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Abstract The profiled attacks challenge the security of
cryptographic devices in the worst case scenario. We eluci-
date the reasons underlying the success of different profiled
attacks (that depend essentially on the context) based on the
well-known bias–variance tradeoff developed in themachine
learning field. Note that our approach can easily be extended
to non-profiled attacks. We show (1) how to decompose (in
three additive components) the error rate of an attack based
on the bias–variance decomposition, and (2) how to reduce
the error rate of a model based on the bias–variance diag-
nostic. Intuitively, we show that different models having the
same error rate require different strategies (according to the
bias–variance decomposition) to reduce their errors. More
precisely, the success rate of a strategy depends on several
criteria such as its complexity, the leakage information and
the number of points per trace. As a result, a suboptimal
strategy in a specific context can lead the adversary to over-
estimate the security level of the cryptographic device. Our
results also bring warnings related to the estimation of the
success rate of a profiled attack that can lead the evaluator to
underestimate the security level. In brief, certify that a chip
leaks (or not) sensitive information represents a hard if not
impossible task.
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1 Introduction

Encryptionmethods aim to protect sensitive information han-
dled by cryptographic devices while attackers challenge this
protection. Historically, the encryption algorithms provide
security against adversaries searching link between plaintext,
ciphertext and the secret key. During the last decade, the liter-
ature showed that an attacker can target the implementation
of the cryptographic scheme rather than its abstract repre-
sentation. In this paper, we focus on side-channel attacks in
which the adversary exploits physical leakage information
from the cryptographic device such as the power consump-
tion [29], the processing time [28] and the electromagnetic
emanation [18].

Since the seminal work of Kocher [28], the evolution of
techniques challenging the security of cryptographic devices
has been characterized by an increase in the complexity of
the statistical analysis. A few years later, Chari et al. [7]
introduced profiled attacks as the strongest leakage analy-
sis in an information theoretic sense. Also profiled attacks
are particularly effective (1) when the adversary is only
able to observe a single use of the key (e.g., in stream
ciphers), (2) when the target instruction manipulates only
the target value (e.g., a LOAD instruction applied on the
secret key) and (3) when the cryptographic algorithm is
unknown.

Profiled attacks include several approaches like template
attack (TA) [7], stochastic attack (SA) [44], multivariate
regression attack [46] and machine learning attack [1,24–
26,31–35]. The evaluation criteria of these attacks are based
on several metrics such as the number of measurements to
find the secret information, the interpretability of the model,
the success rate, the computational efficiency (i.e. the time
needed to learn and to attack as well as thememory used), the
guessing entropy and the information theoretic metric [45].
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This paper focuses on the success rate, commonly used in
previous side-channel attacks literature.

To estimate the success rate of a strategy, a classical
approach estimates the parameters of a model (e.g., template
attack) with a learning set collected on a (fully) controlled
device and similar to the target one. Afterward, the adversary
applies the model on a test set that represents a set of leak-
age information measured on the target device. The security
level of the cryptographic device is estimated according to
the success rate of the model to retrieve the secret key value.

Gierlichs et al. [20] presented empirical comparisons
between stochastic attack and template attack based on
datasets collected on two microcontrollers. They concluded
that template attack outperforms stochastic attack during the
attacking phase when there is enough traces in the profil-
ing phase while stochastic attack (with a right degree) is the
method of choice otherwise. However, the true leakage dis-
tributionwas unknown and, as a result, the conclusion related
to empirical results.

Machine learning developed a statistical formalism to
characterize and to study formally the error rate of mod-
els: the bias–variance decomposition of the generalization
error. In 1992, German et al. introduced this decomposition
to the regression cases [19]. Later, in 2000, Domingos gener-
alized the bias–variance decomposition to the classification
cases [11,12]. The bias–variance formalism decomposes the
error rate of a predictive model into three terms: the bias,
the variance and the noise. As a result, to improve an attack,
an adversary should apply a technique addressing the term
dominating the error rate. In other words, several models,
that have the same error rate, may require different strategies
(according to the bias–variance decomposition) to reduce
their errors. The bias–variance analysis also explains (1) why
there is no universally optimal learning method for all possi-
ble contexts and (2) why some simple learner (e.g., stochastic
attack of degree 1) can outperform powerful model (e.g.,
neural network with 1,000,000 neurons).

Whitnall et al. [49] analyzed formally the efficacy and
the efficiency of template attack with respect to stochastic
attack. More precisely, they focused on the accuracy of the
approximations (as well as its impact during the attacking
phase) of the data-dependent deterministic part of an univari-
ate leakage, leaving multivariate analysis (i.e. using multiple
points from a leakage trace) and noise estimation part as fur-
ther works. They used several metrics in order to show that
stochastic attack requires less (or equal) traces during the pro-
filing phase while the efficiency of its attacking phase varies
in function of the degree of the leakage function. We aim to
take a further step by analyzing (based on simulations) mul-
tivariate noisy contexts (1) as it is commonly encountered in
side-channel analysis and (2) as the most side-channel chal-
lenging concerns the high dimensionality nature of the data.
We also show that two metrics used by Whitnall et al. (that

relate to what we call the variance term and the bias term)
represent the twoweighted components (among the three that
we present in this paper) of the success rate.

