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Abstract In this paper, we propose a masking scheme to
protect ring-LWE decryption from first-order side-channel
attacks. In an unprotected ring-LWE decryption, the recov-
ered plaintext is computed by first performing polynomial
arithmetic on the secret key and then decoding the result.
We mask the polynomial operations by arithmetically split-
ting the secret key polynomial into two random shares; the
final decoding operation is performed using a new bespoke
masked decoder. The outputs of our masked ring-LWE
decryption are Boolean shares suitable for derivation of a
symmetric key. Thus, the masking scheme keeps all inter-
mediates, including the recovered plaintext, in the masked
domain. We have implemented the masking scheme on both
hardware and software. On a Xilinx Virtex-II FPGA, the
masked ring-LWE processor requires around 2000 LUTs, a
20 % increase in the area with respect to the unprotected
architecture. A masked decryption operation takes 7478
cycles, which is only a factor 2.6 larger than the unpro-
tected decryption. On a 32-bit ARM Cortex-M4F processor,
the masked software implementation costs around 5.2 x more
cycles than the unprotected implementation.
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1 Introduction

Once the quantum computer is built, Shor’s algorithm will
make most current public-key cryptographic algorithms
obsolete. In particular, public-key cryptosystems that rely
on number-theoretic hardness assumptions such as integer
factorization (RSA) or discrete logarithms, either in Z;‘)
(Diffie—Hellman) or in elliptic curves over finite fields, will
be insecure. On the bright side, there is an entire branch of
post-quantum cryptography that is believed to resist mathe-
matical attacks running on quantum computers.

There are three main branches of post-quantum cryptosys-
tems: based on codes, on multivariate quadratic equations
or on lattices [2]. Lattice-based cryptographic constructions,
founded on the learning with errors (LWE) problem [23]
and its ring variant known as ring-LWE problem [17], have
become a versatile tool for designing asymmetric encryp-
tion schemes [17], digital signatures [10] and homomorphic
encryption schemes [4,11]. Several hardware and software
implementations of such schemes have appeared in the lit-
erature. So far, the reported implementations have focused
mainly on efficient implementation strategies, and very lit-
tle research work has appeared in the area of side channel
security of the lattice-based schemes.

It comes as no surprise that implementations of post-
quantum algorithms are vulnerable to side-channel attacks.
Side-channel attacks, as introduced by Kocher [15], exploit
timing, power consumption or the electromagnetic emana-
tion from a device executing a cryptographic implementation
to extract secrets, such as cryptographic keys. A particu-
larly powerful side-channel technique is differential power
analysis (DPA), introduced by Kocher et al. [16]. In a typical
DPA attack, the adversary measures the instantaneous power
consumption of a device, places hypotheses on subkeys and
applies statistical tests to confirm or reject the hypotheses.
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DPA attacks can be surprisingly easy to mount even with low-
end equipment, and hence it is important to protect against
them.

There are plenty of countermeasures against DPA. Most
notably, masking [7,14] is provably sound and popular in
industry. Masking effectively randomizes the computation of
the cryptographic algorithm by splitting each intermediate
into several shares, in such a way that each share is inde-
pendent of any secret. This property is preserved through
the entire computation. Thus, observing any single inter-
mediate (for example, by a side channel, be it known or
unknown) reveals nothing about the secret. However, there
are not many masking schemes specifically designed for post-
quantum cryptography. In [5], Brenner et al. present a masked
FPGA implementation of the post-quantum pseudo-random
function SPRING.

In the rest of the paper, we focus on protecting the ring-
LWE decryption operation against side-channel attacks with
masking. The decryption algorithm is considerably exposed
to DPA attacks since it repeatedly uses long-term private
keys. In contrast, the encryption or key-generation proce-
dures use ephemeral secrets only [27].

Our contribution Inthis paper, we present acompact masked
implementation of the ring-LWE decryption function. The
masking countermeasure adds a small overhead when com-
pared with the other previous approaches, thanks to a bespoke
probabilistic masked decoder designed specifically for our
implementation. We implemented the masked ring-LWE
decryption on a Virtex-II FPGA and on an ARM Cortex-M4F
processor, and tested the side-channel security with practical
experiments.

Organization The paper is structured as follows: we provide
a brief mathematical background of the ring-LWE encryp-
tion scheme in Sect. 2 and describe a high-level overview of
the proposed masked ring-LWE decryption in Sect. 3. Next,
in Sect. 4 we construct the masked decoder. In Sect. 5, we
describe our hardware implementation, and in the next Sect. 6
we describe our software implementation. We analyze the
error rates of the decryption operation in Sect. 7. We dedi-
cate Sect. 8 for the side-channel evaluation of both hardware
and software implementations and draw conclusions in the
last section.

2 Preliminaries

Notation The Latin letters r, ¢; indicate polynomials. When
we want to explicitly access a coefficient of the polynomial,
we write r[i]. Multiplication of polynomials is written as
r#cq. Coefficient-wise multiplication is denoted as 7 -¢y. The
letter m denotes a string of message bits, and g is an integer.
Letters with prime x” or double prime x” represent shares
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of variable x. Depending on the context, these shares are
split either arithmetically x = x" 4+ x” (mod ¢) or Boolean
x =x’+x"” (mod 2). A polynomial r is shared into (r/, r”’)
by additively sharing each of its coefficients r[i] such that
r=r'+r".

Ring-LWE For completeness, we give in this section a
description of the three major algorithms of the ring-LWE
public-key cryptosystem [17]: key generation, encryption
and decryption.

The ring-LWE encryption scheme works with polyno-
mials in a ring R, = Z4[x]/(f(x)), where f(x) is an
irreducible polynomial of degree n. During the key gen-
eration, encryption and decryption operations, polynomial
arithmetic such as polynomial addition, subtraction and mul-
tiplication are performed. In addition, the key-generation and
encryption operations require sampling of error polynomials
from an error distribution (typically a discrete Gaussian.)

The ring-LWE encryption scheme is described in this way:

— Inthe key generation phase, two error polynomials | and
ro are sampled from the discrete Gaussian distribution.
The secret key is the polynomial r, and the public key is
the polynomial p = r; — g * ro. After key generation,
there is no use of the polynomial ;. The polynomial g is
globally known.

