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Abstract Evoked by the increasing need to integrate side-
channel countermeasures into security-enabled commercial
devices, evaluation labs are seeking a standard approach that
enables a fast, reliable and robust evaluation of the side-
channel vulnerability of the given products. To this end, stan-
dardization bodies such as NIST intend to establish a leakage
assessment methodology fulfilling these demands. One of
such proposals is the Welch’s ¢ test, which is being put for-
ward by Cryptography Research Inc. and is able to relax the
dependency between the evaluations and the device’s under-
lying architecture. In this work, we deeply study the theo-
retical background of the test’s different flavors and present
a roadmap which can be followed by the evaluation labs to
efficiently and correctly conduct the tests. More precisely, we
express a stable, robust and efficient way to perform the tests
at higher orders. Further, we extend the test to multivariate
settings and provide details on how to efficiently and rapidly
carry out such a multivariate higher-order test. Including a
suggested methodology to collect the traces for these tests,
we point out practical case studies where different types of ¢
tests can exhibit the leakage of supposedly secure designs.
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1 Introduction

The threat of side-channel analysis attacks is well known by
the industry sector. Hence, the necessity to integrate corre-
sponding countermeasures into the commercial products has
become inevitable. Regardless of the type and soundness of
the employed countermeasures, the security evaluation of the
prototypes with respect to the effectiveness of the underly-
ing countermeasure in practice is becoming one of the major
concerns of the producers and evaluation labs. For exam-
ple, the power of side-channel analysis as devastating attacks
motivated the NIST to hold the “Non-Invasive Attack Test-
ing Workshop” in 2011 to establish a testing methodology
capable of robustly assessing the physical vulnerability of
cryptographic devices.

With respect to common criteria evaluations—defined and
used by governing bodies like ANSSI and BSI—the evalu-
ation labs need to practically examine the feasibility of the
state-of-the-art attacks conducted on the device under test
(DUT). The examples include but are not restricted to the
classical differential power analysis (DPA) [15], correlation
power analysis (CPA) [6], and mutual information analysis
(MIA) [11]. To cover the most possible cases, a large range of
intermediate values as well as hypothetical (power) models
should be examined to assess the possibility of the key recov-
ery. This methodology is becoming more challenging as the
number and types of known side-channel attacks are steadily
increasing. Trivially, this time-consuming procedure cannot
be comprehensive even if a large number of intermediate
values and models in addition to several known attacks are
examined. In fact, the selection of the hypothetical model
is not simple and strongly depends on the expertise of the
evaluation labs’ experts. If the models were poorly chosen
and as a result none of the key-recovery attacks succeeded,
the evaluation lab would issue a favorable evaluation report
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even though the DUT might be vulnerable to an attack with
a more advanced and complex model. This strongly moti-
vates the need for an evaluation procedure which avoids being
dependent on attack(s), intermediate value(s), and hypothet-
ical model(s).

On the one hand, two information-theoretic tests [7, 8] are
known which evaluate the leakage distributions either in a
continuous or discrete form. These approaches are based on
the mutual information and need to estimate the probabil-
ity distribution of the leakages. This adds other parameter(s)
to the test with respect to the type of the employed den-
sity estimation technique, e.g., kernel or histogram and their
corresponding parameters. Moreover, they cannot yet focus
on a certain statistical order of the leakages. This becomes
problematic when, e.g., the first-order security of a mask-
ing countermeasure is expected to be assessed. On the other
hand, two leakage assessment methodologies (specific and
non-specific ¢ tests) based on the Student’s ¢-distribution have
been proposed (at the aforementioned workshop [12]) with
the goal to detect any type of leakage at a certain order. A
comparative study of these three test vectors is presented in
[17], where the performance of specific ¢ tests (only at the
first order) is compared to that of other mutual information-
based tests.

In general, the non-specific ¢ test examines the leakage
of the DUT without performing an actual attack and is in
addition independent of its underlying architecture. The test
gives a level of confidence to conclude that the DUT has
an exploitable leakage. It indeed provides no information
about the easiness/hardness of an attack which can exploit
the leakage nor about an appropriate intermediate value and
the hypothetical model. However, it can easily and rapidly
report that the DUT fails to provide the desired security level,
e.g., due to a mistake in the design engineering or a flaw in
the countermeasure [2].

1.1 Our contribution

The Welch’s ¢ test has been used in a couple of research works
[2,5,16,21,31-33,36] to investigate the efficiency of the pro-
posed countermeasures, but without extensively expressing
the challenges of the test procedure. This document aims at
putting light on a path for, e.g., evaluation labs, on how to
examine the leakage of the DUT at any order with minimal
effort and without any dependency to a hypothetical model.
Our goal in this work was to cover the following points:

— We try to explain the underlying statistical concept of
such a test by a (hopefully) more understandable termi-
nology.

— In the seminal paper by Goodwill et al. [12] it has been
shown how to conduct the test at the first order, i.e., how
to investigate the first-order leakage of the DUT. The
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authors also shortly stated that the traces can be pre-
processed to run the same test at higher orders. Here we
point out the issues one may face to run such a test at
higher orders and provide appropriate solutions accord-
ingly. As amotivating point we should refer to [17], where
the ¢ test is supposed to be able to be performed at only
the first order.

— More importantly, we extend the test to cover multivariate
leakages and express the necessary formulations in detail
allowing us to efficiently conduct ¢ tests at any order and
any variate.

— In order to evaluate the countermeasures (mainly those
based on masking at high orders) several million traces
might be required (e.g., see [5, 16]). Hence we express the
procedures which allow conducting the tests by means of
multi-core CPUs in a parallelized way.

— We give details of how to design appropriate frame-
works to host the DUT for such tests, including both
software and hardware platforms. Particularly, we con-
sider a microcontroller as well as an FPGA (SASEBO)
for this purpose.

