
J Cryptogr Eng (2015) 5:95–112
DOI 10.1007/s13389-015-0100-7

CHES 2014

Get your hands off my laptop: physical side-channel
key-extraction attacks on PCs
Extended version

Daniel Genkin1,2 · Itamar Pipman2 · Eran Tromer2

Received: 5 December 2014 / Accepted: 8 April 2015 / Published online: 6 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Wedemonstrate physical side-channel attacks on
a popular software implementation of RSA and ElGamal,
running on laptop computers. Our attacks use novel side
channels, based on the observation that the “ground” electric
potential, in many computers, fluctuates in a computation-
dependent way. An attacker can measure this signal by
touching exposed metal on the computer’s chassis with a
plain wire, or even with a bare hand. The signal can also be
measured on the ground shield at the remote end of Ether-
net, USB and display cables. Through suitable cryptanalysis
and signal processing, we have extracted 4096-bit RSA keys
and 3072-bit ElGamal keys from laptops, via each of these
channels, as well as via power analysis and electromagnetic
probing. Despite the GHz-scale clock rate of the laptops
and numerous noise sources, the full attacks require a few
seconds of measurements using Medium Frequency (MF)
signals (around 2 MHz), or one hour using Low Frequency
(LF) signals (up to 40 kHz).

Keywords Side channel attack · Power analysis · RSA ·
ElGamal

B Eran Tromer
em-jcen2eran@tromer.org; tromer@tau.ac.il

Daniel Genkin
danielg3@cs.technion.ac.il

Itamar Pipman
itamarpi@tau.ac.il

1 Technion, Haifa, Israel

2 Tel Aviv University, Tel Aviv, Israel

1 Introduction

1.1 Background

Side-channel attacks that exploit unintentional and
abstraction-defying information leakage from physical com-
puting devices have proven effective in breaking the secu-
rity of numerous cryptographic implementations [4,23,26].
However, most research attention has been focused on
small devices: smartcards, RFID tags, FPGAs, microcon-
trollers, and simple embedded devices. The “PC” class of
devices (commodity laptop/desktop/server computers) has
been studied from the perspective of side channels measured
by resident software (see [20] and subsequent works) and
from peripherals (e.g., [25]).

PCs, however, have received little academic attentionwith
regard to physical emanations from cryptographic compu-
tations, presumably due to three main barriers. First, PCs
have highly complicated system architecture and CPUmicro
architecture, with many noise sources and asynchronous
events. Fine low-level events are thus difficult to model and
measure. Second, most physical side-channel cryptanalysis
approaches require the leakage signal to be acquired at rates
well beyond the device’s clock rate; formulti-GHzCPUs, the
requisite equipment is expensive, and the signals are difficult
to probe. Finally, attack scenarios differ: the aforementioned
small devices are often deployed into potentially malicious
hands, where they could be subjected to lengthy or inva-
sive attacks; but for PCs, the typical scenario (short of theft)
is where a physical attacker gains physical proximity for a
restricted amount of time, and must operate surreptitiously.

Recently, a key extraction attack on PCs was demon-
strated using the acoustic side channel, addressing all three
barriers: using a chosen-ciphertext attack, the sound ema-
nations of interest are made very robust, brought down

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-015-0100-7&domain=pdf

96 J Cryptogr Eng (2015) 5:95–112

to very low frequencies (tens or hundreds of kHz), and
extended to long durations (hundreds of milliseconds), mak-
ing it possible to record the leakage surreptitiously and
non-invasively, by a cellphone microphone or from many
meters away [18].

We thus study the question: what other physical, non-
invasive, cryptanalytic side-channel attacks can be effec-
tively conducted on full-blown PC computers?

1.2 Our results

In this paper,1 we describe key extraction of 4096-bit RSA
and 3072-bit ElGamal keys from laptop computers of various
models. The attacked software implementation isGnuPG [2],
a popular open source implementation of the OpenPGP
standard [8]. The attacks exploit several side channels, enu-
merated below (along with examples of attack scenarios):

1. Chassis potentialWe identify a new side channel: fluctu-
ations of the electric potential on the chassis of laptop
computers, in reference to the mains earth ground.
This potential can be measured by a simple wire, non-
invasively touching a conductive part of the laptop, and
connected to a suitable amplifier and digitizer. (This,
essentially, creates a ground loop through the laptop
and measures its voltage.) The chassis potential, thus
measured, is affected by ongoing computation, and our
attacks exploit this for extractingRSAandElGamal keys,
within a few seconds.

Scenarios: The probe wire can be fixed in advance in a
location where the target laptop will be placed (e.g., a
cluttered desk), or put in contact with the laptop by a
passerby.

2. Far end of cable The chassis potential can also be
observed from afar, through any cable with a conductive
shield that is attached to an I/O port on the laptop. For
example, we demonstrated key recovery through a 10-
meter long Ethernet cable, by tapping the cable shield at
the remote Ethernet switch (see Fig. 13). Similar obser-
vations apply to USB, VGA, HDMI, etc. Since only the
shield potential is used, the attack is oblivious to the data
passing through the cable, and works even if the port is
disabled.

Scenarios: While many users are careful about con-
necting suspicious devices (such as USB sticks) to the
physical ports of their machines, they will routinely con-
nect VGAdisplay cables to their laptops. Likewise, users
often connect Ethernet cables to their laptop computers
when an adequate firewall is configured or when the envi-
ronment appears trustworthy. However, a simple voltage

1 A brief account of these results appeared in [18].

measurement device, perhaps located in the cabinet or
server room to which the cable leads, could be capturing
the leakage. This is hard to check, since Ethernet wiring
and projectors’ VGA cables are often hidden out of sight
and cannot easily be tracked.

3. Human touch Surprisingly, the requisite signal can be
measured, with sufficient fidelity, even through a human
body. An attacker merely needs to touch the target com-
puter with his bare hand, while his body potential is
measured.

Scenarios: The attacker positions himself in physical
proximity to the target laptop and, under some ruse,
touches it with his bare hand or a conducting pen (see
Fig. 14). Surreptitiously, the attacker carries the requisite
equipment for measuring his body potential relative to
some nearby grounded object. In the non-adaptive attack
(see below), a few seconds’ contact will suffice; in the
adaptive attack, 1 key bit can be extracted approximately
every 4 seconds of contact.
Note that the above attacks all rely on fluctuations in the
PC’s ground (relative to the mains earth ground). This
makes mitigation difficult: the usual method for prevent-
ing voltage fluctuations, using bypass capacitors to shunt
stray AC currents into the device ground, does not apply
to the device ground itself.
We also revisit two traditional physical side channels,
and demonstrate their applicability to software running
on PCs:

4. Electromagnetic (EM) We performed key extraction by
measuring the inducedEMemanations, using a near-field
probe placed near the laptop.

Scenarios: Electromagnetic probes are easily hidden in
nearby objects. A glove, containing a concealed probe
loop and hovering over the target laptop, would unveil its
key within seconds.

5. Power. Likewise, we extracted keys by measuring the
current draw on the laptop’s power supply. Our attack
works even though PCs use complex switching power
supplies, which partially decouple the power source from
the CPU load,2 and moreover employ large capacitors,
chokes, and shields for electromagnetic compatibility
(EMC) compliance—all of which attenuate and disrupt
the signals sought in traditional power analysis.

Scenarios: A public charging station can be easily aug-
mentedwith a currentmeter, logger, and transmitter. Even
a regular power supply “brick” can be similarly aug-
mented, and such laptop power supplies are often shared,
offered to guests, or left unattended.

2 In the realm of small devices, such similar decoupling has been pro-
posed as an intentional countermeasure against power analysis [35].

123

J Cryptogr Eng (2015) 5:95–112 97

Our attacks require very low bandwidth, well below the lap-
top CPU’s GHz-scale clock rate. We use two cryptanalytic
approaches, based on known techniques and adapted to the
target software:

Fast, non-adaptive Medium Frequency attack For both RSA
and ElGamal key extraction, we can exploit signals circa
2 MHz (medium frequency band), using the “n − 1” non-
adaptive chosen-ciphertext simple-power-analysis attack of
Yen et al. [39]. Key extraction then requires a few seconds
of measurements.

Slow, adaptive VLF/LF attack For RSA key extraction,
we can exploit signals of about 15–40 kHz (very low
frequency/low frequency bands), using the adaptive chosen-
ciphertext attack of [18]. Full 4096-bit RSA key extraction
then takes approximately 1 h, but is very robust to low signal-
to-noise ratio.

