
J Cryptogr Eng (2016) 6:171–185
DOI 10.1007/s13389-015-0110-5

REGULAR PAPER

Faster 64-bit universal hashing using carry-less multiplications

Daniel Lemire1 · Owen Kaser2

Received: 27 December 2014 / Accepted: 14 August 2015 / Published online: 4 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Intel and AMD support the carry-less multipli-
cation (CLMUL) instruction set in their x64 processors.
We use CLMUL to implement an almost universal 64-bit
hash family (CLHASH). We compare this new family with
what might be the fastest almost universal family on x64
processors (VHASH). We find that CLHASH is at least 60%
faster. We also compare CLHASHwith a popular hash func-
tion designed for speed (Google’s CityHash). We find that
CLHASH is 40% faster than CityHash on inputs larger than
64 bytes and just as fast otherwise.

Keywords Universal hashing · Carry-less multiplication ·
Finite field arithmetic

1 Introduction

Hashing is the fundamental operation of mapping data
objects to fixed-size hash values. For example, all objects
in the Java programming language can be hashed to 32-bit
integers. Many algorithms and data structures rely on hash-
ing: e.g., authentication codes, Bloom filters and hash tables.
We typically assume that given two data objects, the proba-
bility that they have the same hash value (called a collision) is
low. When this assumption fails, adversaries can negatively
impact the performance of these data structures or even cre-

B Daniel Lemire
lemire@gmail.com

Owen Kaser
o.kaser@computer.org

1 LICEF Research Center, TELUQ, Université du Québec,
Montreal, QC, Canada

2 Department of CSAS, University of New Brunswick,
Saint John, NB, Canada

ate denial-of-service attacks. To mitigate such problems, we
can pick hash functions at random (henceforth called random
hashing).

Random hashing is standard in Ruby, Python and Perl. It
is allowed explicitly in Java and C++11. There are many
fast random hash families—e.g., MurmurHash, Google’s
CityHash [35], SipHash [3] and VHASH [12]. Cryptog-
raphers have also designed fast hash families with strong
theoretical guarantees [6,18,24]. However, much of this
work predates the introduction of the CLMUL instruction
set in commodity x86 processors. Intel and AMD added
CLMUL and its pclmulqdq instruction to their proces-
sors to accelerate some common cryptographic operations.
Although the pclmulqdq instruction first became available
in 2010, its high cost in terms of CPU cycles—specifically
an eight-cycle throughput on pre-Haswell Intel microarchi-
tectures and a seven-cycle throughput on pre-Jaguar AMD
microarchitectures—limited its usefulness outside of cryp-
tography. However, the throughput of the instruction on
the newer Haswell architecture is down to two cycles,
even though it remains a high latency operation (7 cycles)
[16,21].1 See Table 1. Our main contribution is to show that
the pclmulqdq instruction can be used to produce a 64-bit
string hash family that is faster than known approaches while
offering stronger theoretical guarantees.

2 Random hashing

In random hashing, we pick a hash function at random from
some family,whereas an adversarymight pick thedata inputs.
We want distinct objects to be unlikely to hash to the same
value. That is, we want a low collision probability.

1 The low-power AMD Jaguar microarchitecture does even better with
a throughput of one cycle and a latency of three cycles.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-015-0110-5&domain=pdf

172 J Cryptogr Eng (2016) 6:171–185

Table 1 Relevant SIMD intrinsics and instructions onHaswell Intel processors, with latency and reciprocal throughput in CPU cycles per instruction
[16,21]

Intrinsic Instruction Description Latency Rec. thr.

_mm_clmulepi64_si128 pclmulqdq 64-bit carry-less multiplication 7 2

_mm_or_si128 por Bitwise OR 1 0.33

_mm_xor_si128 pxor Bitwise XOR 1 0.33

_mm_slli_epi64 psllq Shift left two 64-bit integers 1 1

_mm_srli_si128 psrldq Shift right by x bytes 1 0.5

_mm_shuffle_epi8 pshufb Shuffle 16 bytes 1 0.5

_mm_cvtsi64_si128 movq 64-bit integer as 128-bit reg. 1 –

_mm_cvtsi128_si64 movq 64-bit integer from 128-bit reg. 2 –

_mm_load_si128 movdqa Load a 128-bit reg. from memory (aligned) 1 0.5

_mm_lddqu_si128 lddqu Load a 128-bit reg. from memory (unaligned) 1 0.5

_mm_setr_epi8 – Construct 128-bit reg. from 16 bytes – –

_mm_set_epi64x – Construct 128-bit reg. from two 64-bit integers – –

Table 2 Notation and basic definitions

h : X → {0, 1, . . . , 2L − 1} L-bit hash
function

Universal P(h(x) = h(x ′)) ≤ 1/2L for x �= x ′

ε-Almost universal P(h(x) = h(x ′)) ≤ ε for x �= x ′

XOR-universal P(h(x) = h(x ′) ⊕ c) ≤ 1/2L for any
c ∈ [0, 2L) and distinct x, x ′ ∈ X

ε-Almost XOR-universal P(h(x) = h(x ′) ⊕ c) ≤ ε for any
integer c ∈ [0, 2L) and distinct
x, x ′ ∈ X

We consider hash functions from X to [0, 2L). An L-bit
family is universal [10,11] if the probability of a collision is
no more than 2−L . That is, it is universal if

P(h(x) = h(x ′)) ≤ 2−L

for any fixed x, x ′ ∈ X such that x �= x ′, given that we pick h
at random from the family. It is ε-almost universal [36] (also
written ε-AU) if the probability of a collision is bounded by
ε. I.e., P(h(x) = h(x ′)) ≤ ε, for any x, x ′ ∈ X such that
x �= x ′. (See Table 2.)

2.1 Safely reducing hash values

Almost universality can be insufficient to prevent frequent
collisions, since a given algorithm might only use the first
few bits of the hash values. Consider hash tables. A hash
table might use as a key only the first b bits of the hash values
when its capacity is 2b. Yet even if a hash family is ε-almost
universal, it could still have a high collision probability on
the first few bits.

For example, take any32-bit universal familyH andderive
the new 64-bit 1/232-almost universal 64-bit family by tak-

ing the functions from H and multiplying them by 232:
h′(x) = h(x)×232. Clearly, all functions from this new fam-
ily collide with probability 1 on the first 32 bits, even though
the collision probability on the full hash values is low (1/232).
Using the first bits of these hash functions could have disas-
trous consequences in the implementation of a hash table.

Therefore, we consider stronger forms of universality.

– A family is �-universal [14,37] if

P(h(x) = h(x ′) + c mod 2L) ≤ 2−L

for any constant c and any x, x ′ ∈ X such that x �= x ′. It is
ε-almost�-universal if P(h(x) = h(x ′)+c mod 2L ≤ ε

for any constant c and any x, x ′ ∈ X such that x �= x ′.
– A family is ε-almost XOR-universal if

P(h(x) = h(x ′) ⊕ c) ≤ ε

for any integer constant c ∈ [0, 2L) and any x, x ′ ∈ X
such that x �= x ′ (where⊕ is the bitwise XOR). A family
that is 1/2L -almost XOR-universal is said to be XOR-
universal [37].

Given an ε-almost�-universal familyH of hash functions
h : X → [0, 2L), the family of hash functions

{h(x) mod 2L
′ | h ∈ H}

from X to [0, 2L ′
) is 2L−L ′ × ε-almost �-universal [12].

The next lemma shows that a similar result applies to almost
XOR-almost universal families.

Lemma 1 Given an ε-almost XOR-universal family H of
hash functions h : X → [0, 2L) and any positive integer
L ′ < L, the family of hash functions {h(x) mod 2L

′ |h ∈ H}
from X to [0, 2L ′

) is 2L−L ′ × ε-almost XOR-universal.

123

J Cryptogr Eng (2016) 6:171–185 173

Proof For any integer constant c ∈ [0, 2L), consider the
equation h(x) = (h(x ′) ⊕ c) mod 2L

′
for x �= x ′ with h

picked from H. Pick any positive integer L ′ < L . We have

P(h(x) = (h(x ′) ⊕ c mod 2L
′
))

=
∑

z | z mod 2L′=0

P(h(x) = h(x ′) ⊕ c ⊕ z),

where the sum is over 2L−L ′
distinct z values. Because H

is ε-almost XOR-universal, we have that P(h(x) = h(x ′) ⊕
c⊕ z) ≤ ε for any c and any z. Thus, we have that P(h(x) =
h(x ′) ⊕ c mod 2L

′
) ≤ 2L−L ′

ε, showing the result. �	
It follows fromLemma1 that if a family isXOR-universal,

then its modular reductions are XOR-universal as well.
As a straightforward extension of this lemma, we could

show that when picking any L ′ bits (not only the least sig-
nificant), the result is 2L−L ′ × ε-almost XOR-universal.