— Depending on the underlying application and platform,
the speed of the measurement is a bottleneck which hin-
ders the collection of several million measurements. Due
to this reason, the evaluation labs are usually restricted
(commonly by common criteria) to measure not more
than one million traces from any DUT. We also demon-
strate a procedure to accelerate the measurement process
allowing the collection of, e.g., millions of traces per
hour.

— We also show two practical case studies, where the uni-
variate as well as bivariate ¢ tests show the leakage of
designs expected to be secure.

2 Statistical background

A fundamental question in many different scientific fields
is whether two sets of data are significantly different from
each other. The most common approach to answer such a
question is Welch’s 7 test in which the test statistic follows
a Student’s ¢ distribution. The aim of a ¢ test is to provide
a quantitative value as a probability that the mean p of two
sets are different. In other words, a ¢ test gives a probability
to examine the validity of the null hypothesis as the samples
in both sets were drawn from the same population, i.e., the
two sets are not distinguishable.

Hence, let Q¢ and Q; indicate two sets which are under
the test. Let also o (resp. 1) and 502 (resp. s1 2) stand for the
sample mean and sample variance of the set Qg (resp. Qy),
and ng and n; the cardinality of each set. The 7 test statistic
and the degree of freedom v are computed as
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where I7(.) denotes the gamma function. Based on the two-
tailed Welch’s ¢ test the desired probability is calculated as 0.2 1
p=2 f|<t>lo f(t,v)dr. Figure la represents a graphical view 0 ‘ ‘
of such a test. -8 -6 6 8

As an alternative, we can make use of the corresponding
cumulative distribution function

1 v+l 3. x2
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2 2 JTur (%)
with 2 F1(., .; .; .) being the hypergeometric function. Hence
the result of the 7 test can be estimated as

p =2F(—|t],v).

For a graphical view, see Fig. 1b. Note that such a function
is available amongst the MATLAB embedded functions as
tcdf (-,-) and for R as gt (-,-).

Hence, small p values (alternatively big t values) give evi-
dence to reject the null hypothesis and conclude that the sets
were drawn from different populations. For the sake of sim-
plicity, usually a threshold |t| > 4.5 is defined to reject the
null hypothesis without considering the degree of freedom
and the aforementioned cumulative distribution function.
This intuition is based on the fact that p = 2 F(—4.5,v >
1000) <0.00001 which leads to a confidence of >0.99999 to
reject the null hypothesis.

3 Methodology

Suppose that in a side-channel evaluation process, with
respect to n queries with associated data (e.g., plaintext or
ciphertext) Djgq1,... n}, n side-channel measurements (so-
called traces) are collected while the device under test
operates with a secret key that is kept constant. Let us
denote each trace by T;¢(1,... ) containing m sample points

1
PR

.....

(b)

Fig. 1 Student’s 7 distribution functions and two-tailed Welch’s ¢ test
(examples for v = 10, 000). a Probability density function. b Cumula-
tive distribution function

As astraightforward evaluation process, the traces are cat-
egorized into two sets Qp and Q; and the test is conducted
at each sample point {1, ..., m} separately. In other words,
the test is performed in a univariate fashion. At this step such
a categorization is done by means of an intermediate value
corresponding to the associated data D. Since the underlying
process is an evaluation procedure, the secret key is known
and all the intermediate values can be computed. Based on
the concept of the classical DPA [15], a bit of an intermedi-
ate value (e.g., an Sbox output bit at the first cipher round) is
selected to be used in the categorization.

Qo = {T; | target bit(D;) = 0},
Q1 = {T; | target bit(D;) = 1}.

If the corresponding ¢ test reports that with a high confi-
dence the two trace groups (at certain sample points) are
distinguishable from each other, it is concluded that the cor-
responding DPA attack is—most likely—able to recover the
secret key.

Such a test (so-called specific ¢ test) is not restricted to
only single-bit scenarios. For instance, an 8-bit intermediate
value (e.g., an Sbox output byte) can be used to categorize
the traces as

Qo = {T; | target byte(D;) = xJ,
Q) = {T; |target byte(D;) # xJ.
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In this case, a particular value for x should be selected prior
to the test. Therefore, in case of an 8-bit target intermediate
value 256 specific ¢ tests can be performed. It should be
noted that in such tests, ng and n| (as the cardinality of Qg
and Q) would be significantly different if the associated
data D were drawn randomly. Hence, the accuracy of the
estimated (sample) means (to, (1) as well as variances (502,
slz) would not be the same. However, this should not—in
general—cause any issue as the two-tailed Welch’s ¢ test
covers such a case.

Therefore, the evaluation can be performed by many
different intermediate values. For example, in case of an
AES-128 encryption engine by considering the AddRound-
Key, SubBytes, ShiftRows, and MixColumns outputs, 4 x
128 bit-wise tests and 4 x 16 x 256 byte-wise tests (only
at the first cipher round) can be conducted. This already
excludes the XOR result between the intermediate values,
which, depending on the underlying architecture of the DUT
(e.g., a serialized architecture) may lead to potential leaking
sources. Therefore, such tests suffer from the same weakness
as state-of-the-art attacks since both require to examine many
intermediate values and models, which prevents a compre-
hensive evaluation.

To cope with this imperfection a non-specific ¢ test can be
performed, which avoids being dependent on any intermedi-
ate value or a model. In such a test the associated data should
follow a certain procedure during the trace collection. More
precisely, a fixed associated data D is preselected, and the
DUT s fed by D or by arandom source in a non-deterministic
and randomly interleaved fashion. As a more clear explana-
tion suppose that before each measurement a coin is flipped,
and accordingly D or fresh-randomly selected data are given
to the DUT. The corresponding ¢ test is performed by cat-
egorizing the traces based on the associated data (D or
random). Hence such a test is also called fixed vs. random ¢
test.

