain
in the next section how this Trojan insertion can be exploited
even though a complex mode of operation (AES-256 in XTS
mode) is used by our altered FPGA design.

5 XTS-AES manipulation and plaintext recovery

In this section, the cryptographic block cipher mode of oper-
ation XTS is presented. As already indicated in the previous
sections, our target device uses a sector-based disk encryption
of user data. Subsequently, the modification of the underly-
ing AES is described. We also express how this malicious
modification can be exploited to recover sensitive user data
encrypted by the weakened XTS-AES mode.

The tweakable block cipher XTS-AES is standardized in
IEEE 1619-2007 [13] and used by several disk-encryption
tools, e.g., TrueCrypt and dm-crypt as well as commercial
devices such as our targeted USB flash drive. Before describ-
ing the details of the algorithm, general remarks regarding
the memory organization are given in the following.

123

J Cryptogr Eng (2017) 7:199–211 207

AES ENC
⊗

AES ENC

⊕

⊕

k2

i αj p

k1

c

Fig. 9 XTS-AES encryption block digram overview

Each sector (usually 512 bytes of memory) is assigned
consecutively to a number, called tweak and denoted by i in
the following, starting from an arbitrary nonnegative integer.
Also, each data unit (128-bit in case of XTS-AES) in a sector
is sequentially numbered, starting from zero and denoted by
j . This pair (i, j) is used for encryption and decryption of
each data unit’s content. In general, XTS-AES uses two keys
(k1, k2). The first key k1 is used for the plaintext encryption
and the second key k2 for the tweak encryption. The XTS-
AES encryption diagram is depicted in Fig. 9.After the tweak
encryption, the output is multiplied by α j in the Galois field
GF(2128), where α is a primitive element, e.g., α = x and
j is the data unit position in the sector i . This result is then
XOR-ed before and after encryption of the plaintext block p.
The encryption of one 16-byte plaintext can be described as

c = (AESk2(i) ⊗ α j) ⊕ AESk1(AESk2(i) ⊗ α j ⊕ p),

while the decryption is computed as follows

p = (AESk2(i) ⊗ α j) ⊕ AES−1
k1

(AESk2(i) ⊗ α j ⊕ c).

In the following, we present the impact of our FPGA bit-
stream manipulations (expressed in Sect. 4.2) on the AES in
XTS mode.

5.1 AES SubBytes layer manipulation

To understand the impacts of manipulation of the AES algo-
rithm, the internal transformations are briefly described in
this section.

Brief Recap of AES AES is based on the symmetric block
cipher Rijndael. Its operations consist of four transforma-
tions, which all operate on a block size of 128 bits. The state
is arranged in a 4×4matrix consisting of elements inGF(28).
Furthermore, AES supports three key sizes (128, 192 and 256
bits) corresponding to a different number of rounds (10, 12,

p

AddRoundKey

ShiftRows

MixColumns

AddRoundKey

ShiftRows

AddRoundKey

c

N
r
-
1

p

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

c

N
r
-
1

Fig. 10 Comparison between AES (left) and modified ˜AES (right)

and 14, respectively) denoted by Nr . The AES encryption
diagram is depicted on the left side of Fig. 10. In the fol-
lowing, we present how to turn the AES cryptosystem into a
weak block cipher whose plaintexts can be easily recovered
from phony ciphertexts.

SubBytes Layer Manipulation The SubBytes transformation
is among the most important part of the AES algorithm. It
adds nonlinearity to the cipher state. We intend to cancel the
SubBytes layer as this makes the whole encryption scheme
vulnerable to cryptanalysis. The corresponding AES Sub-
Bytes manipulation is an extension of the recent work [29].
The manipulation impacts are shortly described for the XTS-
AES mode.

The main idea behind the SubBytes modification is to
transform the AES into a linear function. Having altered
the normal and inverse AES S-box to the identity function,
the whole algorithm can be expressed as a linear equation.
Hence, we updated all identified S-box and inverse S-box
instances in the FPGA bitstream to the identity function
S(x) = x . Due to the linearity of ShiftRows SR(·) and Mix-
ColumnsMC(·), the modified AES (denoted by˜AES) can be
described as follows:

˜AESk(p) = SR(MC(· · ·MC(SR(p) · · ·)
⊕ (˜k0 ⊕ ˜k1 ⊕ ˜k2 ⊕ ... ⊕ ˜kNr ;)
:=MS(p) ⊕ ˜K .

