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Abstract We select a set of elliptic curves for cryptography
and analyze our selection from a performance and security
perspective. This analysis complements recent curve propos-
als that suggest (twisted) Edwards curves by also considering
the Weierstrass model. Working with both Montgomery-
friendly and pseudo-Mersenne primes allows us to consider
more possibilities which help to improve the overall effi-
ciency of base field arithmetic. Our Weierstrass curves
are backwards compatible with current implementations
of prime order NIST curves, while providing improved
efficiency and stronger security properties. We choose algo-
rithms and explicit formulas to demonstrate that our curves
support constant-time, exception-free scalar multiplications,
thereby offering high practical security in cryptographic
applications. Our implementation shows that variable-base
scalar multiplication on the new Weierstrass curves at the
128-bit security level is about 1.4 times faster than the recent
implementation record on the correspondingNIST curve. For
practitioners who are willing to use a different curve model
and sacrifice a few bits of security, we present a collection
of twisted Edwards curves with particularly efficient arith-
metic that are up to 1.42, 1.26 and 1.24 times faster than
the new Weierstrass curves at the 128-, 192- and 256-bit
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security levels, respectively. Finally, we discuss how these
curves behave in a real-world protocol by considering dif-
ferent scalar multiplication scenarios in the transport layer
security protocol. The proposed curves and the results of
the analysis are intended to contribute to the recent efforts
towards recommending new elliptic curves for Internet stan-
dards.

Keywords Elliptic curves · Weierstrass form · Twisted
Edwards form · Secure scalar multiplication · Constant-time
execution · Transport layer security (TLS) protocol

1 Introduction

The first release of a cryptographic standard specifying
elliptic curves for use in practice dates back to 2000 [21].
Nowadays, roughly one out of ten systems on the publicly
observable Internet offers cipher suites in the Secure Shell
(SSH) and Transport Layer Security (TLS) protocols that
contain elliptic-curve-based cryptographic algorithms [16].
Most elliptic curve standards recommend curves for different
perceived security levels that are either defined over prime
fields or binary extension fields; on the Internet, however, the
deployed curves are mostly defined over prime fields [16].
This can be partially explained by the increasing skepticism
towards the security of elliptic curves defined over binary
extension fields (justified by recent progress on solving the
discrete logarithm problem on such curves [26]). Therefore,
in this work, we only consider elliptic curves defined over
prime fields.

Recently, part of the cryptographic community has been
looking for alternatives to the currently deployed ellip-
tic curves that may offer better performance and provide
stronger overall security (see for example an evaluation of
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recent curve candidates in [12]). Most notably, the TLS
working group has issued a formal request to the Crypto
Forum Research Group (CFRG) asking for recommenda-
tions for new elliptic curves. The urge to change curves
has been fueled by the recently leaked NSA documents,
which suggest the existence of a back door in the Dual
Elliptic Curve Deterministic Random Bit Generator [55].
Although cryptographers have suspected this at least as
early as in 2007 [52], these recent revelations have accel-
erated a controversy on whether the widely deployed NIST
curves [57] should be replaced by curves with a verifiably
deterministic generation. Besides such security concerns,
there has been significant progress related to both efficiency
and security since the initial standardization of elliptic curve
cryptography. Notable examples are algorithms protected
against certain side-channel attacks, different “special” prime
shapes which allow faster modular arithmetic, and a larger
set of curve models from which to choose. For example,
Edwards [25] discovered an interesting normal form for
elliptic curves, now called the Edwards model, which was
introduced to cryptographic applications by Bernstein and
Lange [11]. A generalization of this curve model, known as
the twisted Edwards model [7], facilitates the most efficient
curve arithmetic [35]. Such (twisted) Edwards curves also
have other attractive properties: they may be selected to sup-
port a complete addition law and are compatible with the
Montgomery model, which supports efficient Montgomery
ladder computations [47]. However, twisted Edwards curves
cannot have a prime number of rational points over the
base field, and they are therefore incompatible with the
prime-order Weierstrass curves used in all of the current
cryptographic standards [21,48,57].

Related work

The NIST curves [57] have been included in numerous stan-
dards (e.g., [21,48]) and are deployed in many security
protocols. The most recent speed record on the NIST curve
which aims to provide 128-bit security is due to Gueron and
Krasnov [31]. Alternatives to the NIST curves have been
suggested by the German working group Brainpool [24];
their curve choices followed additional security require-
ments, one of which demands verifiably pseudo-random
curve generation. Another alternative curve has been pro-
posed by Bernstein [5]; this is a Montgomery curve, called
Curve25519, which allows efficient computation of ECDH
using the Montgomery ladder at the 128-bit security level. It
was later shown by Bernstein et al. [9] that a twisted Edwards
curve, birationally equivalent to Curve25519, can be used for
efficient elliptic curve signature generation and verification.
Recently, Bernstein and Lange started a project to select and
analyze secure elliptic curves for use in cryptography: see
[12] for a list of the security assessments the project per-
forms and the requirements it imposes. A range of curves,

targeting different security levels, is also presented in [12].
Following this, several new curves satisfying the require-
ments from [12], which facilitate both the twisted Edwards
and Montgomery form, were proposed by Aranha et al. [3].