The randomly interleaved procedure is unavoidable; oth-
erwise, the test may issue a false-positive result on the
vulnerability of the DUT. In particular, the internal state of the
DUT at the start of each query should be non-deterministic.
As an example, if the traces with associated data D are col-
lected consecutively, the DUT internal state is always the
same prior to each measurement with D. As another example,
if the traces with random associated data and D are collected
one after each other (e.g., D; being random for even i and D
for odd i), the DUT internal state is always the same prior to
each measurement with random associated data.

In order to explain the concept behind the non-specific ¢
test, assume a specific f test based on a single-bit intermediate
variable w of the underlying process of the DUT and the cor-
responding sample point j where the leakage associated with
w is measured. Further, let us denote the estimated means
of the leakage traces at sample point j by =0 and py=1,
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i.e., those applied in the specific ¢ test. If these two means
are largely enough different from each other, each of them is
also distinguishable from the overall mean p (which can be
approximated by w supposing ng ~ np).

From another perspective, consider two non-specific ¢
tests with the fixed associated data D,,—¢ and D,,—;, where
Dy =0 leads to the intermediate value w = 0 (respectively, for
Dy=1). Also, suppose that in each of these two tests Qg cor-
responds to the traces with the fixed associated data and Q) to
those with random. Hence, in the non-specific test with D,,—g,
the estimated mean po at sample point j is close to =0
(respectively, to j1,y=1 in the test with D,,—1). But in both tests
the estimated mean w (of Q1) is close to u (defined above).
Therefore, in both tests the statistic (#"°"SP*¢) is smaller than
that of the specific test (£°P°®) since puy—0 < U < Uy=1
(or respectively, (ty=1 < U < Uy=0). However, even sup-
posing ng &~ nj it cannot be concluded that |¢"°"SPeC| —
|£5P€¢| /2 since the estimated overall variance at sample point
j (which is that of Q1 in both non-specific tests) is

S1

2 (sw=0)*+ (su=1)? N (uw:o - uw:1)2
B 2 2
# (Sw=0/1)",

assuming ng ~ nj.

As a result, if a non-specific ¢ test reports a detectable
leakage, the specific one results in the same conclusion but
with a higher confidence. Although any intermediate value
(either bit-wise or at larger scales) as well as the combination
between different intermediate values is covered by the non-
specific ¢ test, the negative result (i.e., no detectable leakage)
cannot be concluded from a single non-specific test due to
its dependency on the selected fixed associated data D. In
other words, it may happen that a non-specific ¢ test by a
certain D reports no exploitable leakage, but the same test
using another D leads to the opposite conclusion. Hence, it is
recommended to repeat a non-specific test with a couple of
different D to avoid a false-positive conclusion on resistance
of the DUT.

The non-specific ¢ test can also be performed by a set
of particular associated data D instead of a unique D. The
associated data in D are selected in such a way that all of
them lead to a certain intermediate value. For example, a
set of plaintexts which cause half of the cipher state at a
particular cipher round to be constant. In this case Qg refers to
the traces with associated data—randomly—selected from D
(respectively, Q; to the traces with random associated data).
Such a non-specific 7 test is also known as the semi-fixed vs.
random test [9] and is particularly useful where the test with
aunique D leads to a false-positive result on the vulnerability
of the DUT. We express the use cases of each test in more
detail in Sect. 6.
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3.1 Order of the test

Recalling the definition of first-order resistance, the esti-
mated means of leakages associated with the intermediate
values of the DUT should not be distinguishable from each
other (i.e., the concept behind the Welch’s ¢ test). Other-
wise, if such an intermediate value is sensitive and predictable
knowing the associated data D (e.g., the output of an Sbox at
the first cipher round) a corresponding first-order DPA/CPA
attack is expected to be feasible. It can also be extended to
the higher orders by following the definition of univariate
higher-order attacks [22]. To do so (as also stated in [12]) the
collected traces need to be preprocessed. For example, for
a second-order evaluation each trace—at each sample point
independently—should be mean-free squared prior to the ¢
test. Here we formalize this process slightly differently as
follows.

Let us first denote the dth-order raw statistical moment of a
random variable X by My = E(X4), with © = M/ the mean
and E(.) the expectation operator. We also denote the dth-
order (d > 1) central moment by CM; = E ((X — M)d),
with s2 = C M, the variance. Finally, the dth-order (d > 2)

d
standardized moment is denoted by SM; = E ((#) ),

with SM3 the skewness and S My the kurtosis.

In a first-order univariate 7 test, for each set (Qg or Q1) the
mean (M) is estimated. For a second-order univariate test the
mean of the mean-free squared traces ¥ = (X — u)z is actu-
ally the variance (C M>) of the original traces. Respectively,
in a third and higher (d > 2) order test the standardized
moment SM, is the estimated mean of the preprocessed
traces. Therefore, the higher-order tests can be conducted by
employing the corresponding estimated (central or standard-
ized) moments instead of the means. The remaining point is
how to estimate the variance of the preprocessed traces for
higher-order tests. We deal with this issue in Sect. 4.2 and
explain the corresponding details.

As stated, all the above given expressions are with respect
to univariate evaluations, where the traces at each sample
point are independently processed. For a bivariate (respec-
tively, multivariate) higher-order test different sample points
of each trace should be first combined prior to the ¢ test,
e.g., by centered product at the second order. A more formal
definition of these cases is given in Sect. 5.

4 Efficient computation

As stated in the previous section, the first-order 7 test requires
the estimation of two parameters (sample mean p and sam-
ple variance sz) for each set Qp and Q. This can lead to
problems concerning the efficiency of the computations and
the accuracy of the estimations. In the following, we address

most of these problems and propose a reasonable solution
for each of them. For simplicity we omit to mention the sets
Qp and Q; (and the corresponding indices for the means
and variances). All the following expressions are based on
focusing on one of these sets, which should be repeated on
the other set to complete the required computations of a ¢
test. Unless otherwise stated, we focus on a univariate sce-
nario. Hence, the given expressions should be repeated at
each sample point separately.

