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Abstract Computingdiscrete logarithms takes time. It takes
time to develop new algorithms, choose the best algorithms,
implement these algorithms correctly and efficiently, keep
the system running for several months, and, finally, publish
the results. In this paper, we present a highly performant
architecture that can be used to compute discrete logarithms
of Weierstrass curves defined over binary fields and Koblitz
curves using FPGAs. We used the architecture to compute
for the first time a discrete logarithm of the elliptic curve
sect113r1, a previously standardized binary curve, using
10 Kintex-7 FPGAs. To achieve this result, we investigated
different iteration functions, used a negation map, dealt with
the fruitless cycle problem, built an efficient FPGA design
that processes 900 million iterations per second, and we
tended for several months the optimized implementations
running on the FPGAs.

Keywords Elliptic curve cryptography · Discrete logarithm
problem · Pollard rho · Hardware design · FPGA · Negation
map

1 Introduction

Cryptographic research is a constant race between designers
and attackers. In the best case, the challenges given by the
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designers scale exponentially and the resources used by the
attacker scale linearly. The consequential fundamental ques-
tion is how big the cryptographic parameters need to be so
that no attack is feasible.

One very efficient family of public-key systems is elliptic
curve cryptography (ECC). Its performance is directly pro-
portional to the size of the (security) parameters used. The
security is based on the intractability of the elliptic curve dis-
crete logarithm problem (ECDLP). A challenge, especially
in constrained environments, is to choose elliptic curve para-
meters that simultaneously enable efficient implementations
and reasonable security.

Standardization committees [1,4] rely on ECDLP perfor-
mance results to derive appropriately secure elliptic curve
standards. Therefore, a constant evaluation of different tech-
niques and technologies is necessary to keep track of the
capabilities of the most sophisticated attackers. In the past,
ECDLPs were computed using public participation [22] or
Playstation-3 clusters [8]. In this paper, which is an exten-
sion of our SAC 2014 paper [35], we investigate the power
of FPGAs to practically compute complex ECDLPs.

The task of computing a discrete logarithmcanbe split into
thework done by researchers and thework done bymachines.
This paper presents both a novel hardware architecture and
the discrete logarithm of a 113-bit elliptic curve defined over
a binary field. This discrete logarithm was computed using
a fully pipelined, high-speed, and extensively tested design,
ECC Breaker, and 10 Kintex-7 FPGAs. Based on our SAC
2014 paper [35], this paper additionally takes advantage of
negation maps and the simultaneous inversion technique,
and evaluates and practically realizes fruitless cycle coun-
termeasures. We use the new, faster design to compute the
discrete logarithm of a 10.6-times stronger elliptic curve.
Furthermore, we will evaluate the cost to compute discrete
logarithms of even larger binary-field elliptic curves. Sub-
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stantiated by practical experimentation, our results should
be used by the community as basis for new standards.

This paper is structured as follows: Sect. 2 gives an
overview on related work. Section 3 revisits some mathe-
matical foundations and Sect. 4 summarizes the experiments
with different iteration functions. Section 5 reflects on the
best use of the negation map. The implementation of the
most suitable iteration function is described in Sect. 6. As
the design is flexible enough to attack larger elliptic curves,
Sect. 7 gives runtime and cost approximations. Section 8
discusses future challenges and Sect. 9 concludes the paper.
Appendix A gives an overview of the targeted curve parame-
ters and pseudo-randomly chosen target points.

2 Related work

Certicom [10] introducedECCchallenges in 1997 to increase
industry acceptance of cryptosystems based on the ECDLP.
They published challenges for different security levels. Since
then, the hardest solved Certicom challenges are ECCp-109
for prime-field based elliptic curves, done by Monico et
al. using a cluster of about 10,000 computers (mostly PCs)
for 549 days, and ECC2-109 for binary field-based elliptic
curves, also done by Monico et al., computing on a clus-
ter of around 2600 computers (mostly PCs) for around 510
days. Harley et al. [22] solved an ECDLP over a 109-bit
Koblitz-curve Certicom challenge (ECC2K-108) with pub-
lic participation using up to 9500 PCs in 126 days.

The next larger Certicom challenge ECC2K-130 is 126
times more complex than ECC2-109. Therefore, researchers
also computed discrete logarithms of custom elliptic curves.
A discrete logarithm defined over a 112-bit prime-field
elliptic curve was solved by Bos et al. [8], utilizing 200
PlayStations 3 for 6 months. A single PlayStation 3 reached
a throughput of 42 · 106 iterations per second (IPS).

Several research teams investigated the potential speed
of FPGAs to compute larger discrete logarithms. Dormale
et al. [13] targeted ECC2-113, ECC2-131, and ECC2-163
using Xilinx Spartan 3 FPGAs performing up to 20 · 106
IPS. Most promising is the work of Bailey et al. [3], who
attempt to break ECC2K-130 using Nvidia GTX 295 graph-
ics cards, Intel Core 2 Extreme CPUs, Sony PlayStations 3,
and Xilinx Spartan 3 FPGAs. Their FPGA implementation
has a throughput of 33.7 · 106 IPS and was later improved
by Fan et al. [15] to process 111 · 106 IPS. Other FPGA
architectures were proposed by Güneysu et al. [20], Mane
et al. [25], and Judge et al. [24]. Güneysu et al.’s Spartan
3 architecture performs about 173 · 103 IPS, Mane et al.’s
Virtex 5 architecture does 660 · 103 IPS, and Judge et al.’s
Virtex 5 architecture executes around 14 · 106 IPS. In 2014,
Engels [14] approximated that a discrete logarithm of the

previously standardized [11] elliptic curve sect113r1 can
be computed in 6 months using 64 Spartan-6 FPGAs.