— In the encryption operation of a binary message vector m
of length n, the message is first lifted to a ring element
m € R, by multiplying the message bits by /2. The
ciphertext is computed as a pair of polynomials (c1, ¢2)
wherec; = gxey+erandcy = pxej+es+m € R;. The
encryption operation requires generation of three error
polynomials eg, e> and e3.

— The decryption operation uses the private key r, to com-
pute the message as m = th(cy * 2 4+ ¢2). The decoding
function th is a simple threshold decoder that is applied
coefficient-wise and is defined as

0 ifx € (0,q9/4) U (3q/4,q9)

th(x) = [ 1 ifx € (g/4.3g/4) ' M
Efficiency improvements To achieve an efficient implemen-
tation of the encryption scheme, the irreducible polynomial
f(x) is taken as x" + 1 where n is a power of two, and the
modulus ¢ is chosen as a prime number satisfying g = 1
mod 2n [20,28]. In this setting, polynomial multiplications
can be efficiently performed in O(nlogn) time using the
number theoretic transform (NTT).

Following [28], we keep the ciphertext polynomials ¢
and ¢; in the NTT domain to reduce the computation cost
of the decryption operation. The decryption operation thus
computes the decrypted message as

m = th(INTT(E; - 7> + &2)). 2)
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Here, the symbol 7 represents the NTT of a polynomial
r, and INTT(-) represents the inverse NTT operation. The
multiplication of ¢ - 7 is thus performed coefficient-wise
(as well as the addition of ¢; - 7> + ¢».) For convenience, we
drop the tildes in the rest of the paper and work with ¢y, ¢; and
ro in the NTT domain. We furthermore refer to 7, simply as r.
(We recall that the INTT is a linear transformation applied to
the n coefficients of a = r - ¢ + ¢;.) The decoding function
th applies a threshold function to each coefficient of a as
defined in Eq. (1) to output n recovered message bits.

3 High-level overview

In this section, we give a high-level view of the masked
ring-LWE implementation. The most natural way to split the
computation of the decryption as Eq. (2) is to split the secret
polynomial r additively into two shares r’ and r”, such that
rli]l = r'[i] + r"[i] (mod q) for all i. The n coefficients of
r" are chosen uniformly at random in Z, in each execution
of the decryption.

The bulk of the computation from Eq. (2) is amenable
to this splitting, since by linearity of the multiplication and
INTT operation, we have that INTT(r - ¢c; +¢1) = INTT(r -
¢y + ¢1) + INTT(r” - ¢3). Thus, we can split almost the
entire computation from Eq. (2) into two branches, as drawn
in Fig. 1. The first branch computes on r’ to determine the
polynomial

a =INTT( - ¢1 + ¢2) 3)
and the second branch operates on r” to determine
a’ = INTT(@” - cy). 4)

The advantage of such a high-level masking is that the
operations of Egs. (3) and (4) can be performed on an arith-
metic processor without any particular protection against
DPA. (This is because any intermediate appearing in either
branch is independent of the secret r. This situation is very
similar to, for example, base point blinding in elliptic curve
scalar multiplication.) We can reuse an existing ring-LWE
processor for these operations and leverage the numerous
optimizations carried out for this block [9,20,28].

The final threshold th(-) operation of Eq. (2) is obviously
non-linear in the base field IF, and hence cannot be indepen-
dently applied to each branch (Egs. (3) and (4)). There are
generic approaches to mask arbitrary functions. For instance,
in [5], an approach based on masked tables was used. How-
ever, these generic approaches are usually quite expensive in
terms of area or randomness. In the following Sect. 4, we pur-
sue another direction. We design a bespoke masked decoder
that results in a compact implementation.

C1 Co
' a
' —@—eO—7» INTT |—Lo
N ’
C1 masked ’ mn
¢ decoder | g g
a" B
7 — @ INTT |~

Fig. 1 General data flow of the masked ring-LWE decryption. r’ and
r’" are the arithmetic shares of the private key r; ¢ and ¢, are the input
unmasked ciphertext; m’ and m” are the Boolean shares of the recovered
plaintext

4 Masked decoder

In this section, we describe a compact, probabilistic masked
decoder. In the sequel, a denotes a single coefficient and
(a’,a") its shares such that @’ + a” = a (mod g). The
decoder computes the function th(a) from the shares (a’, a”).
We also drop the symbol (mod ¢g) when obvious.

First crack The key idea of the efficient masked decoder
is that we do not need to know the exact values of the shares
a’ and a” of a coefficient a to compute th(a). For example,
if0 <a <g/4andg/4 <a” < q/2,thena = da' +a”
is bounded by ¢/4 < a < 3¢ /4 and thus th(a) = 1, that is,
we learnt th(a) from only a few most significant bits from
a’ and a”. We can use this idea to substantially simplify the
complexity of the masked th function.

4.1 Rules

Figure 2, left, illustrates the situation from the last paragraph.
In this case, 0 < ¢’ < ¢g/4 and ¢/4 < a” < q/2, so
obviously a can range only from ¢ /4 to 3¢ /4, and hence
th(a) = 1. Analogously to this rule, we can formulate 3
other rules:

- Ifg/2 < a < 3q/4and3q/4 < a’ < qtheng/4 <
a < 3q/4 and thus th(a) = 1.

- Ifg/4 <ad' <gq/2andq/2 < a” < 3¢ /4 then a belongs
to (0, q/4) U (3q/4, g) and thus th(a) = 0 (quadrants I
and 1V, left half of the circle).

- If3g/4 <d <qgand 0 < a” < g/4 then a belongs to
(0,g/4) U (3q/4, g) and thus th(a) = 0.

There are 4 other rules that result from interchanging a’
with a” in the above expressions. (This follows straight from
the symmetry of the additive splitting.) Essentially, with the
only information of the quadrant of each share a’ and a”, we
can, in half of the cases, deduce the output of th(a). (For the
simplicity of the explanation, we obviated what happens in
the boundaries of the quadrant intervals. Similar conclusions
hold when including them.)