Recently, Durvaux et al. [13] presented a similar result
for themutual/perceived informationmetric and called it “the
estimation and the assumption errors” of template attack and
stochastic attack. Our paper aims to show (1) how to decom-
pose the error rate of profiled (and non-profiled) attacks
based on the bias–variance decomposition of the general-
ization error, and (2) how to reduce the error rate of profiled
(and non-profiled) attacks based on the bias–variance diag-
nostic. The main reason to consider the generalization error
instead of the mutual/perceived information metric is that
most machine learning models and non-profiled attacks rate
key candidates according to scores rather than probabili-
ties. This prevents the computation of probabilities based
metrics.

We make a detailed assessment of the presented metric
by considering a large variety of contexts, ranging from a
linear, quadratic and random leakage information to a low,
medium and high level of noise. All experiments rely on
datasets of different sizes created with a simulator allow-
ing a fully control of the leakage information. We also
provide several guidelines when analyzing cryptographic
devices.

The rest of the paper is organized as follows. Section 2
discusses side-channel attacks and several profiled attacks.
Section 3 introduces the bias–variance decomposition of
the generalization error of an attack. Section 4 presents the
experimental results on a large number of contexts, dis-
cusses the results and, eventually, gives guidelines for devices
evaluations. Section 5 concludes this paper with several per-
spectives of future works.

2 Side-channel attacks

2.1 Preliminaries

In this paper, we assume that the adversary wants to retrieve
the secret key value used when the cryptographic device
(executing a known encryption algorithm) encrypts known
plaintexts. To find the secret key, an adversary targets a key-
related information yi ∈ Y whereY = {y0, y1, . . . , yY−1} =
{0, 1}l0 is denoted the set of classes.

During the execution of an encryption algorithm, the cryp-
tographic device processes a function f (also known as a
sensitive variable [42])

f : P × O → Y
yi = fO(p),

(1)

where
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– O ∈ O = {O0, O1, . . . , OK−1} = {0, 1}l1 is a key-
related information and l1 is the size of the secret value
used in f (e.g., one byte of the secret key).

– p ∈ P = {p0, p1, . . . , pP−1} = {0, 1}l2 represents a
public information, l2 is the size of the public value used
in f (e.g., one byte of the plaintext) and P is the cardi-
nality of P .

– i is a number related to O and p.

Note that the values of l0, l1 and l2 depend on the crypto-
graphic algorithm and the device architecture.

Various cryptographic schemes use highly non-linear
functions f because algorithms that are close to a linear
function are susceptible to various (theoretical but powerful)
attacks such as differential cryptanalysis [2] and linear crypt-
analysis [37]. Intuitively, the higher the distance between
a function f and a set of affine functions, the higher the
non-linearity of f (we refer to [38] for an introduction to
non-linear functions in cryptography). However, Prouff [41]
highlighted that non-linear functions (used in a cryptographic
algorithm) are less robust against side-channel attacks than
linear functions and, recently, Heuser et al. [23] emphasized
that the robustness of a function against side-channel attack
is not directly linked to its non-linearity but rather to its
resistance against differential cryptanalysis. As a result, usu-
ally, adversary targets non-linear functions f . An example
of non-linear function f is the substitution box (SBox) of a
block-cipher, e.g.,

yi = fO(p) = SBox(p ⊕ O), (2)

where ⊕ is the bitwise exclusive-or.
Let

j T i =
{
j
t T i ∈ R | t ∈ [1; n]

}
(3)

be the j-th physical leakage information (called trace) asso-
ciated to the target value yi and

j
t T i be the leakage value at

time t of the j-th trace associated to the target value yi . We
denote T a set of traces and T the set of all possible traces
(i.e. T ⊆ T). We model the leakage information j

t T i of the
device at time t as a function of yi such that

j
t T i = t L (yi ) + j

t εi , (4)

where j
t εi ∈ R is the noise of the trace j

t T i following a
Gaussian distribution with zero mean and t L is the leakage
model at time t . Examples of functions t L are the identity,
the Hamming weight (HW) [36] and the weighted sum of
bits of the target value yi .

2.2 Profiled attacks

The profiled attack strategy represents an efficient attack by
leakage estimations. It estimates (with a set of traces called
learning set) a template Pr

[
j T i | yi

]
for each target value

during the profiling step (also known as learning step). The
learning set (denoted TLS ⊆ T) is measured on a controlled
device similar to the target chip. In our experiments, we lim-
ited to consider the same cryptographic device. We refer the
interested reader to [14,39] that study practical issues when
the controlled and the target devices differ.

Once a template is estimated for each target value, dur-
ing the attacking step the adversary classifies a new trace T
(measured on the target device) using the posteriori proba-
bility returned by a model A(T )

ŷ = A(T ) = arg max
yi∈Y

Pr [yi | T ] (5)

= arg max
yi∈Y

Pr [T | yi ] × Pr [yi ]

Pr [T ]
(6)

= arg max
yi∈Y

Pr [T | yi ] × Pr [yi ] . (7)

In practice, the adversary uses an estimation of Pr[T | yi ]
and Pr[yi ] (i.e. P̂r[T | yi ; θ̂i ] and P̂r [yi ] where θi is the
parameter of the probability density function and the a priori
probabilities P̂r [yi ] are estimated by frequency counts).

