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Abstract This paper presents several methods for reducing
the number of bit operations for multiplication of polynomi-
als over the binary field. First, a modified Bernstein’s 3-way
algorithm is introduced, followed by a new 5-way algorithm.
Next, a new 3-way algorithm that improves asymptotic arith-
metic complexity compared to Bernstein’s 3-way algorithm
is introduced. This new algorithm uses three multiplications
of one-third size polynomials over the binary field and one
multiplication of one-third size polynomials over the finite
fieldwith four elements.UnlikeBernstein’s algorithm,which
has a linear delay complexity with respect to input size, the
delay complexity of the new algorithm is logarithmic. The
number of bit operations for the multiplication of polynomi-
als over the finite field with four elements is also computed.
Finally, all these new results are combined to obtain improved
complexities.

Keywords Polynomial multiplication · Elliptic curve
scalar multiplication · Binary fields · Karatsuba · Toom ·
Divide-and-conquer

1 Introduction

The design of algorithms for binary polynomial multipli-
cation has long been of great interest to many researchers.
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Because of applications in a variety of areas, such as cryp-
tography and coding theory, new techniques for improving
polynomial multiplication have been presented in numerous
papers, e.g., [1,4,5,7,8,13–18,20,23–25,27,28]. For cryp-
tographic applications, arithmetic in the binary extension
field F2n is often used and, of the basic operations in F2n ,
multiplication contributes most to the total number of bit
operations. For example, Bernstein [3] showed that a 251-
bit scalar multiplication on a binary Edward curves entails
44,679,665 bit operations and that about 96.3 % of this com-
putational cost is due to fieldmultiplications.Multiplications
in F2n can be performed in two steps: polynomial multiplica-
tion and polynomial reduction. The cost of reduction is O(n)

arithmetic operations, whereas the cost of multiplication is
O(nω), where 1 < ω ≤ 2. The cost of reduction is, there-
fore, negligible with respect to polynomial multiplication for
a large value of n.

Let O(nω) be the arithmetic complexity, i.e., the number
of bit operations for computing the product of two degree
(n − 1) polynomials over the binary field. The classical or
the school-book method of binary polynomial multiplica-
tion requires n2 and (n − 1)2 bit level multiplications and
additions, respectively. Using Karatsuba’s algorithm [19],
multiplication of two binary polynomials can be performed
with three multiplications and four additions of half-size
polynomials. Recursive use of the Karatsuba algorithm gives
ω ≤ 1.58. More precisely, the Karatsuba algorithm requires
7n1.58 + O(n) operations.

The Karatsuba algorithm is based on the 2-way split,
where the polynomials being multiplied are divided into two
parts and the Karatsuba algorithm is then applied recursively.
As an extension, the 3-way split version of the Karatsuba
algorithm requires six multiplications of one-third size poly-
nomials. In [26], the use of the Chinese remainder theorem
resulted in sub-quadratic complexity for polynomial mul-
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tiplication algorithms with six multiplications. In [24] and
[25], methods have been presented for 3-way splits with
6.33n1.63 +O(n) operations. More recently, this complexity
has been improved to 6.27n1.63 + O(n) as reported in [11]
and then to 5.8n1.63 + O(n) as described in [9].

At the CRYPTO 2009 conference, Bernstein proposed
several algorithms, including 2-, 3- and 4-way split methods
for polynomial multiplication over binary fields [3]. Bern-
stein’s 2-way split algorithm improves the complexity of the
Karatsuba algorithm to 6.5n1.58 + O(n). It should be noted
that in [27], Zhou and Michalic also reported similar results
for a 2-way split algorithm using a different approach. Bern-
stein’s 2-way and 4-way split algorithms improve the additive
complexity, while his 3-way split algorithm improves both
the multiplicative and the additive complexity; specifically,
the latter was reduced to 25.5n1.46 + O(n).

The approach used in [3] for reducing z complexity is to
use the best possible algorithms in each recursion rather than
the same algorithm in all recursions. For example, the product
of degree five binary polynomials, (that is n = 6), requires
61 operations using the school-book method, but Bernstein
reduced it to 57 operations by first using his 2-way split
algorithm and then applying the school-book algorithm. The
improved upper bounds are presented in [2]. This approach
was also used in [25] and [13]. The best known results for
almost all input sizes up to 1000 are listed in [2] using the
3-way and 4-way algorithms introduced in [3]. On the other
hand, for values of n = 11, 12, 15, 16, 18, 19 and 20, the
results reported in [6] are superior to those in [2].

1.1 Notation and model of computation

Fqn is used for the finite field with qn elements (where q is
a prime power), and Fq [X ] is employed for the ring of poly-
nomials over Fq . Mq(n) represents the minimum number of
bit operations required for the computation of the product of
two polynomials of degree less than n over Fq . Dq(n) is used
for the delay complexity of polynomial multiplication over
Fq , and DA and DX denote the delay of bit level multipli-
cation and addition, respectively. Throughout this paper, the
cost metric related to polynomial multiplication is taken as
the number of bit operations (bit addition and bit multipli-
cation) required for multiplying polynomials over F2 or F4,
and since the computations are over characteristic two fields,
addition and subtraction are equal.

1.2 Our contributions

The work presented in this paper represents the following
contributions:

– A modification of Bernstein’s 3-way algorithm offering
improvements, albeit small but covering a wider range of
polynomial degrees.

– An improved version of the 5-way algorithm introduced
in [12] through an optimization of the number of addi-
tions.

– A new 3-way algorithm with a lower complexity than
the ones described in [3,10,11]: it entails the asymptotic
arithmetic complexity of 15.125n1.46 + O(n) and delay
complexity 10 log3(n)DX + DA.

– New optimizations of algorithms for polynomial multi-
plication over F4.

– A new minimum number of bit operations for binary
polynomial multiplication presented in [2] and [6].

– New results on theminimumnumber of bit operations for
binary polynomial multiplication with logarithmic delay
complexity.

1.3 Organization of paper

The remainder of the paper is organized as follows: Known
algorithms related to our work are presented in the next sec-
tion along with a description of the slight improvements that
have been developed. The proposed improved algorithms
over F2 are introduced in Sect. 3, and the reduced complex-
ity of multiplication over F4 is explained in Sect. 4. Section
5 details how our improvements can enhance cryptographic
applications, followed by a summary of our conclusions in
Sect. 6.

2 Some known algorithms and their slight
improvements

This section provides a brief review of a number of known
efficient polynomial multiplication algorithms over F2 and
presents methods of obtaining slight improvements in some
of these algorithms. To save space, the details of the known
algorithms are not included; only their complexities are dis-
cussed with appropriate references.

2.1 School-book algorithm

Let A = ∑n−1
i=0 ai Xi , B = ∑n−1

i=0 bi Xi and C = AB =
∑2n−2

i=0 ci Xi . The school-book algorithm computes the coef-
ficients of the product of A and B as Ci = ∑2n−2

j+k=i a j bk Xi

where 0 ≤ j, k < n.The number ofmultiplications and addi-
tions required are n2 and (n − 1)2, respectively. Moreover,
one can easily derive the following:

{
M2(n + 1) ≤ M2(n) + 4n,

D2(n + 1) ≤ D2(n) + DX .
(1)
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2.2 Karatsuba algorithm (with Bernstein’s
improvement)

Now, let A and B be degree (2n − 1) polynomials over
F2 and C be their product. The improved Karatsuba algo-
rithm splits A and B into two parts as A(x) = A0 + Xn A1

and B(x) = B0 + XnB1 where A0 = ∑n−1
i=0 ai Xi , A1 =

∑n−1
i=0 ai+n Xi , B0 = ∑n−1

i=0 bi Xi , and B1 = ∑n−1
i=0 bi+n Xi .

Bernstein proposed the following algorithm:

(A0 + Xn A1)(B0 + XnB1)

= (1+Xn)(A0B0+Xn A1B1) + Xn(A0 + A1)(B0 + B1).

The arithmetic complexity of the algorithm is as follows [3]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M2(n + k) ≤ 2M2(n) + M2(k) + 3n + 4k − 3,
n/2 ≤ k ≤ n,

D2(2n) ≤ D2(n) + 3DX ,

M2(n) ≤ 6.5n1.58 − 7n + 1.5,
D2(n) ≤ 3 log2(n)DX + DA.

(2)

Remark 1 Assume that k = n−� in (2) where � = {1, 2, 3}.
In this case, it should be noted that the last � terms of A0B0

and (A0+ A1)(B0+B1) are identical. Therefore, once A0B0

is computed, the cost of computing (A0 + A1)(B0 + B1) is
less than M2(n). The computation of the last � terms is done
using the school-book method, which yields the minimum
values, and it is �2 for � ∈ {1, 2, 3}. Hence we have the
following recursion:

M2(2n − �) ≤ 2M2(n)

+M2(n − �) + 7n − 4� − 3 − �2, 1 ≤ � ≤ 3. (3)

It should be noted that Bernstein obtained bounds by com-
puting explicit algorithms and thus because of the detection
of common operations, the bounds in [2] are less than the val-
ues obtained directly through the recursion. For � > 3, the
number of common expressions might change depending on
the value of n.