2.2 Composition

It can be useful to combine different hash families to cre-
ate new ones. For example, it is common to compose hash
families. When composing hash functions (h = g ◦ f), the
universality degrades linearly: if g is picked from an εg-
almost universal family and f is picked (independently) from
an ε f -almost universal family, the result is εg + ε f -almost
universal [36].

We sketch the proof. For x �= x ′, we have that g(f (x)) =
g(f (x ′)) collides if f (x) = f ′(x). This occurs with prob-
ability at most ε f , since f is picked from an ε f -almost
universal family. If not, they collide if g(y) = g(y′) where
y = f (x) and y′ = f (x ′), with probability bounded by
εg . Thus, we have bounded the collision probability by
ε f + (1 − ε f)εg ≤ ε f + εg , establishing the result.

By extension, we can show that if g is picked from an
εg-almost XOR-universal family, then the composed result
(h = g ◦ f) is going to be εg + ε f -almost XOR-universal. It
is not required for f to be almost XOR-universal.

2.3 Hashing tuples

If we have universal hash functions from X to [0, 2L),
then we can construct hash functions from Xm to [0, 2L)m

while preserving universality. The construction is straightfor-
ward: h′(x1, x2, . . . , xm) = (h(x1), h(x2), . . . , h(xm)). If h
is picked from an ε-almost universal family, then the result
is ε-almost universal. This is true even though a single h is
picked and reused m times.

Lemma 2 Consider an ε-almost universal familyH from X
to [0, 2L). Then consider the family of functions H′ of the
form h′(x1, x2, . . . , xm) = (h(x1), h(x2), . . . , h(xm)) from

Xm to [0, 2L)m, where h is in H. Family H′ is ε-almost
universal.

The proof is not difficult. Consider two distinct values from
Xm , x1, x2, . . . , xm and x ′

1, x
′
2, . . . , x

′
m . Because the tuples

are distinct, they must differ in at least one component: xi �=
x ′
i . It follows that h

′(x1, x2, . . . , xm) and h′(x ′
1, x

′
2, . . . , x

′
m)

collide with probability at most P(h(xi) = h(x ′
i)) ≤ ε,

showing the result.

2.4 Variable-length hashing from fixed-length hashing

Suppose that we are given a familyH of hash functions that
is XOR universal over fixed-length strings. That is, we have
that P(h(s) = h(s′)⊕c) ≤ 1/2L if the length of s is the same
as the length of s′ (|s| = |s′|).We can create a new family that
is XOR universal over variable-length strings by introducing
a hash family on string lengths. Let G be a family of XOR
universal hash functions g over length values. Consider the
new family of hash functions of the form h(s)⊕g(|s|)where
h ∈ H and g ∈ G. Let us consider two distinct strings s and
s′. There are two cases to consider.

– If s and s′ have the same length so that g(|s|) = g(|s′|),
then we have XOR universality since

P(h(s) ⊕ g(|s|) = h(s′) ⊕ g(|s′|) ⊕ c)

= P(h(s) = h(s′) ⊕ c)

≤ 1/2L ,

where the last inequality follows because h ∈ H, anXOR
universal family over fixed-length strings.

– If the strings have different lengths (|s| �= |s′|), then we
again have XOR universality because

P(h(s) ⊕ g(|s|) = h(s′) ⊕ g(|s′|) ⊕ c)

= P(g(|s|)
= g(|s′|) ⊕ (c ⊕ h(s) ⊕ h(s′)))
= P(g(|s|) = g(|s′|) ⊕ c′)
≤ 1/2L ,

where we set c′ = c⊕ h(s) ⊕ h(s′), a value independent
of |s| and |s′|. The last inequality follows because g is
taken from a family G that is XOR universal.

Thus, the result (h(s) ⊕ g(|s|)) is XOR universal. We can
also generalize the analysis. Indeed, ifH and G are ε-almost
universal, we could show that the result is ε-almost universal.
We have the following lemma.

Lemma 3 Let H be an XOR universal family of hash func-
tions over fixed-length strings. Let G be an XOR universal

123

174 J Cryptogr Eng (2016) 6:171–185

family of hash functions over integer values. We have that
the family of hash functions of the form s → h(s) ⊕ g(|s|)
where h ∈ H and g ∈ G is XOR universal over all
strings.

Moreover, ifH and G are merely ε-almost universal, then
the family of hash functions of the form s → h(s)⊕ g(|s|) is
also ε-almost universal.

2.5 Minimally randomized hashing

Many hashing algorithms—for instance, CityHash [35]—
rely on a small random seed. The 64-bit version of CityHash
takes a 64-bit integer as a seed. Thus, we effectively have
a family of 264 hash functions—one for each possible seed
value.

Given such a small family (i.e., given few random bits),
we can prove that it must have high collision probabilities.
Indeed, consider the set of all strings ofm 64-bitwords. There
are 264m such strings.

– Pick one hash function from the CityHash family. This
function hashes every one of the 264m strings to one of
264 hash values. By a pigeonhole argument [31], there
must be at least one hash value where at least 264m/264 =
264(m−1) strings collide.

– Pick another hash function. Out of the 264(m−1) strings
collidingwhenusing the first hash function,wemust have
264(m−2) strings also colliding when using the second
hash function.

We can repeat this process m − 1 times until we find
264 strings colliding when using any of these m − 1 hash
functions. If an adversary picks any two of our 264 strings
and we pick the hash function at random in the whole family
of 264 hash functions, we get a collision with a probability
of at least (m − 1)/264. Thus, while we do not have a strict
bound on the collision probability of the CityHash family,
we know just from the small size of its seed that it must
have a relatively high collision probability for long strings.
In contrast, VHASH and our CLHASH (see Sect. 5) use
more than 64 random bits and have correspondingly better
collision bounds (see Table 4).

3 VHASH

The VHASH family [12,25] was designed for 64-bit proces-
sors. By default, it operates over 64-bit words. Among
hash families offering good almost universality for large
data inputs, VHASH might be the fastest 64-bit alter-
native on x64 processors—except for our own proposal
(see Sect. 5).

VHASH is ε-almost�-universal and builds on the 128-bit
NH family [12]:

NH(s) =
l/2∑

i=1

((s2i−1 + k2i−1 mod 264)

×(s2i + k2i mod 264)) mod 2128. (1)

NH is 1/264-almost �-universal with hash values in
[0, 2128). Although the NH family is defined only for inputs
containing an even number of components, we can extend it
to include odd numbers of components by padding the input
with a zero component.

We can summarizeVHASH (see Algorithm 1) as follows:

– NH is used to generate a 128-bit hash value for each block
of 16 words. The result is 1/264-almost �-universal on
each block.

– These hash values are mapped to a value in [0, 2126) by
applying amodular reduction. These reduced hash values
are then aggregated with a polynomial hash and finally
reduced to a 64-bit value.

In total, the VHASH family is 1/261-almost �-universal
over [0, 264 − 257) for input strings of up to 262 bits [12,
Theorem 1].

For long input strings, we expect that much of the run-
ning time of VHASH is in the computation of NH on blocks
of 16 words. On recent x64 processors, this computation
involves 8 multiplications using the mulq instruction (with
two 64-bit inputs and two 64-bit outputs). For each group of
two consecutive words (si and si+1), we also need two 64-bit
additions. To sum all results, we need seven 128-bit additions
that can be implemented using two 64-bit additions (addq
and adcq). All of these operations have a throughput of at

123

J Cryptogr Eng (2016) 6:171–185 175

least 1 per cycle on Haswell processors. We can expect NH
and, by extension, VHASH to be fast.

VHASH uses only 16 64-bit random integers for the NH
family. As in Sect. 2.3, we only need one specific NH func-
tion irrespective of the length of the string. VHASH also
uses a 128-bit random integer k and two more 64-bit random
integers k′

1 and k′
2. Thus, VHASH uses slightly less than

160 random bytes.