Let T be the set of all possible traces and TTS be a testing
set of traces (whereTTS = {

1T , . . . , N T
}
and j T ∈ R

n ∀ j ∈
{1; N }). If a set TTS ⊆ T of traces for a constant secret
key is available, the adversary classifies this set by using the
equation (or the log-likehood rule)

ŷ = arg max
yi∈Y

N∏
j=1

P̂r
[
j T | yi ; θ̂i

]
× P̂r [yi ]. (8)

Several approaches exist to estimate the probability
Pr

[
j T i | yi

]
such as the parametric template attack [7], the

stochastic attack [44], the multivariate regression model [46]
and the non-parametric machine learning models [25,31].

Template attacks Template attacks [7] assume that
Pr

[
j T i | yi

]
follows a Gaussian distribution for each target

value, i.e.

Pr
[
j T i | yi

]
� P̂r

[
j T i | yi ; μ̂i , Σ̂i

]
(9)

= e− 1
2 ( j T i−μ̂i )Σ̂

−1
i ( j T i−μ̂i )

�
√

(2π)n det(Σ̂i )

, (10)

where det(Σ) denotes the determinant of the matrixΣ while
μ̂i ∈ R

n and Σ̂i ∈ R
n×n are, respectively, the sample mean
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and the sample covariance matrix of the traces associated to
the target value yi . In what follows we will assume that the
noise is independent of the target value. This property allows
to estimate the same covariance matrix Σ for all the target
values.

The complexity of template attack (i.e. the number of para-
meters to estimate) depends on the number of points per trace:
the higher the number of points per trace, the higher the com-
plexity of template attack. More precisely, template attack
requires to estimate 2l0 ×n+ n×(n+1)

2 parameters (2l0 ×n for

the expected values and n×(n+1)
2 for the covariance matrix).

Stochastic attacks Stochastic attacks [44] (also known as lin-
ear regression attacks) model the leakage information at time
t as a function of the secret value yi with a regression model
h spanned by U functions gu (where u ∈ [1;U ]), i.e.

j
t T i = h (yi , tθ) + j

t εi (11)

= t c +
U∑
u=1

tαu gu (yi ) + j
t εi , (12)

where j
t εi ∈ R is a residual Gaussian noise at time t

on the j-th trace associated to the target value yi , tθ =
{t c, tα1, . . . , tαU } ∈ R

U+1 is the parameter of the regression
model h at time t and {g1, . . . , gU } is the basis used in the
regression. Stochastic attack assumes that gu is a monomial
of the form

∏
b∈B Bitb (yi ) where Bitb (yi ) returns the b-th

bit of yi and B ⊂ {1, 2, . . . , l0}. Note that Bitb (yi ) raised to
the e-th power (where e > 0) equals to Bitb (yi ).

The degree of a monomial equals the sum of all the expo-
nents of its variables. For example, the monomial Bit1 (yi )×
Bit5 (yi ) has a degree two (there are two combined bits)while
Bit2 (yi ) ×Bit4 (yi ) ×Bit7 (yi ) has a degree three (there are
three combined bits). The degree of a model h equals the
highest degree of its monomials (with a coefficient different
from zero) that compose h. Furthermore, the complexity of a
model equals its degree. For example, the following model
has a degree two (there are two monomials, one of degree
two and the other of degree one):

h (yi , tθ) = 0.3 × Bit1 (yi ) × Bit2 (yi ) + Bit3 (yi ) . (13)

It is worth to note that, with the previous definition of sto-
chastic attack, themaximal degree of the function h is l0 and,
in this case, h contains the monomial

∏l0
b=1 Bitb (yi ) with a

coefficient different from zero. Furthermore, n×(n+1)
2 + n ×∑l0

i=0

(l0
i

) = n×(n+1)
2 + n × 2l0 represents the number of

parameters of the stochastic attack with the maximal degree.
The ordinary least squares method allows to estimate the

parameter tθ by minimizing the sum of squared vertical dis-
tances between the traces and the responses predicted by the
function h, i.e.

t θ̂ = arg min
t θ

Y−1∑
i=0

N∑
j=1

(
j
t T i − h (yi , tθ)

)2
. (14)

Then, the attacker assumes that Pr
[
j T i | yi

]
follows the

Gaussian distribution N (h (yi , θ),Σ) where h(yi , θ) rep-
resents the vector {h(yi , 1θ), h(yi , 2θ), . . . , h(yi , nθ)} and
Σ ∈ R

n×n is the covariance matrix of the residual term. An
extended version of stochastic attack removes the profiling
step [10]. However, this approach is out of the scope of this
work.

Reduction of stochastic attacks to template attack This sec-
tion aims to show that template attack is a specific case of
stochastic attack. More precisely, template attack represents
a stochastic attack with the maximal degree.