Our results require careful choice and tuning of the signal
acquisition equipment, to attain usable signal-to-noise ratio
in the presence of abundant noise, delicate grounding, and
impedance-matching considerations.We report these choices
in detail and describe the requisite signal processing.We also
analyze the code of GnuPG’s mathematical library, showing
why the specific chosen ciphertext creates exploitable, key-
dependent leakage in this implementation.3

1.3 Vulnerable software and hardware

Hardware We have tested various laptop computers, of dif-
ferent models, by various vendors. The signal quality varied
dramatically, as did the relative quality between channels,
the carrier frequencies of interest, the best placement of
the probes or human hand, and the optimal grounding con-
nection. Thus, manual calibration and experimentation were
required. Generally, instruction-dependent leakage occurs on
most laptops; key extraction is possible on many laptops, but
the requisite signal-to-noise is not always present. Heavily
used laptops appear to exhibit stronger information-bearing
signals.

GnuPG For this case study, we focused on GnuPG ver-
sion 1.4.15, running on Windows XP and compiled with the
MinGWGCC version 4.6.2. This version of GnuPG was the
most recent when our research was publicly announced. Fol-
lowing the practice of responsible disclosure,weworkedwith
the authors ofGnuPG to suggest several countermeasures and
verify their effectiveness against our attacks (including those
described in [18]; see discussion therein as well as CVE-

3 The combinations of side channel, attack technique, target algorithm,
and target computer are too numerous to exhaustively demonstrate and
discuss, especially due to the requisite analog and algorithmic tuning.
This paper summarizes dozens of successful key extraction configura-
tions.

2013-4576 [28]). GnuPG 1.4.16, released concurrently with
the public announcement of our results, contains these coun-
termeasures.4

Chosen ciphertext injection Our key extraction attacks
require chosen ciphertexts (either adaptive or non-adaptive,
depending on the attack). As observed in [18], one way to
remotely inject such ciphertexts into GnuPG is to send them
as a PGP/MIME-encoded e-mail [13], to be automatically
decrypted by the Enigmail [14] plugin for the Mozilla Thun-
derbird e-mail client. In the case of the non-adaptive attack,
the attacker can provide the chosen ciphertext files to the vic-
tim (by any means or guise), and merely needs to conduct
the measurement, for a few seconds, when those files are
decrypted.

1.4 Related work

Power analysis attacks were introduced byKocher et al. [22],
and applied to both symmetric and asymmetric ciphers,
implemented on hardware such as smartcards, microcon-
trollers andFPGAs (see [4,23,26] and the references therein).

Clark et al. [9] observed that is it possible to use power
analysis to identify, with high probability, the web pages
loaded by a web browser on the target machine, by tapping
the AC electrical outlet to which the target is connected.

Oren and Shamir [30] observed that the power line voltage
on USB ports exhibits a distinct signature when OpenSSL
RSAdecryption executes, evenwhen the port is disabled; this
property is shared by our “far end of cable” channel. Schmidt
et al. [34] observed leakage through voltage variations on the
I/O pins of embedded devices.

Basic multiplication instructions were shown to have
operand-specific leakage, in simulation [36] and embedded
devices [11] (though this was not demonstrated or exploited
on PCs).

The electromagnetic side channel has been studied and
exploited for smartcards andFPGAs (e.g., [3,16,33]), includ-
ing for RSA. More recently, Zajic and Prvulovic [40]
observed electromagnetic leakage from laptop and desktop
computers (but did not show cryptographic applications).
Timing attacks have been shown on software implemen-
tations of DSS, RSA, and ECDSA [6,7,24,37]. Cache
attacks [5,31,32] were applied to GnuPG’s RSA implemen-
tation [38].

1.5 Paper outline

The remainder of this paper is organized as follows. Section 2
establishes the presence of computation-dependent side-
channel leakage via fluctuations of computers’ chassis poten-

4 In a follow research [17], we present attacks against the sliding win-
dow method used by GnuPG 1.4.16 using the electromagnetic channel.

123

98 J Cryptogr Eng (2015) 5:95–112

Fig. 1 Frequency spectrogram
of the chassis potential, while
running different CPU
operations using a Lenovo 3000
N200 laptop. The horizontal
axis is frequency (2–2.3 MHz),
the vertical axis is time (10 s),
and intensity is proportional to
the instantaneous energy in that
frequency band

(a) (b) (c) (d)

Fig. 2 Chassis measurements of various target computers performing MUL, HLT and MEM in this order. Note that the three operations can be
distinguished on all machines. a Dell Latitude E6400, b Gateway W340UA, c Lenovo ThinkPad T61, d HP HDX 18

tial. Section 3 presents and analyzes the fast, non-adaptive
MF attack. Section 4 recalls the slow, adaptive VLF/LF
attack. Section 5 reports experimental key-extraction results,
using both attacks, applied to the five aforementioned chan-
nels. Section 6 concludes and discusses countermeasures.

2 Computation-dependent chassis-potential
leakage

The electric potential on a laptop computer’s chassis (metal
panels, shields and ports) is ideally equal to that of the mains
earth groundpotential, but in reality it fluctuates greatly. Even
when the laptop is grounded (via its power supply connector
or via shielded cables such as Ethernet, USB, VGAor audio),
there is non-negligible impedance between the grounding
point(s) and other points in the chassis. Voltage, often 10 mV
RMS or more,5 develops across this impedance, in part due
to currents and electromagnetic fields inside the computer.
Since the latter depend on the ongoing computation, a natural
question is whether information about the ongoing compu-
tation can be learned by measuring the chassis potential.

In this section, we observe elementary correlations
between the chassis potential (observed in various ways) and

5 After filtering out the strong, but cryptanalytically useless, compo-
nents at 50 Hz or 60 Hz.

the operations performed by the target machine. These oper-
ations include individual CPU operations, as well as various
public key operations such as decryption and signing. We
show that it is possible for an attacker to obtain information
about the operations executed by the target machine, as well
as some information about the secret keys. Later (Sect. 5), we
discuss the hardware setup in detail, describe additional leak-
age channels, and show that each of these channels can be
used for key-extraction attacks on GnuPG’s implementation
of RSA and ElGamal.

2.1 Code-dependent leakage

We first demonstrate leakage of information about which
instructions are executed by the CPU of the target computer.
As in [18], we let the target computer run a simple program
that executes (partially unrolled) loops containing one of the
following x86 instructions: HLT (CPU sleep), MUL (integer
multiplication),FMUL (floating-pointmultiplication), mem-
ory access (forcing L1 and L2 cache misses, so they reach
DRAM), and REP NOP (short-term idle). Figure 1 shows
a recording of one target computer’s chassis potential, while
this program is running; different types of operations can be
easily distinguished.

Leakage on other machine models is demonstrated in
Fig. 2. Moreover, similar effects can be observed by mea-

123

J Cryptogr Eng (2015) 5:95–112 99

Fig. 3 Frequency spectrogram
(1.1 s, 2–2.3 MHz) of a
recording of different CPU
operations obtained while
measuring the attacker’s body
potential while touching an
exposed part of the chassis of a
Lenovo 3000 N200 laptop

Fig. 4 Chassis measurement (1.7 s, 1.9–2.6 MHz) of four GnuPG RSA signatures executed on a Lenovo 3000 N200. The transitions between p
and q are marked with yellow arrows (color figure online)

suring EM emanations or by touching the laptop’s chassis
and measuring the attacker’s body potential (see Fig. 3).

2.2 GnuPG key distinguishability

The leakage via chassis potential and electromagnetic ema-
nations is also applicable to cryptographic code. In this
section,we showavery simple (yet already troubling) formof
leaked information: determining which of several randomly
generated secret keys was used by the target machine, for a
signing or decryption operation. For brevity, in the remain-
der of this sectionwediscuss chassis potentialmeasurements;

similar effects are also present when using the EM side chan-
nel. Our evaluation follows the methodology of [18].

Distinguishing RSA secret keys Figure 4 depicts the spectro-
gram of four GnuPGRSA signing operations, using different
4096-bit randomkeys, on afixedmessage. Each signingoper-
ation is preceded by a short CPU sleep (for visual separation).

The different signing keys can be clearly distinguished by
their subtly different spectral signatures (which may itself be
of practical interest). Another telling detail is visible: halfway
through each signing operation, a transition appears at several
frequency bands (marked with yellow arrows). This tran-
sition corresponds to the transition between exponentiation

123

100 J Cryptogr Eng (2015) 5:95–112

Fig. 5 Chassis measurement
(0.20 s, 0–20 kHz) of four
ElGamal decryptions using the
same message and randomly
generated 3072-bit keys, on a
Lenovo ThinkPad T61

modulo the secret p to exponentiation modulo the secret q,
in the RSA decryption implementation of GnuPG, which is
based on theChineseRemainder Theorem.We can thus spec-
trally observe internal, secret-dependent information within
the signing operation.