Motivation and rationale

The newcurves presented in [3,12] are all efficient and secure
elliptic curves ready to be used in cryptography. This prompts
the question as to why we should perform an efficiency and
security analysis for a set of new curves. It is our opinion
that not all options for prime fields and elliptic curve models
have been considered in the recent curve proposal projects
(either because they are overlooked or do not fit the require-
ments set by the project). Our goal is to rigorously analyze
all of these different aspects from both a security and effi-
ciency perspective, in hope that this paper helps practitioners
better understand (and correctly implement) the choices that
lie in front of them. Abandoning a set of standard curves
demands a judicious selection of new curves, since this can-
not be done too frequently if widespread adoption is desired.
In that light, it is our opinion that one should consider all
of the options available. For example, in contrast to [3,12],
our selection includes prime order Weierstrass curves. Just
as the almost-prime order twisted Edwards curves have their
practical advantages, we argue that there are also benefits
to choosing prime order Weierstrass curves: the absence of
small torsion simplifies the point/input validation process,
and (over a prime field of fixed length) does not sacrifice
any bits of security with respect to attacks on the underly-
ing elliptic curve discrete logarithm problem (ECDLP). In
addition, such curves are backwards compatible with current
implementations supporting NIST curves over prime fields
(i.e., no changes are required in protocols), and could be inte-
grated into existing implementations by simply changing the
curve constant and (in some cases) field arithmetic.1

We investigate the selection of prime moduli that allow
efficient modular arithmetic. As in [3,5,12,15,35,41], we
study pseudo-Mersenne primes of the form 2α − γ , but also
primes of the form 2α(2β − γ ) − 1 that can be used to
accelerate Montgomery arithmetic [46] as used in [15,32].
Following the deterministic selection requirement from [12],
we pick two primes of each shape for a given targeted
security level: one prime is selected to be slightly smaller
than the other, which sacrifices a small amount of ECDLP
security in favor of enhanced performance. Note that, as
explained in Sect. 2, for practical considerations we require
all primes to be congruent to 3 modulo 4. These primes are
used to construct cryptographically suitable curves focus-
ing on (arguably) the two most relevant curve models: short

1 Cryptographic libraries with support for generic-prime field arith-
metic (e.g., using Montgomery arithmetic) are fully compatible with
the proposed curves.
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Weierstrass curves with the curve parameter a set to −3 and
twisted Edwards curves with the curve parameter a set to
−1. The prime order Weierstrass curves give full ECDLP
security over prime fields of a fixed bitlength, while offering
good practical performance. On the other hand, the twisted
Edwards curves sacrifice a small amount of ECDLP security
but facilitate the fastest realization of curve arithmetic [35].
Both types of curves are selected in a deterministic fashion
(see Sect. 3 for the full details) and offer twist-security [5], a
propertywhich is useful in certain scenarios.We note that our
prime and curve selection is meant to cover a wide range of
options exhibiting attractive features. Nevertheless, there are
other design alternatives that might offer different trade-offs
between security, rigidity and performance on different plat-
forms. We leave the investigation of other options as future
work.

An important requirement for implementations of mod-
ern cryptographic algorithms is a constant runtime when the
algorithm computes on secret data to guard against timing
attacks [38]. In particular, this potential threat exists for two
basic elliptic curve operations: variable-base and fixed-base
scalar multiplication. One solution is to use a complete addi-
tion law. However, a complete addition law is typically less
efficient compared to the dedicated formulas which can fail
for certain inputs. In Sect. 4 we outline another solution to
this problem for the variable-base case. We show that our
algorithms which compute on secret data, can never run
into any exceptional cases (i. e. produce incorrect results)
while using the faster dedicated formulas and ensuring a con-
stant runtime (with the exception of the very last addition;
see Sect. 4.1 for the details). Hence, this solution results in
faster implementations compared to the complete solution.
In the fixed-base case the situation is more complicated:
most efficient algorithms in the literature may potentially
run into exceptions. While the use of a complete addition
formula suffices to solve the problem on twisted Edwards
curves, the high cost of complete additions on Weierstrass
curves would degrade performance significantly [18] (see
Appendix C.1). To solve this problem, we propose a new
formula thatworks for all possible inputs by exploitingmask-
ing techniques. This pseudo-complete addition requires the
same number of multiplications and squarings as the unpro-
tected dedicated addition formula and drastically reduces
the overhead of protecting scalar multiplication. We com-
ment that the formula is also useful in the context of secure,
exception-free multi-scalar multiplications. The reader is
referred to Appendix C.1 for more details on the new
formula.

We do not claim full security against other attacks such
as simple power analysis (SPA); this is left for future work.
Nevertheless, we remark that all the selected algorithms have
a regular structure as required when implementing counter-
measures against certain simple side-channel attacks.

Summary of contributions

– Analysis of a new set of deterministically selected prime-
order Weierstrass curves (see Table 1) which are defined
over pseudo-Mersenne andMontgomery-friendly primes
whose bitlengths match those of the NIST primes. See
Sects. 2 and 3.

– Analysis of a new set of deterministically selected
composite-order twisted Edwards curves (see Table 2
and Sect. 3). In contrast to existing curve proposals,
the selected curves present (simultaneously) minimal
parameter d in the twisted Edwards form and minimal
parameter A in isogenous Montgomery form (minimal
in absolute value). See Sect. 3.3.

– A new, (pseudo-)complete addition algorithm for general
curves in short Weierstrass form. This algorithm works
for all pairs of inputs and its execution incurs only a
small overhead compared to the dedicated addition law.
See Sect. C.1.

– Wedemonstrate how to use the scalarmultiplication algo-
rithms and prove that they become exception-free and
facilitate constant-time implementations when used this
way. This allows one to use the more efficient dedicated
formulas whenever possible, resulting in an efficient and
secure solution for elliptic curve scalar multiplication.
See Sect. 4.

– A comprehensive software implementation providing
timings for various scenarios; this includes performance
estimates for the above curves when used in the context
of the TLS protocol. See Sects. 5 and 6.