So far, none of their FPGA implementations have been
successful in solving ECDLPs. This work on the other hand
presents an architecture which has been used to success-
fully attack both a 113-bit Koblitz curve and the 113-bit
binary-field Weierstrass curve sect113r1. The architec-
ture performs 900 ·106 IPS on one of the 10 Kintex-7 FPGAs
used.

3 Mathematical foundations

To ensure a common vocabulary, it is important to revisit
some of the basics. For further details, we refer to Hankerson
et al. [21] and Cohen et al. [12].

3.1 Elliptic curve cryptography

This paper focuses onWeierstrass curves that are definedover
binary extension fields K = F2m . The curves are defined by
the Weierstrass equation E/K : y2 + xy = x3 + ax2 + b,
where a and b are system parameters and a tuple of x and
y which fulfills the equation is called a point P = (x, y).
Using multiple points and the chord-and-tangent rule, it is
possible to derive an additive group of order n, suitable for
cryptography. The number of points on an elliptic curve is
denoted as #E(K ) = h · n, where n is a large prime and the
cofactor h is typically in the range of 2–8. The core of all
ECC-based cryptographic algorithms is a scalar multiplica-
tion Q = kP , in which the scalar k ∈ [0, n−1] is multiplied
with a point P to derive Q, where both points are of order n.

As computing Q = kP can be costly, a lot of research was
done on the efficient and secure computation of Q = kP .
A subset of binary Weierstrass curves, known as Koblitz
curves (also known as anomalous binary curves), have some
properties which make them especially interesting for fast
implementations. They may make use of a map σ(x, y) =
(x2, y2), σ (∞) = (∞), an automorphism of orderm known
as a Frobenius automorphism. This means that there exists
an integer λ such that σ�(P) = λ�P ∀ �. Another auto-
morphism, which is not only applicable to Koblitz curves,
is the negation map. The negative of a point P = (x, y) is
−P = (n − 1)P = (x, x + y).

3.2 Elliptic curve discrete logarithm problem

The security ofECCrelies on the intractability of theECDLP:
given the two points Q and P , connected by Q = kP , it
should be practically infeasible to compute the scalar 0 ≤
k < n. As standardized elliptic curves are designed such that
neither the Pohlig and Hellman attack [29], nor the Weil and
Tate pairing attacks [16,27], nor the Weil descent attack [18]

123



J Cryptogr Eng (2016) 6:287–297 289

apply. A standard algorithm to compute a discrete logarithm
is Pollard’s rho algorithm [30] or its parallelized version by
van Oorschot and Wiener [33].

These algorithms are based on an iteration function f
that defines a random cyclic walk over a graph. An itera-
tion function updates a state, henceforth referred to as triple,
consisting of two scalars ci , di ∈ [0, n − 1] and a point
Xi = ci P + di Q. An iteration function f deterministically
computes Xi+1 = f (Xi ) and updates ci+1 and di+1 accord-
ingly, such that Xi+1 = ci+1P+di+1Q holds.A requirement
on f is that it should be easily computable and to have the
characteristics of a random function.

Using either Pollard’s rho or van Oorschot and Wiener’s
algorithm, the goal is to find a pair of colliding triples. As
X1 = X2 = c1P + d1Q = c2P + d2Q and (d2 − d1)Q =
(d2 − d1)kP = (c1 − c2)P , it is possible to compute k =
(c1 − c2)(d2 − d1)−1 mod n. Pollard’s rho algorithm runs
in a single tread, uses Floyd’s cycle-finding algorithm and

expects to encounter a collision after
√

πn
2 steps.

In order to parallelize an attack efficiently, van Oorschot
and Wiener [33] introduced an algorithm based on the con-
cept of distinguished points.Distinguished points are a subset
of points, which satisfy a particular condition. Such a condi-
tion canbe a specific number of leading zero digits of a point’s
x-coordinate, or a particular range of Hamming weights in
normal basis. Those distinguished points are stored in a cen-
tral database and can be computed in parallel. The achievable
speedup is linearly proportional to the number of instances
running in parallel. Note that each instance starts with a ran-
dom starting triple and uses one of the iteration functions f
which are discussed in the following section.

4 Selecting the iteration function

As the iteration functionwill be optimized for performance in
hardware, it is crucial to evaluate different iteration functions
and select the most suitable one. In this work, the iteration
functions byTeske [32],Wiener andZuccherato [36],Gallant
et al. [17], and Bailey et al. [2] were checked for their practi-
cal requirements and achievable computation rates. Table 1

summarizes the experiments done in software on a 41-bit
Koblitz curve.