2.3 Bernstein’s 3-way split algorithm

Let A and B be degree (3n−1) polynomials overF2 andC be
their product. Thismethod splits A and B in three parts as fol-
lows: A = A0 + A1Xn + A2X2n, B = B0 + B1Xn + B2X2n

where A j = ∑n−1
i=0 ai+nj Xi and Bj = ∑n−1

i=0 bi+nj Xi for
j = 0, 1, 2. Bernstein’s 3-way split algorithm is the follow-
ing [3]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = A0B0, P1 = (A0 + A1 + A2)(B0 + B1 + B2),

P2 = (A0 + A1X + A2X2)(B0 + B1X + B2X2),

P3 = (
(A0 + A1 + A2) + (A1X + A2X2)

)
((B0 + B1 + B2)

+(B1X + B2X2)
)
,

P4 = A2B2, U = P0 + (P0 + P1)Xn,

V = P2 + (P2 + P3)(Xn + X),

C = U+P4(X4n+Xn) + (U+V +P4(X4+X))(X2n+Xn)

X2+X
.

(4)

The arithmetic complexity of the algorithm is as follows [3,
10,11]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M2(3n) ≤ 3M2(n) + 2M2(n + 2) + 35n − 12, n ≥ 2,
M2(2n + k) ≤ 2M2(n) + M2(k) + 2M2(n + 1) + 25n

+10k − 12, 1 ≤ k ≤ n − 1,
D2(3n) ≤ D2(n) + (3n + 8)DX ,

M2(n) ≤ 25.5n1.46 − 25.5n + 1,
D2(n) ≤ (1.5n + 8 log3(n) − 1.5)DX + DA.

(5)

The reason for the linear delay complexity is the division by
(X2 + X) in the Eq. (4). This division requires (n − 2) bit
additions and a delay of (n − 2)DX . A detailed explanation
is in Section 2.3.2 of [11]. We also note that one can obtain
a logarithmic delay for this type of exact division. However,
in this case, the number of additions increases significantly.

Remark 2 It should be noted that in (4), the first term of each
of P0 and P2 is a0b0, and the first term of each of P1 and P3
is (a0 +an +a2n)(b0 +bn+2n). Two multiplications are thus
saved here. As well, the last term of P2 and that of P4 are
identical, which also saves a multiplication. Finally, the last
two terms of P2 and P3 are likewise the same, which brings
the savings up to five operations. It should also be noted that
the first term of P0 + P1 and that of P2 + P3 are also the
same. The result of all of the above observations is a total
of nine common expressions for computing M(3n). On the
other hand, for M2(2n+ k), 1 ≤ k ≤ n−1, one can observe
three common multiplications in the first term of P2 and P0,
the first term of P3 and P1, and the last term of P2 and P3.
Furthermore, the first term of P0 + P1 and that of P2 + P3
are the same. Therefore, (5) can be rewritten as

⎧
⎨

⎩

M2(3n) ≤ 3M2(n) + 2M2(n+2)+35n−12−9, n≥2,
M2(2n + k) ≤ 2M2(n) + M2(k) + 2M2(n + 1) + 25n

+10k − 12 − 4, 1 ≤ k ≤ n − 1.

(6)

One can also note that the number of common operations
is actually greater than that indicated above. These observa-
tions were also reported in [3] and explicit algorithms are
obtained by eliminating the common operations in [2]. The
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results in [2] are, therefore, better than the theoretical results
detailed in [3].

2.4 Karatsuba-like improved 3-way split algorithm

Let A, B,C, A0, A1, A2, B0, B1 and B2 be as in Bern-
stein’s 3-way algorithm presented above. This algorithmwas
obtained in [9] using a technique similar to that employed in
[27]. The algorithm is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = A0B0= P0L+P0H Xn, P1= A1B1= P1L+P0H Xn,

P2 = A2B2 = P2L + P2H Xn,

P3 = (A1 + A2)(B1 + B2) = P3L + P3H Xn,

P4 = (A0 + A1)(B0 + B1) = P4L + P4H Xn,

P5 = (A0 + A2)(B0 + B2) = P5L + P5H Xn,

R0 = P0H + P1L , R1 = R0 + P0L , R2 = R1 + P4L ,

R3 = P1H + P2L , R4 = R1 + R3, R5 = P4H + P5L ,

R6 = R4 + R5, R7 = R3 + P2H , R8 = R7 + R0,

R9 = R8 + P3L , R10 = R9 + P5H , R11 = R7 + P3H ,

C = P0L+R2Xn+R6X2n+R10X3n+R11X4n+P2H X5n .

Assume that A and B are degree 2n + k − 1 polynomials,
where 1 ≤ k ≤ n. A0, A1, B0 and B1 are then degree (n−1)
polynomials, and A2 and B2 are degree (k−1) polynomials.
Therefore, P0L , P1L , and P2L are degree (n − 1) polyno-
mials, and P0H and P1H are (n − 2) polynomials. On the
other hand, P2L is a degree (n − 1) polynomial, P2H is a
degree (2k − n − 1) polynomial for n/2 < k ≤ n, P2L is
a degree (2k − 2) polynomial, and P2H = 0 for k ≤ n/2.
Note that (A0 + A1) and (B0 + B1) each require n additions,
(A0+A2), (A1+A2), (B0+B2), and (B1+b2) each require
k additions; R0, R3, R5, R10, and R11 each require (n − 1)
additions; R1, R2, R4, R6, R8, and R9 each require n addi-
tions and R7 requires (2k−n−1) additions for n/2 < k ≤ n.
For k ≤ n/2, R7 requires no additions. Therefore, we obtain
the following recursions [9]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2(3n) ≤ 6M2(n) + 18n − 6,
M2(2n+k) ≤ 5M2(n)+M2(k)+12n+6k−6,

n/2 < k ≤ n,

M2(2n+k) ≤ 5M2(n)+M2(k)+13n+4k−5, k≤n/2,
D2(3n) ≤ D2(n) + 4DX ,

M2(n) ≤ 5.8n1.63 − 6n + 1.2,
D2(n) ≤ 4 log3(n)DX + DA.

(7)

Remark 3 Assume that k = n − � for 1 ≤ � ≤ 2. The last
� terms of the products A0B0 and (A0 + A2)(B0 + B2) are
then the same, and the last � terms of the products A1B1 and
(A1 + A2)(B1 + B2) are also the same. Therefore, we can
obtain the following bound using the school-book method:

M2(3n − �) ≤ 5M2(n)

+ M2(n − �) + 18n − 6� − 6 − 2�2, 1 ≤ � ≤ 2. (8)

2.5 Bernstein’s 4-way split algorithm

Let A and B be two degree (4n − 1) polynomials over F2

and C be their product. This method splits A and B into
four parts as A = A0 + A1Xn + A2X2n + A3X3n, B =
B0 + B1X + B2X2n + B3X3n where A j = ∑n−1

i=0 ai+nj Xi

and Bj = ∑n−1
i=0 bi+nj Xi for j = 0, 1, 2, 3. Bernstein’s 4-

way algorithm is the following:

⎧
⎨

⎩

AB=(1+X2n)((1+Xn)(A0B0+Xn A1B1+X2n A2B2+X3n A3B3)

+Xn(A0 + A1)(B0 + B1) + X3n(A2 + A3)(B2 + B3))

+X2n(A0+A2+(A1+A3)Xn)(B0+B2+(B1+B3)Xn).

The arithmetic complexity of the algorithm is as follows
[3,9]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M2(4n) ≤ M2(2n) + 6M2(n) + 27n − 8,
M2(3n + k) ≤ M2(2n)+5M2(n)+M2(k)+19n+8k−8,

n/2 ≤ k ≤ n,

D2(4n) ≤ D2(n) + 5DX ,

M2(n) ≤ 6.425n1.58 − 6.8n + 1.375,
D2(n) ≤ 5 log4(n)DX + DA.