@ Springer
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Fig. 2 Idea for the masked decoder. Elements in Z, are shown in a cir-
cle. Adding two elements translates into adding their respective angles.
Left case 0 < a' < q/4,q/4 < a’ < q/2, and therefore th(a) = 1.

What if no rule is hit? In roughly half of the cases, we can
apply one of the eight rules previously described to deduce
the value of th(a). However, in the other half of the cases,
none of the rules applies. A representative case of this event is
shown in Fig. 2, center and right. In both cases, 0 < a’ < ¢ /4
and 0 < a” < g/4. This situation is not covered by any of
the eight rules previously described. We see that in the center
sub figure th(a) = 0, while in the right sub figure th(a) = 1,
so in this case the quadrants of each share @’ and a” do not
allow us to infer th(a).

The solution in this case is to refresh the splitting (a’, a”),
that is, update a’ <— a’ + Ay and a” < a” — A for cer-
tain Aj. (This refreshing' naturally preserves the unshared
value a = a’ + a”.) After the refreshing, the eight rules
can be checked again. If still no rule applies, the process is
repeated with a different refreshing value A;. Note that in
each iteration of the step, roughly half of the possible values
of (a',a") € Zq x Zy are successfully decoded, and thus
the amount of pairs (a’, a”) that do not get decoded shrinks
exponentially with the number of iterations. In our imple-
mentation, N = 16 iterations produces a satisfactory result.
This will be studied in detail in Sect. 7.1.

Optimal cooked values for A; One can determine a sequence
of A; values that maximizes the number of pairs successfully
decoded after N iterations. We performed a first-order search
for such a sequence of A; values. Each A; maximizes the
number of successfully decoded pairs after i — 1 iterations.
For g = 7681, the sequence of A; shown in Appendix A was
found.

Architecture The hardware architecture for the masked
decoder follows from the previous working principle descrip-
tion. Our implementation is shown in Fig. 3. From left to

1 We use here the term “refresh” to refer to the process of modifying
the masked representation (a’, a”) of a without modifying the unshared
value a, but, contrary to other contexts in the literature, we do not imply
that we are pumping new randomness in the new representation.
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Center and right case 0 < a’ < q/4,0 < a’ < ¢/4, which does not
allow to infer th(a)

T —A—
1: 4

a ﬁLb @% quad q 2 —
’
1, m

A; masked table

., 1, m'

o —» O——» quad L2 LA

Fig. 3 Data flow for the masked decoder

right, we see the first refreshing step by the constants A;.
The constants A; vary from iteration to iteration. After the
refreshing step, the quadrant function is applied to each
share a’, a”. This quadrant function outputs x if a belongs
to the x-th quadrant, and thus the output consists of 2 bits.
These blocks are essentially 13-bit comparators, and thus
relatively inexpensive in logic.> The subsequent rule check-
ing on (¢q’, ¢”) is performed by a masked table lookup that
is described in the following section. The whole process is
repeated N = 16 iterations, and this number of iterations
stays fixed even if the decoding is successful after the few
first iterations.

4.2 Masked table lookup

The final step in the masked decoder is a masked table lookup.
This table implements the rules described in Sect. 4.1, and
essentially maps the output of each quadrant ¢; and ¢;" (2
bits each) after the i-the iteration (i € [1, N]) to a (Boolean)
masked output bit value (m;, m!'). In our specific implemen-
tation, we have other inputs: the result of the decoding from
the previous iteration (m;_,, m/_,) and an extra randomness
bit r (fresh at each of the N iterations for each of the n coef-
ficients).

2 Note that in the special case, ¢ is a prime close to a power of two and
the construction of the quadrant block can be further simplified.
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This is a well-studied problem that arises in other sit-
uations (for instance, when masking the sbox lookup in a
typical block cipher) and there are plenty of approaches here
to implement such masked table lookup.

Hardware Inhardware, we opted for the approach of masked
tables as in [30]. We set m; < r and we compute
m! < f(r.q/.q/,m,_,,m]_,). The function f essentially
bypasses the previous decoded value when no rule applies to
q;, q! by setting the output m’ to r +m’_, +m!_, (refresh-
ing the content of the output registers). If a rule applies to
g}, q/, it sets the output m accordingly. By doing this, we
can register always the output of this table and no control
logic to enable such output register is needed (it is implicitly
integrated into this masked table.) This is the reason why
the table sees also the previous decoded value m)_, and
m_,.

The usual precautions are applied when implementing f.
For our target FPGA platform, we carefully split the 7-bit
input to 1-bit output function f into a balanced tree of 4-
bit input LUTSs, in such a way that any intermediate input
or output of LUTs does not leak in the first order. Note that
here we are assuming that each LUT is an atomic operation.
If stronger security guarantees are needed, other approaches
to implement such function f should be followed. When
implemented in an ASIC, it may be preferable to store this
masked table in ROM (since the contents of the table are
immutable and the size is small).

The output of this table is (Boolean) masked, and thus
no unmasked value lives within the implementation. This is
suited for consumption of a masked AES module (say) after
some preprocessing as will be detailed later. We stress that we
use masked tables on the output of the quadrants. This is the
key for our reduced area requirements, as will be explained
in Sect. 5.

Software For the software implementation of the masked
table lookup, we base our approach on the previous hard-
ware description. We first write an unmasked decoder in a
(software) bitsliced way, and then apply the method of [1] to
provide “gate-level” masking to the bitsliced software imple-
mentation. More details are given in Sect. 6.

S Hardware implementation

We implemented the fully masked ring-LWE decryption sys-
tem with the proof-of-concept parameter set (n,q,s) =
(256, 7681, 11.32) first introduced in [13], corresponding
to a medium-term security level. Note that these concrete
choice of parameters is not meant to be deployed. The tar-
get platform is a Xilinx Virtex-II xc2vp7 FPGA. The HDL
files were synthesized within Xilinx ISE v8.2 with optimiza-

tion settings set to balanced and KEEP HIERARCHY flag
when appropriate to prevent optimization of security-critical
components. We base our arithmetic processor on the design
from [28].