3.1 Random bits

Nguyen and Roscoe showed that at least log(m/ε) random
bits are required [31],2 where m is the maximal string length
in bits and ε is the collision bound. For VHASH, the string
length is limited to 262 bits and the collision bound is ε =
1/261. Therefore, for hash families offering the bounds of
VHASH, we have that logm/ε = log(262 ×261) = 123 ran-
dom bits are required.

That is, 16 random bytes are theoretically required to
achieve the same collision bound as VHASH, while many
more are used (160 bytes) This suggests that we might be
able to find families using far fewer random bits while main-
taining the same good bounds. In fact, it is not difficult to
modify VHASH to reduce the use of random bits. It would
suffice to reduce the size of the blocks down from 16 words.
We could show that it cannot increase the bound on the colli-
sion probability by more than 1/264. However, reducing the
size of the blocks has an adverse effect on speed. With large
blocks and long strings, most of the input is processed with
the NH function before the more expensive polynomial hash
function is used. Thus, there is a trade-off between speed
and the number of random bits, and VHASH is designed for
speed on long strings.

4 Finite fields

Our proposed hash family (CLHASH, see Sect. 5) works
over a binary finite field. For completeness, we review field
theory briefly, introducing (classical) results as needed for
our purposes.

The real numbers form what is called a field. A field is
such that addition and multiplication are associative, com-
mutative and distributive. We also have identity elements
(0 for addition and 1 for multiplication). Crucially, all non-
zero elements a have an inverse a−1 (which is defined by
a × a−1 = a−1 × a = 1).

Finite fields (also calledGalois fields) are fields containing
a finite number of elements. All finite fields have cardinality
pn for some prime p. Up to an algebraic isomorphism (i.e.,
a one-to-one map preserving addition and multiplication),

2 In the present paper, log n means log2 n.

given a cardinality pn , there is only one field (henceforth,
GF(pn)). For any power of a prime, there is a corresponding
field.

4.1 Finite fields of prime cardinality

It is easy to create finite fields that have prime cardinality
(GF(p)). Given p, an instance of GF(p) is given by the set
of integers in [0, p) with additions and multiplications com-
pleted by a modular reduction:

– a ×GF(p) b ≡ a × b mod p
– and a +GF(p) b ≡ a + b mod p.

The numbers 0 and 1 are the identity elements. Given an
element a, its additive inverse is p − a.

It is not difficult to check that all non-zero elements have
a multiplicative inverse. We review this classical result for
completeness. Given a non-zero element a and two distinct
x, x ′, we have that ax mod p �= ax ′ mod p because p is
prime. Hence, starting with a fixed non-zero element a, we
have that the set {ax mod p | x ∈ [0, p)} has cardinality
p and must contain 1; thus, a must have a multiplicative
inverse.

4.2 Hash families in a field

Within a field, we can easily construct hash families having
strong theoretical guarantees, as the next lemma illustrates.

Lemma 4 The family of functions of the form

h(x) = ax

in a finite field (GF(pn)) is �-universal, provided that the
key a is picked from all values of the field.

As another example, consider hash functions of the form
h(x1, x2, . . . , xm) = am−1x1 + am−2x2 + · · · + xm where
a is picked at random (a random input). Such polynomial
hash functions can be computed efficiently using Horner’s
rule: starting with r = x1, compute r ← ar + xi for i =
2, . . . ,m. Given any two distinct inputs, x1, x2, . . . , xm and
x ′
1, x

′
2, . . . , x

′
m , we have that h(x1, . . . , xm)−h(x ′

1, . . . , x
′
m)

is a non-zero polynomial of degree at most m − 1 in a. By
the fundamental theorem of algebra, we have that it is zero
for at most m − 1 distinct values of a. Thus, we have that the
probability of a collision is bounded by (m − 1)/pn where
pn is the cardinality of the field. For example, VHASH uses
polynomial hashing with p = 2127 − 1 and n = 1.

We can further reduce the collision probabilities if we use
m random inputs a1, . . . , am picked in the field to compute a
multilinear function: h(x1, . . . , xm) = a1x1 + a2x2 + · · · +
amxm . We have �-universality. Given two distinct inputs,

123

176 J Cryptogr Eng (2016) 6:171–185

x1, . . . , xm and x ′
1, . . . , x

′
m , we have that xi �= x ′

i for some
i . Thus, we have that h(x1, . . . , xm) = c + h(x ′

1, . . . , x
′
m) if

and only if ai = (xi − x ′
i)

−1(c + ∑
j �=i a j (x ′

j − x j)).
If m is even, we can get the same bound on the collision

probability with half the number of multiplications [7,26,
29]:

h(x1, x2, . . . , xm)

= (a1+x1)(a2+x2)+· · · + (am−1 + xm−1)(am + xm).

The argument is similar. Consider that

(xi + ai)(ai+1 + xi+1) − (x ′
i + ai)(ai+1 + x ′

i+1)

= ai+1(xi − x ′
i) + ai (xi+1 − x ′

i+1) + xi+1xi + x ′
i x

′
i+1.

Take two distinct inputs, x1, x2, . . . , xm and x ′
1, x

′
2, . . . ,

x ′
m . As before, we have that xi �= x ′

i for some i . Without loss
of generality, assume that i is odd; then we can find a unique
solution for ai+1: to do this, start from h(x1, . . . , xm) =
c + h(x ′

1, . . . , x
′
m) and solve for ai+1(xi − x ′

i) in terms of
an expression that does not depend on ai+1. Then use the
fact that xi − x ′

i has an inverse. This shows that the collision
probability is bounded by 1/pn and we have �-universality.

Lemma 5 Given an even number m, the family of functions
of the form

h(x1, x2, . . . , xm) = (a1 + x1)(a2 + x2)

+ (a3 + x3)(a4 + x4)

+ · · · + (am−1 + xm−1)(am + xm)

in a finite field (GF(pn)) is �-universal, provided that the
keys a1, . . . , am are picked from all values of the field. In par-
ticular, the collision probability between two distinct inputs
is bounded by 1/pn.

4.3 Binary finite fields

Finite fields having prime cardinality are simple (see
Sect. 4.1), but we would prefer to work with fields having a
power-of-two cardinality (also called binary fields) to match
common computer architectures. Specifically, we are inter-
ested in GF(264) because our desktop processors typically
have 64-bit architectures.

We can implement such a field over the integers in [0, 2L)

by using the following two operations. Addition is defined
as the bitwise XOR (⊕) operation, which is fast on most
computers:

a +GF(2L) b ≡ a ⊕ b.

The number 0 is the additive identity element (a ⊕ 0 =
0 ⊕ a = a), and every number is its own additive inverse:

a⊕ a = 0. Note that because binary finite fields use XOR as
an addition, �-universality and XOR-universality are effec-
tively equivalent for our purposes in binary finite fields.

Multiplication is defined as a carry-lessmultiplication fol-
lowed by a reduction. We use the convention that ai is the
i th least significant bit of integer a and ai = 0 if i is larger
than the most significant bit of a. The i th bit of the carry-less
multiplication a � b of a and b is given by

(a � b)i ≡
i⊕

k=0

ai−kbk, (2)

where ai−kbk is just a regular multiplication between two
integers in {0, 1} and ⊕i

k=0 is the bitwise XOR of a range
of values. The carry-less product of two L-bit integers is a
2L-bit integer.

We can check that the integers with ⊕ as addition and
� as multiplication form a ring: addition and multiplication
are associative, commutative and distributive, and there is an
additive identity element. In this instance, the number 1 is a
multiplicative identity element (a � 1 = 1 � a = a). Except
for the number 1, no number has a multiplicative inverse in
this ring.

Given the ring determined by ⊕ and �, we can derive a
corresponding finite field. However, just as with finite fields
of prime cardinality,we need somekind ofmodular reduction
and a concept equivalent to that of prime numbers.3

Let us define degree(x) to be the position of the most sig-
nificant non-zero bit of x , starting at 0 (e.g., degree(1) = 0,
degree(2) = 1, degree(2 j) = j). For example, we have
degree(x)≤127 for any 128-bit integer x . Given any two non-
zero integers a, b, we have that degree(a �b) = degree(a)+
degree(b) as a straightforward consequence of Eq. 2. Simi-
larly, we have that

degree(a ⊕ b) ≤ max(degree(a), degree(b)).