The traces associated to the target value yi are considered
to follow the Gaussian distribution N (μi ,Σ) by template
attack and N (h(yi , θ),Σ) by stochastic attack. As a result,
the main difference between template attack and stochastic
attack is that the first returnsμi for each target value yi while
the second returns h(yi , θ).

Let E[X ] be the expected value of the random variable
X and E[X |Y ] be the conditional expectation of X given
Y . Then, stochastic attack (using the ordinary least squares
estimator) selects the parameter θ̂ of the regression model h
that minimizes

θ̂ = arg min
θ

Ei

[
E j

[
‖ j T i − h (yi , θ) ‖

]]
, (15)

where ‖x‖ represents the Euclidean norm of x . It is well
known that the whole expression is minimized if

h
(
yi , θ̂

)
= E j

[
j T i | yi

]
(16)

(see for example [48].)
As a result, stochastic attack estimates E j

[
j T i | yi

]
to

minimize Eq. 15 while template attack estimates the same
value (see Eq. 9).

Suppose that E j
[
j T i | yi

]
differs for each target value yi .

Template attack is unaffected by this assumption. However,
themodel h of the stochastic attack needs to return one differ-
ent estimated value for each target value yi . This is fulfilled
when the model h has the highest degree complexity. Note
that template attack and stochastic attack estimate the same
number of parameters: n×(n+1)

2 + n× 2l0 parameters as seen
previously.

2.3 Evaluation criteria

In side-channel attack, an adversary aims to maximize the
effectiveness of attacks. An adversary estimates the perfor-
manceof amodel basedon severalmetrics such as the number
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of measurements in order to find the secret information, the
success rate to return the right target value, the computational
efficiency (i.e. the time needed to learn and to attack aswell as
the memory used), the guessing entropy and the information
theoretic metric [45]. These metrics give a global evaluation
of an attack as well as the degree of resilience of a cryptosys-
tem against side-channel attacks but lack of interpretability.
When an attack fails, it is important to understand why the
models do not work and how to improve the strategy. Several
explanations are possible such as (1) it is due to a lack of data
in the learning set, (2) it is due to a lack of interesting points in
the traces, or (3) we need to consider another profiled attack.

This paper focuses on the success rate based on a single
test trace thoughour strategy can easily be extended to several
test traces. Themain reason to consider the success rate is that
most machine learning models and non-profiled attacks rate
key candidates according to scores rather than probabilities.
This prevents the computation of other probabilities based
metrics.

Several papers provide explanation about which term
influences the success rate of specific attacks (see for exam-
ples [15,41]). We aim to propose a decomposition of the
success rate called the bias–variance decomposition of the
error rate. This approach can be applied to any profiled
and non-profiled attack. Furthermore, the decomposition
includes all the involved elements, notably the cryptographic
algorithm, the physical implementation aspect, and the attack
strategy.

According to the bias–variance diagnostic, an adversary
can apply different techniques depending on which term
dominates the error rate. In other words, several models,
with the same error rate, may require different strategies
(according to the bias–variance decomposition) in order to
have their errors reduced. The bias–variance decomposition
allows also to explain why simple learner (e.g., stochastic
attack of degree 1) can outperform powerful model (e.g.,
neural network).

3 Bias–variance decomposition as a metric
for profiled attack

3.1 Preliminaries

Side-channel attack represents a classification problem.
However, for the sake of simplicity, we first provide an intu-
ition of the bias–variance formalism applied to the regression
problem.

The notion of model complexity is strongly related to the
accuracy of a predictive model. Vapnik and Chervonenkis
introduced the VC dimension to describe model complexity
(see for example [21]). Intuitively, the complexity of a regres-
sionmodel relates to the number of its parameters. The higher

the number of parameters, the greater the flexibility of the
model. For example, a linear regression y = αx+β with two
parameters {α, β} ∈ R

2 can describe only relationships of
degree one, while a quadratic regression y = α1x+α2x2+β

with three parameters {α1, α2, β} ∈ R
3 can describe relation-

ships of degree one and two. As a result, a naive approach
would be to always choose the most complex model, so that
we are sure to be able to approximate a wide range of prob-
lems.However, in practice,we have a learning setwith a fixed
size such that an increase of the number of parameters leads
to an increase of the error of fitting. In a regression context,
the error of fitting represents the sum of squares of differ-
ences between the true target value and the estimated target
value. As a result, an adversary is confronted to two possibil-
ities: (1) the model requires a higher complexity in order to
be able to approximate the target function and (2) the model
requires a lower complexity because the target function has
a lower degree and the size of the learning set is fixed.

Figure 1 shows three linear regressionmodels (with differ-
ent degrees) estimated with a learning set of size 10 extracted
from a noisy target function. The regression model of degree
three fits “well” the target function while the regressionmod-
els of degree one is too simple (it has a high error of fitting
on the learning and testing set) and the regression model of
degree seven is too complex (it has a low error of fitting on
the learning set but a high error of fitting on a testing set).
Figure 2 shows the error of fitting on the learning set and on
the test set by varying the complexity of a linear regression
model. In the cases where themodel has a high error of fitting
on a test set, we say that the models are not able to generalize
to new data.