(9)

Remark 4 It should be noted that if k = n − � in (9) for 1 ≤
� ≤ 3, then A2B2 and (A2+ A3)(B2+B3) have the same last
� terms. Similarly, (A0+A2+(A1+A3)Xn)(B0+B2+(B1+
B3)Xn) and A1B1 have the same last � terms. Therefore,
once A2B2 and A1B1 are computed using the school-book
method, the cost of computing (A2 + A3)(B2 + B3) and
(A0 + A2 + (A1 + A3)Xn)(B0 + B2 + (B1 + B3)Xn) is less
than or equal to M2(n) − �2 and M2(2n) − �2, respectively.
Thus, we get the following recursion:

M2(4n − �) ≤ M2(2n) + 5M2(n)

+M2(n − �) + 27n − 8� − 8 − 2�2, 1 ≤ � ≤ 3. (10)

2.6 CNH 3-way split algorithm

Let A, B,C, A0, A1, A2, B0, B1, and B2 be defined as in
Bernstein’s 3-way algorithm. In [10,11], Cenk, Negre, and
Hasan proposed the following algorithm for computing C =
AB, where α is the generator of F4:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P0 = A0B0, P1 = (A0 + A1 + A2)(B0 + B1 + B2),

P2 = (A0 + A2 + α(A1 + A2))(B0+B2+α(B1+B2)),

P3 = (A0 + A1 + α(A1+A2))(B0 + B1 + α(B1+B2)),

P4 = A2B2,

C = (P0 + Xn P4)(1 + X3n) + (P1 + (1 + α)(P2 + P3))
(Xn + X2n + X3n) + α(P2+P3)X3n + P2X2n + P3Xn

(11)
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Table 1 Cost of polynomial multiplication over F2

Algorithm Split M2(n) D2(n)

Bernstein [3] 2 6.5n1.58 − 7n + 1.5 3 log2(n)DX + DA

Bernstein [3] 3 25.5n1.46 − 25.5n + 1 (1.5n + 8 log3(n) − 1.5)DX + DA

CNH [9] 3 5.8n1.63 − 6n + 1.2 4 log3(n)DX + DA

CNH [10,11] 3 30.25n1.46 − 28n + 4.75 10 log3(n)DX + DA

Proposed (24) 3 15.125n1.46 − 2.67n log3(n) − 14.25n + 0.125 10 log3(n)DX + DA

Bernstein [3] 4 6.425n1.58 − 6.8n + 1.375 5 log4(n)DX + DA

Proposed (17) 5 6.46n1.58 − 6.877n + 1.42 13 log5(n)DX + DA

The complexities of the algorithm are computed in [10,11]
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

M2(3n) ≤ 2M4(n) + 3M2(n) + 29n − 12,
M4(3n) ≤ 5M4(n) + 58n − 21,
D2(n) ≤ D4(n/3) + 8DX ,

D4(n) ≤ D4(n/3) + 10DX .

(12)

Remark 5 We can improve this algorithm by observing the
common additions in (P1 + (1+ α)(P2 + P3))(Xn + X2n +
X3n). Assume that the inputs are from F4[X ]. For simplicity
let R = (P1 + (1 + α)(P2 + P3)). Since R is a degree
(2n − 2) polynomial, we can write R = R0 + R1Xn where
R0 is a degree (n− 1) polynomial and R1 is a degree (n− 2)
polynomial. We have then

R(Xn + X2n + X3n)

= XnR0 + X2n(R0 + R1) + X3n(R0 + R1) + X4n R1,

requiring 2(n−1) F4 additions for R0 + R1 which improves
the original computation cost 2(2n − 2). It should be noted
that this technique does not change the delay complexity. The
complexity for degree (2n+ k) polynomials can be easily be
obtained for 1 ≤ k ≤ n since, in this case, (A1 + A2), (B1 +
B2), ((A0 + A1) + A2), and ((B0 + B1) + B2) each require
8k additions. As well, (P0 + Xn P4) needs (n − 1) additions
if k > n/2 and (2k − 1) additions if k < n/2. The following
are thus the new complexities for polynomial multiplication
over F4:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M4(3n) ≤ 5M4(n) + 56n − 19, M4(1) = 7,
M4(2n + k) ≤ 4M4(n) + M4(k) + 48n + 8k − 19,

n/2 ≤ k ≤ n,

M4(2n + k) ≤ 4M4(n) + M4(k) + 46n + 12k − 19,
1 ≤ k < n/2,

D4(n) ≤ D4(n/3) + 10DX , D4(1) = 2DX + DA

M4(n) ≤ 30.25n1.46 − 28n + 4.75,
D4(n) ≤ (10 log3(n) + 2)DX + DA.

(13)

Similarly, the complexities over F2 are obtained as follows:

⎧
⎪⎪⎨

⎪⎪⎩

M2(n) ≤ 2M4(n/3)+3M2(n/3)+29n−12, M2(1)=1,
D2(n) ≤ D4(n/3) + 8DX , D2(1) = DA,

M2(n) ≤ 30.25n1.46 − 9.27n log3(n) − 27.5n + 0.75,
D2(n) ≤ 10 log3(n)DX + DA.

(14)

3 New improved algorithms over F2

This section presents amethod that yields better complexities
than the Bernstein 3-way algorithm. Moreover, a new 5-way
split algorithm for binary polynomialmultiplication resulting
from improvements to the one described in [12] is introduced,
and a new 3-way split algorithmwith improved complexity is
also proposed. The complexity comparisons of the methods
introduced in this section are included in Table 1.

3.1 A new split method for Bernstein’s 3-way split
algorithm

Let A(X) = ∑3n−1
i=0 ai Xi and B(X) = ∑3n−1

i=0 bi Xi be two
polynomials of degree 3n − 1. In this method, we compute
(X A(X))(XB(X)) instead of A(X)B(X) using Bernstein’s
3-way split algorithm. Note that X A(X) = ∑3n−1

i=0 ai Xi+1

and XB(X) = ∑3n−1
i=0 bi Xi+1 are degree 3n polynomials

with first terms zero. We now apply Bernstein’s 3-way split
algorithm by assuming that X A(X) and XB(X) are degree
3n + 2 polynomials. Here, we take the coefficients of X3n+1

and X3n+2 of both X A(X) and XB(X) as zero, and thus we
have:

XA(X) = A0 + A1X
n+1 + A2X

2n+2,

XB(X) = B0 + B1X
n+1 + B2X

2n+2,

where each of Ai and Bi for 0 ≤ i ≤ 2 are degree n poly-
nomials. However, it should be noted that the first term of
A0 and B0 is zero and that the last two terms of A2 and B2
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are zero. Therefore, we can say that this method splits 3n-
term polynomials as (n, n + 1, n − 1) rather than (n, n, n)

where the i-th value in the triples for i = 1, 2, 3 shows the
number of terms of Ai and Bi . The computational cost of
Bernstein’s 3-way algorithm for this splitting approach is as
follows:

• 4n − 2: Computing A0 + A1 + A2 and B0 + B1 + B2.
These are degree n polynomials.

• 2n−2: Computing A1X+A2X2 and B1X+B2X2. These
are degree (n + 1) polynomials with the constant term
being zero.

• 2n: Computing A0 + (A1X + A2X2) and B0 + (B1X +
B2X2). These are degree (n + 1) polynomials with the
constant term being zero.

• 2n: Computing A0 + A1 + A2 + (A1X + A2X2) and
B0+ B1+ B2+(B1X + B2X2). These are degree (n+1)
polynomials.

• M2(n): Computing P0 = A0B0 whereP0 is a degree 2n
polynomial with the constant term and the coefficient of
X as zero.

• M2(n+1): Computing P1 = (A0+ A1+ A2)(B0+ B1+
B2) where P1 is a degree 2n polynomial.

• M2(n+1): Computing P2 = (A0+ A1X + A2X2)(B0+
B1X + B2X2) where P2 is a degree 2n + 2 polynomial
with the constant term and the coefficient of X being zero.

• M2(n + 2) − 1: Computing P3 = (A0 + A1 + A2 +
A1X + A2X2)(B0 + B1 + B2 + B1X + B2X2) where
P3 is a degree 2n + 2 polynomial and the last term is the
same as that of P2.

• M2(n−1): Computing P4 = A2B2 where P4 is a degree
2n − 4 polynomial.

• 2n: Computing S = P2+P3 where S is a degree (2n+1)
polynomial because the last terms of P2 and P3 are equal.

• 3n − 1: Computing U = P0 + (P0 + P1)Xn+1 where U
is a degree 3n + 1 polynomial and the first two terms are
zero.

• 3n + 3: Computing V = P2 + S(Xn+1 + X) where V is
a degree 3n + 2 term with the first term being zero.

• 7n − 6: Computing W = U + V + P4(X4 + X) where
W is a degree 3n + 2 polynomial with the first term as
zero.

• 3n: Computing W ′ = W/(X (X + 1)) where W ′ is a
degree 3n polynomial.

• 2n: Computing W ′′ = W ′(X2n+2 + Xn+1) where W ′′ is
a degree 5n+2 polynomial with first n terms being zero.

• 5n− 3: Computing C = U + P4(X4n+4 + Xn+1)+W ′′.
This is the product polynomial X2A(X)B(X).

It should also be noted that the original algorithm is better
for (3n − 1) terms polynomials. However, for (2n + k) term

polynomials with 1 ≤ k ≤ n − 2, the proposed splitting
approach yields better results than the original recursion. For
example, the method introduced above splits (3n − 2) term
polynomials as (n−1, n, n−1) instead of (n, n, n−2). The
recursions for the above computations for a 3n-term and a
similar computations for (3n − 2) term polynomials can be
summed up as follows:

⎧
⎪⎪⎨

⎪⎪⎩

M2(3n) ≤ M2(n) + 2M2(n + 1) + M(n + 2)
+M(n − 1) + 35n − 12,

M2(3n − 2) ≤ 2M2(n) + M2(n + 1) + 2M(n − 1)
+35n − 13.