Not unlike regular multiplication, given integers a, b with
b �= 0, there are unique integers α, β (henceforth, the quo-
tient and the remainder) such that

a = α � b ⊕ β, (3)

where degree(β) < degree(b).
The uniqueness of the quotient and the remainder is easily

shown. Suppose that there is another pair of values α′, β ′
with the same property. Then α′ � b ⊕ β ′ = α � b ⊕ β,

3 The general construction of a finite field of cardinality pn for n > 1
is commonly explained in terms of polynomials with coefficients from
GF(p). To avoid unnecessary abstraction, we present finite fields of
cardinality 2L using regular L-bit integers. Interested readers can see
Mullen and Panario [30], for the alternative development.

123

J Cryptogr Eng (2016) 6:171–185 177

which implies that (α′ ⊕ α) � b = β ′ ⊕ β. However, since
degree(β ′⊕β) < degree(b),wemust have thatα = α′. From
this, it follows that β = β ′, thus establishing uniqueness.

We define ÷ and mod operators as giving, respectively,
the quotient (a ÷ b = α) and remainder (a mod b = β) so
that the equation

a ≡ a ÷ b � b ⊕ a mod b (4)

is an identity equivalent toEq. 3 (To avoid unnecessary paren-
theses, we use the following operator precedence convention:
�, mod and ÷ are executed first, from left to right, followed
by ⊕).

In the general case, we can compute a ÷ b and a mod b
using a straightforward variation on the Euclidean division
algorithm (see Algorithm 2) which proves the existence of
the remainder and quotient. Checking the correctness of the
algorithm is straightforward. We start initially with values α

and β such that a = α � b ⊕ β. By inspection, this equality
is preserved throughout the algorithm. Meanwhile, the algo-
rithm only terminates when the degree of β is less than that
of b, as required. The algorithm must terminate, since the
degree of q is reduced by at least one, each time it is updated
(for a maximum of degree(a) − degree(b) + 1 steps).

Given a = α �b ⊕ β and a′ = α′ �b ⊕ β ′, we have that
a ⊕ a′ = (α ⊕ α′) � b ⊕ (β ⊕ β ′). Thus, it can be checked
that divisions and modular reductions are distributive:

(a ⊕ b) mod p = (a mod p) ⊕ (b mod p), (5)

(a ⊕ b) ÷ p = (a ÷ p) ⊕ (b ÷ p). (6)

Thus, we have (a ⊕ b) mod p = 0 ⇒ a mod p =
b mod p. Moreover, by inspection, we have that
degree(a mod b) < degree(b) and degree(a ÷ b) =
degree(a) − degree(b).

The carry-less multiplication by a power of two is equiv-
alent to regular multiplication. For this reason, a modular
reduction by a power of two (e.g., a mod 264) is just the
regular integer modular reduction. Idem for division.

There are non-zero integers a such that there is no integer
b other than 1 for which a mod b = 0; effectively, a is a
prime number under the carry-less multiplication interpreta-
tion. These “prime integers” are more commonly known as

irreducible polynomials in the ring of polynomials GF2[x],
so we call them irreducible instead of prime. Let us pick such
an irreducible integer p (arbitrarily) such that the degree of
p is 64. One such integer is 264 + 24 + 23 + 2+ 1. Then we
can finally define the multiplication operation in GF(264):

a ×GF(264) b ≡ (a � b) mod p.

Coupled with the addition +GF(264) that is just a bitwise
XOR, we have an implementation of the field GF(264) over
integers in [0, 264).

We call the index of the second most significant bit the
subdegree. We chose an irreducible p of degree 64 having
minimal subdegree (4).4 We use the fact that this subdegree is
small to accelerate the computation of the modular reduction
in the next section.

4.4 Efficient reduction in GF(264)

AMD and Intel have introduced a fast instruction that can
compute a carry-less multiplication between two 64-bit
numbers, and it generates a 128-bit integer. To get the multi-
plication in GF(264), wemust still reduce this 128-bit integer
to a 64-bit integer. Since there is no equivalent fast modular
instruction, we need to derive an efficient algorithm.

There are efficient reduction algorithms used in cryptog-
raphy (e.g., from 256-bit to 128-bit integers [17]), but they
do not suit our purposes: we have to reduce to 64-bit integers.
Inspired by the classical Barrett reduction [5], Knežević et al.
proposed a generic modular reduction algorithm in GF(2n),
using no more than two multiplications [22]. We put this to
good use in previous work [26]. However, we can do the
same reduction using a single multiplication. According to
our tests, the reduction techniquepresentednext is 30%faster
than an optimized implementation based on Knežević et al.’s
algorithm.

Let us write p = 264 ⊕ r . In our case, we have r =
24 + 23 + 2 + 1 = 27 and degree(r) = 4. We are interested
in applying a modular reduction by p to the result of the
multiplication of two integers in [0, 264), and the result of
such a multiplication is an integer x such that degree(x) ≤
127. We want to compute x mod p quickly. We begin with
the following lemma.

Lemma 6 Consider any 64-bit integer p = 264 ⊕ r . We
define the operations mod and ÷ as the counterparts of the
carry-less multiplication � as in Sect. 4.3. Given any x, we
have that

4 This can be readily verified using a mathematical software package
such as Sage or Maple.

123

178 J Cryptogr Eng (2016) 6:171–185

x mod p

= ((z ÷ 264) � 264) mod p ⊕ z mod 264 ⊕ x mod 264,

where z ≡ (x ÷ 264) � r .

Proof We have that x = (x ÷ 264) � 264 ⊕ x mod 264 for
any x by definition. Applying the modular reduction on both
sides of the equality, we get

x mod p = (x ÷ 264) � 264 mod p ⊕ x mod 264 mod p

= (x ÷ 264) � 264 mod p ⊕ x mod 264

by Fact 1

= (x ÷ 264) � r mod p ⊕ x mod 264

by Fact 2

= z mod p ⊕ x mod 264

by z′s def.
= ((z ÷ 264) � 264) mod p ⊕ z mod 264

⊕ x mod 264

by Fact 3,

where Facts 1, 2 and 3 are as follows:

– (Fact 1) For any x , we have that (x mod 264) mod p =
x mod 264.

– (Fact 2) For any integer z, we have that (264 ⊕ r) �

z mod p = p � z mod p = 0 and therefore

264 � z mod p = r � z mod p

by the distributivity of the modular reduction (Eq. 5).
– (Fact 3) Recall that by definition z = (z ÷ 264) � 264 ⊕

z mod 264.Wecan substitute this equation in the equation
from Fact 1. For any z and any non-zero p, we have that

z mod p = ((z ÷ 264) � 264 ⊕ z mod 264) mod p

= ((z ÷ 264) � 264) mod p ⊕ z mod 264

by the distributivity of the modular reduction
(see Eq. 5).

Hence, the result is shown. �	
Lemma 6 provides a formula to compute x mod p. Com-

puting z = (x ÷ 264) � r involves a carry-less multiplication,
which can be done efficiently on recent Intel and AMD
processors. The computation of z mod 264 and x mod 264

is trivial. It remains to compute ((z ÷ 264) � 264) mod p. At
first glance, we still have a modular reduction. However, we
can easily memoize the result of ((z ÷ 264) � 264) mod p.
The next lemma shows that there are only 16 distinct

values to memoize (this follows from the low subdegree
of p).

Lemma 7 Given that x has degree less than 128, there are
only 16 possible values of (z ÷ 264) � 264 mod p, where
z ≡ (x ÷ 264) � r and r = 24 + 23 + 2 + 1.

Proof Indeed, we have that

degree(z) = degree(x) − 64 + degree(r).

Because degree(x) ≤ 127, we have that degree(z) ≤
127−64+4 = 67. Therefore, we have degree(z÷264) ≤ 3.
Hence, we can represent z ÷ 264 using 4 bits: there are only
16 4-bit integers. �	

Thus, in the worst possible case, we would need to mem-
oize 16 distinct 128-bit integers to represent ((z ÷ 264) �

264) mod p. However, observe that the degree of z ÷ 264 is
bounded by degree(x) − 64+ 4− 64 ≤ 127− 128+ 4 = 3
since degree(x) ≤ 127. By using Lemma 8, we show that
each integer ((z ÷ 264) � 264) mod p has degree bounded by
7, so that it can be represented using no more than 8 bits: set-
ting L = 64 andw ≡ z÷264, degree(w) ≤ 3, degree(r) = 4
and degree(w) + degree(r) ≤ 7.