Fig. 1 Three linear regressions (LM) with different degrees estimated
with a learning set of size 10 extracted from the noisy target function
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Fig. 2 Error of fitting on a learning set and on a test set of a linear
regression models with different degrees estimated with a learning set
of size 10 extracted from a noisy target function

Therefore, an adversary is confronted to the following
dilemma: if the model is too simple, the model may not
fit the examples available in the learning set while if the
model is too complex, it will be able to fit exactly the exam-
ples available in the learning set but at the cost of a high
error of fitting on a test set. In the first case, we say that
the model underfits the data while in the second case it
overfits.

To avoid the underfitting and the overfitting effects we
need to understand the key factors that influence the error of
fitting of a model on a test set. The bias–variance decompo-
sition allows to study how the success rate depends on the
following parameters

– the number of traces in the learning set,
– the noise level in the traces,
– the number of points per trace,
– the number of relevant points per trace,
– the number of irrelevant points per trace,
– the complexity of the model and
– the number of target values.

3.2 Bias–variance decomposition for classification

Let ŷ = A( j T i ; TLS) be the prediction on a test trace j T i

(associated to the target value yi ) of a model A using the
learning set TLS. In a classification problem that considers a
first-order success rate, the loss function L(yi , y j ) represents
the cost of predicting y j when the true target value is yi . In
this paper, we consider the zero–one loss function: the cost
is zero when yi equals y j and one in the other cases, i.e.

L(yi , y j ) =
{
0 y j = yi
1 otherwise

. (17)

The Mean Misclassification Error rate (MME) measures
how well a learning model generalizes to unseen data. Math-
ematically, the MME equals the expected value of the loss
function on a test set with a fixed size (TTS), i.e.

MME = E j T i∈TTS
[
L(yi , A( j T i ; TLS))

]
. (18)

More precisely, the MME represents the probability that a
learning model A (using a specific learning set TLS) returns
a wrong target value associated to a trace from a specific test
set TTS.

In a general case, theMME depends on the random nature
of the learning set with a fixed size and of the testing set.
We remove the mentioned dependency by averaging over
training and testing sets and we call it the mean integrated
misclassification error rate (MIME), i.e.

MIME = E j T i

[
ETLS

[
L(yi , A( j T i ; TLS))

]]
. (19)

Several approaches exist to decompose this value [4,5,
9,11,12,17,22,27,30,47]. We consider the decomposition
proposed by Domingos [11,12] that can be generalized to
several loss functions, leaving analysis of other decomposi-
tion approaches as further work.

Domingos decomposes theMIME in three weighted com-
ponents: the noise (N ), the bias (B) and the variance (V ), i.e.

MIME = E j T i

[
ETLS

[
L(yi , A( j T i ; TLS))

]]
(20)

= E j T i

[
c1 × N ( j T i )

]
Noise (21)

+ E j T i

[
B( j T i )

]
Bias

+ E j T i

[
c2 × V ( j T i )

]
, Variance

where
{
c1, c2, N ( j T i ), B( j T i ), V ( j T i )

} ∈ R
5. Domingos

proved this decomposition (see Theorem 2 of [11]) in the
general multi-class problem for zero-one loss function.

Let Ab(
j T i ) be the optimal prediction returned by the

Bayes classifier on the test trace j T i . The Bayes classifier
represents a classification model that minimizes the proba-
bility of misclassification, i.e.

Ab(
j T i ) = argmax

yi∈Y
Pr

[
j T i | yi

]
× Pr [yi ] . (22)

As a result, the Bayes classifier requires the knowledge of
the true probability density function of Pr

[
j T i | yi

]
.
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The noise term represents the unavoidable component of
the error rate, incurred independently of the learning algo-
rithm nor on the training set and due to the random nature of
the phenomenon. The noise term represents mathematically

N ( j T i ) = L
(
yi , Ab

(
j T i

))
. (23)

Let Am( j T i ) be the main prediction that represents the
most frequent prediction of the analyzed model on a test
trace j T i . The model can vary its prediction due to the ran-
dom nature of the learning set. The bias term represents
the difference (according to the loss function) between the
main prediction and the optimal prediction. This value ranges
between zero and one: (1) zero if on average over all the train-
ing set the test trace is correctly predicted, and (2) one if on
average over all the training set the test trace is incorrectly
predicted. In other words, the bias measures the systematic
error of a learner (i.e. how accurate amodel is across different
training sets). Mathematically the bias term equals

B( j T i ) = L(Am( j T i ), Ab(
j T i )). (24)

The variance term equals the average loss incurred by
predictions relative to the main prediction. It measures the
variation of a prediction on a test set in function to differ-
ent training sets (i.e. how sensitive the learning model is to
changes in training set). As a result, the variance is inde-
pendent of the true target value: it equals zero for a learning
model that returns the same target value regardless of the
learning set. Mathematically, the variance term equals

V ( j T i ) = ETLS
[
L(Am( j T i ), A( j T i ; TLS))

]
. (25)

Finally, Domingos demonstrated that the multiplicative
factors c1 and c2 equal:

c1 = Pr [A = Ab] (26)

−Pr [A �= Ab] × Pr [A = yi | Ab �= yi ] ,

c2 =
{

−Pr [A = Ab | A �= Am] Am �= Ab

1 Am = Ab
, (27)

where A = A( j T i ), Ab = Ab(
j T i ) and Am = Am( j T i ).