5.1 Area

In our case, a single arithmetic coprocessor performs seri-
ally the computations of Eq. (3) and then that of Eq. (4).
This incurs in a very slight area overhead (only the control
microcode is slightly modified, plus the masked decoder),
at the obvious cost of an increased execution time. In
comparison to the unprotected version, our protected decryp-
tion scheme consumes more memory as now we store two
shares v’ and r” of the secret polynomial r, and the two
output polynomials a’ and a” from the two INTT opera-
tions.

In Table 1, we can see that the proposed masking of the
ring-LWE architecture incurs an additional area overhead of
only 301 LUTs and 129 FFs in comparison to the unprotected
version. This additional area cost is mostly due to a pair of
masked decoders. Due to its low area overhead, we chose to
keep two masked decoders in parallel, decoding two coef-
ficients simultaneously. (This nicely fits with the memory
organization of the arithmetic coprocessor, since it fits two
13-bit coefficients in each memory word.) Thus, we use two
addition and subtraction circuits for the refreshing with A;
(accounting for 160 LUTs) and two masked tables (90 LUTs
in total).

We note that we could straightforwardly reduce the addi-
tional area cost by reusing the 13-bit addition and subtraction
circuits present in the arithmetic coprocessor. Since during a
decoding operation, the arithmetic coprocessor remains idle,
reusing of the addition and subtraction circuits does not cause
any increase in the cycle count. For simplicity, we did not
implement this approach.

5.2 Cycle count

The cycle count for our approach is decomposed in the
computation of Egs. (3) and (4) and the masked decoder.
Equation 3 takes 2840 cycles (one unprotected ring-LWE
decryption), while Eq. (4) takes 2590 cycles, slightly less

Table 1 Performance and comparison on Xilinx Virtex-II xc2vp7
FPGA

LUTSs/FFs/DSPs fmax (MHz) Cycles
Unprotected 1713/830/1 120 2.8k
Protected 2014/959/1 100 7.5k

Note that these results are not directly comparable with [28], since the
latter were obtained from a more advanced Virtex-6 FPGA, which has
6-bit input LUTSs and superior routing mechanisms in comparison to
our target FPGA
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than Eq. (3) since there is no addition present in the second
branch.

The two-way parallel masked decoder takes % xnxN-+e
cycles to decode all the coefficients into message bits. In
our case with n = 256, N = 16 the masked decoder takes
2048 cycles. Thus in total, a masked decryption operation
requires 7478 cycles. The arithmetic coprocessor and the
masked decoder run in constant time and constant flow.

5.3 Comparison with an elliptic-curve cryptosystem

We compare our protected decryption scheme with the unpro-
tected high-speed elliptic curve scalar multiplier architecture
proposed by Rebeiro et al. in [22]. The architecture for
the field GF(2233) consumes 23,147 LUTs and computes
an unprotected scalar multiplication in 12.5 s on a more
advanced Virtex-4 FPGA. Thus, the scalar multiplier has an
area x time product of approximately 289,337. Our pro-
tected ring-LWE decryption (for a similar security) achieves
anarea x time product of approximately 151,452 on a Virtex-
2 FPGA, thus achieving at least 1.9 times better figure of
merit.

5.4 Trade-offs

The previous figures are subject to trade-offs. If smaller
latency is desired instead of a compact implementation, two
coprocessors can perform the two computations of Egs. (3)
and (4) in parallel. Trade-offs also apply to the masked
decoder, and the parallelization could be extended easily to
reduce latency in this stage. Since the BRAMSs present in
the Xilinx FPGAs support reading of multiple consecutive
words, we could keep more pairs of masked decoders in par-
allel and reduce the number of cycles. Another alternative
is to keep the masked decoder in pipeline with the polyno-
mial arithmetic block. Such type of setting is suitable for
systems where many decryption operations are performed
in a chain. While the masked decoder works on the coeffi-
cients of a previous computation, the polynomial arithmetic
unit processes new ciphertexts. Since the masked decoder is
faster than the polynomial arithmetic unit, the cycle count
of the masked decoder is not an overhead in such type of
setting. But of course, in this situation we could not reuse
the arithmetic circuitry of the arithmetic coprocessor for the
refreshing operation of the masked decoder.

5.5 Maximum frequency

We note that the arithmetic coprocessor is a very optimized
unit with a complex pipeline organization. We thus insert
two pipeline stages in the masked decoder to match the max-
imum frequency of the whole system to that of the arithmetic
coprocessor. In this way, the design can run up to almost 100
MHz. The critical path is inside the arithmetic multiplier.

@ Springer

6 Software implementation

We wrote a software implementation of the complete system
for an ARM Cortex-M4F with the same parameter set as the
previous section. This Cortex-M4F is a popular and powerful
embedded platform. It has a 32-bit word size, 13 general-
purpose registers, its instruction set supports single-cycle 32-
bit multiplications and 16-bit SIMD arithmetic.

6.1 Arithmetic operations

Our implementation for the arithmetic part (the two branches
from Egs. (3) and (4)) follows the lines of de Clercq et al. [9].
We remind here the key ideas of the software implementation.
Each coefficient requires 13 bits of storage forg = 7681, and
we therefore store two coefficients in every processor word.
We use the negative-wrapped NTT along with computational
optimizations from [28] to implement the polynomial mul-
tiplication. We can reduce the number of memory accesses,
pointer operations, and loop overhead by 50 % by performing
a twofold unrolling of the inner loop of the NTT transfor-
mation. The expensive calculation of twiddle factors can be
avoided by storing precomputed twiddle factors and inverse
twiddle factors in a lookup table. The code is constant time
and constant flow (SPA resistant.). Since each branch oper-
ates on only one share, no special protection against DPA is
required.

6.2 Masked decoder

Quadrants The quadrant operation is implemented in a
constant-time and constant-flow way. It relies on arithmetic
substraction to perform successive comparisons against g /4,
q/2 and 3¢q /4. From these comparisons, the quadrant result
is constructed by bitmasks. As in the previous paragraph,
since each quadrant operates on a single share, no further
DPA protection is required.