Effectively, the lemma says that if you take a value of
small degree w, you multiply it by 2L and then compute the
modular reduction on the result and a value p that is almost
2L (except for a value of small degree r), then the result has
small degree: it is bounded by the sum of the degrees of w

and r .

Lemma 8 Consider p = 2L ⊕ r , with r of degree less than
L. For any w, the degree of w � 2L mod p is bounded by
degree(w) + degree(r).

Moreover, when degree(w) + degree(r) < L then the
degree of w � 2L mod p is exactly degree(w) + degree(r).

Proof The result is trivial if degree(w) + degree(r) ≥ L ,
since the degree of w � 2L mod p must be smaller than the
degree of p.

So let us assume that degree(w)+ degree(r) < L . By the
definition of the modular reduction (Eq. 4), we have

w � 2L = w � 2L ÷ p � p ⊕ w � 2L mod p.

Let w′ = w � 2L ÷ p, then

w � 2L = w′ � p ⊕ w � 2L mod p

= w′ � r ⊕ w′ � 2L ⊕ w � 2L mod p.

The first L bits of w � 2L and w′ � 2L are zero. Therefore,
we have

(w′ � r) mod 2L = (w � 2L mod p) mod 2L .

123

J Cryptogr Eng (2016) 6:171–185 179

Table 3 Values of w � 264 mod p for w = 0, 1, . . . , 15 given p =
264 + 24 + 23 + 3

w w � 264 mod p

Decimal Binary Decimal Binary

0 00002 0 000000002
1 00012 27 000110112
2 00102 54 001101102
3 00112 45 001011012
4 01002 108 011011002
5 01012 119 011101112
6 01102 90 010110102
7 01112 65 010000012
8 10002 216 110110002
9 10012 195 110000112
10 10102 238 111011102
11 10112 245 111101012
12 11002 180 101101002
13 11012 175 101011112
14 11102 130 100000102
15 11112 153 100110012

Moreover, the degree of w′ is the same as the degree of
w: degree(w′) = degree(w) + degree(2L) + degree(p) =
degree(w)+L−L = degree(w). Hence,we have degree(w′�
r) = degree(w)+degree(r) < L and, of course, degree(w �

2L mod p) < L . Thus, we have that

w′ � r = w � 2L mod p.

Hence, it follows that degree(w � 2L mod p) =
degree(w′ � r) = degree(w) + degree(r). �	

Thus, the memoization requires access to only 16 8-bit
values. We enumerate the values in question (w � 264 mod p
forw = 0, 1, . . . , 15) inTable 3. It is convenient that 16×8 =
128 bits: the entire table fits in a 128-bit word. It means that
if the list of 8-bit values are stored using one byte each, the
SSSE3 instruction pshufb can be used for fast look-up.
(See Algorithm 3.)

5 CLHASH

TheCLHASH family resembles theVHASH family—except
that members work in a binary finite field. TheVHASH fam-
ily has the 128-bit NH family (see Eq. 1), but we instead use
the 128-bit CLNH family:

CLNH(s) =
l/2⊕

i=1

((s2i−1 ⊕ k2i−1) � (s2i ⊕ k2i)), (7)

where the si and ki ’s are 64-bit integers and l is the length
of the string s. The formula assumes that l is even: we pad
odd-length inputs with a single zero word. When an input
string M is made of |M | bytes, we can consider it as string of
64-bit words s by padding it with up to 7 zero bytes so that
|M | is divisible by 8.

On x64 processors with the CLMUL instruction set, a
single term ((s2i−1 ⊕ k2i−1) � (s2i ⊕ k2i)) can be computed
using one 128-bit XOR instructions (pxor in SSE2) and one
carry-less multiplication using the pclmulqdq instruction:

– load (k2i−1, k2i) in a 128-bit word,
– load (s2i−1, s2i) in another 128-bit word,
– compute

(k2i−1, k2i) ⊕ (s2i−1, s2i) ≡ (k2i−1 ⊕ s2i−1, k2i ⊕ s2i)

using one pxor instruction,
– compute (k2i−1 ⊕ s2i−1) � (k2i ⊕ s2i) using one

pclmulqdq instruction (result is a 128-bit word).

An additional pxor instruction is required per pair of
words to compute CLNH, since we need to aggregate the
results.

We have that the family s → CLNH(s) mod p for some
irreducible p of degree 64 is XOR universal over same-
length strings. Indeed, �-universality in the field GF(264)
follows from Lemma 5. However, recall that �-universality
in a binary finite field (with operations � and⊕ formultiplica-
tion and addition) is the same as XOR universality—addition
is the XOR operation (⊕). It follows that the CLNH family
must be 1/264-almost universal for same-length strings.

123

180 J Cryptogr Eng (2016) 6:171–185

Given an arbitrarily long string of 64-bit words, we can
divide it up into blocks of 128 words (padding the last block
with zeros if needed). Each block can be hashed using CLNH
and the result is 1/264-almost universal by Lemma 2. If
there is a single block, we can compute CLNH(s) mod p
to get an XOR universal hash value. Otherwise, the result-
ing 128-bit hash values a1, a2, . . . , an can then be hashed
once more. For this, we use a polynomial hash function,
kn−1a1 + kn−2a2 + · · · + an , for some random input k in
some finite field. We choose the field GF(2127) and use the
irreducible p = 2127 + 2 + 1. We compute such a poly-
nomial hash function by using Horner’s rule: starting with
r = a1, compute r ← k � r ⊕ ai for i = 2, 3, . . . , n.
For this purpose, we need carry-less multiplications between
pairs of 128-bit integers: we can achieve the desired result
with 4 pclmulqdq instructions, in addition to some shift
and XOR operations. The multiplication generates a 256-bit
integer x that must be reduced. However, it is not neces-
sary to reduce it to a 127-bit integer (which would be the
result if we applied a modular reduction by 2127 + 2 + 1).
It is enough to reduce it to a 128-bit integer x ′ such that
x ′ mod (2127 + 2 + 1) = x mod (2127 + 2 + 1). We get the
desired result by setting x ′ equal to the lazy modular reduc-
tion [8] x mod lazy(2127 + 2 + 1) defined as

x mod lazy(2
127 + 2 + 1)

≡ x mod 2128 ⊕ (x ÷ 2128) � 2 ⊕ (x ÷ 2128) � 1. (8)

It is computationally convenient to assume that degree(x)
≤ 256 − 2 so that degree((x ÷ 2128) � 2) ≤ 128. We
can achieve this degree bound by picking the polynomial
coefficient k to have degree(k) ≤ 128 − 2. The resulting
polynomial hash family is (n − 1)/2126-almost universal for
strings having the same length where n is the number of 128-
word blocks (�|M |/1024� where |M | is the string length in
bytes),whetherweuse the actualmodular or the lazymodular
reduction.

It remains to reduce the final outputO (stored in a 128-bit
word) to a 64-bit hash value. For this purpose, we can use
s → CLNH(s) mod p with p = 264 + 27 (see Sect. 4.4),
and where k′′ is a random 64-bit integer. We treat O as a
string containing two 64-bit words. Oncemore, the reduction
is XOR universal by an application of Lemma 5. Thus, we
have the composition of three hash functions with collision
probabilities 1/264, (n − 1)/2126 and 1/264. It is reasonable
to bound the string length by 264 bytes: n ≤ 264/1024 = 254.
We have that 2/264 + (254 −1)/2126 < 2.004/264. Thus, for
same-length strings, we have 2.004/264-almost XOR univer-
sality.

We further ensure that the result is XOR-universal over
all strings: P(h(s) = h(s′) ⊕ c) ≤ 1/264 irrespective of
whether |s| = |s′|. By Lemma 3, it suffices to XOR the
hash value with k′′ � |M | mod p where k′′ is a random 64-

Table 4 Comparison between the two 64-bit hash families VHASH
and CLHASH

Universality Input length

VHASH 1
261

-almost �-universal 1–259 bytes

CLHASH XOR universal 1–1024 bytes
2.004
264

-almost XOR universal 1025–264 bytes

bit integer, |M | is the string length expressed as a 64-bit
integer, and p = 264 + 27. The XOR universality follows
for strings having different lengths by Lemma 4 and the
equivalence between XOR-universality and �-universality
in binary finite fields. As a practical matter, since the final
step involves the samemodular reduction twice in the expres-
sion (CLNH(s) mod p) ⊕ ((k′′ � |M |) mod p), we can
simplify it to (CLNH(s)⊕ (k′′ � |M |)) mod p, thus avoiding
an unnecessary modular reduction.