Teske’s r-adding walk [32] is a nearly optimal choice for
an iteration function. It partitions the elliptic curve group into
r distinct subsets {S1, S2, . . . , Sr } of roughly equal size. If a
point Xi is assigned to S j , the iteration function computes
f (Xi ) = Xi + R[ j], with R[] being an r -sized table consist-
ing of linear combinations of P and Q. After approximately√

πn
2 steps, Teske’s r -adding walk finds two colliding points

for all types of elliptic curves.
The Frobenius automorphism of Koblitz curves cannot

only be used to speed up the scalar multiplication, but also
to improve the expected runtime of a parallelized Pollard’s
rho by a factor of

√
m. Wiener and Zuccherato [36], Gallant

et al. [17], and Bailey et al. [2] proposed iteration functions
which should achieve this

√
m-speedup.

Wiener and Zuccherato [36] proposed to calculate f (Xi )

= σ�(Xi + R[ j]) ∀ � ∈ [0,m − 1] and choose the point
X , which has the smallest x-coordinate when interpreted
as an integer. Gallant et al. [17] introduced an iteration
function based on a labeling function L, which maps the
equivalence classes defined by the Frobenius automorphism
to some set of representatives. The iteration function is then
defined as f (Xi ) = Xi +σ�(Xi ), where � = hashm(L(Xi )).
Bailey et al. [2] suggested to compute f (Xi ) = Xi +
σ (�mod 16)/2+3(Xi ) to reduce the complexity of the iteration
function. However, the bulk of the complexity comes from
the point addition module which is necessary for all investi-
gated iteration functions.

In order to investigate the practical differences of the iter-
ation functions, a 41-bit Koblitz curve was used to evaluate
themwith a C implementation on a PC (cf. Table 1). As label-
ing function L, the Hamming weight of the x-coordinate
in normal basis was used for Gallant et al. and Bailey et
al. For Teske and Wiener and Zuccherato 5 bits of the x-
coordinate were used to select the branching index j . The
identity function was used as hash function. Table 1 sum-
marizes the average number of iterations (computing 10,000
ECDLPs) of all tested iteration functions using four parallel
threads. The experiments showed that the average number of
iterations of Gallant et al.’s and Bailey et al.’s iteration func-
tions are 14–17 % higher compared to the iteration function

Table 1 Expected and
simulated total number of
iterations to compute the
discrete logarithm of a 41-bit
Koblitz curve

References Iteration function Expected iterations Measured
Iterations Std. dev.

Teske [32] f (Xi ) = Xi + R[ j] 929,263 819,984 455,733

Wiener and
Zuccherato [36]

f (Xi ) = min
0≤l<m

{σ l (Xi + R[ j])} 145,127 146,768 75,924

Gallant et al. [17] f (Xi ) = Xi + σ l (Xi ) 145,127 168,345 84,434

Bailey et al. [2] f (Xi ) = Xi + σ (l mod 16)/2+3(Xi ) 145,127 167,934 94,124
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Fig. 1 Sequence of iteration
functions: a normal sequence. b
Fruitless 2-cycle. c Fruitless
4-cycle. d Two fruitless 2-cycles
that end in normal sequence. e
Fruitless 4-cycle that ends in
normal sequence
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by Wiener and Zuccherato. Additionally, with a probability
of 14–20 %, some of the parallel threads produced identi-
cal sequences of distinguished points. Restarting the threads
regularly or on-demand would counter this problem. Not
handling the problem of fruitless threads would increase the
average runtime of Gallant et al.’s iteration function further.

As Wiener and Zuccherato’s iteration function achieved
the best speed and does not have the problem of fruitless
threads, we selected it to be implemented in hardware. Addi-
tionally, by leaving out the automorphism, the hardware can
be used to attack general binary-field Weierstrass curves as
well.

5 Handling the negation map

In addition to the Frobenius automorphism, it is possible
to use a negation map. The negation map compares Xi with
−Xi and selects the pointwith the smaller y-coordinatewhen
interpreted as an integer. Consequently, the expected runtime
of the parallelized Pollard’s rho algorithm improves by a fac-
tor of

√
2. The drawback of the negation map is the high

probability of fruitless cycles. A fruitless cycle happens if
consecutive applications of the iteration function f results in
the original triple Xi = Xi+L = f L(Xi ). The collision of
Xi with Xi+L is fruitless, cannot be used to compute the dis-
crete logarithm, and the cycle cannot be left with a repeated
application of f .

Figure 1a depicts a normal iteration of points, where each
node represents a computed triple. Figure 1b, c show a fruit-
less 2-cycle and a fruitless 4-cycle, respectively. A 2-cycle
happens if two applications of the iteration function map to
the original point: f ( f (Xi )) = Xi+2 = −(−(Xi + R[ j]) +
R[ j]) = Xi . This happens with a probability of 1

2rm , with r
being the size of the branching table R[] and m = 1 for non-
Koblitz curves. Larger fruitless cycles happen with smaller
probability.