Figure 3 illustrates the bias–variance decomposition of
the mean square error of regression models of degree 1 and
5 while the target function has a degree 3. The figure plots
50 regression models for each case using a learning set of
10 points. The complex model (of degree 5) has a low bias
(i.e., on average over the learning set, the model fits the target
function) but a high variance (i.e., the model highly varies
as a function of the learning set) while the simple model has
a high bias (i.e., on average over the learning set, the model
does not fit the target function) but a low variance (i.e., the
model slightly varies as a function of the learning set). The
simplest model takes less into account the learning set and, as
a result, this model has the smallest variance (i.e., the model
does not vary much as a function of the learning set) but a
high bias. On the other hand, the most complex model fits
the learning set and, as a result, the model has the highest
variance (i.e., the model highly varies as a function of the
learning set) but a low bias.

(a) (b)

Fig. 3 On the left, biased (but with a low variance) 50 regression mod-
els of degree 1 and on the right unbiased (but with a high variance) 50
regression models of degree 5. The target function has a degree 3 and

each model has 10 points in the learning set. Each circle equals to the
average prediction of regression models
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3.3 Discussion

A complex model has a high variance and a low bias while a
simplemodel has a low variance and a high bias. Equation 21
shows that we need to have low bias and low variance since
both contribute to the error rate. Geman et al. [19] show
that there is a tension between these goals and called it the
bias–variance tradeoff. This tradeoff stipulates that on the
one hand the purpose of the profiling step is to minimize the
error rate on the learning set (resulting in a low bias) but on
the other hand more sensitivity to the learning set results in
a high variance. As a result, there is a tradeoff to be made to
minimize the error rate.

Equation 21 reveals also that as long as c2 is negative, the
error rate can decrease by increasing the variance. As a result,
high variance does not necessarily result in high error rate.
Indeed, maximal bias and zero variance give to a maximal
error rate. Therefore, unstable model may be beneficial on
biased cases. At the same time, high variance does not nec-
essarily lead to a low error rate. In fact, the optimal level of
variance should be selected according to the bias term (that
influences the multiplicative factor c2). In other words, there
is a strong interaction effect between the variance and the
bias in the error rate of a side-channel attack.

Note that we consider the bias–variance decomposition
applied to a classification problem but the bias–variance
decomposition can also be applied to a regression problem
such as in a stochastic attack context.

3.4 How to estimate the bias and the variance?

The bias and the variance represent theoretical terms that can-
not be computed in a realistic setting. Indeed, the adversary
requires the knowledge of the (unknown) probability density
function of Pr [T | yi ] to estimate the Bayes classifier.

For this reason, we consider a simulated environment
where a number of training and testing sets can be created for
the sake of the analysis. This approach allows to understand
what impacts the error rate of profiled attacks and how to
increase the success rate based on the results of this analysis.

In practice, we create several learning sets (the higher the
number of learning sets, the better). Then,we generate a large
testing set (the larger the size of the testing set, the better).
Each trace follows a knownGaussian distribution that allows
to estimate the Bayes classifier. These sets allow to estimate
the bias, the variance, the noise and themultiplicative factors.

4 Experiments and discussion

We detail in this section the results of our experiments of the
bias–variance decomposition applied to template attack and
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Fig. 4 Scheme of the traces generator

to stochastic attack. The purpose is to understand what factor
impacts the success rate of a profiled model.

4.1 Target implementation

We considered a variety of realistic scenarios based on

– a linear, quadratic and random leakage model,
– a low, medium and high noise level,
– different numbers of informative points,
– different numbers of uninformative points and
– different numbers of traces in the learning set.

As illustrated in Fig. 4 each trace has d leakages related
to the output of a non-linear function (called Sbox) and u
noisy leakages following a Gaussian distribution with zero
mean. The standard deviation and the mean of the leakage
models are respectively one and zero. We use the Sbox of the
Advanced Encryption Standard (AES) as non-linear func-
tion. Finally, the low, the medium and the high noise level
have respectively a variance of 1, 2 and 3 that leads to a
signal-to-noise ratio (SNR) of 1, 1

2 and 1
3 .

4.2 Template attack

Figures 5, 6, 7 and 8 show the MIME, the bias and the
variance when increasing respectively the number of traces
in the learning set (Np), the number of relevant points (d),
the number of irrelevant points (u) and the leakage model.
As expected, we reduce the error rate (1) by increasing the
number of traces in the learning set, (2) by increasing the
relevant points, (3) by reducing the irrelevant points and (4)
by reducing the noise level. Furthermore, an increase of the
relevant points has a higher impact on the error rate than a
reduction of the irrelevant points.