Using the basic definitions given in Sect. 3, itis possible to
compute the first raw and second central moments (M7 and
C M>) for afirst order ¢ test. However, the resulting algorithm
is inefficient as it requires to process the whole trace pool (a
single point) twice to estimate CM> since it requires M
during the computation.

An alternative would be to use the displacement law to
derive C M, from the first two raw moments as

CM, = E(X?) —E(X)*> = M, — M;>. )

Whereas it results in a one-pass algorithm, it is still not the
optimal choice as it may be numerically unstable [13]. During
the computation of the raw moments the intermediate values
tend to become very large which can lead to aloss in accuracy.
Further, M, and M;? can be large values, and the result of
M> — M;? can also lead to a significant accuracy loss due to
the limited fraction significant of floating point formats (e.g.,
IEEE 754).

In the following we present a way to compute the two
required parameters for the # test at any order in one pass and
with proper accuracy. This is achieved by using an incre-
mental algorithm to update the central sums from which the
needed parameters are derived.

4.1 Incremental one-pass computation of all moments

The basic idea of an incremental algorithm is to update the
intermediate results for each new trace added to the trace
pool. This has the advantage that the computation can be
run in parallel to the measurements. In other words, it is not
necessary to collect all the traces, estimate the mean, and then
estimate the variance. Since the evaluation can be stopped
as soon as the ¢ value surpasses the threshold, this helps
to reduce the evaluation time even further. Finding such an
algorithm for the raw moments is trivial. In the following, we
recall the algorithm of [26] to compute all central moments
iteratively, and further show how to derive the standardized
moments accordingly.

Suppose that M; o denotes the first raw moment (sample
mean) of the given set Q. With y as a new trace to the set, the
first raw moment of the enlarged set @' = Q U {y} can be
updated as M oo = M| o + %, where A =y — M ¢, and

@ Springer



90

J Cryptogr Eng (2016) 6:85-99

n the cardinality of Q’. Note that Q and M ¢ are initialized
with ¥ and, respectively, zero.

This method can be extended to compute the central
moments at any arbitrary order d > 1. We first introduce
the term central sum as
CSy

where CM; = —.
n

CSa= > (xi — ",
i

Following the same definitions, the formula to update C Sy

can be written as [26]

& (d —A\
CSy.0=CS50+ i CSi—k.0
k=1

n

() -G

+ A) | 1= ; 3)
n n—1

where A is still the same as defined above. It is noteworthy

that the calculation of C'S; ¢ requires CS; g for1 <i <d

as well as the estimated mean M g.

Based on these formulas the first raw and all central
moments can be computed efficiently in one pass. Further-
more, since the intermediate results of the central sums
are mean free, they do not become significantly large that
helps preventing the numerical instabilities. The standardized
moments are indeed the central moments which are normal-
ized by the variance. Hence they can be easily derived from
the central moments as

L d
SMdzl E (xl M) :&_ 4)
n : s (

i)’

Therefore, the first parameter of the ¢ test (mean of the pre-
processed data) at any order can be efficiently and precisely
estimated. Below we express how to derive the second para-
meter for such tests at any order.

4.2 Variance of preprocessed traces

A t test at higher orders operates on preprocessed traces.
In particular it requires to estimate the variance of the pre-
processed traces. Such a variance does in general not directly
correspond to a central or standardized moment of the orig-
inal traces. Below we present how to derive such a variance
at any order from the central and standardized moments.

Equation (2) shows how to obtain the variance given only
the first two raw moments. We extend this approach to derive
the variance of the preprocessed traces. In case of the second
order, the traces are mean-free squared, i.e., ¥ = (X — /,L)z.
The variance of Y is estimated as

5" = % > (c—w?- % > - w?)
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LS (- w? - o)’
= % D=t - %CMz D =+ Oy’
=CMy — CMZZ. (5

Therefore, the sample variance of the mean-free squared
traces (required for a second-order 7 test) can be efficiently
derived from the central moments CM4 and CM,. Note
that the values processed by the above equations (C M4 and
C M>) are already centered, thus avoiding the instability issue
addressed in Sect. 4. For the cases at the third order, the traces
are additionally standardized, i.e., Z = (%)3 The vari-
ance of Z can be written as

I
S| =
N
~—

=

v |

=

1 X —u 6 2 X — [ 3 2
- - —SM SM
CMg — CM53?

= SMg — SM3?% =
6 3 CM23

(6)

Since the tests at third and higher orders use standardized
traces, it is possible to generalize Eq. (6) for the variance of
the preprocessed traces at any order d > 2 as

CMyy — CMd2

SMoy — SM* =
2d d CMy

N

Therefore, a 7 test at order d requires to estimate the cen-
tral moments up to order 2d. With the above given formulas
it is now possible to extend the ¢ test to any arbitrary order
as we can estimate the corresponding required first and sec-
ond parameters efficiently. In addition, most of the numerical
problems are eliminated using this approach. The required
formulas for all parameters of the tests up to the fifth order
are provided in Appendix 1. We also included the formulas
when the first and second parameters of the tests (up to the
fifth order) are derived from raw moments.