Proposed curves

Tables 1 and 2 show the curves that we have chosen deter-
ministically according to our security and efficiency criteria.
The tables show the target security level, which gives a rough
estimate for the desired security in each case. Curve names
indicate the curve model [w for the Weierstrass model and
ed for the (twisted) Edwards model], the bitlength of the
underlying base field prime and the type of prime (mont
for Montgomery-friendly and mers for pseudo-Mersenne
primes). In Appendix D, we provide the trace of Frobenius
t for each curve, so the number of Fp-rational points for
the curve E and its quadratic twist E ′ can be computed as
#E(Fp) = p+1− t and #E ′(Fp) = p+1+ t . More details
on the curve choices and their properties are given in Sect. 3.

2 Modular arithmetic: choosing primes

Over a prime field Fp (with p > 3 prime), the computation
of the elliptic curve group operation boils down to numerous
computations modulo p. In this section, we outline the types
of primes that we prefer for efficiency and security consider-
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Table 1 Summary of our
chosen Weierstrass curves of the
form Eb/Fp : y2 = x3 − 3x + b
defined over Fp with quadratic
twist E ′

b/Fp : y2 = x3 − 3x − b
and target security level λ

Target security λ Curve name p b ρ complexity

128 w-256-mont 2240(216 − 88) − 1 85,610 127.8

w-254-mont 2240(214 − 127) − 1 −12,146 126.8

w-256-mers 2256 − 189 152,961 127.8

w-255-mers 2255 − 765 −20,925 127.3

192 w-384-mont 2376(28 − 79) − 1 27,798 191.5

w-382-mont 2368(214 − 5) − 1 −133,746 190.8

w-384-mers 2384 − 317 −34,568 191.8

w-383-mers 2383 − 421 97,724 191.3

256 w-512-mont 2496(216 − 491) − 1 99,821 255.8

w-510-mont 2496(214 − 290) − 1 39,053 254.8

w-512-mers 2512 − 569 121,243 255.8

w-511-mers 2511 − 481 555,482 255.3

The group orders r = #Eb(Fp) and r ′ = #E ′
b(Fp) are both prime, and r < p for all curves. The value under

ρ complexity is an estimate for the actual security of the ECDLP against Pollard’s ρ method, it is
log2(

√
π/4 · √

r) rounded to one decimal

Table 2 Summary of our
chosen twisted Edwards curves
of the form
Ed/Fp : −x2 + y2 = 1+ dx2y2

defined over Fp , where
d = −(A − 2)/(A + 2), and the
target security level is λ

Target security Curve name p A d0 ρ complexity

128 ed-256-mont 2240(216 − 88) − 1 −54,314 13578 126.8

ed-254-mont 2240(214 − 127) − 1 −55,790 13,947 125.8

ed-256-mers 2256 − 189 −61,370 15,342 126.8

ed-255-mers 2255 − 765 −240,222 60,055 126.3

192 ed-384-mont 2376(28 − 79) − 1 −113,758 28439 190.5

ed-382-mont 2368(214 − 5) − 1 −2,870,790 717,698 189.8

ed-384-mers 2384 − 317 −1,332,778 333,194 190.8

ed-383-mers 2383 − 421 −2,095,962 523,990 190.3

256 ed-512-mont 2496(216 − 491) − 1 −305,778 76,444 254.8

ed-510-mont 2496(214 − 290) − 1 −2,320,506 580,126 253.8

ed-512-mers 2512 − 569 −2,550,434 637,608 254.8

ed-511-mers 2511 − 481 −4,390,390 1,097,597 254.3

A model for the quadratic twist is E ′
d/Fp : −x2 + y2 = 1 + (1/d)x2y2. The curve Ed is birationally

equivalent to the Montgomery curve EA/Fp : y2 = x3 + Ax2 + x with quadratic twist
E−A/Fp : y2 = x3 − Ax2 + x . The group orders are #Ed (Fp) = 4r and #E ′

d (Fp) = 4r ′, where r and r ′ are
both prime, and 4r < p for all curves. The value d0 = −(A + 2)/4 = −1/(d + 1) defines a curve with the
same group order as that given by d, i.e., #Ed0 (Fp) = 4r and #E ′

d0
(Fp) = 4r ′ = #E−(d0+1). The ρ

complexity is an estimate for the actual security of the ECDLP against Pollard’s ρ method, it is
log2(

√
π/4 · √

r) rounded to one decimal

ations, and discuss how the primes are uniquely determined
from a fixed security level. We have not experimented with
using a smaller radix system to accumulate the intermediate
carries, at the cost of increasing the number of multiplica-
tions.We leave the investigation of such approaches as future
work.

Primes of the form 2α−γ Selecting primes of a special form
to enhance the performance of the modular reduction is not
new. The primes standardized in the digital signature stan-
dard [57] have a special form allowing fast reduction based
on the work by Solinas [53]. Even faster modular reduction

can be achieved by selecting primes of the form p = 2α −γ ,
known as pseudo-Mersenne primes. In this case, the value
α is determined by the security parameter and is typically a
multiple of 64 (or slightly smaller). The integer γ is chosen to
be a small positive integer, i.e., significantly smaller than 232.
Given two integers x and y such that 0 ≤ x, y < 2α −γ , one
can compute x ·y mod (2α−γ ) by first computing the prod-
uct andwriting this in a radix-2α system as x ·y = zh ·2α+z�.
A first reduction step, based on the shape of the modulus,
is zh · 2α + z� ≡ z� + zh · γ (mod 2α − γ ) = z, where
0 ≤ z < (γ + 1)2α . If this step is repeated, the result is such
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that 0 ≤ z < 2α + γ 2, which can finally be brought into
the desired range by applying an additional correction mod-
ulo p using subtractions. A standard way of enhancing the
performance is to use a redundant representation: instead of
reducing z to the range [0, 2α − γ ), one can often more effi-
ciently reduce z to the range [0, 2α), or to the range [0, 22s)
if α is a few bits smaller than 2s (at a target security level of s
bits). The latter case can be optimized further by computing
exclusively in such a redundant form and performing a sole
correction at the end of the scalar multiplication.