Table 2 Average number of iterations to compute the discrete logarithm
of a 30-bit elliptic curve in dependenceof howa fruitless cycle is handled

Method Iterations Cycles
Average Std. dev. Average

No negation map 33,117 21,453 0

New random triple 55,636 28,326 1683

Random index 54,483 28,031 1882

Point doubling 26,385 15,650 787

Determ. index r = 16 26,141 15,352 848

Determ. index r = 128 25,047 15,151 98

When the negation map is used, it is essential to cope with
fruitless cycles as these cycles render a thread useless. There
are multiple ways to cope with a cycle once it is detected (cf.
[7,9]). Table 2 summarizes several experiments done with
a 30-bit prime curve (repeated 10,000 times). The iteration
function was f (Xi ) = Xi + R[ j] and the size of the branch-
ing table was r = 16. For reference, also an experiment
without negation map was performed. The average runtimes
are highly dependent on the particular method used, when
a fruitless cycle is detected. One way is to generate a new
random triple once a cycle is detected. This basically restarts
the current thread, breaks the deterministic walk and ren-
ders the computed steps since the last distinguished point in
vain. Therefore, this approach is not recommended to handle
fruitless cycles. Also similar behavior can be observed when
a random branching index j is used to break the fruitless
cycle. Only the point doubling approach and the finally cho-
senmethod give the expected speed-up factor of 1.32 (similar
to the speed-up reported by Bos et al. [9]). The advantage of
the latter method is that no on-chip point doubling circuit
is necessary (which is a huge advantage when a hardware
design is done).

Ourmethodworks bydeterministically choosing the index
of the branching table based on the point Xi and the size of
the largest detected cycle L : f (Xi ) = Xi + R[ j + L]. As
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depicted in Fig. 1d, e, initially, a branch j resulting in a cycle
is taken. Once the cycle is detected, a different branch j + 2
or j + 4 is selected. If the branch j + 2 results in another
2-cycle, the branch j + 4 is chosen (see Fig. 1d).

For the hardware design that was used to compute the
discrete logarithm of sect113r1, a combination of meth-
ods was used to minimize the problem of fruitless cycles. (i)
The branching index is deterministically chosen as described
above. (ii) A branching table with r = 1024 entries mini-
mizes the probability of loops. (iii) Block RAM-based FIFOs
are used to detect up to 10-cycles. Larger cycles are not
detected, but they are very unlikely to occur in practice. (iv)
Just in case that the hardware runs into a larger fruitless cycle,
the hardware is restarted every 24 h.

6 ECC Breaker hardware

Based on these investigations on iteration functions, a hard-
ware architecture was designed. This hardware architecture
is based on the following assumptions.

6.1 Basic assumptions and decisions

ASIC vs FPGA design In literature it is possible to find a
lot of FPGA and ASIC designs optimized for some objec-
tive. Some authors even dare to compare FPGA and ASIC
results. However, several of the largest components in ASIC
designs, e.g., registers, RAMs, or integer multipliers, are for
free in an FPGA design. For instance, every slice comes with
several registers. Therefore, adding pipeline stages in a logic-
heavy FPGA design is basically for free. For this paper,
Xilinx Virtex-6 and Kintex-7 evaluation boards were cho-
sen as development platform. Note that all following design
decisions were made to maximize the performance of ECC
Breaker on these particular boards.

Design goals As Pollard’s rho algorithm is perfectly par-
allelizable, the design goal clearly is to maximize the
throughput per (given) area. Note that the speed (IPS) of an
attack is linearly proportional to the throughput and inversely
proportional to the chip area (more instances per FPGA also
increase the speed). Therefore, the most basic design deci-
sionwaswhether to go formany small or a single large FPGA
design.

Core idea In earlier designs, we considered many area-
efficient architectures, each coming with a single F2m mul-
tiplier, a F2m squarer, and a F2m adder per instance. The
main problems of these designs were the costly multiplex-
ers and the low utilization of the hardware. Therefore the
design principle of ECC Breaker is a single, fully unrolled,
fully pipelined iteration function. In order to keep all pipeline
stages busy, the number of pipeline stages equals the num-

ber of triples processed within ECC Breaker. Therefore, the
hardware is fully utilized in every cycle.

ECC Breaker versus related work (i) In the current setup, the
interface between ECC Breaker and a desktop is a simple,
slow, serial interface. This might be a challenge for related
implementations, but not for ECCBreaker. The implemented
design detects fruitless cycles on-chip and the on-chip distin-
guished points (triple) storage assures that only distinguished
triples have to be read. (ii) Unlike Fan et al. [15], our simul-
taneous inversion design is not iterative but fully unrolled.
Therefore, our implementation is significantly larger, but
also faster. (iii) Further, ECC Breaker comes with prime
field Fn arithmetic which has only a minor impact on the
size of the hardware. It proved indispensable during devel-
opment that the generated distinguished triples could be
easily verified. (iv) Variations of ECC Breaker were used
to solve both the discrete logarithm of a 113-bit Koblitz
curve [35] and the discrete logarithm of the elliptic curve
sect113r1, which was part of a previous elliptic curve
standard [11].

Generalization of ECCBreaker Although the current version
of ECC Breaker is carefully optimized for a 113-bit binary-
field elliptic curve, the underlying architecture and design
approach is also suitable for larger elliptic curves, e.g, a 131-
bit Koblitz curve. In Sect. 7, approximations of the expected
runtimes and potential costs to attack larger elliptic curves
are given.

6.2 The architecture

The basic architecture of ECC Breaker is presented in Fig. 2.
The core of ECC Breaker is a circular, self-sufficient, fully
autonomous iteration function. A (potentially slow) inter-
face is used to write the NextInput register. If the current
stage of the pipeline is not active, the pipeline is fed with
the triple from the NextInput register. This is done until
all stages of the pipeline process data. If a point is distin-
guished, it is automatically added to the distinguished triples
storage (a block RAM that can store up to 128 triples). At
periodic but time-insensitive intervals, the host computer can
read all distinguished triples that were collected within the
storage.