ElGamal key distinguishability Another popular public key
encryption scheme is ElGamal encryption [12]. Recall that in
ElGamal encryption, the key generation algorithmconsists of
generating a large prime p, a generator α of Z∗

p, and a secret
exponent a ∈ Z

∗
p. The public key is pk = (p, α, αa) and the

secret key is sk = a. Encryption of a message m outputs a
pair (γ, δ), where γ = αk mod p and δ = m · (αa)k mod p
for random k. Decryption of (γ, δ) outputs γ −a · δ mod p.
Figure 5 presents a recording of four ElGamal decryptions,
using a fixed message m and randomly generated keys with
3072-bit primes p. As in the RSA case, the four decryptions
are clearly visible, and the four different keys can be easily
distinguished.

3 Non-adaptive attack

We proceed to describe our cryptanalytic attack techniques
(whose applicability will be shown in Sect. 5). The first
technique is a non-adaptive chosen ciphertext attack using
very few traces, following the simple power analysis of RSA
(see [15,19,22,27,29,39], the surveys [4,23,26], and the
references therein). We begin by reviewing the high-level
modular exponentiation algorithm in GnuPG (Sect. 3.1),
describe our attack (Sect. 3.2) exploiting this algorithm, and
then analyze its success by recalling the inner squaring rou-
tines used by GnuPG (Sect. 3.3) and their behavior under the
attack (Sect. 3.4).

3.1 GnuPG’s modular exponentiation routine

To perform arithmetic on the large integers occurring in RSA
and ElGamal, GnuPG uses an internal mathematical library
called MPI (based on GMP [1]). MPI stores large integers

Algorithm 1GnuPG’smodular exponentiation (see function
mpi_powm in mpi/mpi-pow.c).
Input: Three integers a, b and p in binary representation such that

b = b1 · · · bn .
Output: m ≡ ab (mod p).
1: procedure modular_exponentiation(a, b, p)
2: if size_in_limbs(a) > size_in_limbs(p) then
3: a ← a mod p

4: m ← 1
5: for i ← 1 to n do
6: m ← m2 mod p

� Karatsuba or grade-school squaring
7: t ← m · a mod p

� Karatsuba or grade-school multiplication
8: if bi = 1 then
9: m ← t
10: return m
11: end procedure

as arrays of limbs, i.e., 32-bit words (on the x86 architecture
used in our tests).

We now review the modular exponentiation routine of
GnuPG (as introduced in GnuPG v1.4.14), which is used for
both RSA and ElGamal. GnuPG uses a variant of the square-
and-multiply modular exponentiation algorithm, processing
the bits of the exponent from the most significant bit to the
least significant one. To mitigate a cache side-channel attack
of [38],GnuPGnowalways performs themultiplication oper-
ation in every loop iteration regardless of the exponent’s bits
(but only uses the result as needed). The pseudocode is given
in Algorithm 1. The operation size_in_limbs(x) returns the
number of limbs in the t-bit number x , namely �t/32�.
This top-level exponentiation routine suffices for the high-
level description of our attack. For details about GnuPG’s
underlying squaring routines, necessary for understanding
the attack’s success, see Sects. 3.3 and 3.4.

3.2 The attack algorithm

Since GnuPG 1.4.15 attempts to avoid correlation between
the bits of the exponent and high-level operations (such as

123

J Cryptogr Eng (2015) 5:95–112 101

multiplication), we use a chosen ciphertext attack to create
correlations between these bits and intermediate values com-
puted inside the low-level operations inside GnuPG’s modu-
lar exponentiation routine. Moreover, the chosen ciphertext
will have an amplification effect, whereby numerous recur-
sive calls will be similarly affected, resulting in a distinct
leakage signal over a long time period. This is the key for
successfully conducting a MHz-scale attack on a GHz-scale
computation.

The technique of Yen et al. [39] is particularly suitable.
In the case of both RSA-CRT and ElGamal, it chooses a
ciphertext c such that a ≡ −1 (mod p) during the execution
modular_exponentiation (Algorithm 1) above. Within
GnuPG, this ciphertext creates a correlation between the bits
of the secret exponent b and the number of zero limbs of m,
as described next. As we analyzed in Sects. 3.3 and 3.4, the
number of zero limbs inside m drastically affects the control
flow inside the GnuPG basic squaring routine,thus creating
discernible differences in the physical leakage.

Note that, for a ≡ −1 (mod p), the value ofm during the
execution of modular_exponentiation is always either 1
or −1 modulo p. Thus, the value of m in line 7 does not
depend on the bits of b, and is always 1 modulo p (since
−12 ≡ 12 ≡ 1 (mod p)). Consequently, the following cor-
relation holds between the value of m at the start of the i th
iteration of the loop in line 5 and bi−1.

– bi−1 = 0. In this case, the branch on line 8 was not
taken; thus, the value of m at the start of the i th iteration
of the loop in line 5 is also m = 1 mod p = 1. Next,
since GnuPG’s internal representation does not truncate
leading zeros, it holds that the value m sent to the squar-
ing routine during the i-th iteration contains many zero
limbs.

– bi−1 = 1. In this case, the branch on line 8 was taken, so
the value of m at the start of the i th iteration of the loop
in line 5 ism = −1 mod p = p−1. Since p is a random
large prime, the value m sent to the squaring routine
during the i th iteration contains very few zero limbs.

Wenowproceed to describe the specific ciphertext choices
required for our attack for both the RSA and ElGamal case.
Ciphertext choice forRSA-CRTRecall that in the case ofRSA
decryption, GnuPG first computes cd mod (p−1) mod p and
cd mod (q−1) mod q, and then combines these via the Chinese
Remainder Theorem. By choosing c = n − 1 where n = pq
is the public RSAmodulus, the modular reduction in line 3 is
always triggered, causing the value of a in line 5 to be p− 1
(i.e., −1 modulo p as desired).

Ciphertext choice for ElGamal For ElGamal encryption, the
prime modulus p is part of the public key, so we directly
choose the ciphertext to be p − 1.

Algorithm 2 GnuPG’s basic squaring code (see function
sqr_n_basecase in mpi/mpih-mul.c).
Input: A number a = ak · · · a1 of size k.
Output: a2.
1: procedure sqr_basecase(a)
2: if a1 ≤ 1 then
3: if a1 = 1 then
4: p ← a
5: else � ai = 0
6: p ← 0
7: else
8: p ← mul_by_single_limb(a, a1) � p ← a · a1
9: for i ← 2 to n do
10: if ai ≤ 1 then
11: if ai = 1 then � (and if ai = 0 do nothing)
12: p ← add_with_offset(p, a, i)

� p ← p + a · 232·i
13: else
14: p ← mul_and_add_with_offset(p, a, ai , i)

� p ← p + a · ai · 232·i
15: return p
16: end procedure

3.3 GnuPG’s squaring routine

GnuPG’s large-integer squaring routine combines two squar-
ing algorithms: a basic quadratic-complexity squaring rou-
tine, and a variant based on a recursive Karatsuba multiplica-
tion algorithm [21]. The chosen combination of algorithms is
based on the size of the operands, measured in whole limbs.
We will first discuss the basic squaring algorithm and its
key-dependent behavior, and then show how this behavior is
preserved by the Karatsuba squaring.
GnuPG’s basic squaring routine The core side-channel
weakness we exploit in GnuPG’s code lies inside the basic
squaring routine. The basic squaring routine used by GnuPG
is a simple, quadratic-complexity “grade school” squaring,
with optimizations for multiplication by limbs equal to 0 or
1, depicted in Algorithm 2.

Note how sqr_basecase handles zero limbs of a. In par-
ticular, when a zero limb of a is encountered, none of the
operations mul_by_single_limb, add_with_offset and
mul_and_add_with_offset are performed and the loop
in line 9 continues to the next limb of a. Our attack exploits
this, by causing the number of such zero limbs to depend
on the current bit of the secret exponent, thus affecting the
control flow in lines 3 and 11, and thereby the side-channel
emanations.
GnuPG’s Karatsuba squaring routine The basic squaring
routine described above is invoked via two code paths:
directly by the modular exponentiation routine (Sect. 3.1)
when the operand is small, and also as the base-case by
the Karatsuba squaring routine. The latter is a variant of the
Karatsuba multiplication algorithm [21], relying on the iden-
tity:

123

102 J Cryptogr Eng (2015) 5:95–112

a2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22n + 2n)a2H − 2n(aH − aL)2

+(2n + 1)a2L if aH > aL

(22n + 2n)a2H − 2n(aL − aH)2

+(2n + 1)a2L otherwise

(1)

where aH, aL are the most and least significant halves of a,
respectively.