(15)

3.2 Improved 5-way split algorithm

This section presents a new improvement to the 5-way split
algorithm described in [12]. Let A = ∑5n−1

i=0 ai Xi and
B = ∑5n−1

i=0 bi Xi two degree (5n − 1) polynomials over F2

andC = ∑10n−2
i=0 ci Xi be their product. Thismethod splits A

and B in five parts as A = A0 + A1Xn + A2X2n + A3X3n +
A4X4n, B = B0 + B1Xn + B2X2n + B3X3n + B4X4n ,
where A j = ∑n−1

i=0 ai+nj Xi and Bj = ∑n−1
i=0 bi+nj Xi for

j = 0, 1, 2, 3, 4. Then we can write C = ∑8
i=0 Ci Xin .

Cenk andÖzbudak proposed the following algorithm in [12]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 = A0B0, m2 = A1B1, m3 = A2B2, m4 = A3B3,

m5 = A4B4,m6 = (A0 + A1)(B0 + B1),

m7 = (A0 + A2)(B0 + B2), m8 = (A2 + A4)(B2 + B4),

m9 = (A3 + A4)(B3 + B4),

m10 = (A0 + A2 + A3)(B0 + B2 + B3),

m11 = (A1 + A2 + A4)(B1 + B2 + B4),

m12 = (A0 + A3 + A1 + A4)(B0 + B3 + B1 + B4),

m13 = (A0+A1+A2+A3+A4)(B0+B1+B2+B3+B4),

C0 = m1, C1 = m6+m1+m2, C2 = m7+m1+m3+m2,

C3 = m1 + m13 + m12 + m10 + m8 + m3 + m5 + m4,

C4 = m6+m1+m2+m13+m10+m11+m9+m5+m4,

C5 = m7 + m1 + m3 + m2 + m13 + m11 + m12 + m5,

C6 = m8+m3+m5+m4, C7 = m9+m4+m5, C8 = m5.

(16)

The improvement to this algorithm is based on the use of the
method described in [27]. To this end, we divide each mi for
1 ≤ i ≤ 13 into two parts as mi = p2i−1 + p2i Xn , where
p2i−1 is a degree (n− 1) polynomial, p2i is a degree (n− 2)
polynomial, and n ≥ 2. We substitute the new decomposi-
tions of the mi ’s into Ci ’s and let the new representation of
C be C = ∑10

i=1Ui X (i−1)n . The explicit new algorithm is as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = p1 + p2, t2 = t1 + p3, t3 = t2 + p11,
t4 = p4 + p5, t5 = p12 + p13, t6 = t4 + t5, t7 = t2+t6,
t8 = t1 + t4, t9 = p6 + p7, t10 = t8 + t9,
t11 = t10 + p9, t12 = p14 + p15, t13 = t11 + t12,
t14 = p19 + p23, t15 = t14 + p25, t16 = t13 + t15,
t17 = p8 + p9, t18 = t17 + p10, t19 = t18 + p18,
t20 = t18 + t9, t21 = p16 + p17, t22 = t20 + t21,
t23 = t22 + t3, t24 = p20 + p21, t25 = p24 + p25,
t26 = p19 + p24, t27 = t24 + t25, t28 = t27 + t26,
t29 = t28 + t23, t30 = t7 + t19, t31 = t27 + t30,
t32 = p22 + p23, t33 = t31 + t32, t34 = t11 + p1,
t35 = t34 + p10, t36 = t35 + t12, t37 = t36 + p22,
t38 = t37 + p24, t39 = t38 + p26,
U1 = p1, U2 = t3, U3 = t7, U4 = t16, U5 = t29,
U6 = t33, U7 = t39,U8 = t22, U9 = t19, U10 = p10,

(17)

The cost of (17) is (39n − 17) additions. The cost of linear
combinations of Ai ’s and the linear combinations of Bi ’s can
be computed with a total of 16n additions. The following
recursion is thus obtained:

M2(5n) ≤ 13M2(n) + 55n − 17. (18)

When the input sizes are (4n+ k) for 1 ≤ k ≤ n, the sizes of
A4 and B4 are then k bits and the cost of (A2 + A4), (A3 +
A4), (B2 + B4), and (B3 + B4) is 4k rather than 4n. On
the other hand, the size of m5 = A4B4 = p9 + p10Xn is
a 2k − 1. It should be noted that p9 is an n-bit polynomial,
p10 is a (2k − n − 1)-bit polynomial for n/2 ≤ k ≤ n, p9
is a (2k − 1)-bit polynomial, and p10 is the 0 polynomial for
1 ≤ k < n/2. When the cost of t11, t17, t18, and t35 in (17)
is re-computed, the following recursion is obtained:

M2(4n + k) ≤ 12M2(n) + M2(k) + 47n + 8k − 17. (19)

An additional remark can be made regarding the case of k =
n − � for 1 ≤ � ≤ 3. Here, the last � terms of m4 and m9

are identical, and similarly the last � terms of m3 and m8 are
identical. We can, therefore, write

M2(5n − �)≤ 12M2(n)+ M2(n − �)+ 55n − 8�− 17− �2.

(20)

The delay complexity can be computed as

D2(5n) ≤ D2(n) + 13DX . (21)

The complexities are summarized as follows:

⎧
⎪⎪⎨

⎪⎪⎩

M2(5n) ≤ 13M2(n) + 55n − 17,
M2(4n + k) ≤ 12M2(n) + M2(k) + 47n + 8k − 17,

1 ≤ k ≤ n,

D2(5n) ≤ D2(n) + 13DX .

(22)

Asymptotic complexities of this algorithm are the following:

⎧
⎪⎪⎨

⎪⎪⎩

M2(n) ≤ 13M2(n/5) + 55n/5 − 17, M2(1) = 1,
M2(n) ≤ 6.46n1.58 − 6.87n + 1.42,
D2(n) ≤ D2(n/5) + 13DX , D2(1) = DA,

D2(n) ≤ 13 log5(n)DX + DA.

(23)

3.3 New improved 3-way algorithm

This section presents a process for improving the algorithm
discussed in Sect. 2.6 by about 50%. The enhancement is
obtained by analyzing the products P2 and P3 in (11). Let
A, B, C, A0, A1, A2, B0, B1, and B2 ∈ F2[X ] be defined
as in the explanation of the CNH algorithm in Sect. 2. It
should be noted that if

P2 = (A0 + A2 + α(A1 + A2))(B0 + B2 + α(B1 + B2))

= P2,0 + αP2,1,

then one can compute

P3 = (A0 + A1 + α(A1 + A2))(B0 + B1 + α(B1 + B2))

= (P2,0 + P2,1) + αP2,1.

This calculation shows that P3 can be obtained from P2.
Note that this method works because Ai , Bi ∈ F2[X ] for
0 ≤ i ≤ 2. By using P3 = (P2,0 + P2,1) + αP2,1, we
propose the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P0 = A0B0, P1 = (A0 + A1 + A2)(B0 + B1 + B2),

P4 = A2B2,

P2 = (A0 + A2 + α(A1 + A2))(B0 + B2 + α(B1 + B2))

= P2,0 + αP2,1,
C = P4X4n + (P0 + P1 + P2,1)X3n + (P2,0

+ P1 + P2,1)X2n + (P4 + P1 + P2,0)Xn + P0
(24)

Nowwe can compute the complexity of this algorithmwhere
A0, B0, A1, and B1 are degree (n − 1) polynomials and A2

and B2 are degree (k − 1) polynomials. Assume that 1 ≤
k ≤ n. Each of (A1 + A2) and (A0 + A2) then requires k
additions, and (A0 + (A1 + A2)) requires n additions. Since
the polynomials are over F2, (A0 + A2 + α(A1 + A2)) does
not require any additions. Similarly, the right-hand side, i.e.,
Bi ’s, require (n + 2k) additions. On the other hand, each of
(P1 + P2,1), (P0 + (P1 + P2,1)), (P2,0 + (P1 + P2,1)) and
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(P1 + P2,0) requires (2n − 1) additions, and (P4 + (P1 +
P2,0)) requires (2k − 1) additions. Finally, the overlaps of
the coefficients of X0, Xn, X2n , and X3n require (3n − 3)
additions, and the cost of the overlapping of the coefficient
of X4n with the other terms is (n − 1) if n/2 ≤ k ≤ n,
and (2k − 1) if 1 ≤ k < n/2. On the other hand, the delay
complexity can be computed as described in [11] and we
obtain the complexities as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M2(3n) ≤ 3M2(n) + M4(n) + 20n − 5,
M2(2n + k) ≤ 2M2(n)+M2(k)+M4(n)+14n+6k − 5,
n/2 ≤ k ≤ n,

M2(2n + k) ≤ 2M2(n)+M2(k)+M4(n)+13n+8k−11,
1 ≤ k < n/2.

D2(3n) ≤ D4(n) + 7DX ,

(25)

In order to compute M2(n), we need M4(n). By using the
results in (13), one can obtain asymptotic complexities of
this algorithm as follows:

⎧
⎪⎪⎨

⎪⎪⎩

M2(n) ≤ 3M2(n/3)+M4(n/3)+20n/3−5, M2(1) = 1,
M2(n) ≤ 15.125n1.46−14.25n−2.4274 log3(n)+0.125,
D2(n) ≤ D4(n/3) + 8DX , D2(1) = DA,

D2(n) ≤ 10 log3(n)DX + DA.