The iteration function itself consists of four major com-
ponents: a point addition module, a point automorphism
module, a negation map, and a loop detection module. Other
components deal with F2m and Fn arithmetic, or are block
RAM-based tables and FIFOs. Because of this modularity it
is easily possible, e.g., to use the point automorphism mod-
ule only when a Koblitz curve is attacked. The components
are described in the following.
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Fig. 2 Top-level architecture view. ECC Breaker is shown on top. The
modularized iteration function is shown below

6.3 Point addition module

No matter which iteration function is selected, an affine
point addition module is always necessary. In the case of
binary Weierstrass curves, the formulas for a point addition
(x3, y3) = (x1, y1)+ (x2, y2) are x3 = μ2 +μ+ x1+ x2 +a
and y3 = μ·(x1+x3)+x3+y1, withμ = (y1+y2)/(x1+x2).
Special cases of points being equivalent, inverse of each
other, or the identity are not handled by the hardware as they
are very unlikely to occur in practice.

Figure 3 shows the implemented point addition module
which directly maps the formulas from above. Two F2m

multipliers, one F2m inverter, and five FIFOs are necessary
to compute a point addition in 184 cycles. Note that it is
not possible to get rid of the costly inversion as the result
of the point addition must be available in affine coordi-
nates (cf. Dormale et al. [13]). However, it is possible to
share the inversion module across multiple ECC Breaker
instances at the cost of additional multipliers by taking
advantage of the simultaneous inversion technique intro-
duced by Montgomery [28]. If this is done, the latency of
the point addition module increases. However, this has no
impact on the overall throughput given the fully pipelined
design.

y1 y2 x1x2

ADD ADD

FIFO

FIFO

ADD

a

FIFO
FIFO INV

MUL

SQU

MUL

ADD

ADD

FIFO

ADD

x3y3

Fig. 3 Simplified point addition module. The gray shaded blocks are
without registers

6.4 F2m inverse

The runtime of an Euclidean-based inversion algorithm
is data-dependent and therefore hard to compute with a
pipelined hardware module. Therefore, ECC Breaker com-
putes the inverse using Fermat’s little theorem; an inversion
by exponentiation. Fortunately, an exponentiation with 2m−2

can be computed very efficiently using the technique by Itoh
and Tsujii’s [23], needing 112 squarers and 8 multipliers for
m = 113: a = a2

1−1 → a2
2−1 → a2

3−1 → a2
6−1 →

a2
7−1 → a2

14−1 → a2
28−1 → a2

56−1 → a2
112−1 →

a2
113−2 = a−1.

6.5 Simultaneous inversion

With 8 multipliers, the inversion module is roughly 4 times
larger than the rest of the point addition module which only
requires 2 additional multipliers. Based on the simultaneous
inversion technique [28], the inverter can be shared across
multiple ECC Breaker instances at the rough cost of 3(d−1)
multipliers for d inputs to invert. Figure 4 shows the use
of 12 multipliers to invert 5 finite-field elements. Several
FIFOs, which are not depicted, are used to deal with data-
dependencies. Additional hardware is needed to deal with
uninitialized ECC Breaker instances that have the number
zero in the pipeline.

6.6 Point automorphism module

In order to speed up Pollard’s rho algorithm for Koblitz
curves, it is necessary to uniquely map m points from the
same equivalence class to a single point. As ECC Breaker
follows Wiener and Zuccherato’s [36] approach of interpret-
ing the field elements as integers and comparing them, it was
necessary to design a module that does m squarings and m
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Fig. 4 Simultaneous inversion of 5 finite-field elements. The FIFOs
that are needed for synchronization are not shown
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FIFO
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Fig. 5 Point automorphism unit with m comparator units

comparisons as efficiently as possible. This module relies on
normal basis representation and is depicted in Fig. 5. It con-
verts x and y into normal basis, finds the smallest x within the
normal basis, rotates y appropriately, and transforms x and
y back into a canonical polynomial representation. As the m
exponents of x (x (2i )) are computed by simple rewiring (x
rotated by i steps), and the smallest x is found using a binary
comparison tree, no canonical F2m squarer is needed.

As optimization, only the t = 70 most significants bits
of x are compared. This means that if two numbers with
t equivalent most significant bits are compared, no unique
minimum is found. However, the probability for that is only

2−t . For i =
√

πn
2m iterations and m · i comparisons, the

probability for not selecting the smaller value is only 1 −
(1 − 2−t )m·i = 0.00081 for m = 113.

The majority of the point automorphism module is the
comparator tree. The basis transformations are fairly cheap
and make up only 20 % of the point automorphism module.

6.7 F2m normal basis

The advantage of a normal basis is that a squaring is a sim-
ple rotation operation. The disadvantage of a normal basis is
that a F2m multiplication is fairly complex to compute. ECC
Breaker uses per default a normal, canonical polynomial rep-
resentation.

Only within the point automorphism module, the normal
basis is advantageous. The necessary matrix multiplication
for a basis transformation can be implemented very effi-
ciently. As thematrix is constant, on averagem/2 of the input
signals are XORed per output signal. Based on our previous
results [35], 666 LUTs are needed per basis transformation.