3.4 Attack analysis

In this section, we analyze the effects of our attack on
sqr_basecase (Algorithm 2). Recall that in Sect. 3.2, we
created a correlation between the i th bit of the secret expo-
nent bi and the number of zero limbs in the operandm of the
squaring routine during iteration i + 1 of the main loop of
the modular exponentiation routine. Concretely, for the case
where bi = 1, we have that m = −1 mod p = p − 1 is
a random-looking number containing several thousand bits
(2048 bits for the case of RSA and 3072 bits for the case of
ElGamal). Conversely, for the case where bi = 0, we have
that m = 1 mod p = 1 and, since GnuPG does not truncate
leading zeros, the representation ofm is a large number (2048
bits for the case of RSA and 3072 bits for ElGamal), all of
whose limbs are 0 (except for the least significant).

The code of GnuPG passes m directly to the Karatsuba
squaring routine. Notice that for the case where bi = 1,

since m is a random-looking number, this property of m will
be preserved in all three recursive calls (computing the three
squaring operations in Eq. 1). Similarly, for the case of bi =
0, we have that m = 1, meaning mH = 0 and mL = 1.
Thus, the second case of Eq. 1 will always be taken, again
preserving the structure ofm as having mostly zero limbs, in
all three recursive calls.

When reaching the recursion’s base case, we have the fol-
lowing dependence on bi . If bi = 0, then the values of the
operand of sqr_basecase during iteration i +1 of the main
loop of modular_exponentiation (in all branches of the
recursion) will have almost all of their limbs equal to zero.
Conversely, if bi = 1, then the values of the operand of
sqr_basecase during iteration i + 1 of the main loop of
modular_exponentiation in all branches of the recursion
will be random-looking. Thus, by (indirectly) measuring the
instructions executed by sqr_basecase, we shall deduce the
number of zero limbs in its operand and deduce bi .

Confirming this, Fig. 6 presents the number of zero limbs
in the operand of sqr_basecase during each iteration of
the main loop of the modular exponentiation routine using
our chosen ciphertext and five randomly generated keys. The
values of the first 50 bits of the exponent are clearly visible
(many zero limbs during the i th iteration implies that the
i − 1th bit of the secret exponent is 0).

Next, recall the effect of zero limbs in the operand on
the code of sqr_basecase. Note that the control flow in

 0
 50

 100
 150
 200

2046
2045

2044
2043

2042
2041

2040
2039

2038
2037

2036
2035

2034
2033

2032
2031

2030
2029

2028
2027

2026
2025

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

2014
2013

2012
2011

2010
2009

2008
2007

2006
2005

2004
2003

2002
2001

2000
1999

1998
1997

Key 1

 0
 50

 100
 150
 200

2046
2045

2044
2043

2042
2041

2040
2039

2038
2037

2036
2035

2034
2033

2032
2031

2030
2029

2028
2027

2026
2025

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

2014
2013

2012
2011

2010
2009

2008
2007

2006
2005

2004
2003

2002
2001

2000
1999

1998
1997

Key 2

 0
 50

 100
 150
 200

2046
2045

2044
2043

2042
2041

2040
2039

2038
2037

2036
2035

2034
2033

2032
2031

2030
2029

2028
2027

2026
2025

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

2014
2013

2012
2011

2010
2009

2008
2007

2006
2005

2004
2003

2002
2001

2000
1999

1998
1997

Key 3

 0
 50

 100
 150
 200

2046
2045

2044
2043

2042
2041

2040
2039

2038
2037

2036
2035

2034
2033

2032
2031

2030
2029

2028
2027

2026
2025

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

2014
2013

2012
2011

2010
2009

2008
2007

2006
2005

2004
2003

2002
2001

2000
1999

1998
1997

Key 4

 0
 50

 100
 150
 200

2046
2045

2044
2043

2042
2041

2040
2039

2038
2037

2036
2035

2034
2033

2032
2031

2030
2029

2028
2027

2026
2025

2024
2023

2022
2021

2020
2019

2018
2017

2016
2015

2014
2013

2012
2011

2010
2009

2008
2007

2006
2005

2004
2003

2002
2001

2000
1999

1998
1997

Key 5

Fig. 6 Number of zero limbs in the operand of sqr_basecase(a)
during an execution of the modular exponentiation routine, using our
attack and randomly generated keys. Whenever the i − 1th bit of the

secret exponent is 0, there are 189 zero limbs during the squaring; oth-
erwise, there are none

123

J Cryptogr Eng (2015) 5:95–112 103

sqr_basecase depends on the number of non-zero limbs
in its operand. The drastic change in the number of zero
limbs in the operand of sqr_basecase is detectable by
our side-channel measurements. Thus, we are able to leak
the bits of the secret exponent by creating the correla-
tion between its bits and the number of zero limbs in the
operand of sqr_basecase, using our carefully chosen cipher
text.

4 Adaptive attack

Our other cryptanalytic technique is an adaptive chosen-
ciphertext side-channel attack, which extracts, bit by bit, the
prime modulus used during the CRT-based RSA modular
exponentiation routine. Our attack onGnuPGwas introduced
in [18] (following [7]) for the GnuPG acoustic side channel.
For self-containment, we give an overview here. (This attack
is not applicable to ElGamal, where the prime modulus p
is public.) The attack recovers the bits of p = p1 . . . pk
iteratively, starting with the MSB p1. Once we learn all of
p, we know the factorization of n. Moreover, after recov-
ering just the top half of the bits of p, it is possible to
use Coppersmith’s attack [10] to recover the remaining
bits.

Ciphertext choice for RSA In GnuPG, the MSB is always
set, i.e., pk = 1. Assume that we have already recovered the
topmost i − 1 bits of p. To extract the next bit pi , we check
the two hypotheses about its value, by requesting decryption
of an adaptively chosen ciphertext gi,0 + n, where gi,0 =
p1 · · · pi−110 · · · 0 (k bits in total). Let n = pq be the public
RSAmodulus. Consider the RSA decryption of gi,0+n. Two
cases are possible, depending on pi .

– pi = 1. Then, gi,0 < p. The ciphertext gi,0 + n is
passed as the variable a to Algorithm 1. Since n = pg
is the product of two equal-sized primes, gi,0 + n has a
larger limb count than p. This triggers themodular reduc-
tion of a in line 3 of Algorithm 1, which returns gi,0,
resulting in a being a k-bit number having mostly zero
limbs. Next, a is passed to the multiplication routine in
line 5.

– pi = 0. Then, p < gi,0 and as in the previous case, gi,0+
n is passed as the variable a to Algorithm 1 triggering the
modular reduction of a in line 3. Since gi,0 and p share
the same topmost i − 1 bits, we have that gi,0 < 2p, and
the reduction results in a = gi,0 − q, which is a (k − i)-
bit random-looking number. This is then passed to the
multiplication routine in line 5.

Code analysis We now present a high-level analysis of how
our bit-by-bit chosen ciphertext attack affects the code of
GnuPG. Using the above-described ciphertexts, the second

operand of themultiplication routine during the entire execu-
tion of the main loop of the modular exponentiation routine
will be either full-size and repetitive or shorter and random-
looking (depending on the value of pi).6

GnuPG’s uses two algorithms for large integer multi-
plication: the Karatsuba-based multiplication algorithm and
the grade-school (quadratic-time) multiplication algorithm.
GnuPG’s variant of Karatsuba recursive multiplication relies
on the identity ab = (22n + 2n)aHbH + 2n(aH − aL)(bL −
bH) + (2n + 1)aLbL, where aH, bH are the most significant
halves of a and b, respectively, and aL, bL are the least sig-
nificant halves of a and b, respectively. We thus see that
GnuPG’s Karatsuba multiplication preserves the structure
of a as being either random looking or containing many
zero limbs. That is, if a is random looking, then aHbH,
(aH − aL)(bL − bH) and aLbL are random-looking as well.
Conversely, if a contains mostly zero limbs, the values of
aHbH, (aH −aL)(bL −bH) and aLbL also contain mostly zero
limbs.

Next, when the recursion reaches its base case (whenmul-
tiplying numbers of 15 limbs or less), GnuPG passes a to the
basic multiplication routine. GnuPG’s basic multiplication
routine is implemented similarly to Algorithm 2. In particu-
lar, it includes optimizations for zero limbs similar to lines 3
and 11 of Algorithm 2. Thus, we are able to leak the bits of
p, one bit at a time, by creating a correlation between the
current bit of p and the number of zero limbs in the second
operand of GnuPG’s basic multiplication routine using our
chosen ciphertexts.