Given a security level of s bits, we consider the para-
meter α ∈ {2s, 2s − 1}. Taking α = 2s makes the prime
as large as possible, matching one of the requirements to
achieve maximal ECDLP security at the s-bit security level.
Taking α = 2s − 1 sacrifices half a bit of ECDLP security in
favor of potential enhancements in efficiency, as described
above. Thus, fixing s results in two possible values for α and
subsequently two primes of the form 2α − γ : for a fixed α,
we choose the smallest γ such that 2α − γ is both prime and
congruent to 3 modulo 4 (the rational behind this congruence
condition is discussed below). Following our curve selection
criteria, the values γ for the curves under analysis are always
smaller than 210, which makes them attractive for efficient
implementation on 16, 32 and 64-bit platforms.

Primes of the form 2α(2β − γ ) − 1 Another approach to
select primes is inspired byMontgomery arithmetic [46]. The
idea behind Montgomery multiplication is to replace the rel-
atively expensive divisions by computationally inexpensive
logical shifts when computing the modular reduction. Some
computations (and storage) can be avoided when primes of
the form p = 2α(2β − γ ) − 1 are used for positive integers
α, β and γ (cf. [1,15,32,37,39]). When the prime p is two
bits short of amultiple of theword sizew (i.e.,w | α+β+2),
one can avoid a conditional subtraction in every multiplica-
tion [58].

There are different ways to construct Montgomery-
friendly primes: for example, [32] prefers γ to be a power
of two, while [15] sets β = 64 and γ as small as possible to
specifically target 64-bit platforms. We make choices of α, β

and γ such that the modular arithmetic can be implemented
efficiently on awide rangeof platforms.Given a security level
of s bits, we consider α = 8δ and β ∈ {2s − α, 2s − 2− α},
and choose γ and δ as the smallest positive integers such that
p = 2α(2β − γ ) − 1 is prime and �log2(p)� = 2s (resp.
�log2(p)� = 2s − 2) in the setting of β = 2s − α (resp.
β = 2s − 2 − α). We start with δ = 1 and increment it by
1 (if necessary) until γ is found. For instance, for s = 192
and β = 2s − α, we observe that (δ, γ ) = (1, 79) results in
a prime which can be written as

2376(28 − 79) − 1 = 2352(232 − 224 · 79) − 1

= 2320(264 − 256 · 79) − 1,

for usage on 8-, 32- and 64-bit platforms, respectively.
This has the advantage that the reduction step, which has
to be computed at every iteration inside the interleaved
Montgomery algorithm, can be computed using only a
multiply-and-add and an addition instruction. Note that, by
construction, primes of this form are always congruent to 3
modulo 4.

Constant-time modular arithmetic One of the measures
to guard software implementations against various types of
side-channel analysis such as timing attacks [38] is to ensure
a constant running time. In practice, this often means writing
code which does not contain branches depending on secret
data. For instance, the interleaved Montgomery multiplica-
tion algorithm requires a conditional subtraction at the end.
To remove this, we always compute the subtractions and
select (mask) the correct value depending on the conditional
flag. In the setting of primes of the shape 2α − γ , one must
always compute the worst-case number of reduction rounds
in order to ensure constant runtime.

Besides the “standard” modular operations, there is also
the need for constant-time methods to compute the modular
inversion and the modular square roots. In order to compute
the inversion modulo a prime p, one can use Fermat’s little
theorem: i.e., computea p−2 ≡ a−1 (mod p). Since our cho-
sen primes all have a special shape, finding efficient addition
chains for this exponentiation is not difficult. For the n-bit
primes considered in this work, we found that we can always
compute the modular inversion using at most 1.11�log2(p)�
modular multiplications and modular squarings. If p ≡ 3
(mod 4), then one can compute a modular square root x (if

it exists) of an element a using x ≡ a
p+1
4 (mod p). Since

this can be performed efficiently, and in constant-time, we
require all of our primes to be congruent to 3 modulo 4.

3 Curve selection

In this section we explain how the curves in Tables 1 and 2
were chosen based on the selection of primes that is outlined
inSect. 2. For each chosen prime p ≡ 3 (mod 4), we provide
two curves: one is a prime order short Weierstrass curve,
while the other is an almost-prime order twisted Edwards
curve.

3.1 Curve selection for Weierstrass curves

For a fixed prime p, a specific curve Eb : y2 = x3−3x+b is
uniquely determinedby the curve parameterb ∈ Fp\{±2, 0}.
Note that, since p ≡ 3 mod 4, its non-trivial quadratic twist
E ′
b has the curve equation E ′

b : y2 = x3 − 3x − b. In order
to guarantee twist-security [5], we require both the group
orders r = #Eb(Fp) and r ′ = #E ′

b(Fp) to be prime.We have
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r = p+1− t and r ′ = p+1+ t for |t | ≤ 2
√
p and demand

|t | > 1 because curves with t ∈ {0, 1} are weak. Thus,
depending on the sign of the trace t , either r > p, r ′ < p
or r < p, r ′ > p. To ease implementation, we demand that
r < p for all curves, i.e., we choose the curve with positive
trace. To leave no room for manipulating the curve choice,
we select all curve parameters deterministically, namely by
choosing the integer b with the smallest absolute value that
yields a curve with the above properties. Based on these con-
siderations, the selection process is completely explained in
accordance with the rigidity condition of [12]. Specifically,
we search for a suitable coefficient b by starting with b = 1
and incrementing b by one until both r and r ′ are prime.
For each value of b, we use the Schoof–Elkies–Atkin (SEA)
point counting algorithm [51] in Magma [17] to compute the
trace t of Eb, such that r = p + 1 − t and r ′ = p + 1 + t .
We use the implementation’s ‘early abort’ feature that aban-
dons the computation when small factors are found either in
the curve’s or the twist’s group order. Because of the curve
model for E ′

b, the search only considers positive values of b
andwe select the sign of b to ensure that r < p. The resulting
curves are summarized in Table 1.