Table lookup The table lookup is the most sensitive part since
it sees both shares ¢’ and ¢”. We mask the table lookup
following [1]. This approach takes as input an unprotected
software bitsliced implementation written as a straight-line
sequence of XOR and AND instructions. Then, the input data
are shared in a Boolean fashion and the instructions are
replaced by its secure equivalent. The masked XOR oper-
ation is very easy to derive; the masked AND instruction is
more ellaborate due to the non-linearity of the operation. The
dataflow for the AND instruction is represented in Fig. 4. It
is essentially Trichina’s masked AND gate.

We wrote the unmasked function that applies the rules of
Sect. 4 (including output feedback) in a bitsliced fashion.
We then used espresso [29] and MislI (part of Octtools) for
logic minimization and synthesis into XOR and AND “gates”
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Fig. 4 Trichina AND gate. This masked computes the unshared func-
tion ¢ = ab. Each variable a is shared into two shares ay, ap. This is
the construction we use for our secure AND instruction in our software
implementation

Table 2 Timings for major operations in software

Operation k Cycles
Equation (3) 43
Inverse NTT transform 39
Masked decoder 168

= instructions. We then substituted the XOR and AND instruc-
tions for its secure equivalents. We perform 32 table lookups
(for 32 different coefficients) concurrently, and the decoder
always performs 16 iterations. This part (a series of XOR and
AND) was prototyped in C and the assembly output carefully
inspected.

6.3 Timings

In Table 2, we can see an overview of the time required for
each major operation. Note that while the arithmetic part is
heavily optimized, we did not focus on achieving the fastest
implementation in the masked decoder implementation. The
most expensive part of arithmetic computation is the inverse
NTT, requiring 39k cycles. The computation of Eq. (3) takes
around 43k cycles. The masked decoder takes around 168k
cycles. (Most of the time goes to computing the quadrant
functions. An assembler version for these functions would
greatly benefit the overall timing.) The overhead in cycles
for the masked version is around 5.8 times more cycles.

7 Discussion
7.1 Error rates

Cryptosystems based on ring-LWE are inherently probabilis-
tic. This means that there is a non-zero probability that the
recovered plaintext after ring-LWE decryption is not exactly
the plaintext before encryption. In our case, due to the prob-
abilistic nature of our masked decoder approach, there is a

second source of noise. Since the number of iterations of the
masked decoder is finite, there are some pair values (a’, a”)
that will not get decoded within the fixed finite number of
iterations. In this section, we first explain the error rate of the
probabilistic decoding in isolation, and then we switch to the
global system error rate and point out strategies to mitigate
1t.

Errors due to the probabilistic decoding In this section, we
assume that the plaintext bit is 1 and the unmasked input a to
the masked decoder is in (g /4, 3¢ /4). The additional error
due to the probabilistic masked decoder is the probability p,
that (a’, a”’) does not get successfully decoded. Let us write
ps =1— pe.

This probability p; is influenced by two distributions. We
have that

ps = ZPr[successful decodela] - Pr[a], ®)

where the sum is taken over a € (gq/4,3q/4). On the
one hand, Pr[successful decode|a] is the probability that the
decoder successfully decodes a. On the other, Pr[a] is the
probability with which a takes various values in (¢ /4, 3q /4).

The distribution of the decoder success probability
Pr[successful decode|a] as a function of the unshared input
value a to the decoder can be easily computed by averag-
ing over all possible pairs (a’, a”), such that a’ + a” = a.
Since for any given value of a, its shares a’ or a” are (indi-
vidually) equiprobable, we compute Pr[successfuldecode|a]
as Pr[successful decodela] = é > ' +ar—q Prlsuccessful
decode of (a’, a’)].

The distribution Pr[successful decode|a] is shown in
Fig. 5. We see that the decoder performs best whena ~ ¢ /2,
in which case all possible inputs get decoded correctly. Only
when the input value a approaches g /4 or 3q /4, the perfor-
mance degrades. When using a larger number of iterations
N = 16, this effect is less pronounced when compared to
N = 2 iterations, as Fig. 5 shows.

On the other hand, it is easy to see that not all unshared
inputs a to the decoder are equally likely. By the construction
of the ring-LWE decryption function, the unshared input to
the decoder a is either centered around g /2 (resp. 0) when the
message bit is 1 (resp. 0). This distribution Pr[a] is plotted
in Fig. 6.

These two observations combined produce a nice inter-
action between the prior distribution Pr[a] of a (given by
the ring-LWE decryption) and the success distribution of
the masked decoder Pr[successful decodel|a] as in Eq. (5).
Namely, values of a that are difficult to decode (those with
low Pr[successful decode|a]) are quite unlikely to appear as
input to the masked decoder (their Pr[a] is also low). This
positive interaction keeps the global error rate of the system
quite low. This is precisely quantified in the next paragraph.
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unshared input to decoder

Fig. 5 Empirical success distribution for the masked decoder
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0 q/4 q/2 3q/4 q
input to the decoding

Fig. 6 Distribution of @ when plaintext is 1

Table 3 Global error rates with the probabilistic decoder

Iterations pg [X 1073] Dg/ Poaseline
N=2 332.24 91.41
3 178.44 49.09
4 25.36 6.97
5 20.77 5.71
6 16.22 4.46
8 6.97 1.91
16 4.32 1.19
24 4.06 1.11
30 3.87 1.06

Global error rate and number of iterations We performed
simulations to estimate the global error rate and determine
the required number of iterations N in our design. Over 10°
bits, the average error per bit using a deterministic decoder
Was Phaseline = 3.634375 x 107>, This is a baseline error
intrinsic to the ring-LWE construction. When we plug in the
probabilistic decoder, the global, end-to-end, error rate per
bit p, increases. (Wehave py = puaseline +Pe.) In Table 3, we
can find the global error rate for different values of the number
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Fig. 7 Evolution of the ratio pg/poaseline as the number of iterations
N grows

of iterations N of the decoding. At N = 3, for instance, the
error rate is p, = 1.7844 x 1073, which is ~ 49 times
larger than ppaseline- As already hinted, the error rate quickly
decreases with N (roughly exponentially, as can be see in
Fig. 7). In our design, we set N = 16 (we iterate 16 times per
coefficient) as a balanced trade-off between cycle count and
error rate. The impact of the masked probabilistic decoder
on the global error rate is quite low, adding less than 20 %
to the intrinsic error rate when compared to a deterministic
decoder, as it can be see in Table 3. We note that one could
generalize the masked decoder to trade area for less number
of iterations. For details, see Appendix C.