In order to give an overview on the accuracy of dif-
ferent ways to compute the parameters for the 7 tests, we
ran an experiment with 100 million simulated traces with
~N (100, 25), which fits to a practical case where the traces
(obtained from an oscilloscope) are signed 8-bit integers. We
computed the second parameter for ¢ tests using (i) three-
pass algorithm, (ii) the raw moments, and (iii) our proposed
method. Note that in the three-pass algorithm first the mean p
is estimated. Then, having pu, the traces are processed again
to estimate all required central and standardized moments,
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Table 1 Compar1son of the Ist order 2nd order 3rd order 4th order 5th order
accuracy of different methods to
compute the second parameter Three pass 25.08399 1258.18874 15.00039 96.08342 947.25523
of the 7 tests, 100 million
simulated traces ~A'(100, 25) Raw moments  25.08399 1258.14132 1449282 —1160.83799  —1939218.83401

Our method 25.08399 1258.18874 15.00039 96.08342 947.25523
and finally having all moments the traces are preprocessed
(with respect to the desired order) and the variances (of Z B CSd—k,Q*'
the preprocessed traces) are estimated. The corresponding k=1
results are shown in Table 1. In terms of accuracy, our n* cs A
method matches the three-pass algorithm. The raw moments n d—k, Q% |22, it
approach suffers from severe numerical instabilities, espe- n* | 1\4-1
cially at higher orders where the variance of the preprocessed + ( Az, 1) [ﬁ - (?) i| ,
traces becomes negative. n (n*z) n

with Q _ Q*l U Q*Z, n*i — |Q*i|, n = n*l + n*2’ and

4.3 Parallel computation

Depending on the data complexity of the measurements, it is
sometimes favorable to parallelize the computation to reduce
the time complexity. To this end, a straightforward approach
is to utilize a multi-core architecture (a CPU cluster) which
computes the necessary central sums for multiple sample
points in parallel. This can be achieved easily as the compu-
tations on different sample points are completely independent
of each other. Consequently, there is no communication over-
head between the threads. This approach is beneficial in most
measurement scenarios and enables an extremely fast eval-
uation depending on the number of available CPU cores as
well as the number of sample points in each trace. As an
example, we are able to calculate all the necessary para-
meters of five non-specific ¢ tests (at first to fifth orders)
on 100,000,000 traces (each with 3000 sample points) in 9
h using two Intel Xeon X5670 CPUs @ 2.93GHz, i.e., 24
hyper-threading cores.

A different approach can be preferred if the number of
points of interest is very low. In this scenario, suppose that the
trace collection is already finished and the ¢ tests are expected
to be performed on a small number of sample points of a large
number of traces. The aforementioned approach for parallel
computing might not be the most efficient way as the degree
of parallelization is bounded by the number of sample points.
Instead, it is possible to increase the degree by splitting up the
computation of the central sums for each sample point. For
this, the set of traces of one sample point Q is partitioned into
¢ subsets Q* i € {1, ..., c}, and the necessary central sums
CS, o+ are computed for each subset in parallel using the
equations introduced in Sect. 4.1. Afterward, all CS,; o« are
combined using the following exemplary equation for ¢ = 2
[26]:

CS4.0=CSy.0n +CS4 00

Ap 1 = M; g« — M; o« . Further, the mean of Q can be
trivially obtained as

n*l MI,Q*I + n*z MI,Q*Z

M =
1,Q n

5 Multivariate

The equations presented in Sect. 4 only consider univariate
settings. This is typically the case for hardware designs in
which the shares are processed in parallel, and the sum of the
leakages appear at a sample point. For software implemen-
tations this is usually not the case as the computations are
sequential and split up over multiple clock cycles.

In this scenario the samples of multiple points in time are
first combined using a combination function, and an attack
is conducted on the combination’s result. If the combination
function (e.g., sum or product) does not require the mean, the
extension of the equations to the multivariate case is trivial.
It is enough to combine each set of samples separately and
compute the mean and variance of the result iteratively as
shown in the prior section.

However, this approach does not apply to the optimum
combination function, i.e., the centered product [28,34].
Given d sample point indices J = {ji,..., j4} as points
of interest and a set of sample vectors Q@ = {Vic(1,.. n}}

with V; = (ti(j ) ljed ) the centered product of the i-th

trace is defined as [ ;. 7 ( {0 /L(Q])) , where /L(j) denotes
the mean at sample point j over set Q. The incluswn of the
means is the reason why it is not easily possible to extend the
equations from Sect. 4 to compute this value iteratively.
There is an iterative algorithm to compute the covariance
similar to the aforementioned algorithms. This corresponds

to the first parameter in a bivariate second-order scenario,
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: . Cro
i.e., d = 2. The covariance Q
n

[26] with

is computed as shown in

o n-bio_ (1)) ( @ _ <2>)
Cro=Cot— (y g ) (Y =g ®)
for Q' = QU{(y(l), y(Z))}, |Q’'| = n,and an exemplary index
set J = {1, 2}. Still, even with this formula it is not possible
to compute the required second parameter for the ¢ test. In
the following, we present an extension of this approach to
d sample points and show how this can be used to compute
both parameters for a dth-order d-variate ¢ test.

First, we define the sum of the centered products which is
required to compute the first parameter. For d sample points
and a set of sample vectors Q, we denote the sum as

Coog =2 [T (" -nd). ©)

VeQ jeJ

In addition, we define the k-th order power set of 7 as

={SI1SePWT), |SI=k}, (10)

where P(7) refers to the power set of the indices of the points
of interest 7. Using these definitions we derive the following
theorem:

Theorem 1 Let J be a given set of indices (of d points
of interest) and V the given sample vector with V =
WD, ..., y D). The sum of the centered products Cio.g

of the extended set Q' = QU V with AUST) = y() M(é)
and |Q'| = n > 0 can be computed as follows:

Cio.g="Ciog

(ST cos T

(Am)
k=2 SePy jeI\S

1V (n — _ 1\ ]
+ (=D%n 13{4‘(” 1) H A(])
jeJ

n
(11)

Proof We start with the definition of the sum of the centered
products and use @' = Q U V to split up the term as

Coo7=2 |1 (f(’) (1))

veQ jeJ
(> 11 (tm m)
VeQ jeJd
+(TT (2 -nd)). (12)
jed
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Considering only the first term and using the relation ,u(é? =
(n=Dpg +y9

n

z H (t(/) (1))

veQ jeJ

, We can write

()
n

VeQ jeJ

-3 1 (,(;) ‘ A’i’))