It is interesting to remark that the variance has a higher
impact on the error rate than the bias. This result suggests that
template attack has a high complexity and, as a result, this
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(a) (b) (c)

Fig. 5 MIME, bias and variance of a template attack as a function of the number of the number of traces in the learning set. There are ten informative
points per trace, ten non-informative points per trace and a random leakage

(a) (b) (c)

Fig. 6 MIME, bias and variance of a template attack as a function of the number of informative points per trace. There are 10 × 256 traces in the
learning set, 10 non-informative points per trace and a random leakage

(a) (b) (c)

Fig. 7 MIME, bias and variance of a template attack as a function of the number of non-informative points per trace. There are 10 × 256 traces
in the learning set, 10 informative points per trace, and a random leakage

attack requires the adoption of methods that reduce the vari-
ance term. The high complexity of template attack explains
also why the error rate of template attack seems indepen-
dent on the leakage model: template attack can represent any
non-linear relation between the leakage model and the target
value.

4.3 Stochastic attack

Stochastic attack differs from template attack by its ability
to vary its complexity (i.e. its degree level). As a result, we

focus on this aspect by varying the degree and the leakage
model.

Figure 9 shows the MIME, the bias and the variance in
function of the degree level of the stochastic attack with
2 × 256 traces in the learning set, three informative points
per trace and a very low noise variance of 10−3. In a lin-
ear leakage model context, the error rate increases with the
degree level due to the variance. In a random leakage model
context, the error rate decreases with the degree level due to
the bias. Note that the result of template attack on this con-
text can be seen with the stochastic attack of degree 8. As a
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(a) (b) (c)

Fig. 8 MIME, bias and variance of a template attack as a function of the leakagemodel. There are 10×256 traces in the learning set, 10 informative
points per trace and 0 non-informative points per trace

(a)

(b)

Fig. 9 MIME, bias and variance of a stochastic attack as a function
of its degree and the leakage model. There are 2 × 256 traces in the
learning set, 3 informative points per trace and a noise variance of 10−3

result, in a linear leakage model, stochastic attack with a low
degree level outperforms template attack due to the fact that
stochastic attack has a lower variance than template attack.
In a random leakage model, template attack outperforms sto-
chastic attack (with a degree less than 8) due to the fact that
template attack has a lower bias than stochastic attack. These
results are consistent with the bias–variance theory. On the
one hand, a simple model (i.e. strictly less than the degree
of the leakage model) has a high bias and a low variance.
On the other hand, a complex model (i.e. strictly higher than

(a)

(b)

Fig. 10 MIME, bias and variance of a stochastic attack as a function
of its degree and the leakage model. There are 260 traces in the learning
set, 3 informative points per trace and a noise variance of 10−3

the degree of the leakage model) has a low bias and a high
variance. The model reaches the lowest error rate (i.e. low
bias and low variance) when selecting the same degree as the
leakage model.

Figure 10 shows the effect when the size of the learning
set decreases to 260 traces. In a linear leakagemodel context,
the reduction of the size of the learning set increases essen-
tially the variance term. In a random leakage model context,
stochastic attackwith degree 7minimizes the error rate while
a stochastic attack of a lower degree has a higher bias and
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(a)

(b)

Fig. 11 MIME, bias and variance of a stochastic attack as a function
of its degree and the leakage model. There are 10 × 256 traces in the
learning set, 10 informative points per trace and a noise variance of 1

a stochastic attack of a higher degree has a higher variance
due to a small learning set.

Figure 11 plots the result of a higher noise level of 1.
This figure allows to compare stochastic attack with the pre-
vious results of template attack in a more realistic scenario
where the signal-to-noise is lower. As seen previously, in
a linear leakage model context, stochastic attack increases
its variance term by increasing its degree leads to increase
its error rate. Interestingly, in a random leakage model, sto-
chastic attack reduces its bias term by increasing its degree
leading to a slower increasing of its variance term compared
to the error rate. As a result, the error rate decreases although
the variance term increases. The machine learning theory
stresses that a higher noise variance (e.g., a noise variance
of 2 or 3) should essentially increase the variance term of
stochastic attacks and, as a result, should increase the error
rate (cf, the results of template attacks as well as the results
of the transition from a noise variance of 10−3 to 1).

4.4 Discussion and guidelines for devices evaluation

The error rate evaluates the efficiency of profiled attacks.
A high error rate due to wrong decisions of the evaluator
(e.g., a too low stochastic degree) can lead to overestimate

the security level of the cryptographic device. A principal
motivation for presenting the bias–variance decomposition
is to reduce the error rate based on the bias–variance diag-
nostic. Our results show that the error rate of a template
attack depends essentially on the variance term. This is due
to the fact that template attack has a high complexity (as
seen in Sect. 2.2). On the opposite side, the stochastic attack
with a low degree level depends essentially on the bias term
while a stochastic attack with a high degree level depends
on the variance term. These results are coherent with the
theory: a complex model has a high variance and a low
bias while a simple model has a low variance and a high
bias.

The variance of template attack depends essentially on the
number of points per trace: the larger the dimension of traces,
the higher the number of parameters to estimate and, as a
result, the higher the variance. Stochastic attack has similar
result but this strategy can decrease the variance by reducing
the complexity of its regression model h while maintaining
the same number of points per trace. For example, stochastic
attack can reduce its variance term (by reducing its degree)
leading stochastic attack to outperform template attack in a
linear leakage model context.