(26)

3.4 Comparison of complexities

To enable an easy comparison, the complexity results are
presented in Table 1. As it can be seen, the 2-way algorithm
is theKaratsuba algorithmwithBernstein’s improvement.On
the other hand, the proposed 3-way algorithm is far superior
to the 3-way split algorithms. Bernstein’s 4-way split and
the proposed 5-way split algorithms that yield improvements
are also included in the table. It should also be noted that
Negre has reported [21,22] about improvements in the 3-way
splits algorithm of [9] with a complexity 4.68n1.63 + O(n)

and in the 4-way split algorithm of [3] with a complexity
5.25n1.58 + O(n).

4 Minimum number of bit operations for M4(n)

The algorithmpresented inSect. 3.3 entails themultiplication
of polynomials over F4. Efficient algorithms for multiplica-
tion overF4 are, therefore, needed to obtain better complexity
results over F2. We can use the multiplication algorithms
over F2 presented in the previous sections for multiplications
over F4. However, it should be noted that the addition of F4

elements requires two-bit additions and that the multiplica-
tion of F4 elements requires seven-bit operations, i.e., four

multiplications and three additions (using the school-book
algorithm). The determination of the cost of multiplications
over F4, therefore, requires the following modifications to
the recursions presented in the previous sections: M2(n) is
converted to M4(n), and the number of additions over F2 is
multiplied by two. If the algorithm includes bit multiplica-
tions (as in the case of the school-book algorithm), then the
number of bit multiplications is multiplied by seven, which
is the cost of multiplication in F4. As an illustration, the
school-book algorithm for the multiplication of polynomials
over F4 can be modified as follows: Let A and B be degree
n polynomials over F4. We can write A = A0 + Xnan and
B = B0 + Xnbn , where A0 and B0 are degree (n − 1) poly-
nomials over F4, and an and bn are in F4. Then

A · B = A0B0 + Xn(A0bn + an B0) + X2nanbn .

The costs of A0B0, (A0bn + an B0) and anbn are M4(n),

2nM4(1) + 2n, and M4(1), respectively. The final overlap
needs 2(n − 1) additions. Using M4(1) ≤ 7, we obtain the
following:

{
M4(n + 1) ≤ M4(n) + 18n + 5,
D4(n + 1) ≤ D4(n) + DX .

(27)

Similarly, the improved Karatsuba algorithm presented in
Sect. 2 has the following recursion for F4 multiplications:

⎧
⎨

⎩

M4(n + k) ≤ 2M4(n) + M4(k) + 6n + 8k − 6,
n/2 ≤ k ≤ n,

D4(2n) ≤ D4(n) + 3DX .

(28)

On the other hand, the 3-way algorithm discussed in
Sect. 2 has the following recursion for multiplications over

⎧
⎨

⎩

M4(2n + k) ≤ 5M4(n) + M4(k) + 24n + 12k − 12,
n/2 < k ≤ n,

D4(3n) ≤ D4(n) + 4DX .

(29)

Bernstein’s 4-way split algorithm presented in Sect. 2 can
be used for multiplication over F4 using the following recur-
sion:

M4(3n + k) ≤ M4(2n)

+ 5M4(n) + M4(k) + 38n + 16k − 16, n/2 ≤ k ≤ n.

(30)

The recursive equation for the new 5-way split algorithm
introduced in Sect. 3.2 can be used for multiplications over
F4 by applying the following recursion:
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⎧
⎨

⎩

M4(4n + k) ≤ 12M4(n) + M4(k) + 96n + 16k − 36,
1 ≤ k ≤ n,

D4(4n) ≤ D4(n) + 5DX .

(31)

The next step is to describe a general method for mul-
tiplying polynomials over F4. Let α be the generator of
F4, A = ∑n−1

i=0 ai Xi , B = ∑n−1
i=0 Bi Xi and C = AB =

∑2n−2
i=0 Ci Xi be polynomials over F4. We can write, A =

A0 + αA1 and B = B0 + αB1 where A0, A1, B0, and B1

are degree n − 1 polynomials over F2. We then have

AB = (A0 + αA1)(B0 + αB1)

= A0B0 + A1B1 + ((A0 + A1)(B0 + B1) + A0B0)α.

(32)

The complexity of this formula can be computed as

{
M4(n) ≤ 3M2(n) + 6n − 2.
D4(n) ≤ D2(n) + 2DX .

(33)

As a final step, we can then use the CNH 3-way algorithm
discussed in Sect. 2. The recursion of this algorithm is the
following:

⎧
⎪⎪⎨

⎪⎪⎩

M4(3n) ≤ 5M4(n) + 56n − 19,
M4(2n + k) ≤ 4M4(n) + M4(k) + 48n + 8k − 19,
n/2 ≤ k ≤ n,

D4(n) ≤ D4(n/3) + 10DX .

(34)

5 Improved upper bounds over F2

This section presents the new upper bounds on the minimum
number of operations for binary polynomial multiplications
with the use of the algorithms discussed in the previous sec-
tions.

The first improvement is for n = 9. The improved 3-way
algorithm presented in Sect. 2 yields M2(9) ≤ 126 whereas
this bound is reported as 132 in [2]. On the other hand, the
new 5-way algorithm results in M2(15) ≤ 317, which is
better than the 326 arrived at [6]. Explicit algorithms for
n = 9 and n = 15 are presented in the appendix. Similarly,
we obtainM2(18) ≤ 438,which is better than that reported in
[6]. For n = 11, 12, we were unable to obtain improvements
on the upper bounds compared to the results described in
[6]. However, for almost all values of n greater than 20, we
have obtained improved bounds and tabulated new bounds
for some specific values of n, which are used in cryptographic
applications. Details are included in the appendix.

We also note that although improvements in the number
of bit operations can be obtained primarily through modi-
fications to Bernstein’s 3-way algorithm, the corresponding
level of delay complexities is significantly higher because
Bernstein’s 3-way algorithm entails a linear delay complex-
ity in input size. For this reason, we have also searched
the minimum number of bit operations with a logarithmic
delay. In this respect, the new 3-way algorithm introduced
in Sect. 3.3 produces the best results. It should be noted
that although the numbers of operations increase slightly,
delay complexities decrease significantly since the new 3-
way split algorithm is associated with a logarithmic delay.
The results are summarized in Table 2 that includes four dif-
ferent complexities. ColumnA shows the known best bounds
reported in [2] and [6] before the current work. The improved
minimum numbers of bit operations over F2 and F4 are
listed in columns B and C, respectively, and the best pos-
sible minimum number of bit operations with logarithmic
delay complexities are indicated in column D. In addition to
M2(n) and M4(n), the table also provides the name of the
algorithm along with the new size of the polynomial after
splitting.

The numbers in the column entitled Alg. of Table 2 repre-
sent the following algorithms: 1 is the school-book, 2 is the
Karatsuba with Bernstein’s improvement, 2.1 is the Karat-
suba with Bernstein’s improvement with input size 2n − 1,
2.2 is the Karatsuba with Bernstein’s improvement with
input size 2n − 2, 2.3 is the Karatsuba with Bernstein’s
improvement with input size 2n − 3, 3 is Karatsuba-like
3-way split, 5 is Bernstein’s 3-way split, 5.1 is modified
Bernstein’s 3-way split algorithm with input size 3n, 5.2 is
modified Bernstein’s 3-way split algorithm with input size
3n − 2, 6 is Bernstein’s 4-way split with input size 4n, 6.1
is Bernstein’s 4-way split with input size 4n − 1, 6.2 is for
Bernstein’s 4-way split with input size 4n − 2, 7 is for the
improved 5-way split for input size 5n, 7.1 is improved 5-
way split for input size 5n − 1, 8 is for the method referring
in [6], 9 is the general method described in Sect. 4, 10 is
the Karatsuba algorithm with Bernstein’s improvements for
F4, 14 is the improved CNH 3-way split algorithm over F4

in Sect. 2, 15 is Bernstein’s 4-way for polynomials over F4,
and finally 16 is the improved 5-way split for polynomials
over F4.