Experiments show that the normal basis could also reduce
the area of the consecutive squaring units within the F2m

inversion. Doing two basis transformations and a rotation
within normal basis would probably save area. Also, accu-
mulating the two transformationmatrices into a singlematrix
would further reduce the area. However, as all squarers
together only need 3 % of all LUTs, the potential area
improvement is rather limited. Therefore, contrary to related
attempts [3,15], ECC Breaker only uses a normal basis num-
ber representation within the point automorphism module.

6.8 F2m multiplier

The F2m multipliers have the largest impact on the area
footprint of the ECC Breaker design. For ECC Breaker,
the following multiplier designs were evaluated using a
Virtex-6 FPGA (post-synthesis): (i) A simple 113-bit parallel
polynomial multiplier needs 5497 LUTs. (ii) A Mastrovito
multiplier [26] interprets the F2m multiplication as matrix
multiplication and performs both a polynomial multiplica-
tion and the reduction step simultaneously. Unfortunately, it
needs 7104 LUTs. A polynomial multiplication and reduc-
tion with the used pentanomial can be implemented much
more efficiently. (iii) Bernstein [5] combines some refined
Karatsuba and Toom recursions for his batch binary Edwards
multiplier. His code [6] for a 113-bit polynomial multi-
plier needs 4409 LUTs. (iv) Finally, the best results were
achieved with a slightly modified binary Karatsuba multi-
plier, described byRodrıguez-Henrıquez andKoç [31]. Their
recursive algorithm was applied down to a 16 × 16-bit mul-
tiplier level, which is synthesized as standard polynomial
multiplier. The formulas for the resulting multiplier struc-
ture are given in Appendix B. The design only requires 3757
LUTs. Finally the design was equipped with several pipeline
stages such that it can be clocked with high frequencies.

6.9 Fn multiplier

Computing prime-field multiplications in hardware can be
a troublesome and very resource-intensive task. Dedicated
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DSP slices were used for integer multiplications. As a result,
the two Fn multipliers are very resource efficient, requiring
very few LUTs and only 2 × 145 DSP slices.

7 Results and transferability of results

The construction of the ECC Breaker design was an itera-
tive process in which the speed, the area, the utilization, and
the power characteristics were continuously optimized. To
exploit all available resources, the available block RAMs and
DSP sliceswere usedwhenever possible. The design that was
used to compute the discrete logarithm of sect113r1 was
optimized for Kintex-7 FPGAs (KC705 development boards
coming with XC7K325T-2 FPGAs). The best stable perfor-
mance was achieved with 5 ECC Breaker instances running
at 180 MHz. With additional ventilation, 10 Kintex-7 boards
operated stably at an operating temperature of around 90◦ C
(194 F). Both increasing the number of instances (and reduc-
ing the clock frequency) or increasing the clock frequency
(and reducing the number of instances) either deteriorated
the performance or was not routable.

By using Xilinx ISE 14.7 as toolchain, the following
utilizationswere achieved.ECCBreaker requires (post place-
and-route) 80 % of all available slices (40,915/50,950),
73 % of all LUTs (150,750/203,800), 41 % of all registers
(170,799/407,600), and 31% of all block RAMs (408/1335).
Table 3 gives the number of slices needed for all components.
The biggest components are the 5 ECC Breaker instances
and the simultaneous inversion module. 67 % of the slices
are needed for F2m multipliers (5 × 2 within the point addi-
tion modules, 12 for the simultaneous inverter, and 8 for
the inverter itself). As the place-and-route tool performs
optimizations across module borders, the slice counts of all
components are just approximations by the mapping tool.

The discrete logarithm for a randomly selected
sect113r1 challenge was computed in approximately 2.5
months on 10 Kintex-7 KC705 boards. See Appendix A for
the actual parameters. Thefinal database contains 55,121,643

distinguished triples. Fruitless distinguished triples were fil-
tered. The distinguishing property required the 30 leading
bits to be zero. Therefore, approximately 255.72 iterations
were computed, which is close to the expected number of
iterations which is 255.8.

7.1 Extrapolating the results

The results above are just a snapshot of a much larger pic-
ture. Based on the current VHDL design, one could optimize
the design for different FPGAs, different elliptic curves, or
for ASICs. The ECC Breaker design that was used to attack
sect113r1 processes 5 × 180 = 900 million IPS and
77,760,000,000,000 iterations per day. Assuming that the
same performance can be reached for larger elliptic curves
as well (using the same FPGA), the budgets to break them
within a year are shown in Table 4.

This budgets does not include the manpower needed for
development or upkeep, or the electrical energy needed to
run the FPGAs. Additionally, there is a lot of room for
improvement to reduce the necessary budgets. It is possi-
ble to increase the performance of the hardware design, or to
reduce the costs of the FPGAs. If the number of necessary
FPGAs reaches themillions, it is probablymore cost-efficient
to build a dedicated ASIC design to compute discrete loga-
rithmsmore efficiently. AnASIC design potentially provides
a better cost–performance ratio, but the development process
is potentially much more time consuming.