7.2 Comparison with other decoding strategies

We are only aware of a similar masked decoder, the one
presented in [5]. There, the authors resort to a generic mask-
ing method, namely masked tables, to perform the decoding.
Translating the ideas of [5] in our context, we would need
two tables of 213 bits (one of them random). For a smaller
group Zg with d = 257, the authors report an utilization of
1331 slices on a Virtex 6 FPGA. The results in slices are not
directly comparable with ours, we point out that the size of
the masked table following the approach of [5] grows lin-
early in the group size ¢, while for our solution the size of
the masked table stays constant (independent of ¢) and the
quadrant blocks grow only logarithmically in g. The cycle
count, however, is larger in our solution. The critical obser-
vation of our masked decoder is that we can compress the
input coefficient shares a” and a” to a mere two-bit per share
(the output of each quadrant) and then perform the decoding
based on the information of the two quadrants (4 bits).

7.3 Post-processing

Albeit the computation from Eq. (2) is commonly referred as
the “ring-LWE decryption”, the decryption process should
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include a post-processing on the recovered message m. This
post-processing consists of error correction and padding ver-
ification.

Linear codes with masking One approach to deal with the
probabilistic nature of the ring-LWE decryption system is to
use forward error correcting codes (FEC). The message prior
to encryption is encoded using a FEC and the resulting com-
posite is ring-LWE encrypted. The output of the ring-LWE
decryption should be corrected for errors, preferably in the
masked domain. For syndrome decoding of linear codes, this
can easily be done by masking the syndrome table. A clever
choice of the linear code (for example, perfect codes) can
allow very easy masked implementation. (The only perfect
linear codes are repetition, Hamming and Golay codes.)

Padding schemes As presented, the ring-LWE system is
malleable. CCA security can be achieved with a padding
mechanism. The Fujisaki and Okamoto [12] padding scheme
is known to work with ring-LWE [19]. This padding scheme
makes use of standard symmetric cryptographic construc-
tions whose masked implementations are well studied. We
point out that key-encapsulation mechanisms may result in a
more compact and simpler implementation.

We remind that the Fujisaki-Okamoto padding scheme
requires a negligible decryption error rate for honestly gen-
erated ciphertexts,? as explained by Peikert [19]. Thus, the
designer must ensure that the global error rate due to the
intrinsic noise of ring-LWE and the probabilistic decoder
is negligible. This can be achieved with FEC as previously
described.

A formal generic analysis to choose an FEC code that sets
the error rate to, say, 2780 or 27128 s not straightforward.
The analysis is greatly simplified if one chooses (n, p, s)
parameters such that there is no error contribution due to
those parameters and at the same time a required bit security
level is maintained. We leave this for a future work.

7.4 Extension to higher-order security

We point out that the approach laid out in Sect. 3 scales
quite well with the security order. To achieve security at level
d + 1, one would need to split the computation of Eq. (2)
into d branches analogously to Eq. (3). The masked decoder
can follow the same principles with the appropriate modi-
fications. The complexity of this decoder obviously grows.
Generic approaches to perform this computation have been
discussed in [3,8,24].

3 We would like to thank the anonyomus reviewer for bringing this
important issue to our attention.

8 Evaluation

In this section, we evaluate both the hardware and the soft-
ware implementations described above.

We provide a very advantageous setting for the adver-
sary: we assume that the evaluator knows the details about
the implementation (for example, pipeline stages and regis-
ter allocation). In addition, we assume that while guessing
a subkey, the adversary knows the rest of the key. These
assumptions allow to comfortably place predictions on inter-
mediates arbitrarily deep into the computation. While this
may represent a very powerful attacker and somewhat unre-
alistic, the algebraic structure of such cryptosystem may
help the attacker to predict deep intermediates with rela-
tively low effort. In the Appendix B, we describe an attack
on half-masked ring-LWE decryption that uses these ideas.
This stresses the necessity of masking the decoding function
entirely.

The evaluation methodology to test if the masking is
sound is as follows. We first proceed with the first-order
key-recovery attacks when the randomness source (PRNG)
is switched off. We demonstrate that in that situation the
attacks are successful, indicating that the setup and proce-
dure are sound. Then we switch on the PRNG and repeat the
attacks. If the masking is sound, the first-order attacks shall
not succeed. In addition, we perform second-order attacks
to confirm that the previous first-order analyses were carried
out with enough traces.

‘We modeled the power consumption as the Hamming dis-
tance between two consecutive values held in a register, and
used Pearson’s correlation coefficient to compare predictions
with measurements [6].

8.1 Hardware implementation evaluation

Measurement setup We implemented the full design on a
SASEBO G board. The design was clocked at 18.75 MHz
and the power consumption was sampled at 500 MS/s. This
platform is of very low noise.

We test 4 different points which covers all the relevant
parts of the computation. The targets are the first 13-bit coef-
ficient of r’ - ¢ + ¢, the first 13-bit coefficient of r” - ¢y,
the first input coefficient to the shared decoder and the first
output bit.

PRNG off We first begin the experiments when the PRNG is
off. That is, the sharing of r into r’ and r” on each execution
is deterministic. This would not happen in practice, as an
active PRNG would randomize the representation of r in each
execution. In our setting, this would mean that the masking
is switched off.