3.2 Curve selection for twisted Edwards
(and Montgomery) curves

For a fixed prime p, a specific twisted Edwards curve Ed :
−x2 + y2 = 1+ dx2y2 is uniquely determined by the curve
parameter d ∈ Fp\{0,−1}. Let A = 21−d

d+1 , and B = −(A+
2). Theorem 3.2 of [7] shows that the twisted Edwards curve
E and the Montgomery curve By2 = x3 + Ax2 + x are
birationally equivalent. If B is a square in Fp (which it is for
all our curves), thenEd is birationally equivalent to EA : y2 =
x3+Ax2+x . As for theWeierstrass curves,we demand t > 1
to exclude the weak curves with t ∈ {0, 1} and to ensure that
4r < p.

Ideally, it would be desirable to have a curve withminimal
parameter d in the twisted Edwards form and minimal para-
meter A in the Montgomery form. Unfortunately, existing
curve proposals have been forced to pick one form and opti-
mize it at the expense of the other one. We show in Sect. 3.3
below, that a search minimizing the absolute value of the
parameter d would find curves with the same group orders
for curve and twist, where the latter corresponds to−(d+1).
This means that a search for minimal absolute value of d will
always find positive d first, which corresponds to negative A.
Our search thus minimizes the absolute values of A and d at
the same time.

For each fixed p, we start with A = −6 and search for A ∈
2+4Z (subtracting 4 each time) until #EA = 4r and #E ′

A =
4r ′, where r and r ′ are both prime. Note that the discussion
in Sect. 3.3 also shows that B = −(A+2) is always a square
in Fp, which means that E ′

A : y2 = x3 − Ax2 + x is a model

for the non-trivial quadratic twist of EA. Again, for each A,
we use the SEA algorithm [51] in Magma [17] to compute
the trace t of E , which determines #EA = p + 1 − t and
#E ′

A = p + 1 + t . Section 3.3 also shows that A2 − 4 is
non-square in Fp, which simplifies notions of completeness
on E (see [5]). Furthermore, we check that the curve satisfies
all conditions posed by [12], if one of them is not met,2 we
continue with the next value for A. We note that the cofactors
of 4 are minimal when insisting on an Fp-rational twisted
Edwards and/or Montgomery form. The resulting curves are
summarized in Table 2.

3.3 Correspondence between minimal A and d
for twisted Edwards curves

Table 2 contains a columnwith values for the parameter d0 =
−(A + 2)/4, which can be used for implementing twisted
Edwards curves defined over our prime fields. The curve
Ed0/Fp : −x2 + y2 = 1 + d0x2y2 has the same number
of Fp-rational points as the curve Ed/Fp : −x2 + y2 =
1+dx2y2 with d = −(A−2)/(A+2) and theMontgomery
curve EA/Fp : y2 = x3 + Ax2 + x . Furthermore, the curve
E−(d0+1)/Fp : −x2 + y2 = 1 − (d0 + 1)x2y2 has the same
number ofFp-rational points as the quadratic twist E ′

d and the
quadratic twist E−A. In this section, we show that this is true
in general, and that therefore, the relation between d0 and A
shows that the value d0 is the minimal value for d defining Ed
such that all the criteria in our curve selection are satisfied if
and only if A is the minimal such value for the Montgomery
form. This shows that it is not necessary to search for a new
set of twisted Edwards curves if one wants to minimize the
parameter d instead of the Montgomery parameter A. One
can simply use the curve defined by d0.

The following lemma connects the two twisted Edwards
curves Ed and Ed0 via an isogenywhenever d0 = −1/(d+1).
It also gives a condition on d0 which determines whether the
map is defined over Fp. If this is the case, both curves have
the same number of Fp-rational points.

Lemma 1 Let Ed : −x2 + y2 = 1 + dx2y2 be a twisted
Edwards curve defined over a prime field Fp and let d0 =
−1/(d + 1) ∈ Fp. Then there exists a 4-isogeny φ : Ed →
Ed0 . If d0 is a square in Fp, the isogeny is defined over Fp,
in particular #Ed(Fp) = #Ed0(Fp).

Proof The isogeny φ is one of the isogenies described in
Section 3 of [2]. This means, it is the composition of maps

φ = ψ̂−1,−1/(d+1) ◦ σ ◦ ψ−1,d .

2 The only instance where the first twisted Edwards curve we found
did not fulfill all of the SafeCurves requirements was in the search for
ed-383-mers: the constant A = 1629146 corresponds to a curve-twist
pair with #EA = 4r and E ′

A = 4r ′, where r and r ′ are both prime, but
the embedding degree of EA with respect to r is (r − 1)/188, which
fails to meet the minimum requirement of (r −1)/100 imposed in [12].
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The map ψ−1,d is the 2-isogeny ψ−1,d : Ed → L−d to the
Legendre form curve L−d : y2 = x(x−1)(x+d) given in [2,
Theorem 3.2], and ψ̂−1,−1/(d+1) : L1/(d+1) → E−1/(d+1) is
the dual of the corresponding isogeny for 1/(d + 1). The
map σ is equal to the isomorphism σ2σ1 : L−d → L1/(d+1)

given in [2, Section 3.2]. The composition φ is defined over
Fp if d0 and thus −(d + 1) is a square in Fp. This proves the
lemma. ��

The next result uses the previous isogeny to show that the
original curve Ed and its twist E ′

d each have corresponding
curves with small parameters d0 and−(d0+1), respectively,
which have the same number of Fp-rational points, provided
that both these small parameters are squares in Fp.