For example, for n = 15 in column B, it can be seen
that the new 5-way algorithm is used, and the new size
of the polynomials becomes five. To verify the complex-
ity, one should then use the M2(5). It must also be noted
that special care should be given in those cases in which the
size of the polynomials after splitting may be different, as
in the case of M2(17), which contains a multiplication of
size nine and a multiplication of size eight. An additional
remark is related to the modified Bernstein’s algorithm. If
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Table 2 New upper bounds on M2(n), D2(n), M4(n) and D4(n) where A, B, and C present minimum number of bit operations; and D presents
minimum number of bit operations with logarithmic delay

n A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

2 5 5 2 1 1 25 4 9 2 5 2 1 1

3 13 13 3 1 2 55 5 9 3 13 3 1 2

4 25 25 4 1 3 97 6 9 4 25 4 1 3

5 41 41 5 1 4 151 7 9 5 41 5 1 4

6 57 57 6 2 3 201 8 10 3 57 6 2 3

7 81 81 7 1 6 283 9 9 7 81 7 1 6

8 100 100 7 2 4 339 11 15 2 100 7 2 4

9 132 126 7 3 3 424 15 14 3 126 7 3 3

10 155 155 8 2 5 513 17 16 2 155 8 2 5

11 186 186 7 8 0 616 11 10 6 186 7 8 0

12 207 207 7 8 0 677 13 15 3 207 7 8 0

13 255 255 8 8 0 841 10 9 13 255 8 8 0

14 289 289 10 2 7 941 12 10 7 289 10 2 7

15 326 317 16 7 3 1015 18 16 3 317 16 7 3

16 349 349 8 8 0 1121 16 15 4 349 8 8 0

17 413 407 10 2.1 9 1264 18 14 6 407 10 2.1 9

18 454 438 10 2 9 1322 18 14 6 438 10 2 9

19 498 498 11 2.1 10 1569 20 10 10 498 11 2.1 10

20 527 527 8 8 0 1673 20 10 10 527 8 8 0

21 602 596 11 2.1 11 1788 19 14 7 596 11 2.1 11

22 641 632 10 2 11 1970 21 14 8 632 10 2 11

23 678 676 10 2.1 12 2060 21 14 8 676 10 2.1 12

24 704 702 10 2 12 2124 21 14 8 702 10 2 12

25 800 791 18 7 5 2448 25 14 9 791 18 7 5

26 856 853 11 2 13 2512 25 14 9 853 11 2 13

27 922 912 11 3 9 2605 25 14 9 912 11 3 9

28 956 956 15 6 7 2916 27 14 10 956 15 6 7

29 1044 1020 19 2.1 15 3009 27 14 10 1020 19 2.1 15

30 1085 1053 19 2 15 3106 27 14 10 1053 19 2 15

31 1129 1119 19 2.1 16 3460 21 10 16 1119 19 2.1 16

32 1158 1156 11 2 16 3566 27 14 11 1156 11 2 16

33 1286 1274 13 2.1 17 3677 21 14 11 1274 13 2.1 17

34 1358 1335 13 2.2 18 3858 27 14 12 1335 13 2.2 18

35 1441 1393 15 6.1 9 3969 23 14 12 1393 15 6.1 9

36 1483 1429 15 6 9 4038 23 14 12 1429 15 6 9

37 1585 1559 14 2.1 19 4673 21 14 13 1559 14 2.1 19

38 1636 1616 13 2.2 20 4742 23 14 13 1616 13 2.2 20

39 1687 1680 13 6.1 10 4914 20 14 13 1680 13 6.1 10

40 1720 1718 11 2 20 5190 23 14 14 1718 11 2 20

41 1871 1858 14 2.1 21 5362 22 14 14 1858 14 2.1 21

42 1950 1929 13 2.2 22 5470 22 14 14 1929 13 2.2 22

43 2020 1996 15 6.1 11 5706 28 14 15 1996 15 6.1 11

44 2064 2037 15 6 11 5814 28 14 15 2037 15 6 11

45 2150 2116 20 7 9 5896 28 14 15 2116 20 7 9
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Table 2 continued

n A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

46 2192 2182 15 6.2 12 6286 26 14 16 2182 15 6.2 12

47 2239 2229 15 6.1 12 6368 28 14 16 2229 15 6.1 12

48 2268 2260 15 6 12 6482 26 14 16 2260 15 6 12

49 2460 2451 21 2.1 25 6988 28 14 17 2451 21 2.1 25

50 2572 2545 21 2 25 7102 28 14 17 2545 21 2 25

51 2677 2668 16 6.1 13 7253 28 14 17 2668 16 6.1 13

52 2735 2726 16 6 13 7382 28 14 18 2726 16 6 13

53 2881 2858 14 2.1 27 7533 28 14 18 2858 14 2.1 27

54 2948 2922 14 2 27 7599 28 14 18 2922 14 2 27

55 3017 3006 20 7 11 8569 30 14 19 3006 20 7 11

56 3060 3060 20 6 14 8635 30 14 19 3060 20 6 14

57 3239 3191 22 2.1 29 8890 30 14 19 3191 22 2.1 29

58 3320 3256 22 2.2 30 9099 30 14 20 3256 22 2.2 30

59 3406 3304 20 7.1 12 9354 30 14 20 3304 20 7.1 12

60 3456 3334 20 7 12 9466 30 14 20 3334 20 7 12

61 3552 3500 22 2.1 31 9862 30 14 21 3500 22 2.1 31

62 3595 3571 22 2 31 9974 30 14 21 3571 22 2 31

63 3651 3632 21 6.1 16 10,097 29 14 21 3632 21 6.1 16

64 3682 3674 16 6 16 10,750 31 14 22 3674 16 6 16

65 3938 3927 16 2.1 33 10,873 31 14 22 3927 16 2.1 33

66 4050 4040 86 5.1 22 11,063 31 14 22 4048 16 2.2 34

67 4134 4110 88 5.2 23 11,281 31 14 23 4159 18 2.3 35

68 4183 4167 88 5 23 11,462 31 14 24 4228 18 6 17

69 4403 4296 97 5.1 23 11,569 31 14 23 4356 18 2.3 36

70 4452 4374 99 5.2 24 11,775 31 14 24 4420 20 6.2 18

71 4499 4476 99 5 24 11,873 31 14 24 4494 20 6.1 18

72 4642 4535 20 6 18 11,945 31 14 24 4535 20 6 18

73 4828 4701 101 5.2 25 13,217 35 14 25 4798 18 2.1 37

74 4864 4839 101 5 25 13,289 35 14 25 4892 29 7.1 15

75 5097 4929 29 7 15 13,521 35 14 26 4929 29 7 15

76 5133 5097 103 5.2 26 13,593 35 14 26 5109 18 6 19

77 5239 5205 101 5 26 13,925 35 14 26 5241 16 2.1 39

78 5322 5297 16 6.2 20 13,997 35 14 26 5297 16 6.2 20

79 5384 5359 29 7.1 16 14,345 35 14 27 5359 29 7.1 16

80 5420 5400 21 7 16 14,417 35 14 27 5400 21 7 16

81 5740 5630 110 5.1 27 14,518 35 14 27 5713 17 2.1 41

82 5799 5723 112 5.2 28 15,709 37 14 28 5854 16 2.2 42

83 5875 5818 112 5 28 15,810 37 14 28 5983 18 2.3 43

84 5996 5929 113 5.1 28 16,129 37 14 29 6064 18 6 21

85 6158 6007 115 5.2 29 16,230 37 14 29 6209 23 7 17

86 6202 6091 115 5 29 16,549 37 14 29 6284 20 6.2 22

87 6353 6204 116 5.1 29 16,650 37 14 29 6369 20 6.1 22

88 6397 6302 118 5.2 30 16,985 37 14 30 6415 20 6 22

89 6495 6388 118 5 30 17,086 37 14 30 6576 23 2.1 45

90 6568 6500 117 5 30 17,191 37 14 30 6660 23 2 45
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Table 2 continued