In Fig. 8 we draw the result of correlating against the 4
intermediates with 10,000 traces. On top, we draw a mean
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Fig. 8 Hardware

implementation. PRNG off. On T T
top, black, one power
consumption trace. The different
computational stages can be
distinguished: first branch,
second branch and decoding.
Next, in blue, the correlation

mean curve

trace for the value is
r'[0] - ¢1[0] + ¢2[0]. The

correlation achieves a maximum
value of p = 0.25. Below, in

red, correlation for 7 - ¢; (max
p =~ 0.3); in green correlation
for the input of the masked

sample p

decoder a’[0]. At the bottom,
correlation with one message bit
m’[0] | !

branch 1 branch 2 decoding
< > < > €< — —>
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l <«— p =0.25, intermediate: (0] - ¢1[0] + c2[0]
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p = 0.27, intermediate: a’[0] H‘
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trace for orientation. The correlation values are, from top to
bottom, 0.25, 0.3, 0.27 and 0.21, respectively. This means
that the attacks are successful, and confirms the soundness
of our setting. In Fig. 9, we can see the evolution of the

sample correlation

-0.5
0 2000 4000 6000 8000 10000

number of traces

0.5

sample correlation

o 2000 4000 6000 8000 10000
number of traces

Fig. 9 Hardware implementation. PRNG off. Evolution of the corre-
lation coefficient as the number of traces increases for the intermediates
r'[0]-¢1[0] + c2[0] (left) and r”'[0] - ¢1[0] (right). Correct subkey guess
in red, all other guesses in green. A 99.99 % confidence interval for
p = 0is plotted in black discontinuous line. We can see that starting
from hundred measurements the attacks are successful
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Fig. 10 Hardware implementation. Analogous to Fig. 9, but with
PRNG on. The correct subkey is no longer identifiable. This is expected
and means that the masking is effective

correlation coefficient as the number of traces increases for
the first two intermediates. We can see that starting from
100 traces, the attack is successful. A similar behavior was
observed for other intermediates.

PRNG on InFig. 10, we draw the result of the previous analy-
sis when the masks are switched on. This corresponds to the
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Fig. 11 Hardware ‘
implementation. Correlation
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situation that an adversary would face in reality. We can see
that the correct key guess is no longer distinguishable, even
when using 10,000 traces. We repeated the same experiments
for other intermediates and other intermediate positions with
identical results.

Second-order attacks To confirm that we used enough traces
in our previous analyses, we perform here second-order
attacks on the masked implementation with the PRNG on.
We will focus on the masked decoder. In Fig. 11, we draw
on the top a mean curve in the region of 7400-7700 cycles,
corresponding to the end of the masked decoding. We target
one output bit of the decoding: m[254].

In Fig. 11, we first begin by correlating against masks and
masked values. This is a test scenario, since for this attack we
need to know the masks, something that would not happen
in a real deployment. Correlations with masks or masked
value yield high correlation as expected (p = 0.32 and p =
0.34, respectively). In contrast, when correlating against the
unshared value (in light blue), the correlation coefficient does
not traverse the confidence interval for p = 0. This indicates
that the masking is effective. We can repeat the same attack
against centered and squared traces [7,21]. This is effectively
a second-order attack and is expected to work. It is shown in
magenta in Fig. 11, and we can see that the attack succeeds.
Using the centered absolute value to pre-process traces also
works as expected, as shown in yellow.

In Fig. 12, we can see the evolution as a function of
the number of traces. We can see that starting from ~2000
measurements, this second-order attack is successful. This
confirms that the first-order attacks from above were carried
out with enough traces, since a second-order attack is already
successful starting from ~2000 measurements.

We remark that the relatively low number of traces
required for the second-order attack is due to the very friendly

7500 7550 7600 7650 7700

time [cycles]

scenario for the evaluator. The platform is of low noise and
no other countermeasure except masking was implemented.
In practice, masking needs a source of noise to be effective,

sample correlation

0.5 1 1.5 2

number of traces 4
x 10

sample correlation

o 0.5 1 15 2
number of traces 4
x 10

Fig. 12 Hardware implementation. Top correlation as the number of
traces increases for the first-order attack (PRNG on), around clock cycle
7560. Bottom correlation for the second-order attack with masks on. The
attack begins to be successful with 2000 measurements
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Fig. 13 Hardware implementation. Crosscorrelation trace. The x and y
axes represent time, flowing from the upper left hand side corner to the
lower right. The entire figure spans 7500 cycles (as Fig. 8). It is possible
to distinguish the two branch computations (including its components)
and the decoding. Colors enhanced to improve contrast

and consequently the higher-order attacks would be harder to
mount, requiring more traces [7] and more computation [25]
(Fig. 13).

8.2 Software implementation evaluation

Measurement setup We deployed the masked software imple-
mentation on a 32-bit ARM STM32F407VG Cortex-M4. The
MCU operates at 168 MHz and has 192 kB of SRAM. We take
contactless power measurements from a decoupling capac-
itor in the power loop with a Langer LF2-5 H-field probe
and 20 dB amplification. This laboratory setup is of very
low noise. DPA on an unprotected byte-oriented AES suc-

ceeds with 20 traces. We focus the evaluation on the most
challenging part: the masked decoding operation.

Masks off Figure 14 shows the successful correlations when
the adversary knows the secret PRNG seed. This serves to
confirm that our setup is sound. We selected many differ-
ent intermediates within the table lookup operation and used
20k traces to produce a good-looking picture. The maxi-
mum absolute value for the correlation against the correct
key hypothesis is around |p| &~ 0.71. In Fig. 15, top, we see
the evolution of sample correlation coefficient as the number
of curves at timesample 1390. We can see that starting from
less than 100 traces, the attack is successful, since the correct
subkey stands out from all other competing key hypotheses.

Masks on When the PRNG output is unknown, first-order
attacks are expected not to work. This is the case in our
implementation. In Fig. 15, middle, the evolution of the cor-
relation coefficient is plotted at the same timesample 1390.
The correct subkey is indistinguishable among competing
ones. Similar observations apply to the entire timespan.

Second-order attacks We also performed second-order atta-
cks. Note that our implementation does not claim second-
order security. One can see from Fig. 15, bottom, that
second-order attacks begin to work from a couple of hun-
dred measurements. This means that the previous analyses
were carried out with enough number of measurements (up
to 20k measurements). Similar observations apply here: our
software setting is very friendly toward the evaluator, since
there is no additional noise present in the measurements. In
reality, one would always implement masking along with a
source of noise to be effective.