The impact of this alteration is illustrated by Fig. 10.
The plaintext p is processed by several MixColumns and
ShiftRows transformations, Nr − 1 and Nr times, respec-
tively. This round-dependent process is denoted by MS(·).
The constant ˜K represents the XOR sum of the round keys
which have also been preprocessed by certain number of the
MixColumns and ShiftRows transformations.

123

208 J Cryptogr Eng (2017) 7:199–211

Therefore, with only one known plaintext–ciphertext pair
(p, ˜AESk(p)), the constant ˜K can be determined. Thus, all
further phony ciphertexts that are encrypted by ˜AESk can be
decrypted without any knowledge about the actual key. For
more detailed information, we refer the interested reader to
the work of Swierczynski et al. [29]. In the following, we
extend this approach to the XTS mode.

5.2 Manipulation impact for XTS-AES

With the presented AES SubBytes manipulation, an XTS-
AES ciphertext can be described as a linear equation too:

c = (˜AESk2 (i) ⊗ α j) ⊕ ˜AESk1((˜AESk2 (i) ⊗ α j) ⊕ p)

= (MS(i) ⊕ ˜K2) ⊗ α j ⊕ MS((MS(i) ⊕ ˜K2) ⊗ α j ⊕ p) ⊕ ˜K1

= (MS(i) ⊗ α j) ⊕ MS(MS(i) ⊗ α j)
︸ ︷︷ ︸

TWi, j

⊕MS(p)

⊕ (˜K2 ⊗ α j) ⊕ MS(˜K2 ⊗ α j) ⊕ ˜K1
︸ ︷︷ ︸

CK j

(1)

Note that MS(·) is a linear function, and thus, the tweak part
TWi, j , the plaintext-related part MS(p), and the key-related
part CK j could be separated. Every plaintext p is encrypted
in thiswayby theFPGAhardwareTrojan of our target device.

5.3 Plaintext recovery of encrypted XTS-AES
ciphertexts

To recover the plaintexts from the weakly encrypted XTS-
AES ciphertexts, the attacker has to obtain two sets of
information:

– 32 plaintext–ciphertext pairs (pi , ci), i ∈ {0, ..., 31} of
one sector (512-byte wide), and

– knowledge about the tweak values i and the data unit
position j of the ciphertexts within a sector.

Due to the combination of the data unit’s position j and the
key k2 (through Galois field multiplication by α j), each posi-
tion j in a sector has its own constant key-related part CK j .
Further, CK j is constant for every sector of the memory as
it is independent of i . Hence, the attack requires only all 32
plaintext–ciphertext pairs of one arbitrary sector to gener-
ate all CK j values. To obtain the tweak values TWi, j , the
attacker needs to obtain the starting value of i identifying
the first sector (as explained before, i indicates the sector
number and starts from an arbitrary nonnegative integer).
Generally, this can be achieved through reverse-engineering
(ARM code) (cf., Sect. 6).

With this data the attacker can compute the tweak and
the key-related parts of Eq. (1). Afterward, by inverting the

Table 2 Identified self-tests and firmware integrity check

Self-test function Utilized parameter of self-test

AES-256 (CBC) Key K = 0x2B2B…2B (16 Bytes)

IV = 0x3C3C…3C (16 Bytes)

Input x = 0x1111…11 (32 Bytes)

AES-256 (XTS) Key K1 = 0x2021…3F (32 Bytes)

Key K2 = 0x4041…5F (32 Bytes)

Tweak =
0xA2566E3D7EC48F3B

Input x = 0xF0F1…FF (16 Bytes)

SHA-{224,256,384,512} Input x = “abc”

Integrity check Input

SHA-384 Main ARM firmware

MS(·) function, the plaintexts p can be revealed. MS−1(·)
can be determined by applying the inverse MixColumns and
inverse ShiftRows transformations (dependent on the under-
lying AES key size).

It is worth mentioning that the produced ciphertext still
appears to be random for a victim, who visually inspects the
phony ciphertexts from the micro-SD card. Therefore, the
victim cannot observe any unencrypted data as it would be
the case if the FPGA is simply bypassed.

6 ARM code modification

In this section, we briefly describe the cryptographic self-
tests and ARM firmware modifications essential to enable
the above presented FPGA hardware Trojan insertion.