Confirming this, Fig. 7 shows the number of zero limbs in
the second operand of GnuPG’s basic multiplication routine
during an execution of the modular exponentiation routine
using our carefully chosen cipher texts and five randomly
generated 4096-bit keys. The values of the first 100 bits of p
are clearly visible (many zero limbs imply that the respective
bit is 1).

The above is a high-level description of the adaptive
attack. To achieve full RSA key extraction, improvements
are required for the basic attack algorithm. See [18] for
details.

5 Empirical key-extraction results

In this section, we discuss our empirical results for the
various side channels. For each channel, we review the
empirical setup and describe successful key extraction
experiments.

6 Recent GnuPG implementations use the side-channel mitigation
technique of always multiplying the intermediate results by the
input; but this helps our attack, since it doubles the number of
multiplications.

123

104 J Cryptogr Eng (2015) 5:95–112

 0
 50000

 100000
 150000
 200000
 250000
 300000

1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1

Key 1

 0
 50000

 100000
 150000
 200000
 250000
 300000

1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0

Key 2

 0
 50000

 100000
 150000
 200000
 250000
 300000

1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1

Key 3

 0
 50000

 100000
 150000
 200000
 250000
 300000

1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1

Key 4

 0
 50000

 100000
 150000
 200000
 250000
 300000

1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0

Key 5

Fig. 7 Number of zero limbs in the second operand of mul_basecase(a, b) during an execution of the modular exponentiation routine with the
secret prime p using our attack and randomly generated keys. The correct bit values are indicated on the horizontal axis of each key

5.1 Chassis-potential attack

5.1.1 Setup

As discussed in Sect. 2, there are computation-dependent
fluctuations of the electric potential on the chassis of laptop
computers.Wemeasured the electric potential of the laptop’s
chassis by touching itwith the simplest possible probe: a plain
wire, 80 cm long. The wire is pressed against the chassis by
hand, or (for longer attacks) using an alligator clip. Thewire’s
potential is then measured through an amplifier, filters, and
a digitizer (whose choice, discussed below, depends on the
attack). See Fig. 8.
Grounding The attack measures the voltage between the
room’s mains earth ground potential and the target com-
puter’s chassis potential. Put otherwise, we create a ground
loop which includes both the laptop chassis and the ampli-
fier, and thenmeasure the voltage across the amplifier’s input
impedance (and thus its complement: the voltage across the
laptop chassis).

Thus, correct grounding is essential for maximizing the
signal-to-noise ratio. The measurement is done in single-
endedmode, in reference to themains earth ground potential,
using low-impedance ground connection to the amplifier and

Fig. 8 Chassis-potential attack. The chassis potential is measured via
the red wire is connected to the laptop’s heatsink fins (color figure
online)

digitizer. The target laptop is grounded through one of its
shielded I/O ports (we used a VGA cable to a grounded

123

J Cryptogr Eng (2015) 5:95–112 105

Fig. 9 Chassis measurement
(2.5 s, 1.9–2.6 MHz) of seven
GnuPG RSA decryptions
executed on a Lenovo 3000
N200 laptop. In the first 6 cases,
exponents (dp and dq) are both
overridden to be the 2048-bit
number obtained by repeating
the pattern written to the right.
In the last case, the exponent is
unaltered. In all cases, the
moduli p and q are the same and
the ciphertext is set to n − 1

screen, or aUSBcable to a grounded printer). If the target lap-
top’s grounding is removed, but the laptop is still connected
to a 3-prong (grounded) AC-DC power supply, the signal-to-
noise ratio typically degrades.7 With a 2-prong (ungrounded)
power supply and no other ground connections, the signal-
to-noise ratio is very low and our attacks do not work.

Chassis probe placement The chassis of modern laptops,
while made mostly of metal (for EMI shielding), is typi-
cally covered with non-conductive plastic. However, many
IO ports, such as USB, Ethernet, VGA, DisplayPort and
HDMI, typically have metal shielding which is connected
to the chassis or PCB ground, and thus can be probed by the
attacker. Also, metal heatsink fins are often easily reachable
through the exhaust fan grill. Heuristically, the best results
are achieved when the chassis is probed close to the CPU
and its associated voltage regulator circuitry (similarly to the
source of acoustic emanations [18]) and far from the laptop’s
earth ground connection.

Chassis potential or EM? To ascertain that we were indeed
measuring chassis potential rather than stray electromagnetic
fields, we broke the direct galvanic connection between the
probe wire and the laptop’s chassis, by inserting a sheet of
paper in-between. As expected, this resulted in severe signal
attenuation.

5.1.2 Non-adaptive chassis-potential attack

MF measurement equipment The non-adaptive attack
exploits signals in the Medium Frequency (MF) frequency
band, on the order of 2 MHz. To measure these signals,
we connected the probe wire to a 16 kHz high-pass fil-
ter, followed by a high-input-impedance low-noise amplifier
(Femto HVA-200M-40-F, 40dB gain). The amplified signal

7 3-prong laptop AC-DC power supplies typically do not have a low-
resistance path between the grounding prong and the DC power plug.

was then low-pass filtered at 5 MHz and digitized at 12 bits
and 10Msample/s (National Instruments PCI 6115).

Exponent-dependent leakageRSA and ElGamal decryptions
both use modular exponentiation of the ciphertext to the
power of a secret exponent. We now examine how different
exponents affect the chassis leakage. Figure 9 demonstrates
seven RSA signing operations using different secret expo-
nents. The different exponents can be easily distinguished.
Similar results are observed for ElGamal decryption, though
the exponentiation is shorter and thus its frequency spectrum
can be characterized less accurately.

Analyzing the signal The signals presented in Fig. 9 provide
the first indication as to how the different exponents might
be distinguished. For periodic exponents, the leakage signal
spectrum takes the form of small, distinct side lobes centered
around a dominant frequency peak. This indicates that the
bits of the exponents manifest themselves as modulations on
a central sinusoidal carrier wave. Further analysis reveals that
the carrier is frequency modulated, meaning that its instan-
taneous frequency changes slightly in accordance with the
current bit of the exponent. Thus, to recover these bits, we
obtain the dominant instantaneous frequency as a function of
time, by applying FM demodulation digitally. The signal is
first filtered using a 30 kHz band-pass filter centered at the
carrier frequency.Next, the signal is demodulated using a dis-
creteHilbert transform.Additional filtering is thenperformed
on the demodulated signal, to suppress high-frequency noise
and to compensate for a slow frequency drift of the carrier
wave. Figure 10 shows an example of a fully demodulated
leakage signal; the correlation with the secret key bits can
clearly be seen.

Key extraction Theoretically, it should be possible to extract
the entire secret key from a single demodulated trace,
provided the measurement is robust and has a high signal-
to-noise ratio. However, we observed a periodic interrupt
(marked in Fig. 10), which disrupted the key extraction. The

123

106 J Cryptogr Eng (2015) 5:95–112

Fig. 10 Frequency
demodulation of a segment of
the leakage signal obtained
during a decryption operation
using a randomly generated
4096-bit RSA key. Note the
correlation between the signal
and the secret key bits

Fig. 11 Frequency
demodulation of the leakage
signal during a decryption
operation using a randomly
generated 4096-bit RSA key.
The interrupts, occurring every
15 ms, are marked by green
arrows (color figure online)

interrupt manifests as a large frequency fluctuation in the car-
rier every 15 ms (Fig. 11), corresponding to the 64 Hz timer
interrupt frequency on the target laptop. These interrupts sys-
tematically occur at the same time during the decryption
process (when decryption is deterministically synchronized
to the OS scheduler), and thus disrupt similar bit offsets in
repeated decryptions. Fortunately, the inherent jitter is suf-
ficient so that, over a few measurements, every bit is (with
high probability) undisturbed in some sample.

On the other hand, jitter creates a difficulty in aligning the
multiple traces. We thus break each trace, post-modulation,
into multiple time segments. The segments are then aligned
via correlation, and averaged. Large amplitude fluctuations
caused by interrupts are discarded during this process, and
thus do not contribute to the averaging. This results in an
interrupt-free aggregate trace, with very high SNR. The bits
are then extracted using a peak detection algorithm. Each
peak in the averaged signal represents a logical “1” in the

key, while the logical zeroes are determined by the distance
between peaks.

Non-adaptive RSA key extractionApplying our non-adaptive
attack on a randomly generated 4096-bit RSAkeywhilemea-
suring the chassis potential of a Lenovo 3000 N200 laptop
during 6 decryption operations, each lasting 0.35 s, we have
directly extracted 2044 out of 2048 bits of dp thereby extract-
ing the key.8 The laptop was powered by a 3-prong AC-DC
power supply (Lenovo, 90W,model 42T4428), without addi-
tional connections.