With that in mind, it has to be emphasized that Table 4
summarizes what we could do now using KC705 develop-
ment boards, which cost around USD 1700 in the beginning
of 2015 [37]. The expected iteration count includes the
potential speed-ups of both negation maps and group auto-
morphisms when applicable. Using our current setup of 10
KC705 development boards, it is possible to compute the
discrete logarithms of 113-bit Koblitz and 113-bit Weier-
strass curves in around 8 and 82 days, respectively. Using
72 KC705s, it would be possible to solve the discrete loga-

Table 3 Post place-and-route
Kintex-7 utilization with 5 ECC
Breaker instances

Module Instances Slices per Instance Slices Total FPGA utilization

Top 40,915 80 %

ECC Breaker 5 4203 21,016 41 %

Iteration function 5 3703 18,517 36 %

Point addition 5 2236 11,182 22 %

F2m multiplier 5 × 2 962 9624 19 %

Simul. inversion 19,836 39 %

F2m multiplier 4 × 3 877 10,523 21 %

F2m inverter 1 9022 9022 18 %

F2m multiplier 8 904 7232 14 %

F2m squarer 112 14.8 1653 3 %
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Table 4 Approximations of costs to compute large discrete logarithms within a year

Elliptic curve Standard Group size Iterations FPGA days # FPGAs FPGA budget

113-bit Koblitz 2112 1015.8 252.4 77 1 1700

113-bit Weierstrass sect113r1 2112 1016.8 255.8 821 3 5100

127-bit Koblitz 2114 1016.1 253.4 156 1 1700

127-bit Weierstrass 2125 1018.8 262.3 74,330 204 346,800

131-bit Koblitz 2129 1018.3 260.8 25,977 72 122,400

131-bit Weierstrass sect131r1 2129 1019.4 264.3 297,320 815 1,385,500

163-bit Koblitz sect163k1 2162 1023.2 277.2 2.16 · 109 5.19 · 106 10.1 · 109
163-bit Weierstrass sect163r2 2162 1024.3 280.8 27.6 · 109 75.5 · 106 128 · 109
256-bit Weierstrass secp256r1 2256 1038.5 2127.8 3.89 · 1024 10.6 · 1021 18.1 · 1024
Budget is in USD

rithm of a 131-bit Koblitz curve in a year, one of the official
Certicom challenges [10].

At the 80-bit security level, the necessary budget to break
an elliptic curve is around 10–100 billion USD (for FPGAs).
This seems like an extraordinary amount of money, but under
the assumption that there is a fair amount of optimization
potential and that there are some organizations with huge
funds, elliptic curves at the 80-bit security level should not
be used any more. However, nobody (cf. [19]) recommends
long-term use of 160-bit elliptic curves anyways.

At the 128-bit security level, budgets in the range of
18.1 · 1024 USD give elliptic curves, such as secp256r1,
a sufficient cushion to be safe for the next decades. Assum-
ing that every year the necessary budget halves (which it
probably will not), an elliptic curve at the 128-bit security
level will be secure for the next 40–50 years; unless there is
an algorithmic breakthrough, a breakthrough with quantum
computers, or a backdoor in the elliptic curve standard.

8 Future challenges

Solving cryptographic challenges is a process, inwhich every
optimization step results in a potentially better design. In
order to support other researchers, all our code is available
online [34]. There are still plenty of challenges to be inves-
tigated:

It is possible to improve the performance by reducing the
critical path or by shrinking the size of ECC Breaker. Espe-
cially a smaller finite-field multiplier would enable to place
more ECC Breakers per FPGA. However, ECC Breaker is
a fairly complex and large design. The hardware synthe-
sizer reached its limit when it came to maximum frequency
approximations. In most cases, it was only possible to reach
a fraction of the theoretically given frequency after mapping
and routing.

Anadditional designdimension is thepower consumption.
Every pipeline stage within ECC Breaker is active in every

cycle, and therefore every utilized slice is active in every
cycle. Both, the power supply and cooling system, which is
responsible for dissipating the heat, run at full capacity. For
the attack on Koblitz curves [35], where we used ML605
boards, it was necessary to reduce the clock frequency to
165 MHz even though the synthesizer approximated a max-
imum clock frequency of 275 MHz.

This paper demonstrates that FPGAs are well suited to
compute discrete logarithms of elliptic curves defined over
binary extension fields. It has yet to be answered how well
FPGAs can be used to attack elliptic curves defined over
prime fields. Assuming that a Mersenne-like prime that
enables fast reduction is used, then roughly 64 DSP slices are
necessary for a 128-bit prime-field multiplier. Consequently,
13 finite-field multiplier would fit within the 840 DSP slices
of a KC705. Assuming the inversion is built using only gen-
eral purpose slices, then 2–3 instances would fit per FPGA.

Ultimately, at some point, it makes sense to develop an
ASIC. An ASIC does not come with ‘free’ DSP slices or
‘free’ block RAMs. While the basic architecture of ECC
Breaker can be reused, it would be necessary to re-evaluate
some components: (i) It would be worth investigating the
best finite-field multiplier design for ASICs. (ii) The block
RAMswould have to be replaced byRAMmacros. However,
RAM macros are designed to host a lot of entries and not to
access hundreds of bits at once. Therefore, it is questionable
whether RAM macros are actually smaller than register-
based RAMs. (iii) To some degree, an ASIC can be built
arbitrarily large, but the larger it is, themore serious the power
issues are. The optimal number of ECC Breaker instances
that share a common inversion module has to be evaluated.
(iv) Different manufacturing technologies enable different
clock frequencies and have different costs per gate equiva-
lent. (v) Finally, not only an ASIC but also a printed circuit
board to host the ASIC have to be designed, implemented,
and tested—a process that can potentially require several
man-years.
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9 Conclusion

We have shown the potential of FPGAs for solving ECDLPs.
We solved both a discrete logarithm of a 113-bit Koblitz
curve [35] and a discrete logarithm of the elliptic curve
sect113r1 (see Appendix A), a 113-bit Weierstrass curve
based on binary fields.