VeQ jeJ

=(> 11 (,(;) (,))

VeQ jeJ

X ST -uy) T 22

k=1SeP, VeQseS jeI\S

)
> 11 % . (13)

veQ jeJ

With Eq. (9) and the fact that ¥ j € 7, Yyeq (1) - n3))
= 0, we can simplify Eq. (13) to

Z H (t(” (/))

VeQ jeJ
A(/)
= Ca07+ ZZ Cros | —
k=2 ScPy jeI\S
n—1 :
+— [[ a2 (14)
(=m" .7

The second term of Eq. (12) can be reduced similarly as

) ()

; , — Dpy +yY
(MY _ ) (n Q
MQ/) = I I (y »

H (ym _

jeT jeg
_ H( (h _yh 4 = I)Am)
jed "
1 ((n — 1)A<J‘>)
jeJ .
=(”;—dl)d H A, (15)

jeJd

We can write Eq. (12) by combining Eq. (14) and Eq. (15) as

Ci0.g=Caoyg
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k=2 SePy TeT\S
n—1 L (m—1)4 :
Dy 7 (0]
+(_n)d1‘[A +—a 12 a9
jed jed
which is equivalent to Eq. (11). O

Equation (11) can be also used to derive the second
parameter of the ¢ tests. To this end, let us first recall the
definition of the second parameter in the dth-order d-variate
case:

2

1 . - C
2o IS T (9 - ) - S22
s = (t MQ) "

VeQ \jeJ
1 , N Cy 2
=~ (> 11 (I(J) _ M(é)) _ (&) . a7
n n
VeQ jed

The first term of the above equation can be written as

s Z 0 -n8)

VeQ jed
1 . . , 4
s (60w T (7 -8)
"veo \jes jed
Caa,0,7
_ 22407 18
” (18)

Hence, the iterative algorithm (Eq. (11)) can be performed
with multiset J" = {ji,..., ja, ji, ..., ja} to derive the
first term of Eq. (17). It is noteworthy that at the first glance
Eq. (17) looks like Eq. (2), for which we addressed low accu-
racy issues. However, data which are processed by Eq. (17)
are already centered, which avoids the sums C; ¢ 7 being
very large values. Therefore, the accuracy issues which have
been pointed out in Sect. 4 are evaded.

By combining the results of this section with that of Sect. 4,
itis now possible to perform a ¢ test with any variate and at any
order efficiently and with sufficient accuracy. As an example,
we give all the formulas required by a second-order bivariate
(d = 2) t test in Appendix 2.

6 Case studies

Security evaluations consist of the two phases measure-
ment and analysis. All challenges regarding the second part,
which in our scenario refers to the computation of the ¢
test statistics, have been discussed in detail in the previous
sections. However, this alone does not ensure a correct eval-
uation as malpractice in the measurement phase can lead to

faulty results in the analysis. Below, we first describe the
pitfalls that can occur during the measurement phase and
provide solutions to ensure the correctness of evaluations.
After that, two case studies are discussed that exemplary
show the applications of our proposed evaluation frame-
work.

6.1 Framework

If the DUT is equipped with countermeasures, the evalua-
tion might require the collection of many (millions of) traces
and, thus, the measurement rate (i.e., the number of collected
traces per a certain period of time) can become a major hur-
dle. Following the technique suggested in [9, 14] we explain
how the measurement phase can be significantly accelerated.
The general scenario (cf. Fig. 2) is based on the assump-
tion that the employed acquisition device (e.g., oscilloscope)
includes a feature usually called sequence mode or rapid
block mode. In such a mode—depending on the length of
each trace as well as the size of the sampling memory of
the oscilloscope—the acquisition device can record multi-
ple traces. This is beneficial since the biggest bottleneck in
the measurement phase is the low speed of the communica-
tion between e.g., the PC and the DUT (usually realized by
UART). In the scenario shown in Fig. 2 it is supposed that
Target is the DUT, and Control a microcontroller (or an
FPGA) which communicates with the DUT as well as with
the PC. The terms Target and Control correspond to the
two FPGAs of, e.g., a SAKURA (SASEBO) platform [1],
but in some frameworks these two parties are merged, e.g.,
a microcontroller-based platform. Further, the PC is already
included in modern oscilloscopes.

Profiting from the sequence mode the communication
between the PC and the DUT can be minimized in such a
way that the PC sends only a single request to collect multi-
ple N traces. The measurement rate depends on the size of the
oscilloscope’s sampling memory, the length of each trace as
well as the frequency of operation of the DUT. As an exam-
ple, by means of an oscilloscope with 64 MByte sampling
memory (per channel) we are able to measure N = 10, 000
traces per request when each trace consists of 5000 sample
points. This results in being able to collect 100 million traces
(for either a specific or non-specific ¢ test) in 12 h. We should
point out that the given scenario is not specific to ¢ test eval-
uations. It can also be used to speed up the measurement
process in case of an evaluation by state-of-the-art attacks
when the key is known.

To assure the correctness of the measurements, the PC
should be able to follow and verify the processes performed
by both Control and the DUT. Our suggestion is to employ a
random number generator which can be seeded by the PC.!