Our analysis is summarized by the following lemma.

Lemma 9 CLHASH is 2.004/264-almost XOR universal
over strings of up to 264 bytes. Moreover, it is XOR universal
over strings of no more than 1 kB.

The bound of the collision probability of CLHASH for
long strings (2.004/264) is four times lower than the cor-
responding VHASH collision probability (1/261). For short
strings (1 kBor less),CLHASHhas a bound that is eight times
lower. See Table 4 for a comparison. CLHASH is given by
Algorithm 4.

123

J Cryptogr Eng (2016) 6:171–185 181

5.1 Random bits

One might wonder whether using 1kB of random bits is nec-
essary. For strings of no more than 1 kB, CLHASH is XOR
universal. Stinson showed that in such cases, we need the
number of random bits to match the input length [37]. That
is, we need at least 1 kB to achieve XOR universality over
strings having 1 kB. Hence, CLHASHmakes nearly optimal
use of the random bits.

6 Statistical validation

Classically, hash functions have been deterministic: fixed
maps h from U to V , where |U | � |V | and thus collisions
are inevitable. Hash functions might be assessed according
to whether their outputs are distributed evenly, i.e., whether
|h−1(x)| ≈ |h−1(y)| for two distinct x, y ∈ V . However,
in practice, the actual input is likely to consist of clusters of
nearly identical keys [23]: for instance, symbol table entries
such as temp1, temp2, temp3 are to be expected, or a col-
lection ofmeasured data values is likely to contain clusters of
similar numeric values. Appending an extra character to the
end of an input string, or flipping a bit in an input number,
should (usually) result in a different hash value. A collec-
tion of desirable properties can be defined, and then hash
functions rated on their performance on data that is meant to
represent realistic cases.

One common use of randomized hashing is to avoid DoS
(denial-of-service) attacks when an adversary controls the
series of keys submitted to a hash table. In this setting, prior
to the use of a hash table, a random selection of hash function
is made from the family. The (deterministic) function is then
used, at least until the number of collisions is observed to
be too high. A high number of collisions presumably indi-
cates that the hash table needs to be resized, although it could
indicate that an undesirable member of the family had been
chosen. Those contemplating switching from deterministic
hash tables to randomized hash tables would like to know
that the typical performance would not degrademuch. Yet, as
carefully tuned deterministic functions can sometimes out-
perform random assignments for typical inputs [23], some
degradation might need to be tolerated. Thus, it is worth
checking a few randomly chosen members of our CLHASH
families against statistical tests.

6.1 SMHasher

The SMHasher program [1] includes a variety of quality tests
on a number of minimally randomized hashing algorithms,
for which we have weak or no known theoretical guarantees.
It runs several statistical tests, such as the following.

– Given a randomly generated input, changing a few bits
at random should not generate a collision.

– Among all inputs containing only two non-zero bytes
(and having a fixed length in [4, 20]), collisions should
be unlikely (called the TwoBytes test).

– Changing a single bit in the input should change half the
bits of the hash value, on average [13] (sometimes called
the avalanche effect).

Some of these tests are demanding: e.g., CityHash [35]
fails the TwoBytes test.

We added both VHASH and CLHASH to SMHasher and
used the Mersenne Twister (i.e., MT19937) to generate the
random bits [28].We find thatVHASH passes all tests. How-
ever, CLHASH fails one of them: the avalanche test. We
can illustrate the failure. Consider that for short fixed-length
strings (8 bytes or less),CLHASH is effectively equivalent to
a hash function of the form h(x) = a � x mod p, where p is
irreducible. Such hash functions form anXORuniversal fam-
ily. They also satisfy the identity h(x ⊕ y)⊕ h(x) = h(y). It
follows that nomatterwhat value x takes,modifying the same
i th bit modifies the resulting hash value in a consistent man-
ner (according to h(2i+1)). We can still expect that changing
a bit in the input changes half the bits of the hash value on
average. However, SMHasher checks that h(x ⊕ 2i+1) dif-
fers from h(x) in any given bit about half the time over many
randomly chosen inputs x . Since h(x ⊕2i+1)⊕h(x) is inde-
pendent of x for short inputs with CLHASH, any given bit is
either always flipped (for all x) or never. Hence, CLHASH
fails the SMHasher test.

Thankfully, we can slightly modify CLHASH so that all
tests pass if we so desire. It suffices to apply an additional bit
mixing function taken from MurmurHash [1] to the result of
CLHASH. The function consists of two multiplications and
three shifts over 64-bit integers:

x ← x ⊕ (x � 33),

x ← x × 18397679294719823053,

x ← x ⊕ (x � 33),

x ← x × 14181476777654086739,

x ← x ⊕ (x � 33).

Each step is a bijection: e.g., multiplication by an odd inte-
ger is always invertible. A bijection does not affect collision
bounds.

7 Speed experiments

We implemented a performance benchmark in C and com-
piled our software using GNU GCC 4.8 with the -O2 flag.
The benchmark program ran on a Linux server with an Intel

123

182 J Cryptogr Eng (2016) 6:171–185

i7-4770 processor running at 3.4GHz. ThisCPUhas 32 kBof
L1 cache, 256 kB of L2 cache per core, and 8MBof L3 cache
shared by all cores. Themachine has 32GB of RAM (DDR3-
1600 with double channel). We disabled Turbo Boost and set
the processor to run only at its highest clock speed, effectively
disabling the processor’s powermanagement. All timings are
done using the time-stamp counter (rdtsc) instruction [34].
Although all our software5 is single threaded, we disabled
hyper-threading as well.

Our experiments compare implementations of CLHASH,
VHASH, SipHash [3], GHASH [17] andGoogle’s CityHash.

– We implemented CLHASH using Intel intrinsics. As
described in Sect. 5, we use various single instruction,
multiple data (SIMD) instructions (e.g., SSE2, SSE3 and
SSSE3) in addition to the CLMUL instruction set. The
random bits are stored consecutively in memory, aligned
with a cache line (64 bytes).

– For VHASH, we used the authors’ 64-bit implementa-
tion [25], which is optimized with inline assembly. It
stores the random bits in a C struct, and we do not
include the overhead of constructing this struct in the
timings. The authors assume that the input length is divis-
ible by 16 bytes, or padded with zeros to the nearest
16-byte boundary. In some instances, we would need to
copy part of the input to a new location prior to hash-
ing the content to satisfy the requirement. Instead, we
decided to optimistically hash the data in-place without
copy. Thus, we slightly overestimate the speed of the
VHASH implementation—especially on shorter strings.

– We used the reference C implementation of SipHash [4].
SipHash is a fast family of 64-bit pseudorandom hash
functions adopted, among others, by the Python lan-
guage.

– CityHash is commonly used in applications where high
speed is desirable [15,27]. We wrote a simple C port of
Google’s CityHash (version 1.1.1) [35]. Specifically, we
benchmarked the CityHash64WithSeed function.

– Using Gueron and Kounavis’ [17] code, we imple-
mented a fast version of GHASH accelerated with the
CLMUL instruction set. GHASH is a polynomial hash
function over GF(2128) using the irreducible polyno-
mial x128 + x7 + x2 + x + 1: h(x1, x2, . . . , xn) =
anx1 + an−1x2 + · · · + axn for some 128-bit key a. To
accelerate computations, Gueron and Kounavis replace
the traditional Horner’s rule with an extended version
that processes input words four at a time: starting with
r = 0 and precomputed powers a2, a3, a4, compute

5 Our benchmark software is made freely available under a lib-
eral open-source license (https://github.com/lemire/StronglyUniversal
StringHashing), and it includes the modified SMHasher as well as all
the necessary software to reproduce our results.

Table 5 A comparison of estimated CPU cycles per byte on a Haswell
Intel processor using 4 kB inputs

Scheme 64 B input 4 kB input

VHASH 1.0 0.26

CLHASH 0.45 0.16

CityHash 0.48 0.23

SipHash 3.1 2.1

GHASH 2.3 0.93

All schemes generate 64-bit hash values, except that GHASH generates
128-bit hash values
Bold values indicate the fastest scheme

r ← a4(r + xi) + a3xi+1 + a2xi+2 + axi+3 for i =
1, 4, . . . , 4�m/4�−3.We complete the computationwith
the usual Horner’s rule when the number of input words
is not divisible by four. In contrast with other hash func-
tions, GHASH generates 128-bit hash values.