Lemma 2 Let A ∈ Fp\{−2, 2}, d = −(A − 2)/(A + 2)
and d0 = −(A + 2)/4 such that both d0 and −(d0 + 1)
are squares in Fp. Then #Ed(Fp) = #Ed0(Fp). Moreover,
#E ′

d(Fp) = #E−(d0+1)(Fp).

Proof The first part follows from Lemma 1 because d0 =
−1/(d + 1). Since the twist E ′

d = E1/d , the second part
follows from Lemma 1 with d replaced by 1/d, which means
that d0 is replaced by −(d0 + 1). ��

Finally, we show that indeed our search criteria, in par-
ticular the facts that p ≡ 3 (mod 4) and that both group
orders are not divisible by 8, imply that d0 and −(d0 + 1) as
given in our setting are squares in Fp, which shows that the
correspondence above holds.

Lemma 3 Let p ≡ 3 (mod 4), d0 ∈ Fp and let Ed0 : −x2+
y2 = 1 + d0x2y2 be a twisted Edwards curve such that
#Ed0(Fp) = 4r and #E ′

d0
(Fp) = 4r ′ for primes r and r ′.

Then d0 and −(d0 + 1) are both squares in Fp.

Proof We first prove that d0 is a square in Fp. Assume that
it is not a square. Section 3 in [8] provides an exhaustive
description of all points of order 2 and 4 on a twisted Edwards
curve. If d0 is not a square, then −1/d0 is a square because
p ≡ 3 (mod 4). Then the full 2-torsion is defined over Fp,
it consists of the affine point (0,−1) and two points at infin-
ity ((1 : 0), (±√−1/d0)) (written as completed points in
projective space P1 × P

1, see [8, Section 2.7]). Let s ∈ Fp

with s2 = −1/d0, then exactly one of±s is a square, assume
without loss of generality that it is s. Then this value gives 4
affine points (±√

s,±√
s) (signs chosen independently) of

order 4 defined over Fp. The group structure of the 4-torsion
on Ed0 that is defined over Fp is thus Z2 × Z4 and has order
8. Therefore 8 must divide #Ed0(Fp), which contradicts our
assumption that the group order is 4r for r prime. Hence, d0
is a square.

We know that the twist E ′
d0

is birationally equivalent to
E1/d0 , and we have already shown that d0 is a square, so
1/d0 is a square. We can apply Lemma 1 with d0 replaced

by 1/d0, which means that d = −(d0 + 1), and obtain that
#E−(d0+1)(Fp) = #E1/d0(Fp) = 4r ′. Now looking at the 4-
torsion defined over Fp as above yields that −(d0 + 1) is a
square in Fp. ��
The minimality of d0 All our selected twisted Edwards
curves satisfy the conditions of the previous two lemmas.
Therefore, one can choose to work with the isogenous curves
defined by d0 or −(d0 + 1), whichever is more convenient.
The isogenous curves and their twists have the same orders as
the original curves and their twists. Therefore all conditions
required in the curve selection are satisfied with the added
benefit of a small d-value.

We argue that d0 is of minimal absolute value defining
a curve that satisfies the search criteria. Assume that A is a
coefficient with minimal absolute value that yields a desired
curve when minimizing for the Montgomery parameter (like
the values for A in our examples). A search that minimizes
the absolute value of the parameter d in the twisted Edwards
model Ed , must find the value d0(or − (d0 + 1)) first since
A = −(4d0 + 2). Without loss of generality, let |d0| <

|d0+1|, i.e., d0 > 0, otherwise interchange d0 and−(d0+1).
Indeed, assume that a d1 with |d1| < |d0| leads to a curve
that satisfies all criteria. Let A1 = −(4d1+2). By Lemma 3,
d1 and−(d1+1) are squares, then by Lemma 2, #Ed1(Fp) =
#Ed̂1(Fp) = #EA1(Fp), where d̂1 = −(A1−2)/(A1+2) and
#E ′

d1
(Fp) = E−(d1+1)(Fp) = #E1/d̂1(Fp) = #E−A1(Fp).

This means that the curve EA1 satisfies the search criteria.
Since we fixed d0 > 0, we have A < 0. By assumption,

we have −A = 4d0 + 2 = 4|d0| + 2 > 4|d1| + 2. Now
consider the two cases d1 > 0 and d1 < 0. If d1 > 0, then
A1 = −(4d1 + 2) < 0, and |A| = −A > 4|d1| + 2 =
4d1 + 2 = −A1 = |A1|, contradicting the minimality of
A. Similarly, if d1 < 0, then A1 > 0 and |A| = −A >

4|d1|+2 > 4|d1+1|+2 = −4(d1+1)+2 = −(4d1+2) =
A1 = |A1|, again a contradiction. Overall, this means that d0
must be the coefficient with minimal absolute value.