n A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

91 6666 6572 120 5.2 31 18,550 37 14 31 6794 23 2.1 46

92 6717 6662 120 5 31 18,655 37 14 31 6851 20 6 23

93 6991 6831 120 5.1 31 19,017 31 14 31 6944 23 2.3 48

94 7043 6931 122 5.2 32 19,127 37 14 32 7013 18 2 47

95 7096 7073 120 5 32 19,489 37 14 32 7076 20 6.1 24

96 7132 7112 20 6 24 19,603 37 14 32 7112 20 6 24

97 7516 7337 121 5.2 33 19,981 31 14 33 7496 21 1 96

98 7574 7503 121 5 33 20,095 37 14 33 7684 24 2.2 50

99 7870 7636 124 5.1 33 20,214 31 14 33 7859 26 6.1 25

100 7909 7766 126 5 34 20,867 37 14 34 7934 21 7 20

101 8047 7894 126 5 34 20,986 37 14 34 8230 24 2.1 51

102 8184 7979 129 5 35 21,175 37 14 34 8345 24 2.2 52

103 8322 8097 129 5.2 35 21,478 33 14 35 8466 23 6.1 26

104 8404 8178 129 5 35 21,667 37 14 35 8538 21 6 26

105 8635 8358 129 5.1 35 21,786 33 14 35 8805 19 2.1 53

106 8717 8450 131 5.2 36 21,991 37 14 36 8932 19 2.2 54

107 8810 8603 131 5 36 22,110 33 14 36 8998 31 4 36

108 8959 8758 131 5 36 22,187 33 14 36 9040 31 4 36

109 9141 8874 133 5.2 37 24,154 34 17 108 9311 23 2.1 55

128 11,486 11,466 21 6 32 30,675 38 14 43 11,466 21 6 32

135 12,453 12,309 163 5.1 45 31,981 38 14 45 13,077 23 6.1 34

136 12,499 12,422 165 5.2 46 33,499 38 14 46 13,148 23 6 34

137 12,595 12,522 163 5 46 33,589 38 14 46 13,415 21 2.1 69

163 16,923 16,828 194 5.2 55 43,939 39 17 162 17,919 24 2.3 83

189 20,985 20,671 218 5.1 63 53,994 39 14 63 21,766 25 6.3 48

191 21,104 21,048 218 5 64 56,654 41 14 64 21,919 25 6.1 48

233 29,354 29,156 274 5 79 74,254 45 14 78 31,381 43 4 78

251 33,096 32,604 376 5 84 84,147 47 14 85 34,748 29 6.1 63

256 34,079 33,397 383 5.2 86 87,106 47 14 86 35,230 26 6 64

269 36,086 35,656 399 5 90 90,863 47 14 90 38,876 45 4 90

270 36,266 35,832 400 5.1 90 90,976 47 14 90 38,966 45 4 90

271 36,409 35,978 402 5.2 91 95,859 48 17 270 40,046 46 1 270

272 36492 36127 402 5 91 96,460 47 14 91 40344 28 6 68

273 37,084 36,400 403 5.1 91 96,815 47 14 92 40,747 45 4 91

274 37,167 36,506 405 5.2 92 96,928 47 14 92 40,840 45 4 92

283 38,735 38,432 414 5.2 95 102,258 47 14 95 42,468 45 4 95

407 67,374 66,931 581 5 136 173,566 48 14 136 75,581 46 4 136

408 67,582 67,137 583 5.1 136 173,876 48 14 137 75,658 46 4 136

409 67,753 67,284 585 5.2 137 173,974 48 14 137 76,219 46 4 137

571 112,569 111,621 870 5.2 191 291,271 51 14 191 126,061 49 4 191

In A, the values of n = 11, 12, 13, 15, 16, 17, 18, 19, 20 are from [6] and the other values are from [3]. The algorithm names are explained in
Sect. 5. The improvements are emphasized using bold fonts

123



J Cryptogr Eng (2015) 5:289–303 301

the size is a multiple of three, say 3n, then the sizes of the
polynomials after splitting are n, n + 1, and n − 1; if the
size is 3n − 2, then the new sizes are n and n − 1. For
example, for 3n − 2 = 67, the size of the new polyno-
mial is 23 given in Table 2 and the other sizes are then both
22.

6 Conclusion

This paper has presented improvements in the bounds
reported in [3,6] for binarypolynomialmultiplication through
two new proposed algorithms along with the optimization
and modification of previous algorithms. The use of the new
3-way and 5-way split algorithms together with themodifica-
tion of Bernstein’s 3-way split algorithm produces improved
results. These results for values of n that are of interest for
cryptographic applications are presented in the appendix.The
latter also presents the algorithms for n = 9 and n = 15.
Finally, it should be noted that the results in this paper can
be further improved by eliminating common operations that
appeared in the algorithms.
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Appendix A: New bounds for multiplication over F2

We give the new bounds for certain values of n that are
of interest for cryptographic applications. Note that the
improvements can be further enhanced by obtaining the
explicit algorithm and eliminating common operations as in
[2,3]. The results are shown in Table 2.

Appendix B: Algorithms for n = 9 and n = 15

For n = 9, A = ∑8
i=0 b[i]Xi , B = ∑8

i=0 b[i]Xi and C =
AB = ∑16

i=0 c[i]Xi . The coefficients of C are computed
using the following algorithm:

Algorithm for n = 9

t1 = a0 ∗ b0 t22 = t20 + t21 t43 = b3 + b6 t64 = b2 + b5 t85 = t78 ∗ t82 t106 = t26 + t30 c0 = t1
t2 = a0 ∗ b1 t23 = a4 ∗ b5 t44 = b4 + b7 t65 = t59 ∗ t62 t86 = t79 ∗ t81 t107 = t99 + t105 c1 = t4
t3 = a1 ∗ b0 t24 = a5 ∗ b4 t45 = b5 + b8 t66 = t59 ∗ t63 t87 = t85 + t86 t108 = t100 + t106 c2 = t9
t4 = t2 + t3 t25 = t23 + t24 t46 = t40 ∗ t43 t67 = t60 ∗ t62 t88 = t78 ∗ t83 t109 = t101 + t35 c3 = t102
t5 = a0 ∗ b2 t26 = a5 ∗ b5 t47 = t40 ∗ t44 t68 = t66 + t67 t89 = t79 ∗ t82 t110 = t76 + t84 c4 = t103
t6 = a1 ∗ b1 t27 = a6 ∗ b6 t48 = t41 ∗ t43 t69 = t59 ∗ t64 t90 = t80 ∗ t81 t111 = t77 + t87 c5 = t104
t7 = a2 ∗ b0 t28 = a6 ∗ b7 t49 = t47 + t48 t70 = t60 ∗ t63 t91 = t88 + t89 t112 = t107 + t110 c6 = t112
t8 = t5 + t6 t29 = a7 ∗ b6 t50 = t40 ∗ t45 t71 = t61 ∗ t62 t92 = t90 + t91 t113 = t108 + t111 c7 = t113
t9 = t7 + t8 t30 = t28 + t29 t51 = t41 ∗ t44 t72 = t69 + t70 t93 = t79 ∗ t83 t114 = t109 + t92 c8 = t114
t10 = a1 ∗ b2 t31 = a6 ∗ b8 t52 = t42 ∗ t43 t73 = t71 + t72 t94 = t80 ∗ t82 t115 = t105 + t38 c9 = t123
t11 = a2 ∗ b1 t32 = a7 ∗ b7 t53 = t50 + t51 t74 = t60 ∗ t64 t95 = t93 + t94 t116 = t106 + t39 c10 = t124
t12 = t10 + t11 t33 = a8 ∗ b6 t54 = t52 + t53 t75 = t61 ∗ t63 t96 = t80 ∗ t83 t117 = t115 + t97 c11 = t122
t13 = a2 ∗ b2 t34 = t31 + t32 t55 = t41 ∗ t45 t76 = t74 + t75 t97 = t12 + t14 t118 = t116 + t98 c12 = t125
t14 = a3 ∗ b3 t35 = t33 + t34 t56 = t42 ∗ t44 t77 = t61 ∗ t64 t98 = t13 + t17 t119 = t35 + t22 c13 = t126
t15 = a3 ∗ b4 t36 = a7 ∗ b8 t57 = t55 + t56 t78 = a0 + a6 t99 = t97 + t1 t120 = t46 + t117 c14 = t35
t16 = a4 ∗ b3 t37 = a8 ∗ b7 t58 = t42 ∗ t45 t79 = a1 + a7 t100 = t98 + t4 t121 = t49 + t118 c15 = t38
t17 = t15 + t16 t38 = t36 + t37 t59 = a0 + a3 t80 = a2 + a8 t101 = t22 + t9 t122 = t54 + t119 c16 = t39
t18 = a3 ∗ b5 t39 = a8 ∗ b8 t60 = a1 + a4 t81 = b0 + b6 t102 = t99 + t65 t123 = t95 + t120
t19 = a4 ∗ b4 t40 = a3 + a6 t61 = a2 + a5 t82 = b1 + b7 t103 = t100 + t68 t124 = t96 + t121
t20 = a5 ∗ b3 t41 = a4 + a7 t62 = b0 + b3 t83 = b2 + b8 t104 = t101 + t73 t125 = t57 + t115
t21 = t18 + t19 t42 = a5 + a8 t63 = b1 + b4 t84 = t78 ∗ t81 t105 = t25 + t27 t126 = t58 + t116
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For n = 15, A = ∑14
i=0 a[i]Xi , B = ∑14

i=0 a[i]Xi and
C = AB = ∑28

i=0 c[i]Xi . The coefficients of C are com-
puted using the following algorithm:

Algorithm for n = 15

t1 = a[0] ∗ b[0] t59 = a[14] ∗ b[12] t117 = t114 + t115 t175 = t174 + t173 t233 = t230 + t220 t291 = t276 + t288
t2 = a[0] ∗ b[1] t60 = t57 + t58 t118 = t117 + t116 t176 = t162 ∗ t166 t234 = t231 + t221 t292 = t277 + t289
t3 = a[1] ∗ b[0] t61 = t60 + t59 t119 = t105 ∗ t109 t177 = t163 ∗ t165 t235 = t232 + t222 t293 = t233 + t265
t4 = t2 + t3 t62 = a[13] ∗ b[14] t120 = t106 ∗ t108 t178 = t176 + t177 t236 = t226 + t218 t294 = t234 + t266
t5 = a[0] ∗ b[2] t63 = a[14] ∗ b[13] t121 = t119 + t120 t179 = t163 ∗ t166 t237 = t227 + t219 t295 = t235 + t61
t6 = a[1] ∗ b[1] t64 = t62 + t63 t122 = t106 ∗ t109 t180 = t123 + t66 t238 = t35 + t9 t296 = t284 + t293
t7 = a[2] ∗ b[0] t65 = a[14] ∗ b[14] t123 = a[12] + a[9] t181 = t124 + t67 t239 = t40 + t38 t297 = t285 + t294
t8 = t5 + t6 t66 = a[3] + a[0] t124 = a[13] + a[10] t182 = t125 + t68 t240 = t43 + t39 t298 = t286 + t295
t9 = t8 + t7 t67 = a[4] + a[1] t125 = a[14] + a[11] t183 = t126 + t69 t241 = t239 + t236 t299 = t178 + t186
t10 = a[1] ∗ b[2] t68 = a[5] + a[2] t126 = b[12] + b[9] t184 = t127 + t70 t242 = t240 + t237 t300 = t179 + t189
t11 = a[2] ∗ b[1] t69 = b[3] + b[0] t127 = b[13] + b[10] t185 = t128 + t71 t243 = t48 + t238 t301 = t296 + t299
t12 = t10 + t11 t70 = b[4] + b[1] t128 = b[14] + b[11] t186 = t180 ∗ t183 t244 = t53 + t241 t302 = t297 + t300
t13 = a[2] ∗ b[2] t71 = b[5] + b[2] t129 = t123 ∗ t126 t187 = t180 ∗ t184 t245 = t56 + t242 t303 = t298 + t194
t14 = a[3] ∗ b[3] t72 = t66 ∗ t69 t130 = t123 ∗ t127 t188 = t181 ∗ t183 t246 = t61 + t243 t304 = t1 + t244
t15 = a[3] ∗ b[4] t73 = t66 ∗ t70 t131 = t124 ∗ t126 t189 = t187 + t188 t247 = t110 + t102 t305 = t4 + t245
t16 = a[4] ∗ b[3] t74 = t67 ∗ t69 t132 = t130 + t131 t190 = t180 ∗ t185 t248 = t113 + t103 t306 = t9 + t246
t17 = t15 + t16 t75 = t73 + t74 t133 = t123 ∗ t128 t191 = t181 ∗ t184 t249 = t247 + t244 t307 = t64 + t304
t18 = a[3] ∗ b[5] t76 = t66 ∗ t71 t134 = t124 ∗ t127 t192 = t182 ∗ t183 t250 = t248 + t245 t308 = t65 + t305
t19 = a[4] ∗ b[4] t77 = t67 ∗ t70 t135 = t125 ∗ t126 t193 = t190 + t191 t251 = t118 + t246 t309 = t247 + t307
t20 = a[5] ∗ b[3] t78 = t68 ∗ t69 t136 = t133 + t134 t194 = t193 + t192 t252 = t186 + t148 t310 = t248 + t308
t21 = t18 + t19 t79 = t76 + t77 t137 = t136 + t135 t195 = t181 ∗ t185 t253 = t189 + t151 t311 = t118 + t306
t22 = t21 + t20 t80 = t79 + t78 t138 = t124 ∗ t128 t196 = t182 ∗ t184 t254 = t194 + t156 t312 = t178 + t309
t23 = a[4] ∗ b[5] t81 = t67 ∗ t71 t139 = t125 ∗ t127 t197 = t195 + t196 t255 = t252 + t205 t313 = t179 + t310
t24 = a[5] ∗ b[4] t82 = t68 ∗ t70 t140 = t125 ∗ t128 t198 = t182 ∗ t185 t256 = t253 + t208 t314 = t197 + t312
t25 = t23 + t24 t83 = t81 + t82 t141 = t138 + t139 t199 = t180 + a[6] t257 = t254 + t213 t315 = t198 + t313
t26 = a[5] ∗ b[5] t84 = t68 ∗ t71 t142 = a[9] + t85 t200 = t181 + a[7] t258 = t249 + t255 t316 = t216 + t314
t27 = a[6] ∗ b[6] t85 = a[6] + a[0] t143 = a[10] + t86 t201 = t182 + a[8] t259 = t250 + t256 t317 = t217 + t315
t28 = a[6] ∗ b[7] t86 = a[7] + a[1] t144 = a[11] + t87 t202 = t183 + b[6] t260 = t251 + t257 c0 = t1
t29 = a[7] ∗ b[6] t87 = a[8] + a[2] t145 = b[9] + t88 t203 = t184 + b[7] t261 = t53 + t51 c1 = t4
t30 = t28 + t29 t88 = b[6] + b[0] t146 = b[10] + t89 t204 = t185 + b[8] t262 = t56 + t52 c2 = t9
t31 = a[6] ∗ b[8] t89 = b[7] + b[1] t147 = b[11] + t90 t205 = t199 ∗ t202 t263 = t261 + t64 c3 = t223
t32 = a[7] ∗ b[7] t90 = b[8] + b[2] t148 = t142 ∗ t145 t206 = t199 ∗ t203 t264 = t262 + t65 c4 = t224
t33 = a[8] ∗ b[6] t91 = t85 ∗ t88 t149 = t142 ∗ t146 t207 = t200 ∗ t202 t265 = t263 + t141 c5 = t225
t34 = t31 + t32 t92 = t85 ∗ t89 t150 = t143 ∗ t145 t208 = t206 + t207 t266 = t264 + t140 c6 = t233
t35 = t34 + t33 t93 = t86 ∗ t88 t151 = t149 + t150 t209 = t199 ∗ t204 t267 = t263 + t239 c7 = t234
t36 = a[7] ∗ b[8] t94 = t92 + t93 t152 = t142 ∗ t147 t210 = t200 ∗ t203 t268 = t264 + t240 c8 = t235
t37 = a[8] ∗ b[7] t95 = t85 ∗ t90 t153 = t143 ∗ t146 t211 = t201 ∗ t202 t269 = t61 + t48 c9 = t258
t38 = t36 + t37 t96 = t86 ∗ t89 t154 = t144 ∗ t145 t212 = t209 + t210 t270 = t121 + t129 c10 = t259
t39 = a[8] ∗ b[8] t97 = t87 ∗ t88 t155 = t152 + t153 t213 = t212 + t211 t271 = t122 + t132 c11 = t260
t40 = a[9] ∗ b[9] t98 = t95 + t96 t156 = t155 + t154 t214 = t200 ∗ t204 t272 = t267 + t270 c12 = t290
t41 = a[9] ∗ b[10] t99 = t98 + t97 t157 = t143 ∗ t147 t215 = t201 ∗ t203 t273 = t268 + t271 c13 = 291
t42 = a[10] ∗ b[9] t100 = t86 ∗ t90 t158 = t144 ∗ t146 t216 = t214 + t215 t274 = t269 + t137 c14 = t292
t43 = t41 + t42 t101 = t87 ∗ t89 t159 = t157 + t158 t217 = t201 ∗ t204 t275 = t272 + t223 c15 = t301
t44 = a[9] ∗ b[11] t102 = t100 + t101 t160 = t144 ∗ t147 t218 = t12 + t1 t276 = t273 + t224 c16 = t302
t45 = a[10] ∗ b[10] t103 = t87 ∗ t90 t161 = t104 + a[3] t219 = t13 + t4 t277 = t274 + t225 c17 = t303
t46 = a[11] ∗ b[9] t104 = a[12] + a[6] t162 = t105 + a[4] t220 = t14 + t218 t278 = t159 + t167 c18 = t316
t47 = t44 + t45 t105 = a[13] + a[7] t163 = t106 + a[5] t221 = t17 + t219 t279 = t160 + t170 c19 = t317
t48 = t47 + t46 t106 = a[14] + a[8] t164 = t107 + b[3] t222 = t22 + t9 t280 = t205 + t216 c20 = t311
t49 = a[10] ∗ b[11] t107 = b[12] + b[6] t165 = t108 + b[4] t223 = t72 + t220 t281 = t208 + t217 c21 = t272
t50 = a[11] ∗ b[10] t108 = b[13] + b[7] t166 = t109 + b[5] t224 = t75 + t221 t282 = t148 + t197 c22 = t273
t51 = t49 + t50 t109 = b[14] + b[8] t167 = t161 ∗ t164 t225 = t80 + t222 t283 = t151 + t198 c23 = t274
t52 = a[11] ∗ b[11] t110 = t104 ∗ t107 t168 = t161 ∗ t165 t226 = t27 + t25 t284 = t278 + t280 c24 = t265
t53 = a[12] ∗ b[12] t111 = t104 ∗ t108 t169 = t162 ∗ t164 t227 = t30 + t26 t285 = t279 + t281 c25 = t266
t54 = a[12] ∗ b[13] t112 = t105 ∗ t107 t170 = t168 + t169 t228 = t91 + t83 t286 = t175 + t213 c26 = t61
t55 = a[13] ∗ b[12] t113 = t111 + t112 t171 = t161 ∗ t166 t229 = t94 + t84 t287 = t282 + t284 c27 = t64
t56 = t54 + t55 t114 = t104 ∗ t109 t172 = t162 ∗ t165 t230 = t228 + t226 t288 = t283 + t285 c28 = t65
t57 = a[12] ∗ b[14] t115 = t105 ∗ t108 t173 = t163 ∗ t164 t231 = t229 + t227 t289 = t156 + t286
t58 = a[13] ∗ b[13] t116 = t106 ∗ t107 t174 = t171 + t172 t232 = t99 + t35 t290 = t275 + t287
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