As long as the variance needs to be reduced, aggrega-
tionmethods can be used. These approaches combine several
models (that have high variance) leading to a reduction of the
global variance. Examples of aggregation methods are bag-
ging (discussed by Breiman in [3]) and arcing (discussed by
Breiman in [4]). Random Forest [6] represents an example of
aggregation methods. The main disadvantage of the aggre-
gation approach represents the interpretability of the model.
Another (more interpretable) alternative is the support vec-
tor machine [8] based on the radial basis function kernel that
allows to vary its variance according to the value of a para-
meter γ . This parameter controls the regularization of the
learning algorithm and consequently can reduce the variance
(as well as the error rate) of the model. We refer to [21] for
the interested readers about aggregation methods as it falls
outside the scope of this paper.

Other interesting approaches in order to reduce the vari-
ance are: (1) increasing the size of the learning set, (2)
reducing the number of irrelevant points, (3) increasing the
number of relevant points, (4) reducing the complexity of the
model, and (5) reducing the level of noise in the dataset.

As far as the bias term is concerned, we can reduce it by
(1) increasing the size of the learning set, (2) reducing the
number of irrelevant points, (3) increasing the number of rel-
evant points, (4) increasing the complexity of the model and
(5) applying a boosting approach. The boosting approach
regroups several algorithms such as Adaboost [16]. Most
boosting algorithms combines several bias models. Each
model is weighted in function to its accuracy. Furthermore,
the data in the learning set are also weighted in function of
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the complexity to learn them by the set of models. We refer
to [43] for a deeper view on boosting as it is beyond the scope
of this work.

An interesting observation is that the leakage model influ-
ences the bias term of stochastic attack and not the bias term
of template attack. It is due to the high complexity of template
attack that leads to a low bias.

The number of classes should influence the variance term
for template attack. Indeed, the higher the number of classes,
the higher is the number of parameters to estimate.As a result,
increasing the number of classes should lead to an increase
of the variance for template attack. Therefore, the size of the
target value should be selected also in function of its impact
on the variance term when analyzing an embedded device.
Concerning stochastic attack, the impact of the number of
classes is less obvious: the higher the number of classes, the
higher the maximal degree of the stochastic attack. However,
an adversary can vary the complexity of the function h (unlike
template attack).

Finally, the bias–variance decomposition can be applied
on the process that selects the best attack against a crypto-
graphic device from a set of strategies. A common approach
to select the best model from a set of candidates is to evalu-
ate each strategy on a validation set and then select the attack
that minimizes the error rate on the validation set. For exam-
ple, we can train multiple stochastic attacks with different
degrees and then select the model that minimizes the error
rate on the validation set. However, when the validation set
is noisy and the set of tested attacks is large, a big danger of
overfitting exists. This overfitting comes from having tested
too many strategies with a fixed validation set (see for exam-
ple [40]). As a result, we can underestimate the security level
of a cryptographic device when testing a large set of attacks.
From a bias–variance decomposition point of view, we say
that the process that selects the best attack increases its vari-
ance term by increasing the size of the tested attacks. In order
to reduce the risk of overfitting, several approaches exist such
as (1) increasing the size of the validation set, (2) imposing a
restricted number of attacks when analyzing a cryptographic
device and (3) using another test set. Concerning the first
and the latter approaches, the problem does not disappear
because the estimation of the security level depends on a (set
of) specific test set(s) collected in a specific context: another
test/validation set could give another estimation of the suc-
cess rate. In a mathematical term, we say that the estimation
of the MIME (see Eq. 19) has a bias term and a variance
term. The main issue is intrinsic to the procedure: the eval-
uator estimates the security level of a cryptographic device
and, as a result, this estimation (that has a variance term and
a bias term) can differ from the true value leading to underes-
timate the security level (when considering the success rate
of a profiled attack). Note that increasing the number of test
traces allows to reduce its variance.

5 Conclusion and perspectives

The error rate represents a common criterion to evaluate pro-
filed attacks.Wepresented a bias and variance decomposition
of this metric. We applied the bias–variance diagnostic on
several contexts using template attack and stochastic attack.
We studied in depth how and why several parameters can
affect each component of the error rate. Examples of parame-
ters are the size of the learning set, the number of interested
points, the number of irrelevant points, the leakage model
and the noise level.

Briefly, the bias–variance decomposition allows to under-
stand why some simple model (such as stochastic attack of
degree 1) can outperform complex model (such as template
attack) in a specific context while a different result can occur
in a different context. As a result, there is no strategy that
can be entitled to be the universally best one as formalized
by the no-free-lunch theorem. Therefore, looking for the best
model against a specific setting remains a challenging task
in a realistic setting. At the same time, the bias–variance
decomposition explains the reasons of a high or low error
rate of a model and, as a result, provides insight into how to
improve the attacks (e.g., by reducing the number of para-
meters of template attacks while keeping the ability to target
non-linear leakage models).

In the future we plan to investigate the decomposition
of the error rate of several other profiled and non-profiled
attacks. Another interesting future research perspective con-
cerns the error rate of a profiled attack using several traces
to find the secret key. Finally, we envisage to decompose the
error rate of (non-profiled and profiled) attacks targeting a
masking scheme.
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