VHASH,CLHASH andGHASH require randombits. The
time spent by the random number generator is excluded from
the timings.

7.1 Results

We find that the hashing speed is not sensitive to the content
of the inputs—thus, we generated the inputs using a random
number generator. For any given input length, we repeatedly
hash the strings so that, in total, 40 million input words have
been processed.

As a first test, we hashed 64 B and 4 kB inputs (see
Table 5) and we report the number of cycles spent to hash
one byte: for 4 kB inputs, we got 0.26 for VHASH,6 0.16 for
CLHASH, 0.23 for CityHash and 0.93 for GHASH. That
is, CLHASH is over 60% faster than VHASH and almost
45% faster than CityHash. Moreover, SipHash is an order
of magnitude slower. Considering that it produces 128-bit
hash values, the PCMUL-accelerated GHASH offers good
performance: it uses less than one cycle per input byte for
long inputs.

Of course, the relative speeds depend on the length of
the input. In Fig. 1, we vary the input length from 8 bytes
to 8 kB. We see that the results for input lengths of 4 kB
are representative. Mostly, we have that CLHASH is 60%
faster than VHASH and 40% faster than CityHash. How-
ever, CityHash and CLHASH have similar performance for
small inputs (32 bytes or less), whereasVHASH fares poorly
over these same small inputs. We find that SipHash is not
competitive in these tests.

6 For comparison, Dai and Krovetz reported that VHASH used
0.6 cycles per byte on an Intel Core 2 processor (Merom) [25].

123

https://github.com/lemire/StronglyUniversalStringHashing
https://github.com/lemire/StronglyUniversalStringHashing

J Cryptogr Eng (2016) 6:171–185 183

(a) (b)

Fig. 1 Performance comparison for various input lengths. For large inputs, CLHASH is faster, followed in order of decreasing speed by CityHash,
VHASH, GHASH and SipHash

7.2 Analysis

From an algorithmic point of view, VHASH and CLHASH
are similar. Moreover,VHASH uses a conventional multipli-
cation operation that has lower latency and higher throughput
thanCLHASH. TheVHASH implementation relies on hand-
tuned assembly code. Yet, CLHASH is 60% faster.

For long strings, the bulk of the VHASH computation
is spent computing the NH function. When computing NH,
each pair of input words (or 16 bytes) uses the following
instructions: one mulq, three adds and one adc. Both
mulq and adc generate two micro-operations (μops) each,
so without counting register loading operations, we need at
least 3 + 2 × 2 = 7 μops to process two words [16]. Yet,
Haswell processors, like other recent Intel processors, are
apparently limited to a sustained execution of no more than
4μops per cycle. Thus we need at least 7/4 cycles for every
16 bytes. That is,VHASH needs at least 0.11 cycles per byte.
BecauseCLHASH runs at 0.16 cycles per byte on long strings
(see Table 5), we have that no implementation of VHASH
can surpass our implementation of CLHASH by more than
35%. Simply put, VHASH requires too many μops.

CLHASH is not similarly limited. For each pair of input
64-bit words, CLNH uses two 128-bit XOR instructions
(pxor) and one pclmulqdq instruction. Each pxor uses
one (fused)μop,whereas thepclmulqdq instruction uses 2
μops for a total of 4μops, versus the 7μops absolutely needed
by VHASH. Thus, the number of μops dispatched per cycle
is less likely to be a bottleneck for CLHASH. However, the
pclmulqdq instruction has a throughput of only two cycles
per instruction. Thus, we can only process one pair of 64-bit
words every two cycles, for a speed of 2/16 = 0.125 cycles
per byte. The measured speed (0.16 cycles per byte) is about
35% higher than this lower bound according to Table 5.
This suggests that our implementation of CLHASH is nearly
optimal—at least for long strings. We verified our analysis

with the IACA code analyzer [19]. It reports that VHASH is
indeed limited by the number of μops that can be dispatched
per cycle, unlike CLHASH.

8 Related work

The work that led to the design of the pclmulqdq instruc-
tion by Gueron and Kounavis [17] introduced efficient
algorithms using this instruction, e.g., an algorithm for 128-
bit modular reduction in Galois Counter Mode. Since then,
the pclmulqdq instruction has been used to speed up cryp-
tographic applications. Su and Fan find that the Karatsuba
formula becomes especially efficient for software implemen-
tations of multiplication in binary finite fields due to the
pclmulqdq instruction [38].Bos et al. [9] used theCLMUL
instruction set for 256-bit hash functions on the Westmere
microarchitecture. Elliptic curve cryptography benefits from
the pclmulqdq instruction [32,33,39]. Bluhm and Gueron
pointed out that the benefits are increased on the Haswell
microarchitecture due to the higher throughput and lower
latency of the instruction [8].

In previous work, we used the pclmulqdq instruc-
tion for fast 32-bit random hashing on the Sandy Bridge
and Bulldozer architectures [26]. However, our results were
disappointing, due in part to the low throughput of the instruc-
tion on these older microarchitectures.

9 Conclusion

The pclmulqdq instruction on recent Intel processors
enables a fast and almost universal 64-bit hashing family
(CLHASH). In terms of raw speed, the hash functions from
this family can surpass some of the fastest 64-bit hash func-
tions on x64 processors (VHASH and CityHash). Moreover,

123

184 J Cryptogr Eng (2016) 6:171–185

CLHASH offers superior bounds on the collision probabil-
ity. CLHASH makes optimal use of the random bits, in the
sense that it offers XOR universality for short strings (less
than 1 kB).

We believe that CLHASH might be suitable for many
common purposes. The VHASH family has been proposed
for cryptographic applications, and specifically message
authentication (VMAC): similar applications are possible for
CLHASH. Futurework should investigate these applications.

Other microprocessor architectures also support fast
carry-lessmultiplication, sometimes referring to it as polyno-
mial multiplication (e.g., ARM [2] and Power [20]). Future
work might review the performance of CLHASH on these
architectures. It might also consider the acceleration of
alternative hash families such as those based on Toeplitz
matrices [37].

Acknowledgments Thisworkwas supported by theNationalResearch
Council of Canada, under Grant 26143.

References

1. Appleby, A.: SMHasher & MurmurHash (2012). http://code.
google.com/p/smhasher. Last checked March 2015

2. ARM Limited: ARMv8 architecture reference manual (2014).
http://infocenter.arm.com/help/topic/com.arm.doc.subset.architec
ture.reference/. Last checked March 2015

3. Aumasson, J.P., Bernstein, D.J.: SipHash: a fast short-input
PRF. In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptol-
ogy (INDOCRYPT 2012). Lecture Notes in Computer Science,
vol. 7668, pp. 489–508. Springer, Berlin (2012). doi:10.1007/
978-3-642-34931-7_28

4. Aumasson, J.P., Bernstein, D.J.: SipHash: high-speed pseudoran-
dom function (reference code) (2014). https://github.com/veorq/
SipHash. Last checked Nov 2014

5. Barrett, P.: Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal processor. In:
Odlyzko, A.M. (ed.) Advances in Cryptology (CRYPTO’ 86). Lec-
ture Notes in Computer Science, vol. 263, pp. 311–323. Springer,
Berlin (1987). doi:10.1007/3-540-47721-7_24

6. Bernstein, D.J.: The Poly1305-AES message-authentication code.
In: Fast Software Encryption. Lecture Notes in Computer Sci-
ence, vol. 3557, pp. 32–49. Springer, Berlin (2005). doi:10.1007/
11502760_3

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.:
UMAC: fast and secure message authentication. In: Wiener, M.
(ed.) Advances in Cryptology (CRYPTO’ 99). Lecture Notes
in Computer Science, vol. 1666, pp. 216–233. Springer, Berlin
(1999). doi:10.1007/3-540-48405-1_14

8. Bluhm, M., Gueron, S.: Fast software implementation of binary
elliptic curve cryptography. Tech. rep, Cryptology ePrint Archive
(2013)

9. Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the
AES instruction set. In: Proceedings of the 13th International
Conference on Cryptographic Hardware and Embedded Systems
(CHES’11), pp. 507–522. Springer, Berlin (2011)

10. Carter, J.L., Wegman, M.N.: Universal classes of hash func-
tions. J. Comput. System Sci. 18(2), 143–154 (1979). doi:10.1016/
0022-0000(79)90044-8