3.4 Curve properties

In both families of curves, note that for primes of the form
2α −γ , the bitlengths of r and r ′ differ by 1, since |t |  γ in
general; for primes of the form 2α(2β −γ )−1, the bitlengths
of r and r ′ are always equal when γ �= 0. The curves in
Table 2 can be used in different curve models: in the twisted
Edwards model, in the Montgomery model for implement-
ing Montgomery ladders, and also in the original Edwards
model allowing complete addition formulas [11]. The latter
can be seen as follows. Since p ≡ 3 (mod 4), EA is bira-
tionally equivalent to an Edwards curve by [7, Theorem 3.4].
Using the maps discussed in [7, Section 3], one can show
that EA : y2 = x3 + Ax2 + x is birationally equivalent to
E−1/d : x2 + y2 = 1 − (1/d)x2y2. For all of our curves, d
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is a square in Fp, so −1/d is not a square, which means that
the addition law on E−1/d is complete. All of the curves in
Table 2 allow for an efficient map from a subset of their Fp-
rational points to bit strings of a certain length, such that they
are indistinguishable from uniform random bitstrings of the
same length (see [10], which is based on [29]). However, note
that curves defined over pseudo-Mersenne primes are more
suitable for achieving indistinguishability than those over
Montgomery-friendly primes because for the latter primes
p, the value (p + 1)/2 is further away from a power of
2 (see [10, §2.6]). The prime-order Weierstrass curves pre-
sented in Table 1 are similar in their basic properties to the
NIST curves, as they have the same curve model, share the
parameter a = −3, and include prime fields of the same
bit lengths as the ones for the NIST curves [57]. However,
we stress that the curves in Table 1 do not allow any room
for manipulations, which can be the case when the curve
parameter b is allowed to be chosen “randomly”. Our curves
are twist-secure, do not allow transfers, and have large dis-
criminants (notions used to guard against certain attacks;
e.g., see [12]). The work in [56] shows that indistinguisha-
bility can also be achieved for our prime-order Weierstrass
curves in Table 1, however the resulting bit strings are twice
as large as those that result from applying [10,29] to the
twisted Edwards curves in Table 2.

4 Efficient, constant-time, and exceptionless
scalar multiplications

To protect against certain types of side-channel attacks [38],
it is essential that scalar multiplications are computed in
constant-time. This means that the running time of the algo-
rithm for computing a scalar multiplication kP must be
independent of the scalar k and the point P . Classical curve
arithmetic formulas have exceptional cases, i.e., they do
not work for all points. Having conditional statements in
the code that check for these cases means the algorithms
have a variable running time depending on different input
cases, but simply leaving them out might lead to excep-
tional point attacks that produce wrong results or cause
other implementation errors. In this section we outline how
constant-time algorithms can be achieved efficiently for our
chosen Weierstrass and twisted Edwards curves in two dif-
ferent settings: the variable- and fixed-base scenarios. The
variable-base scenario refers to the case in which the base
point P can be different for each execution of the algo-
rithm. In the fixed-base case, multiples of a public constant
point can be precomputed, which allows different optimiza-
tion possibilities. In Appendix A we present an algorithm
for the double-scalar scenario, which carries out a computa-
tion of the form k1P1 + k2P2 (see Algorithm 9). This occurs
for example in the verification of ECDSA signatures. In this

setting the verification algorithm operates on public inputs
only, and one can profit from more efficient variable-time
algorithms since the implementation does not require side-
channel protection or constant-time execution.

We discuss the various cases for implementing scalar
multiplication for the different curve models and algorithm
choices.We list all algorithms as pseudo-code inAppendixA
(scalar multiplication, point validation, precomputation and
recoding) and inAppendixB (point operations). The reader is
referred to Appendix C for complete details on the selection
of explicit formulas. Note that several of these algorithms
contain if-statements, which are marked in the pseudo-code
according to their nature. For example, some of these state-
ments occur in algorithms that are only run on public inputs
and do not need to run in constant time; some of them are
implemented in constant time via masking techniques; and
some of them are there merely to allow us to represent sev-
eral algorithms in one pseudo-code algorithm environment
and to re-use the different variants in different scenarios. As
soon as a specific scenario is chosen, these statements are
always executed under the same condition. The remaining
if-statements are the ones that when implemented introduce
data-dependent branches into the algorithms. They occur
only in algorithms for point doubling, point addition and
merged point doubling/addition, where they correspond to
exceptions, i.e., the exceptional cases for which the given
formulas are not valid. But, whenever the implementation
needs to be constant-time, the conditions for entering these
if-statements are always false such that they are never exe-
cuted (and can be removed in the code). Below, we argue
that indeed no exceptional cases occur and that the proposed
algorithms can be implemented to run in constant time (when
used as described in the algorithms inAppendixA). Note that
the neutral element onWeierstrass curves is the point at infin-
ity, i.e., the point (0 : 1 : 0) in projective coordinates, while
on twisted Edwards curves the neutral element is the rational
point (0, 1), and in the Montgomery ladder the neutral ele-
ment is (X : Z) = (0 : 0). In this paper, they are all denoted
by O.

4.1 Weierstrass scalar multiplications

Let Eb/Fp be any of the Weierstrass curves in Table 1,
with r = #Eb(Fp) prime. Let k be an integer scalar and
P = (x1, y1) ∈ Fp × Fp. We consider the computation of
efficient, constant-time and exception-free scalar multiplica-
tions in two scenarios.

The variable-base scenario On input of the scalar k and
variable point P = (x1, y1), perform the following steps.

1. Validation Validate that k ∈ [1, r) and that P =
(x1, y1) ∈ Eb(Fp)\{O} by checking that y21 = x31 −
3x1 + b. Otherwise, return false (see Algorithm 2).
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2. Precomputation For a fixed window size 2 ≤ w < 10,
compute the 2w−2 multiples {P, 3P, . . . , (2w−1 − 1)P}
of P , and store them in a lookup table. This precom-
putation can be achieved using one point doubling and
2w−2 − 1 point additions3 (see Algorithm 4).

3. Scalar recoding Convert the scalar k to odd by replac-
ing k with r − k (if even) and recode it into exactly
�log2(r)/(w − 1)� + 1 odd, signed, non-zero digits in
{±1,±3, . . . ,±(2w−1 − 1)} (see Algorithm 6).

4. Evaluation Compute kP using a fixed window with
the precomputed values from the previous step. This
requires exactly (w − 1)�log2(r)/(w − 1)� point dou-
blings and �log2(r)/(w − 1)� point additions, or (w −
2)�log2(r)/(w−1)�+1 point doublings, �log2(r)/(w−
1)� − 1 point doubling-additions and one addition when
w > 2. Note that every time an addition is performed,
we also negate the selected point in the look-up table,
and choose the correct one according to the sign of the
digit in the recoded scalar. This is repeated until the last
iteration, when crucially, the final addition is performed
via a “complete masked” addition (see Appendix C.1).
The final result is negated if the original value of k was
even.