Non-adaptive ElGamal key extraction Attacking the expo-
nentiation in ElGamal decryption, and applying similar
cryptanalytic and signal analysis, we extracted all but 2 of
the bits of the secret exponent from a randomly generated

8 The first few bits of p are harder to measure, due to stabilization
time.

123

J Cryptogr Eng (2015) 5:95–112 107

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 25 26 27 28 29 30 31 32

P
ow

er
 D

en
si

ty
 (

nV
2 /H

z)

Frequency (kHz)

Attacked bit is 1
Attacked bit is 0

(c)

Fig. 12 Chassis measurement of RSA decryption for various values of the attacked bit executed on a Lenovo ThinkPad T60. a Attacked bit is
qi = 0, b attacked bit is qi = 1, c frequency spectra of the second modular exponentiation

3072-bit ElGamal key by measuring the chassis potential of
a Lenovo 3000 N200 laptop during 9 decryption operations,
each lasting 0.1 s.

5.1.3 Adaptive chassis-potential attack

We now discuss results obtained using the adaptive attack
described in Sect. 4. While this attack requires more decryp-
tion operations to recover the key, it utilizes lower frequency
signals and requires much lower signal-to-noise ratio com-
pared to the non-adaptive attack.

VLF/LF measurement equipment The adaptive attack can
exploit very low bandwidth signals, in the VLF and LF fre-
quency bands: in the order of 15–40 kHz (depending on
the laptop model). To measure these signals, we used a
more compact, higher dynamic range, measurement chain.
The probe was directly connected to a high-input-impedance
low-noise amplifier (customized Brüel&Kjær 5935, usually
set to 40dB gain). The amplified signal was high-pass fil-
tered at 10 kHz, and digitized at 16 bits and 200Ksample/s
(National InstrumentsMyDAQ).Grounding andprobeplace-
ment considerations are the same as for the non-adaptive
attack.

Analyzing the leakage signalRecall that GnuPG’s RSA code
performs modular exponentiation modulo p followed by a
modular exponentiation modulo q. Figure 12a shows a typ-
ical recording of RSA decryption when the value of the
attacked bit of q is 0, and Fig. 12b shows a recording of

RSA decryption when the value of the attacked bit of q is
1.9 Several effects are shown in the figures. As in Fig. 4, the
transition between p and q is clearly visible in Fig. 12a, b.
Note, then, that the signatures of the modular exponentia-
tion using the prime q (the second exponentiation) are quite
different in Fig. 12a vs. b. This can be seen more clearly
in Fig. 12c, which summarizes the aforementioned spectral
signatures by taking the median, over time, for each. This
clear difference is used to extract the bits of q, as explained
in Sect. 4.

AdaptiveRSAkey extractionByconnecting theVLF/LFmea-
surement setup to a Lenovo ThinkPad T60, powered by the
3-prong AC-DC power supply without additional connec-
tions,10 we directly extracted the 1024 most significant bits
of the secret prime q of a randomly generated 4096-bit RSA
key in approximately 1 hour. By Coppersmith’s technique,
this results in full key extraction. (Alternately, it is possible
to continue the attack and recover all the bits of q directly.)

5.2 “Far end of cable” attack

The electric potential on a laptop’s chassis and external ports
can bemeasured from far away.When a cable is plugged into

9 Here, we attack the exponentiation modulo q, to avoid stabilization
effects in the first exponentiation, modulo p.
10 Grounding the laptop to mains earth, via some port, would improve
the signal quality (see Sect. 5.1.1); but the adaptive attack is sufficiently
robust to not require this.

123

108 J Cryptogr Eng (2015) 5:95–112

Fig. 13 “Far end of cable” attacks. aMeasuring shield potential at the
far side of an Ethernet cable (probed at the Ethernet switch). bAdaptive
“far end of cable” attack using a mobile phone. The chassis potential
of the laptop is measured from the far side of an Ethernet cable (blue,
10 m long). An alligator clip connected to a plain wire (green) taps the
shield of the Ethernet cable where it connects to an Ethernet switch.

The signal passes through a passive filter (orange) and then, via a coax
cable (white), into the microphone/earphone jack of the phone (Sam-
sung Galaxy S II), where it is amplified and digitized. The phone itself
is grounded to mains earth via its USB port. It is possible to perform
the adaptive attack using this setup (color figure online)

one of the laptop’s many IO ports (such as USB, Ethernet,
VGA, DisplayPort and HDMI), the port’s shield typically
contacts to the plug’s shield, which in turn is connected to
a conductive cable shield running the length of the cable.
Thus, one can measure the chassis potential from the far side
of cables connected to the aforementioned ports. Ethernet
cables, for examples, often span long distances, across and
between building floors. An attacker who gains access to the
far side of the cable (see Fig. 13a), or taps the shield along
the way, can measure the approximate chassis potential.

Crucially, the attacker’s only point of contact is the far
side of the cable shield. The attack does not utilize the data
transmitted over the cable, and is oblivious to whether the
port is even enabled.

We conducted the attacks by connecting the target laptop,
through a 10-m long-shielded CAT5e Ethernet cable, to a
Gigabit Ethernet switch (EDIMAX ES-3308P). We attached
a plain wire to the cable shield via a clip, on the switch side
(see Fig. 13a). Its potential was measured and analyzed as
follows.

Non-adaptiveRSAkey extractionUsing theMFmeasurement
setup (see Sect. 5.1.2), wemeasured the chassis potential of a
Lenovo 3000 N200 laptop through the shield of the Ethernet
cable. The laptopwas powered by the 3-prongAC-DC power
supply, andwas also connected via a shieldedVGA cable to a
grounded monitor (Dell 2412M). We directly extracted 2042
out of 2048 bits of dp, by observing the shield’s potential
during 5 decryption operations (each lasting 0.35 s). Thus,
by searching for the remaining 6 bits of dp, the complete key
is extracted.

Similar results were obtained by monitoring the far side
of a (dangling) USB cable.

Non-adaptive ElGamal key extraction Applying our non-
adaptive attack to ElGamal decryption, we extracted all but 3
of the bits of the secret exponent, from a randomly generated
3072-bit ElGamal key, by observing the shield’s potential
during 4 decryption operations (each lasting 0.1 s).

Adaptive RSA key extractionFor this experiment, we attacked
a Lenovo ThinkPad T60 laptop, through an Ethernet cable,
whose shield potential was measured using the VLF/LF
measurement equipment (see Sect. 5.1.3). The laptop was
powered by the 3-prong AC-DC power supply, without addi-
tional connections. In this setting,we extracted the 1024most
significant bits of the secret prime q (and thus, by Copper-
smith’s technique, full key extraction) in 1 h. Again, similar
results were obtained by monitoring the far side of a (dan-
gling)USB cable. Finally, on somemachines, this attack only
requires 15 kHz of analog bandwidth to extract the key mak-
ing it possible to execute using almost any commodity sound
recording equipment such as a mobile phone (see Fig. 13b).

5.3 “Human touch” attack

On many laptops, the chassis potential can be sensed indi-
rectly through a human body. An attacker can sense the
chassis potential by merely touching a conductive part of the
laptop chassiswith his hand. 11 This affects the electric poten-
tial of the attacker’s body (assuming suitable insulation, e.g.,
nonconductive floor or shoes). Surreptitiously, the attacker
can measure the electric potential induced on his own body,
using a concealed probe, in reference to some nearby con-
ductive grounded surface in the room. Even this circuitous

11 The attack is especially effective in hot weather, since sweaty fingers
offer lower electrical resistance.

123

J Cryptogr Eng (2015) 5:95–112 109

Fig. 14 “Human touch” attacks. a Non-adaptive “human touch” attack through a metal pen touching the heatsink fins. The wristband is connected
to the probe wire. b Adaptive “human touch” attack by bare hand. The wristband is connected to the probe wire

measurement, through an ill-characterized, high-impedance
path, can suffice for key extraction.

Non-adaptiveRSAkey extractionUsing theMFmeasurement
setup (see Sect. 5.1.2), we measured the chassis potential of
a Lenovo 3000 N200 laptop through the body of a volunteer
(one of the authors). The volunteer held a paperclip or ametal
pen in his hand, and briefly touched it to the laptop’s heatsink
fins, which are easily reachable through the exhaust vent.12

Concurrently, the volunteer’s body potential was measured
using the MF measurement equipment (see Sect. 5.1.2), via
a probe wire attached to a conductive wristband on his other
wrist (see Fig. 14a). The laptop was powered by the 3-prong
AC-DC power supply, with no further connection.