! For example an AES encryption engine in counter mode.
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[PC]

Control

Target

(INPUT, N, SEED)
Oscilloscope —
Ii ARM init PRNG(SEED)
[inl = f(INPUT, 0, Tandom)]
im
R NP Trigger _ _ _ _ _ _ _ | ________]
Process (ing)
""""""""""""""""""""""" Measurement
outy
[in2 = f(INPUT, outy, Tandom)]
iTLQ
S S Trgger o]
Process (inz)
""""""""""""""""""""""" Measurement
outs .
1
[ing = f(INPUT, outs, random)] :
: :
1 1
1 1
: :
1 1
: :
1 1
: :
1 1
iny = f(INPUT, outy_1, T(mdom)] .
’iﬂ,N :
S S Trgger g
Process (iny)
""""""""""""" -(-_______________:n:t___ Measurement
tny, PRNG STATE N
N leakage traces (out, )
| | |

Fig. 2 An optimized measurement process

This allows the PC to check the consistency of outy as well
as the PRNG state. With respect to Fig. 2, f(., ., .) is defined
based on the desired evaluation scheme. For a specific ¢ test
(or any evaluation method where no control over, e.g., plain-
texts is necessary) our suggestion is

injy+1 = f(INPUT, out;, random) = out; @ random.
This allows the PC to verify all N processes of the DUT by

examining the correctness of outy. In case of a non-specific
t test, such a function can be realized as

injy1 = f(INPUT, out;, random)
__ | INPUT  if randomp;; is 0
| random if randomyp;; is 1 -

Note that it should be ensured that randomp;; is excluded
from the random input. Otherwise, the random inputs become
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biased at a certain bit which may potentially lead to false-
positive evaluation results. If a semi-fixed vs. random ¢ test
is conducted, INPUT contains a set of certain fixed inputs
(which can be stored in Control to reduce the communica-
tions), and the function can be implemented as

injy1 = f(INPUT, out;, random)

B [ INPUT,undom if randomp;; is O

random if randomp;; is 1 °

If the DUT is equipped with masking countermeasures,
all communication between Control and Target (and prefer-
ably with the PC as well) should be in a shared form. This
prevents the unshared data, e.g., INPUT, from appearing in
Control and Target. Otherwise, the leakage associated with
the input itself would cause, e.g., a non-specific ¢ test to
report an exploitable leakage regardless of the robustness
of the DUT. In hardware platforms such a shared communi-
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cation is essential due to the static leakage as well [19]. For 500~ 72 second found ]
instance, in a second-order masking scheme (where variables 250~ ‘ ~70t . g
are represented by three shares) INPUT should be a 3- ~0 = 360 A bl 450
share value (INPUT!, INPUTZ, INPUT?), and, respectively, 250 OMWWM% _
injy) = (inilJrl , inl.ZJrl , in?+1 ). In such a case, a non-specific soofl 15 g - 50 180 P "’“Td

t test (including semi-fixed vs. random) should be handled 0 100 200 e fus) 3% 400

as

injy1 =f(INPUT, out;, random)

(zneuT! @ rl, INPUT?@r2, INPUT? @ rl@r?)
if randomyp;; is 0

(rl,rz,r3)
if randomp;; is 1

with ! as a short notation of random’. In other words, the
fixed input should be freshly remasked before being sent to
the DUT. Consequently, the last output (out}\,, outl%,, outl%,)
is also sent in a shared form to the PC.

In general, we suggest to apply the tests with the following
settings:

— non-specific ¢ test (fixed vs. random): with shared com-
munication between the parties, if the DUT is equipped
with masking.

— non-specific ¢ test (semi-fixed vs. random): without
shared communication if the DUT is equipped with hid-
ing techniques.

— specific ¢ tests: with the goal of identifying a suitable
intermediate value for a key-recovery attack, if the DUT
is not equipped with any countermeasures or failed in
former non-specific tests. In this case, a shared communi-
cation is preferable if the DUT is equipped with masking.

6.2 Case study: microcontroller

As the first case study we consider the publicly available
implementation of the DPA contest v4.2 [35] for an Atmel
microcontroller. The underlying implementation is a real-
ization of the AES-128 encryption engine equipped with
masking and shuffling. The details of the implementation
can be found in [3]: we also give the pseudo-code in Appen-
dix 3. It is noteworthy that the underlying countermeasure is
based on a low-entropy masking scheme [24] which uses 8-
bit masks drawn from a 16-element set. Further, the shuffling
(of the order of the masked Sbox look-ups) is only applied
to the first and last rounds. Indeed, the implementation is
a revised version of the DPA contest v4.1 after the flaws
reported in [20].

By means of a PicoScope at the sampling rate of 250 MS/s
we collected 100,000 traces of this implementation run-
ning on an ATmegal63-based smartcard. The traces have
been measured using the aforementioned framework for a

o

RO
TV LU ARL Lt § I 'H DL L L D

! 50 100 150 | )
0 100 200 _ 300 400
Time [us]

Fig. 3 DPA contest v4.2, non-specific ¢ test results (top) first-order,
(bottom) second-order univariate using 100,000 traces

non-specific ¢ test, and each trace covers only the first two
encryption rounds. Note that since the underlying implemen-
tation receives unmasked plaintext and performs the masking
(onthe key) prior to the encryption (see Appendix 3), we were
not able to completely follow the instructions (communica-
tion in a shared form) suggested above. In order to follow a
shared communication fashion, one needs to slightly modify
the implementation. By performing the first- and second-
order univariate non-specific ¢ tests we obtained the results
shown in Fig. 3. As expected, the leakage associated with the
unmasked plaintext before being XORed with the masked
roundkey can be identified in the 7 test result, i.e., the time
period between 0 and 20 us. The test also shows that the
implementation still exhibits first-order leakage even in the
first round, where both masking and shuffling are active.
As expected, when the process is not shuffled (i.e., the sec-
ond encryption round), the leakage is detectable with higher
confidence. Since our goal is just to assess the leakage of
the implementation, we have not tried to identify a suitable
intermediate value nor a hypothetical (power) model for a
successful key-recovery attack.