Fig. 14 Software T T
implementation. PRNG off. On
top, black one EM consumption

exemplary

EM trace

trace. The selected region
comprises one masked bitsliced
table lookup. Below different
correlation traces for various
intermediates. Correlation for
different shares of the same
intermediate are drawn in the
same color. The 99.99 %
confidence interval for p = 0 is

sample p

drawn in light gray
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number of traces [x10%]

Fig. 15 Software implementation. Evolution of Pearson’s correlation
coefficient with the number of traces for different attacks at timesample
1390. On top (successful) first-order attack with PRNG off. Middle
(unsuccessful) first-order attack with PRNG on. Bottom (successful)
second-order attack with PRNG on. Correct subkey in red, and incorrect
in green. We also plot the 99.99 % confidence interval for p = 0 in
dashed line

8.3 Horizontal DPA attacks

During the decoder operation, the input coefficients are
refreshed N — 1 = 15 times with publicly known offsets
A;. The device thus handles consecutively the values a’,
a + Aq,...,d + Ay + -+ + Ays. This may enable a hor-
izontal DPA attack [18] during the operation: the adversary
may collect a single trace, split it into 16 chunks and then
perform a DPA on these 16 chunks to recover the mask a’.
Once the masks from all traces are discovered, a first-order,
vertical DPA applies.

There are two factors that mitigate this threat. First, we
note that the adversary is given a very limited number of
traces to recover each mask (namely, N = 16). Secondly,
this attack can be easily prevented by shuffling the public
coefficients A;. This randomizes the order of execution of
each refreshing with A;, and thus the exposure to horizontal
DPA attacks is minimized.

9 Conclusion

In this paper, we described a practical side-channel protected
implementation of the lattice-based ring-LWE asymmetric
decryption. Our solution is based on the sound principles of
masking and incurs in a manageable overhead (in cycles and

area). A key component of our solution is a bespoke masked
decoder. Our implementation performs the entire ring-LWE
decryption computation in the masked domain.
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Appendix A: Optimal values of A; for ¢ = 7681

A(i) = (960, 1440, 480, 1680, 240, 720, 1200, 1800,  (6)
120, 360, 600, 840, 1080, 1320, 1560, 1860,  (7)
60, 180, 300, 420, 540, 660, 780, 900, 1020,  (8)
1140, 1260, 1380, 1500, 1620, 1740, 1890, ©)
30, 90, 150, 210, 270, 330, 390, 450, 510, (10)
570, 630, 690, 750, 810, 870, 930, 990, 1050,
Y
1110, 1170, 1230) (12)

These values were found by exhaustive first-order search.
The value A; is chosen so that it maximizes the number of
pairs that get decoded after 7 iterations.

Appendix B: Attack on half-masked variant

In this section, we analyze the security of a masked ring-LWE
variant where the intermediates just before decoding are
unmasked, and the decoding is performed in the unmasked
domain. This alternative is definitely cheaper than full mask-
ing.

In the following, we provide evidence to show that this
clearly does not provide enough security in our case.

(A seemingly similar situation appears in [5]. However,
there are important differences—namely, it is not possible to
choose ciphertexts. In the following, we are not analyzing
the variant of [5], but only the half-masked ring-LWE.)

A common argument is that after key diffusion is com-
plete, prediction of the intermediates is not possible and
hence standard DPA attacks to the half-masked ring-LWE
do not apply. We will see that this is not strictly true, if the
attacker can choose ciphertexts.

Assume that the coefficients of the polynomial a =
INTT(r-c1+c2) appear unmasked in the implementation. Let
the adversary collect measurements with the chosen cipher-
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text. The ciphertext ¢ has the following structure: all the
coefficients are fixed except c1[0] that is randomly varying.
The ciphertext cp has the same structure. Then observe that
due to linearity of the INTT operation, a[0] can be written
as al0] = a(r[0] - ¢1[0] + ¢2[0]) + B, where

— « is a public constant determined by the INTT transfor-
mation.
— B is a secret constant that is a function of the other

(unknown) key coefficients r[1], ..., r[255]. Note that
by construction, g is constant within the set of collected
traces.

Thus, an attacker can perform a DPA attack targeting the
intermediate a[0] and placing predictions on (r[0], 8). The
adversary recovers r[0] and proceeds to recover other key
coefficients. We have verified this attack in simulations, even
when using th(a[i]) as intermediate.

(It may seem that the high number of hypotheses, 22°,
may produce a cumbersome attack. However, one can apply
techniques of partial correlation [6] to alleviate the compu-
tational effort of DPA on large word sizes [31]. We have
experimented that in practice it makes sense to first recover
r[0] (this is easier due to larger non-linearity of the modular
multiplication) and then S (which may be harder due to the
low non-linearity of the modular addition), splitting the 220
effort in two 213 steps.)

Appendix C: Generalization of the decoding
scheme

The probability of not hitting any rule can be reduced by
increasing the number of rules, i.e., by splitting the domain
of decoding into more than four sections. For example, in
Table 4, the rules are shown for the case when the decoding
domain is split into eight sections or octant. As seen from
the table, the probability of not hitting a rule has reduced
to 1/4. Hence to meet a same decryption failure rate, an

Table 4 The rules for octant decoding

/ "
a

a

I I I3 N Is Ig 17 I
I = (0.q/8) o x v v v x v
L=(q/829/8 x v v v x v v ¥
L=@2q/8.3¢/8 v v v x v v v x
L=03g/8.49/8 v v x v v v x v
Is=(4g/8.5¢/8) v x v v v x v v
Is=(5¢/8.6¢/8) x v v v x v v V
I=(6q/8.7/8 v v v x v v v x
k=(79/8.8¢/8) v v x v v v x V

The cases where no rule is hit are marked with x
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octant decoder needs almost half the number of iterations as
required by a quad decoder. However, there are overheads
associated with an octant decoder when it is compared to
a quad decoder: the number of comparisons to locate the
position of a coefficient in the octant chart doubles and the
sizes of the tables quadruple.
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