Applying our non-adaptive attack and the signal analysis
techniques fromSect. 5.1.2 on a randomlygenerated 4096-bit
RSA key, we directly extracted 2042 out of 2048 bits of dp by
observing the volunteer’s body potential (while holding the
paperclip against the laptop’s heatsink) during 6 decryption
operations, each lasting 0.35 s. Thus, by searching for the
remaining 6 bits of dp, the complete key is extracted.

Non-adaptive ElGamal key extraction Applying our non-
adaptive attack and the signal analysis techniques from
Sect. 5.1.2 on a randomly generated 3072-bit ElGamal key,
we were able to extract all but 3 of the bits of the secret
exponent by observing the volunteer’s body potential (while
holding the paperclip against the laptop’s heatsink) during
16 decryptions, each lasting 0.1 s.

12 The heatsink fins provide a particularly strong signal, and the paper-
clipmerely bypasses themechanical obstruction of the plastic vent grill,
a few millimeters deep. The attack is also possible by touching fully
exposed metal connectors, such as I/O port shields, but in that case the
signal is weak and necessitates numerous measurements, so we applied
the more robust adaptive attack (discussed at the end of this section).

Adaptive RSA key extraction The adaptive attack, being more
robust (due to relying on lower-frequency, longer-duration
signals), succeeded with unaided finger touch. A patient
volunteer touched the chassis (specifically, VGA connec-
tor shield) of a Lenovo ThinkPad T61 with his fingers. The
volunteer’s body potential was measured using the VLF/LF
measurement equipment (see Sect. 5.1.3), through the afore-
mentionedwristband, and the laptopwas connected as above.
On some ThinkPad models, this attack can even be mounted
by simply touching the, partially conductive, LCD cover (see
Fig. 14b).

In this setting, we directly extracted the topmost 1024 bits
of the prime q of a randomly generated 4096-bit RSA key
within one hour. Using Coppersmith’s theorem this informa-
tion is enough in order to completely extract the entire key.

5.4 Electromagnetic (EM) attack

We studied EM emanations from laptop computers, in the
MF band (approximately 2MHz). We used a near-field mag-
netic probe (Rohde&Schwarz 7405901, 6 cm diameter, 50�

impedance). The signal was low-pass filtered at 5 MHz and
amplified using an impedance-matched low-noise amplifier
(a customized Mini-Circuits ZPUL-30P). The resulting sig-
nal was digitized at 12 bits and 10Msample/s (National
Instruments PCI 6115).

EMprobe placementThe placement of the EMprobe relative
to the laptop greatly influences themeasured signal andnoise.
We wish to measure EM emanations close to the CPU’s volt-
age regular, located on the laptop’s motherboard, yet without
mechanical intrusion. Luckily, most of the components cov-
ering the motherboard, such as the keyboard and its bezel
cover, are almost transparent to EM signals. Concretely, hov-
ering over the rear-left corner often yields the best signal.

123

110 J Cryptogr Eng (2015) 5:95–112

Non-adaptive RSA key extractionApplying our non-adaptive
attack to a randomly generated 4096-bit RSAkey,we directly
extracted 2046 out of 2048 bits of dp, by measuring the
EM emanations from a Lenovo 3000 N200 laptop during
5 decryption operations, each lasting about 0.35 s.

Non-adaptive ElGamal key extractionUsing the same exper-
imental setup and applying our non-adaptive attack to a
randomly generated 3072-bit ElGamal key, we were able to
extract all but 3 of the bits of the secret exponent by mea-
suring the EM emanations from a Lenovo 3000 N200 laptop
during 16 decryption operations, each lasting about 0.1 sec.

5.5 Power analysis attack

Werevisited the classic power analysis channel, and analyzed
the current draw fluctuations on the power supply of the tar-
get laptop in the VLF/LF frequency bands. Specifically, we
placed a 0.5� resistor in series with the laptop’s power sup-
ply, on the low (“ground”) supply rail. For a typical laptop
load of 2–5 A at 16–20V, the voltage on the resistor was
around 2V.

Adaptive RSA key extractionWemeasured the voltage on the
resistor using aNational InstrumentsMyDAQdevice through
a 150 kHz low-pass filter. We directly extracted the topmost
1024 bits of the prime q of a randomly generated 4096-bit
RSA key, from a Lenovo ThinkPad T61, in one hour.

6 Conclusion

While physical side-channel attacks have proven very effec-
tive at breaking cryptosystems, most research attention has
focused on small and relatively simple devices. This paper
demonstrated that PC systems too are vulnerable, despite
their complexity, noise, and challenging electrical character-
istics. Moreover, PCs can be attacked by mere touch or from
afar by almost any wired connection.

Following our observations, several software countermea-
sureswere proposed and incorporated intoGnuPG1.4.16 and
libgcrypt 1.6.

Ciphertext normalizationOur adaptive attack requires a care-
ful selection of ciphertexts that are slightly larger than p (but
have the same limb count as p) to undergo reduction modulo
p. However, for such ciphertexts, themodular exponentiation
routine used by GnuPG will not normally reduce the cipher-
text modulo p. We force this modular reduction to occur by
padding the ciphertext with the public RSA moduli n or by
padding additional zeros. Thus, one immediate countermea-
sure to our adaptive attack is, before decrypting a ciphertext
c, to compute c′ = c mod n and then strip c of any lead-
ing zeros. This prevents the modular reduction in Line 3 of

Algorithm 1, essential to the adaptive attack, from ever being
executed.

Ciphertext randomization A common countermeasure
against chosen-ciphertext attacks is ciphertext randomiza-
tion [24]. For the case of RSA, such blinding is done as
follows. Given a ciphertext c, instead of directly raising c to
the dth power, one generates a random value r , raises c · re
to the dth power, and multiplies the result by r−1. Since
red · r−1 ≡ 1 (mod n), the result is correct; yet the value
sent to the modular exponentiation routine is randomized,
which foils chosen-ciphertext attacks.

While the above countermeasures indeed foil the attacks
presented in this paper, the key distinguishing attack is unaf-
fected and still present in the latest versions of GnuPG;
mitigating it in software, without a large overhead, remains
an open problem.

Eliminating data-dependent branches While physical side-
channel leakage is affected by many properties of the
executed code and processed data, changes in control flow
tend to be particularly prominent: same program, taking
different branches, will often induce very different phys-
ical emanations. Thus, a common heuristic for mitigating
leakage is to avoid data-dependent, and in particular key-
dependent, control flow in the cryptographic code. This is
often called “constant-time” implementation (a misnomer,
because effects such as cache contention can create key-
dependent timing differences even if the control flow is
fixed [5,31] and, moreover, because key-dependent branches
should be avoided even if they happen to take the same
number of cycles). The most easily observed differences
are in high-level control flow (as exploited, e.g., in [7,22]).
Accordingly, GnuPG 1.4.15 modular exponentiation routine
indeed avoids key-dependent branches at the higher level of
the code (mitigating the attack of [38]). However, there are
still branches affected by key-dependent intermediate val-
ues, in the inner levels of the code—as exploited by our
attack. Some other cryptographic implementations attempt
to avoid key-dependent branches at all levels of the crypto-
graphic code, at some cost in performance. Examples include
recent OpenSSL with RSA_FLAG_NO_CONSTTIME dis-
abled (in C), and Google’s End-to-End implementation (in
JavaScript). Achieving perfectly constant time is a difficult
and a delicate task, depending on the cryptographic algorithm
and intimate knowledge of the timing (and more generally,
side-channel) characteristics of the target platform.

Physical mitigation Physical mitigation techniques include
Faraday cages (against EM attacks), insulating enclosures
(against chassis and touch attacks), and photoelectric decou-
pling or fiberoptic connections (against “far end of cable”
attacks). However, inexpensive protection of consumer-
grade PCs appears difficult, especially for the chassis chan-

123

J Cryptogr Eng (2015) 5:95–112 111

nel. Indeed, substantial engineering attention and expense
are already dedicated to the mitigation of conducted ema-
nations, for the purpose of electromagnetic compatibility
(EMC) compliance, yet the channel evidently persists; more-
over, the commonmethod for filtering conducted emanations
on power supply lines is to use bypass capacitors to shunt
stray AC currents into the ground, but this obviously does
not apply to the ground line itself. Robust low-impedance
grounding and shielding, with careful attention to current
paths, should reduce voltages across the ground and chassis
(at costs in engineering effort and portability). We conjec-
ture that prudent design of switching power supplies and
voltage regulators can reduce computation-dependent leak-
age without significantly hampering efficiency, and we raise
this challenge as another open problem.