Our ECC Breaker design performs 900 million IPS on
an off-the-shelf Kintex-7 FPGA. It distinguishes itself with
good performance and little communication overhead. We
invite fellow researchers to use our code [34] to adapt and
optimize it for larger elliptic curves, and to use it to compute
even more complex discrete logarithms over elliptic curves.
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Appendix A: Targeted curve and target point pair
selection

To proof that the discrete logarithm was actually computed
without knowing it in advance, a point generation function
was needed. The Sage code inListing 1was used to determin-
istically and pseudo-randomly generate two pointswith order

Listing 1 Sage code to verify P , Q, and Q = kP

FF = sage.rings.finite_rings.finite_field_ext_pari .FiniteField
_ext_pari;
m=113; h=2; n=0 x100000000000000D9CCEC8A39E56F
K=FF(2**m, ’x’, 0x20000000000000000000000000201 .bits ())
x=K.gen()

def str_to_poly(str):
I=Integer(str , base =16)
v=K(0)
for i in range(0,K.degree ()):

if (I >> i) & 1 > 0:
v = v + x^i

return v

def poly_to_str(poly):
vec=poly._vector_ ()
string = ""
for i in range(0,len(vec)):

string = string + str(vec[len(vec) - i - 1])
return hex(Integer(string , base =2))

k=0 x8818aa79f0a6ec0eaef9bd414497
a=K(str_to_poly("3088250 CA6E7C7FE649CE85820F7 "))
b=K(str_to_poly("E8BEE4D3E2260744188BE0E9C723 "))
E = EllipticCurve(K, [1,a,0,0,b])

import hashlib
PX = str_to_poly(hashlib.sha256(str (0)). hexdigest ())
PY=PolynomialRing(K, ’PY’).gen()
P_ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b). roots ()
P=E([PX ,P_ROOTS [0][0]]); P=P*h
QX = str_to_poly(hashlib.sha256(str (2)). hexdigest ())
Q_ROOTS = (PY^2+QX*PY+QX^3+a*QX^2+b). roots ()
Q=E([QX ,Q_ROOTS [0][0]]); Q=Q*h

print ’P.x:’, poly_to_str(P[0])
print ’P.y:’, poly_to_str(P[1])
print ’Q.x:’, poly_to_str(Q[0])
print ’Q.y:’, poly_to_str(Q[1])
print k*P==Q, is_prime(n), (n*P). is_zero(), (n*Q). is_zero ()

Table 5 Curve parameters of targeted elliptic curve sect113r1

m 113

Irreducible
polynomial

x113 + x9 + 1

Irreducible
polynomial

0x20000000000000000000000000201

Elliptic curve E y2 + xy = x3 + ax2 + b

Curve parameter a 0x3088250CA6E7C7FE649CE85820F7

Curve parameter b 0xE8BEE4D3E2260744188BE0E9C723

Order n 0x100000000000000D9CCEC8A39E56F

Cofactor h 2

Point P · x 0x1a89024c72cf8ea989c1f36bb960b

Point P · y 0x15c3672f4d46a191965e39500e63d

Point Q · x 0x13fb48ae2aaee444d7cbf744bbbc9

Point Q · y 0x17024e9d2c3ba781bf9a5993cc232

Scalar k such that
Q = kP

0x8818aa79f0a6ec0eaef9bd414497

n using Sage. As P and Q are generated pseudo-randomly,
their discrete logarithm is unknown. The Sage script also
checks the point orders and the validity of the computed
result. Table 5 summarizes all parameters needed for the dis-
crete logarithm computation.

Appendix B: Binary Karatsuba F2113 multiplier

Algorithm 1 gives the top-level F2113 multiplier formulas.
KS64, KS32, and KS16 are 64-bit, 32-bit, and 16-bit binary
Karatsuba multipliers, respectively.

Algorithm 1 Calculate c = a × b, with a, b being 113-bit
binary polynomials.
Require: a, b
Ensure: c = a × b
1: mab1 ← (a[112..64]⊕ a[63..0])× (b[112..64]⊕ b[63..0]) � KS64
2: cl1 ← a[63..0] × b[63..0] � KS64
3: cl2 ← a[95..64] × b[95..64] � KS32
4: cl3 ← a[111..96] × b[111..96] � KS16
5: mab2←(a[95..64] ⊕ a[111..96])×(b[95..64] ⊕ b[111..96])�KS32

6: ma3 ← b[112] × a[111..96]
7: mb3 ← a[112] × b[111..96]
8: m3 ← ma3 ⊕ mb3
9: c3[32] ← a[112] × b[112]
10: c3[30..0] ← cl3
11: c3[31..16] ← c3[31..16] ⊕ m3

12: m2 ← mab2 ⊕ cl2 ⊕ c3
13: c2[62..0] ← cl2
14: c2[97..64] ← c3
15: c2[94..32] ← c2[94..32] ⊕ m2

16: m1 ← mab1 ⊕ cl1 ⊕ c2
17: c[126..0] ← cl1
18: c[225..128] ← c2
19: c[190..64] ← c[190..64] ⊕ m1
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