6.3 Case study: FPGA

For the second case study we focus on a second-order
threshold implementation (TI). The concept of TI has been
introduced in [25] and then extended to higher orders in
[5] with the goal of providing security for hardware plat-
forms utilizing Boolean masking schemes. Designs which
follow the TI concepts can prevent any first-order leakages
[4,5,18,23,27]. However, the higher-order TI construction
considers only univariate leakage. A note given in [29]
addresses the issue that multivariate leakages can still be
exploited from a higher-order TI design. In order to exam-
ine this by a multivariate ¢ test (explained in Sect. 5) we
implemented the non-linear feedback shift register (NLFSR)
which has been taken as an example in [29]. The NLFSR
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Fig. 4 NLFSR 2nd-order TI, sample trace and univariate and bivariate
non-specific ¢ test results using 2, 000, 000 traces. a Sample trace. b
First-order. ¢ Second-order. d third-order. e Fourth-order. f Fifth-order.
g Bivariate second-order, 15 clock cycles offset

consists of four cells L[0] to L[3] and an AND/XOR module
as the feedback function

f = f(L[3], L[2], L[1]) = L[3] @ L[2] L[1],

which feeds the L[0] cell. We followed the concept of second-
order TI and took the uniform sharing of the AND/XOR
module from [5], which needs at least 5 input shares. We
implemented the design (cf. Appendix 4) on a SAKURA-G
[1] platform with a Spartan-6 FPGA as the target (DUT). The
NFLSR is initialized by a 4-bit input each represented by 5
shares, and it is clocked 32 times till the 4-bit (shared) output
is generated.

In order to conduct a non-specific ¢ test we followed the
measurement scenario presented in Sect. 6.1, where all the
communications are shared. In total we collected 2, 000, 000
power traces (an exemplary one is shown by Fig. 4a) at a sam-
pling rate of 500 MS/s. By performing the univariate fixed vs.
random  test at first up to fifth orders we obtained the curves
of the statistics which are shown in Fig. 4b, f. As expected, the
design exhibits a fifth-order leakage as the underlying mask-
ing utilizes 5 shares. For a bivariate second-order ¢ test we
followed the method explained in Sect. 5 with d = 2 (the for-
mulas to derive both parameters of a bivariate second-order ¢

@ Springer

test are given in Appendix 2). Since the selection of the points
of interest in a bivariate setting is not trivial (one can also use
the scheme introduced in [30] or in [10]), we have examined
all possible offsets (between two points of interest) from 1 up
to 31 clock cycles and performed the test on all sample points
of the collected traces. The test with respect to 15 clock cycles
as the offset between the points of interest showed the best
result as depicted in Fig. 4g. With this experiment we could
practically confirm the issue of higher-order TT addressed in
[29] with a bivariate second-order non-specific ¢ test (without
performing any key-recovery attack).

7 Conclusions

Security evaluations using Welch’s ¢ test have become pop-
ular in recent years. In this paper we have extended the
theoretical foundations and guidelines regarding the leak-
age assessment introduced in [12]. In particular, we have
given more detailed instructions how the test can be applied
in a higher-order setting. In this context, problems that can
occur during the computation of this test vector have been
highlighted. We have proposed solutions to perform the ¢
test efficiently and accurately at any order and any variate.
In addition, we have discussed and given guidelines for an
optimized measurement setup which allows high measure-
ment rate and avoids faulty evaluations. As a future work,
the presented robust incremental approach can be extended
to correlation-based evaluation schemes.
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Appendix 1: Necessary moments for up to Sth-order
t tests

Below we consider A = y — M o, where M ¢ denotes the
first raw moment of @, and y as the new element to construct

Q' = QU {y} with cardinality of n.

Central moments iterative

Cs AZ(n—1)
2.0 = CH o+ — (19)

3A
CS0 = CS?,’Q_TCSQ’Q
An—D((n—-1%=1
n ( )(( ) )

3 (20)
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At any time, central moments can be computed as CMy; =

=>¢ Note that if a single variable is used for CS, ¢ and

n
CS,,gintheunderlying computer-executable code, the order

of executions should be backwards from Egs. 27 to 19.

Central moments from the raw moments
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Appendix 2: Necessary formulas for a bivariate
second-order ¢ tests

In the following we give the necessary formulas to compute
a bivariate second-order ¢ test for exemplary sample points
J = {1, 2}. We denote the two sample points of the new
trace by tuple (y(l), y(z)) to be added to the trace setas Q' =
Q U {(y(, y@)} with cardinality of n. We also consider
AUED) = y) — M(é), with ug) as the mean of the set Q at
sample point j.

ADAD @ —1)

Cro iy = Cro iy + — (42)
ADAP @ —1)
Cron2)= G012+ — (43)
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—C i
20411
ADADAD (n2 — 35 42
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In this scenario, u = corresponds to the first

C4,0.11,2,1,2)

parameter and s> — u? to the second

n
parameter of a bivariate second-order ¢ test.
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Appendix 3: Pseudo-code of the protected AES
(DPA contest v4.2)

See Fig. 5.

Algorithm 1: Masked and Shuffled AES-128 encryption

Input : Plaintext X, seen as bytes x;¢(o,....15
11 Roundkeys R[r], r € {0, ..., 10}, each 128-bit

constant
Output: Ciphertext X, seen as bytes x;¢(o,...,15)

Draw 16 random of fset;¢(o,...,15) uniformly in {0, 134
Draw two random bijective table
Shuffle0, Shufflel0: {0, 1}* — {0, 1}*

R[0] = R[0] ® Mask[offset]

for r € {0, 10} do

X =X @ RJ[r]

fori € {0, 15} do

if » = 0 then j = Shuffle0[i]

else if » = 10 then j = Shufflel0[i]
else j =i

Xj = Maskedsboxoffsetj (x;)

end

if r # 10 then

X = MixColumn(ShiftRows(X))

X = X ® MaskCompensation(offset)
else

X = shiftRows(X)

X = X®MaskCompensationLastRound(offset)
end

end

Appendix 4: NLFSR
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Fig. 5 Architecture of the second-order TI of the NLFSR
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