6.1 Utilized self-tests

When we reverse-engineered the ARM code using the tool
IDAPro,wewere able to identify several functions that check
the integrity of the ARMfirmware and consistency of several
cryptographic functions. Every executed self-testmust return
a specific integer indicating whether the test passed or not. If
any self-test fails, the target device switches to an error state.

The corresponding test vectors used by the self-tests are
stored in the SPI flash. Table 2 provides an overview of all
self-tests and the integrity checks. Besides, we also identified
several relevant security header fields that are processed by
the ARM CPU.
The ARM CPU expects to receive a specific signature (dur-
ing power-up of the system) from the Xilinx FPGA to ensure
that it operates correctly after the configuration process.
Also, the bitstream length is coded in the header such that
the ARM CPU knows the amount of configuration bytes.

123

J Cryptogr Eng (2017) 7:199–211 209

Table 3 Security header fields

Field Name Offset Byte size Value

Header Signature 0x00 4 0x11223344

FPGA signature 0x04 16 “SPYRUS_HYDRA2005”

Bitstream length 0x14 4 0x45600

SHA-384 hash of
second image

0x1D0 48 SHA-384(second image)

Lastly, a SHA-384 hash value, calculated over themainARM
firmware, is appended to ensure the program code integrity
(Table 3).

6.2 Disabling self-tests to modify ARM code and FPGA
bitstream

Preliminary tests have shown that even minor code changes,
which do not influence the behavior of the firmware, cause
the USB flash drive to enter the error state and halt during
power-up. It was concluded that there exists an implemented
self-test at least checking the integrity of the code. Thus, it
became a mandatory prerequisite to find and deactivate such
a test. The responsible code was identified due to its obvious
structure and function calls.

In addition to the firmware integrity, the correct func-
tionality of several cryptographic algorithms is tested: the
AES, ECC and Secure Hash Algorithm (SHA) in the ARM
code and the AES inside the FPGA. The individual checks
are performed in dedicated functions invoked by the main
self-test function, and their corresponding return values are
verified. Finally, the self-test succeeds only in case all indi-
vidual checks are passed.

In order to disable the self-test, the code was patched in
a way that the function always returns zero, which is the
integer representation for success. Hence, arbitrary firmware
modifications and changes to the cryptographic algorithms
can be applied after this patch.

6.3 Separating key derivation and FPGA AES IP Core

As explained in the previous sections (cf., Fig. 7), there is
a software AES implementation executed by the ARM CPU
and a considerably faster hardware AES instance inside the
FPGA. They are both capable of ECB, CBC, and XTS oper-
ation modes. The software AES is mainly used for self-tests
and the hardware AES for key derivation as well as encryp-
tion and decryption of the user data stored on the USB flash
drive. The key derivation requires the establishment of a
secure communication channel between the PC software and
theUSBflash drive. The FPGAhardware Trojanweakens the
AES IP coremaking it incompatible to the standardAES (cf.,
Sect. 5). Thus, the initialization of the communication chan-

nel fails and the USB flash drive goes to an error state. To
avoid such a situation, the firmware has to be changed in such
a way that only the original software AES is used during the
key derivation and the secure channel establishment (instead
of the modified hardware AES inside the FPGA).

The ARM code internally uses a unified AES API. Four
parameters are passed to itsAES instance constructor routine.
They hand over the key, the key length, themode of operation,
and a flag indicating whether the ARM CPU or the FPGA is
selected for the actual computations. The creation of all the
AES instances, which are related to the key derivation as well
as secure channel establishment, had to be patched. Conse-
quently, all corresponding AES encryptions and decryptions
are computed by the ARM CPU instead of the FPGA. In
total, the parameters of 12 AES instance constructor calls
have been patched to eliminate theAES dependency between
the ARM and FPGA.

6.4 Recording XTS-AES parameters

In order to recover all user data from the USB flash drive, we
need several values for the attack (cf., Sect. 5: 32 plaintext–
ciphertext pairs of the same sector, the sector number, and
the initial tweak value). The latter parameter is hard-coded
in the firmware and was obtained by static analysis. The
plaintext–ciphertext pairs are acquired at runtime during nor-
mal operation of the USB flash drive. In the ARM code, there
is a highly-speed-optimized function which reads data from
the embedded SD card, sends them to the FPGA for decryp-
tion, and finally copies the plaintexts from the FPGA to the
USB endpoint so that the computer receives the requested
data. This function was intercepted at several positions in a
way that the plaintext–ciphertext pairs and the initial sector
number could be obtained. They are then written (only once)
in the embedded SPI flash from where they can be read out
by an attacker to launch the cryptographic attack.