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn, 3rd edn. TheMIT Press, Cambridge (2009)

12. Dai,W.,Krovetz, T.:VHASHsecurity. Tech.Rep. 338, IACRCryp-
tology ePrint Archive (2007)

13. Estébanez, C., Hernandez-Castro, J.C., Ribagorda, A., Isasi, P.:
Evolving hash functions by means of genetic programming. In:
Proceedings of the 8th Annual Conference on Genetic and Evolu-
tionary Computation, pp. 1861–1862. ACM, New York (2006)

14. Etzel, M., Patel, S., Ramzan, Z.: Square hash: fast message authen-
tication via optimized universal hash functions. In:Wiener,M. (ed.)
Advances in Cryptology (CRYPTO’ 99). Lecture Notes in Com-
puter Science, vol. 1666, pp. 234–251. Springer, Berlin (1999).
doi:10.1007/3-540-48405-1_15

15. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.:
Cuckoo filter: practically better than Bloom. In: Proceedings of the
10th ACM International on Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’14), pp. 75–88. ACM,
New York (2014). doi:10.1145/2674005.2674994

16. Fog, A.: Instruction tables: lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA
CPUs. Tech. rep., Copenhagen University College of Engineer-
ing (2014). http://www.agner.org/optimize/instruction_tables.pdf.
Last checked March 2015

17. Gueron, S., Kounavis, M.: Efficient implementation of the Galois
Counter Mode using a carry-less multiplier and a fast reduction
algorithm. Inf. Process. Lett. 110(14), 549–553 (2010). doi:10.
1016/j.ipl.2010.04.011

18. Halevi, S., Krawczyk, H.: MMH: software message authentication
in the Gbit/second rates. In: Biham, E. (ed.) Fast Software Encryp-
tion. Lecture Notes in Computer Science, vol. 1267, pp. 172–189.
Springer, Berlin (1997). doi:10.1007/BFb0052345

19. Intel Corporation: Intel IACA tool: a static code
analyser (2012). https://software.intel.com/en-us/articles/
intel-architecture-code-analyzer. Last checked March 2015

20. Intel Corporation: Power ISA Version 2.07 (2013). https://
www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_
PUBLIC.pdf. Last checked March 2015

21. IntelCorporation: Power ISAVersion2.07 (2014). https://software.
intel.com/sites/landingpage/IntrinsicsGuide/. Last checkedMarch
2015

22. Knežević, M., Sakiyama, K., Fan, J., Verbauwhede, I.: Modular
reduction in GF(2n)without pre-computational phase. In: von zur
Gathen, J., Imaña, J.L., Koç, C.K. (eds.)Arithmetic of Finite Fields.
LectureNotes inComputer Science, vol. 5130, pp. 77–87. Springer,
Berlin (2008). doi:10.1007/978-3-540-69499-1_7

23. Knuth, D.E.: Searching and Sorting. The Art of Computer Pro-
gramming, vol. 3. Addison-Wesley, Reading (1997)

24. Krovetz, T.: Message authentication on 64-bit architectures. In:
Selected Areas in Cryptography. Lecture Notes in Computer Sci-
ence, vol. 4356, pp. 327–341. Springer, Berlin (2007). doi:10.1007/
978-3-540-74462-7_23

25. Krovetz, T., Dai, W.: VMAC and VHASH implementation (2007).
http://fastcrypto.org/vmac/. Last checked March 2015

26. Lemire, D., Kaser, O.: Strongly universal string hashing is fast.
Comput. J. 57(11), 1624–1638 (2014). doi:10.1093/comjnl/bxt070

27. Lim, H., Han, D., Andersen, D.G., Kaminsky, M.: Mica: a holistic
approach to fast in-memory key-value storage. In: Proceedings of
the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI’14), pp. 429–444. USENIX Association,
Berkeley (2014)

28. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998).
doi:10.1145/272991.272995

29. Motzkin, T.S.: Evaluation of polynomials and evaluation of rational
functions. Bull. Am. Math. Soc. 61(9), 163 (1955)

123

http://code.google.com/p/smhasher
http://code.google.com/p/smhasher
http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://dx.doi.org/10.1007/978-3-642-34931-7_28
http://dx.doi.org/10.1007/978-3-642-34931-7_28
https://github.com/veorq/SipHash
https://github.com/veorq/SipHash
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/3-540-48405-1_14
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1007/3-540-48405-1_15
http://dx.doi.org/10.1145/2674005.2674994
http://www.agner.org/optimize/instruction_tables.pdf
http://dx.doi.org/10.1016/j.ipl.2010.04.011
http://dx.doi.org/10.1016/j.ipl.2010.04.011
http://dx.doi.org/10.1007/BFb0052345
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://dx.doi.org/10.1007/978-3-540-69499-1_7
http://dx.doi.org/10.1007/978-3-540-74462-7_23
http://dx.doi.org/10.1007/978-3-540-74462-7_23
http://fastcrypto.org/vmac/
http://dx.doi.org/10.1093/comjnl/bxt070
http://dx.doi.org/10.1145/272991.272995

J Cryptogr Eng (2016) 6:171–185 185

30. Mullen, G.L., Panario, D.: Handbook of Finite Fields, 1st edn.
Chapman & Hall/CRC, London (2013)

31. Nguyen, L.H., Roscoe, A.W.: New combinatorial bounds for uni-
versal hash functions. Tech. Rep. 153, Cryptology ePrint Archive
(2009)

32. Oliveira, T., Aranha, D.F., López, J., Rodríguez-Henríquez, F.: Fast
point multiplication algorithms for binary elliptic curves with and
without precomputation. In: Joux, A., Youssef, A. (eds.) Selected
Areas in Cryptography (SAC 2014). Lecture Notes in Computer
Science, pp. 324–344. Springer International Publishing, Switzer-
land (2014). doi:10.1007/978-3-319-13051-4_20

33. Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.:
Two is the fastest prime: lambda coordinates for binary ellip-
tic curves. J. Cryptogr. Eng. 4(1), 3–17 (2014). doi:10.1007/
s13389-013-0069-z

34. Paoloni, G.: How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures. Intel Corporation,
Santa Clara (2010)

35. Pike, G., Alakuijala, J.: The CityHash family of hash functions
(2011). https://code.google.com/p/cityhash/. Last checked March
2015

36. Stinson, D.R.: Universal hashing and authentication codes. Des.
Codes Cryptogr. 4(4), 369–380 (1994). doi:10.1007/BF01388651

37. Stinson,D.R.: On the connections between universal hashing, com-
binatorial designs and error-correcting codes. Congr. Numer. 114,
7–28 (1996)

38. Su, C., Fan, H.: Impact of Intel’s new instruction sets on soft-
ware implementation of GF(2)[x] multiplication. Inf. Process.
Lett. 112(12), 497–502 (2012). doi:10.1016/j.ipl.2012.03.012

39. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-
Henríquez, F., Hankerson, D., López, J.: Speeding scalar mul-
tiplication over binary elliptic curves using the new carry-less
multiplication instruction. J. Cryptogr. Eng. 1(3), 187–199 (2011).
doi:10.1007/s13389-011-0017-8

123

http://dx.doi.org/10.1007/978-3-319-13051-4_20
http://dx.doi.org/10.1007/s13389-013-0069-z
http://dx.doi.org/10.1007/s13389-013-0069-z
https://code.google.com/p/cityhash/
http://dx.doi.org/10.1007/BF01388651
http://dx.doi.org/10.1016/j.ipl.2012.03.012
http://dx.doi.org/10.1007/s13389-011-0017-8

	Faster 64-bit universal hashing using carry-less multiplications
	Abstract
	1 Introduction
	2 Random hashing
	2.1 Safely reducing hash values
	2.2 Composition
	2.3 Hashing tuples
	2.4 Variable-length hashing from fixed-length hashing
	2.5 Minimally randomized hashing

	3 VHASH
	3.1 Random bits

	4 Finite fields
	4.1 Finite fields of prime cardinality
	4.2 Hash families in a field
	4.3 Binary finite fields
	4.4 Efficient reduction in GF(264)

	5 CLHASH
	5.1 Random bits

	6 Statistical validation
	6.1 SMHasher

	7 Speed experiments
	7.1 Results
	7.2 Analysis

	8 Related work
	9 Conclusion
	Acknowledgments
	References