Acknowledgments We are indebted to Adi Shamir for insightful dis-
cussions and suggestions, and to Lev Pachmanov for writing much of
the software setup used in our experiments. Ezra Shaked assisted in con-
structing and configuring the experimental setup.AssaNaveh assisted in
experiments and offered valuable suggestions. Sharon Kessler provided
copious editorial advice. This work was sponsored by the Check Point
Institute for Information Security; by European Union’s Tenth Frame-
work Programme (FP10/2010-2016) under grant agreement no. 259426
ERC-CaC, by the Leona M. & Harry B. Helmsley Charitable Trust; by
the Israeli Ministry of Science and Technology; by the Israeli Centers
of Research Excellence I-CORE program (center 4/11); and byNATO’s
Public Diplomacy Division in the Framework of “Science for Peace”.

References

1. GNU multiple precision arithmetic library. http://gmplib.org/.
Accessed 4 Dec 2014

2. GNUPrivacyGuard. https://www.gnupg.org.Accessed 4Dec2014
3. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM

side-channel(s). In: Workshop on Cryptographic Hardware and
Embedded Systems (CHES) 2002, pp. 29–45. Springer (2002)

4. Anderson, R.J.: Security Engineering—A Guide to Building
Dependable Distributed Systems, 2nd edn. Wiley, New York
(2008)

5. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.
to/papers.html#cachetiming. Accessed 4 Dec 2014

6. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical.
In: ESORICS 2011, pp. 355–371. Springer (2011)

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. Com-
put. Netw. 48(5), 701–716 (2005)

8. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.:
OpenPGP message format. RFC 4880, November (2007)

9. Clark, S.S., Mustafa, H.A., Ransford, B., Sorber, J., Fu, K., Xu,
W.: Current events: Identifying webpages by tapping the electrical
outlet. In: ESORICS 2013, pp. 700–717. Springer (2013)

10. Coppersmith, D.: Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

11. Courrège, J.-C., Feix, B., Roussellet, M.: Simple power analysis on
exponentiation revisited. In: Smart Card Research and Advanced
Application (CARDIS) 2010, pp. 65–79. Springer (2010)

12. ElGamal, T.: A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–
472 (1985)

13. Elkins, M., Del Torto, D., Levien, R., Roessler, T.: MIME security
withOpenPGP.RFC3156 (2001). http://www.ietf.org/rfc/rfc3156.
txt. Accessed 4 Dec 2014

14. The Enigmail Project. Enigmail: a simple interface for OpenPGP
email security. https://www.enigmail.net. Accessed 4 Dec 2014

15. Fouque, P.-A., Valette, F.: The doubling attack—why upwards is
better than downwards. In: Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES) 2003, pp. 269–280. Springer
(2003)

16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis:
concrete results. In: Workshop on Cryptographic Hardware and
Embedded Systems (CHES) 2001, pp. 251–261. Springer (2001)

17. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing
keys from PCs using a radio: Cheap electromagnetic attacks
on windowed exponentiation. Cryptology ePrint Archive, Report
2015/170 (2015). http://eprint.iacr.org/2015/170. Accessed 4 Dec
2014

18. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-
bandwidth acoustic cryptanalysis. In: CRYPTO 2014, Extended
version: Cryptology ePrint Archive, Report 2013/857, vol. 1, pp.
444–461. Springer (2014)

19. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.:
Collision-based power analysis of modular exponentiation using
chosen-message pairs. In: Workshop on Cryptographic Hardware
and Embedded Systems (CHES) 2008, pp. 15–29. Springer (2008)

20. Hu,W.-M.: Lattice scheduling and covert channels. In: Proceedings
of the IEEE Symposium on Security and Privacy 1992, pp. 52–61.
IEEE Computer Society (1992)

21. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers
by automatic computers. Proc. USSR Acad. Sci. 145, 293–294
(1962)

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In:
CRYPTO 1999, pp. 388–397. Springer (1999)

23. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential
power analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011)

24. Kocher, P.C.: Timing attacks on implementations of Diffie–
Hellman, RSA, DSS, and other systems. In: CRYPTO 1996, pp.
104–113. Springer (1996)

25. Kuhn, M.G.: Compromising emanations: eavesdropping risks of
computer displays. Ph.D. dissertation (2003)

26. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks—
Revealing the Secrets of Smart Cards. Springer, Berlin (2007)

27. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis
attacks of modular exponentiation in smartcards. In: Workshop on
Cryptographic Hardware and Embedded Systems (CHES) 1999,
pp. 144–157. Springer (1999)

28. MITRE. Common vulnerabilities and exposures list, entry
CVE-2013-4576 (2013). http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2013-4576. Accessed 4 Dec 2014

29. Novak, R.: SPA-based adaptive chosen-ciphertext attack on RSA
implementation. In: Public Key Cryptography (PKC) 2002, pp.
252–262. Springer (2002)

30. Oren, Y., Shamir, A.: How not to protect PCs from power analysis.
presented duringCRYPTO2006 rump session (2006). http://iss.oy.
ne.ro/HowNotToProtectPCsFromPowerAnalysis. Accessed 4 Dec
2014

31. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and counter-
measures: the case of AES. In: RSA Conference Cryptographers’
Track (CT-RSA) 2006, pp. 1–20. Springer (2006)

32. Percival, C.: Cache missing for fun and profit. Pre-
sented at BSDCan (2005). http://www.daemonology.net/
hyperthreading-considered-harmful. Accessed 4 Dec 2014

33. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In: E-smart’01,
pp. 200–210 (2001)

123

http://gmplib.org/
https://www.gnupg.org
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://www.ietf.org/rfc/rfc3156.txt
http://www.ietf.org/rfc/rfc3156.txt
https://www.enigmail.net
http://eprint.iacr.org/2015/170
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4576
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4576
http://iss.oy.ne.ro/HowNotToProtectPCsFromPowerAnalysis
http://iss.oy.ne.ro/HowNotToProtectPCsFromPowerAnalysis
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful

112 J Cryptogr Eng (2015) 5:95–112

34. Schmidt, J.-M., Plos, T., Kirschbaum,M., Hutter,M.,Medwed,M.,
Herbst, C.: Side-channel leakage across borders. In: Smart Card
Research and Advanced Application (CARDIS) 2010, pp. 36–48.
Springer (2010)

35. Tokunaga, C., Blaauw, D.: Securing encryption systems with a
switched capacitor current equalizer. Solid-State Circuits IEEE J.
45(1), 23–31 (2010)

36. Walter, C.D., Samyde,D.:Data dependent power use inmultipliers.
In: IEEE Symposium on Computer Arithmetic (ARITH) 2005, pp.
4–12. IEEE Computer Society (2005)

37. Walter, C.D., Thompson, Susan: Distinguishing exponent digits by
observing modular subtractions. In: RSA Conference the Cryptog-
rapher’s Track (CT-RSA) 2001, pp. 192–207. Springer (2001)

38. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In: USENIX Security Sym-
posium 2014, pp. 719–732. USENIX Association (2014)

39. Yen, S.-M., Lien, W.-C., Moon, S.-J., Ha, J.: Power analysis by
exploiting chosen message and internal collisions – vulnerability
of checkingmechanism forRSA-decryption. In:Mycrypt, pp. 183–
195. Springer (2005)

40. Zajic, A., Prvulovic, M.: Experimental demonstration of electro-
magnetic information leakage from modern processor-memory
systems. IEEE Trans. Electromagn. Compat (EMC) 56(4), 885–
893 (2014)

123

	Get your hands off my laptop: physical side-channel key-extraction attacks on PCs
	Extended version
	Abstract
	1 Introduction
	1.1 Background
	1.2 Our results
	1.3 Vulnerable software and hardware
	1.4 Related work
	1.5 Paper outline

	2 Computation-dependent chassis-potential leakage
	2.1 Code-dependent leakage
	2.2 GnuPG key distinguishability

	3 Non-adaptive attack
	3.1 GnuPG's modular exponentiation routine
	3.2 The attack algorithm
	3.3 GnuPG's squaring routine
	3.4 Attack analysis

	4 Adaptive attack
	5 Empirical key-extraction results
	5.1 Chassis-potential attack
	5.1.1 Setup
	5.1.2 Non-adaptive chassis-potential attack
	5.1.3 Adaptive chassis-potential attack

	5.2 ``Far end of cable'' attack
	5.3 ``Human touch'' attack
	5.4 Electromagnetic (EM) attack
	5.5 Power analysis attack

	6 Conclusion
	Acknowledgments
	References