As explained inSect. 5, having this information is essential
to decrypt the phony ciphertexts due to the underlying XTS
mode. We practically verified the plaintext recovery of the
weakly encrypted ciphertexts stored on the SD card of our
target device.

7 Summary

In this section, we summarize the security problems of our
investigated target device and further outline which security
barriers might be inserted by the vendor to improve the secu-
rity of the analyzed USB flash drive.

As previously stated, during our analysis we found aHSM
from SPYRUS that is directly connected to the Xilinx FPGA
over a single-bit bus. According to [20], it provides certain
cryptographic primitives and serves as secure storage device,

123

210 J Cryptogr Eng (2017) 7:199–211

e.g., for secret (symmetric) keys. We suggest including the
following security measure: During the power-up of the USB
flash drive, the FPGA should validate its AES implementa-
tion using the AES core provided by the HSM. It should be
extremely challenging for an attacker to alter the AES core of
the HSM as its internal functionality is realized by an ASIC.
The HSM should decide whether the USB flash drive con-
tinues (no alteration detected) or switches to an error state
(alteration detected).

To further raise the bar for an attacker, the FPGA design
should include built-in self-tests for the S-box configuration
as well as for the whole AES core. To be more precise, it
is recommended to include several test vectors in the FPGA
firmware, so the FPGA can validate its consistency. Prob-
ably, the built-in self-tests do not hinder a more powerful
attacker who can disable them, but the reverse-engineering
efforts are significantly increased and require a more power-
ful adversary. Since in our attack scenario we exploited the
content of the block RAMs, it is also important to assure
its integrity. Their initial content can be encrypted with an
appropriate mode of operation: a built-in circuitry in the
FPGA design might (during the FPGA power-up) decrypt
the block RAM’s contents and update them with the corre-
sponding decrypted data. By doing so, an attacker cannot
replace the highly important S-boxes in a meaningful way,
which can have severe security implications as demonstrated
in this work.

More importantly, all self-tests (including thosewe found)
should be performed by the HSM. Therefore, the HSM
should verify the integrity of the ARM code. Further, the
bitstream of the FPGAmust be protected (not stored in plain
in the SPI flash) and its integrity must be verified, e.g., by the
HSM. This should prevent any modification attempt on the
ARM code as well as on the bitstream, making a firmware
modification attack extremely difficult.We should emphasize
that an attacker is able to turn the device into a malicious one
that can infect the target computer with malicious software,
as shown by Nohl et al. [25].

8 Conclusions

In this paper, we demonstrated the first practical real-world
FPGA Trojan insertion into a high-security commercial
product to weaken the overall system security. We reverse-
engineered a third-party FPGA bitstream to a certain extent
and replaced parts of the FPGA logic in ameaningful manner
on the lowest level. In particular, we significantly weakened
the embedded XTS-AES-256 core and successfully canceled
its strong cryptographic properties making the whole system
vulnerable to cryptanalysis. Our work is a proof of concept
that an FPGA can also be one of several weak points of
a seemingly protected system. It is important to ensure the

integrity of the FPGA bitstream even though its file format is
proprietary. This is especially critical in applications where
the FPGA acts as master device. Future work must deal with
counterfeiting bitstream modification attacks by developing
appropriate countermeasures that have to be implemented
within an FPGA design.

Acknowledgements The authors would like to thankKai Stawikowski
and Georg T. Becker for their fruitful comments and help regarding
this project. Part of the research was conducted at the University of
Massachusetts Amherst. This work was partially supported through
NSF grants CNS-1318497 and CNS-1421352. It has been also partially
supported by the Bosch Research Foundation.

References

1. Hex-Rays, S.A. http://www.hex-rays.com
2. Suite B Cryptography. https://www.nsa.gov/ia/programs/suiteb_

cryptography/ (2001)
3. Report of the defense science board task force on high per-

formance microchip supply. http://www.acq.osd.mil/dsb/reports/
ADA435563.pdf? (2005)

4. DataTraveler 5000FIPS140-2Level 2 certification. http://csrc.nist.
gov/groups/STM/cmvp/documents/140-1/140crt/140crt1316.pdf
(2010)

5. Aldaya, A.C., Sarmiento, A.J.C., Sánchez-Solano, S.: AES T-Box
tampering attack. J. Cryptogr. Eng., pp.1–18 (2015). doi:10.1007/
s13389-015-0103-4

6. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy
dopant-level hardware Trojans. In: Cryptographic hardware and
embedded systems–CHES 2013–15th International Workshop,
Santa Barbara, CA, USA, August 20–23, 2013

7. Benz, F., Seffrin, A., Huss, S.: Bil: A tool-chain for bitstream
reverse-engineering. In: Field programmable logic and applica-
tions (FPL), 2012 22nd International Conference on, pp. 735–738
(2012). doi:10.1109/FPL.2012.6339165

8. Chakraborty, R., Saha, I., Palchaudhuri, A., Naik, G.: Hardware
Trojan insertion by direct modification of FPGA configuration bit-
stream. Des. Test IEEE 30(2), 45–54 (2013)

9. Ding, Z., Wu, Q., Zhang, Y., Zhu, L.: Deriving an NCD file from
an FPGA bitstream: methodology, architecture and evaluation.
Microprocess. Microsyst.—Embed. Hardware Des. 37(3), 299–
312 (2013)

10. Drimer, S.: Security for volatile FPGAs. Technical Report UCAM-
CLTR-763,University ofCambridge, Computer Laboratory (2009)

11. Eisenbarth, T., Güneysu, T., Paar, C., Sadeghi, A., Schellekens,
D., Wolf, M.: Reconfigurable trusted computing in hardware. In:
Workshop on scalable trusted computing, STC 2007, pp. 15–20.
ACM (2007)

12. Greenwald, G.: No place to hide: Edward Snowden, the NSA and
the surveillance state. Metropolitan Books, New York (2014)

13. IEEE Std 1619-2007: IEEE standard for cryptographic protection
of data on block-oriented storage devices

14. Kakarlapudi, B., Alabur, N.: FPGA implementations of S-box vs.
T-box iterative architectures of AES, http://teal.gmu.edu/courses/
ECE746/project/reports_2008/AES_T-box_report.pdf

15. Karri, R., Rajendran, J., Rosenfeld, K.: Trojan taxonomy. In: Tehra-
nipoor, M., Wang, C. (eds.) Introduction to hardware security and
trust. Springer-Verlag, (2012)

16. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou,
Y.: Designing and implementing malicious hardware. In: Pro-
ceedings of the 1st Usenix Workshop on Large-Scale Exploits

123

http://www.hex-rays.com
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf?
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf?
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140crt/140crt1316.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140crt/140crt1316.pdf
http://dx.doi.org/10.1007/s13389-015-0103-4
http://dx.doi.org/10.1007/s13389-015-0103-4
http://dx.doi.org/10.1109/FPL.2012.6339165
http://teal.gmu.edu/courses/ECE746/project/reports_2008/AES_T-box_report.pdf
http://teal.gmu.edu/courses/ECE746/project/reports_2008/AES_T-box_report.pdf

J Cryptogr Eng (2017) 7:199–211 211

and Emergent Threats, LEET’08, pp. 5:1–5:8. Berkeley, CA,
USA:USENIXAssociation (2008). http://dl.acm.org/citation.cfm?
id=1387709.1387714

17. Kingston Technology: Protect sensitive datawith FIPS 140-2 Level
2 validation and 100 per cent privacy. http://www.kingston.com/
datasheets/dt5000_en.pdf

18. Macri, G.: Leaked Photos Show NSA Hardware Interception And
Bug-Planting Workstation (2014). http://dailycaller.com/2014/
05/15/leaked-photosshow-nsa-hardware-interception-and-bug-
plantingworkstation/

19. McGrath, D.: Analyst: Altera to catch Xilinx in 2012. EE Times
(2011)

20. Micro, R.: Ensuring trust in cyberspace. http://www.spyrus.com/
company/literature/SPYRUSdatasheets/DSRosettaMicroSeriesII.
pdf

21. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerabil-
ity of FPGA bitstream encryption against power analysis attacks:
extracting keys fromXilinxVirtex-II FPGAs. In: ACMConference
on Computer and Communications Security, pp. 111–124 (2011)

22. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks
highlight the importance of countermeasures—an analysis of the
Xilinx Virtex-4 and Virtex-5 bitstream encryption mechanism.
In: The Cryptographers’ Track at the RSA Conference, pp. 1–18
(2012)

23. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-channel
attacks on the bitstream encryption mechanism of Altera Stratix II:
facilitating black-box analysis using software reverse-engineering.
In: Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’13, pp. 91–100. New
York, NY, USA :ACM (2013)

24. Narasimhan, S., Bhunia, S.: Hardware Trojan detection. In: Tehra-
nipoor, M., Wang, C. (eds.) Introduction to Hardware Security and
Trust. Springer-Verlag (2012)

25. Nohl, K., Kriler, S., Lell, J.: BadUSB—On accessories that turn
evil. BlackHat (2014). https://srlabs.de/badusb/

26. Rannaud, É.: From the bitstream to the netlist. In: Proceedings
of the 16th International ACM/SIGDA Symposium on Field Pro-
grammable Gate Arrays, pp. 264–264 (2008)

27. Snyder, B.: Snowden: The NSA planted backdoors in Cisco
products (2014). http://www.infoworld.com/article/2608141/
internet-privacy/snowden--the-nsa-planted-backdoors-in-cisco-
products.html

28. SPIEGEL Staff: Inside TAO: Documents reveal top NSA hacking
unit (2013). http://www.spiegel.de/international/world/the-nsa-
uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-
940969.html

29. Swierczynski, P., Fyrbiak, M., Koppe, P., Paar, C.: FPGA Tro-
jans through detecting and weakening of cryptographic primitives.
Comput-AidedDes. Integr. Circuits Syst. IEEETrans.34(8), 1236–
1249 (2015). doi:10.1109/TCAD.2015.2399455

30. Ziener, D., Assmus, S., Teich, J.: Identifying fpga ip-cores based
on lookup table content analysis. In: Field Programmable Logic
and Applications, 2006. FPL ’06. International Conference on, pp.
1–6 (2006). doi:10.1109/FPL.2006.311255

123

http://dl.acm.org/citation.cfm?id=1387709.1387714
http://dl.acm.org/citation.cfm?id=1387709.1387714
http://www.kingston.com/datasheets/dt5000_en.pdf
http://www.kingston.com/datasheets/dt5000_en.pdf
http://dailycaller.com/2014/05/15/leaked-photosshow-nsa-hardware-interception-and-bug-plantingworkstation/
http://dailycaller.com/2014/05/15/leaked-photosshow-nsa-hardware-interception-and-bug-plantingworkstation/
http://dailycaller.com/2014/05/15/leaked-photosshow-nsa-hardware-interception-and-bug-plantingworkstation/
http://www.spyrus.com/company/literature/SPYRUSdatasheets/DSRosettaMicroSeriesII.pdf
http://www.spyrus.com/company/literature/SPYRUSdatasheets/DSRosettaMicroSeriesII.pdf
http://www.spyrus.com/company/literature/SPYRUSdatasheets/DSRosettaMicroSeriesII.pdf
https://srlabs.de/badusb/
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted-backdoors-in-cisco-products.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
http://dx.doi.org/10.1109/TCAD.2015.2399455
http://dx.doi.org/10.1109/FPL.2006.311255

	Interdiction in practice---Hardware Trojan against a high-security USB flash drive
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related work

	2 Proceeding of inserting an FPGA Trojan
	2.1 Attack scenario: interdiction
	2.2 Attack scenario: exploitation and reconfigurability
	2.3 Exploring third-party FPGA designs

	3 Real-world target device
	3.1 Initial steps and authentication process
	3.2 Physical attack---Revealing the FPGA bitstream
	3.3 Overview and component details
	3.4 Unlinking FPGA Trojan from the authentication process
	3.5 Modifying bitstream vs. replacing whole bitstream
	3.6 Manipulation---Master vs. slave

	4 Building the FPGA Trojan
	4.1 Analysis of the extracted bitstream
	4.2 Modifying the third-party FPGA design

	5 XTS-AES manipulation and plaintext recovery
	5.1 AES SubBytes layer manipulation
	5.2 Manipulation impact for XTS-AES
	5.3 Plaintext recovery of encrypted XTS-AES ciphertexts

	6 ARM code modification
	6.1 Utilized self-tests
	6.2 Disabling self-tests to modify ARM code and FPGA bitstream
	6.3 Separating key derivation and FPGA AES IP Core
	6.4 Recording XTS-AES parameters

	7 Summary
	8 Conclusions
	Acknowledgements
	References