This can be computed as outlined in Algorithm 1 in Appen-
dix A.

Proposition 1 When computing variable-base scalar multi-
plications on any of the Weierstrass curves in Table 1 using
Algorithm 1 to implement the steps above, no exceptions
occur.

Before proving the proposition, we fix notation to parti-
tion the non-zero points in a prime order subgroup of the
group Eb(Fp). For a fixed point P ∈ Eb(Fp)\{O}, the map
[1, r) → Eb(Fp)\{O}, k �→ kP is a bijection. It induces
a partition of Eb(Fp)\{O} = Sodd ∪ Seven into two equally
sized sets, where Sodd = {kP | k ∈ [1, r) odd} and Seven =
{kP | k ∈ [1, r) even}. Let T = {P, 3P, . . . , (2w−1 −
1)P} ⊂ Sodd and T−1 = {(r − 1)P, (r − 3)P, . . . , (r −
(2w−1 − 1))P} ⊂ Seven. The set T−1 contains the inverses
of the points in the set T .

Proof To exclude any exceptions in the course of Algo-
rithm 1, we consider all of its doubling, addition and merged
doubling/addition operations. First of all, it is easy to see
that all doubling and addition steps for building the look-up
table are exception-free. Note that the look-up table consists
exactly of the points in the set T defined above. The precom-
putation as shown in Algorithm 4 starts by doubling P with
Algorithm 10. The algorithm works for the point at infinity
O when defined as (0 : Y1 : 0) with Y1 �= 0, but the case

3 Except for when w = 2, where this comes for free.

P = O is excluded by point validation, and it does not have
any exceptions since there are no points of order 2 in the
group E(Fp). The points for the look-up table are then com-
puted by adding 2P ∈ Seven to points from T ⊂ Sodd only,
i.e., the input points to the additions are always different and
do not includeO. Also −2P = (r − 2)P is not among these
points because 2w−1 − 1 < r − 2 (note 2 ≤ w < 10).

The operations in the evaluation stage depend on the
recoding of the scalar k, which at this point in the algorithm
satisfies 0 < k < r . Let t = �log2(r)/(w − 1)�, then with
notation as in Algorithm 1, the scalar can be written as

k =
t∑

i=0

si |ki |2(w−1)i ,

where si ∈ {−1, 1} and ki ∈ Z with 0 < |ki | < 2w−1. The
recoding used here guarantees kt > 0 such that st = 1 and
|kt | = kt . Throughout the evaluation stage, the variable Q
is used to denote the running value during the algorithm. At
any stage, there is some z ∈ [0, r) such that Q = zP . Let
z1 > 0 and z2 = 2w−1z1±z0 with z0 ∈ {1, 3, . . . , 2w−1−1},
then z2 ≥ z1. If z1 > 1, we even have z2 > z1. This means
that whenever a positive integer is doubled w − 1 times and
then an integer corresponding to one of the elements in the
look-up table is either added or subtracted, the result cannot
be smaller than the original integer. Thus, in the evaluation
stage of Algorithm 1, after each sequence ofw−1 doublings
and one addition step, the value z of the running point Q
cannot decrease.

The evaluation stage begins with choosing an element
from the lookup table T and assigning it to Q. After the
first assignment, we have z ∈ {1, 3, . . . , 2w−1 − 1}. All the
doubling operations in Lines 11, 14 and 18 of Algorithm 1
are done using Algorithm 10. Therefore, for the same rea-
sons as explained above there are no exceptions possible
in these steps. The last addition in Line 19 is done with a
complete addition formula and hence also does not have any
exceptional cases. It now suffices to ensure that all remain-
ing addition steps (i.e., in Lines 12 and 15) do not run into
exceptions.

First, assume that an exceptional case occurs in one of the
additions in Step 15, which computes Q+R for R ∈ T ∪T−1

using Algorithm 2. Note that none of the doubling steps can
ever output O because there are no points of order 2 and
O is never input to any of them since the running value Q
always has 1 < z < r for all points input to doubling steps
prior to any of the additions in Step 15. Thus the only excep-
tional cases that could occur in this algorithm, are the cases
where Q = ±R. This means that either Q ∈ T or Q ∈ T−1.
Since Q is the output of a non-trivial doubling operation,
we have Q ∈ Seven which excludes Q ∈ T and means that
Q ∈ T−1. Therefore, Q = zP with z ≥ r−(2w−1−1). After
each addition in Step 15 there are always w − 1 doublings
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that follow. Hence, the minimal value for z that can occur
after the exceptional addition and the following doublings is
2w−1(r−2(2w−1−1)). The addition of a table element imme-
diately after these doublings, can bring down this value to the
minimal zmin = 2w−1(r − 2(2w−1 − 1)) − (2w−1 − 1) =
2w−1r − (2w + 1)(2w−1 − 1). This value is larger than r ,
because otherwise, it follows that r ≤ 2w + 1, which is not
true for any of our curves. Given the observation that a pos-
itive integer does not decrease after any sequence of w − 1
doublings and a following addition of an integer correspond-
ing to a look-up table element, the scalar k cannot be reached
anymore as the final value for z after the exceptional addition.
This contradicts any exceptions in the additions of Step 15.

Next, assume that an exception occurs in one of the steps
in Line 12 of Algorithm 1. This step is a merged doubling
and addition step and is computed via Algorithm 11. The
algorithm computes 2Q+R for R ∈ T∪T−1 as (Q+R)+Q.
For the same reasons as above, the input point Q cannot be
equal to O. Since R ∈ T ∪ T−1, we have R �= O. The
first addition Q + R could have the same exceptions as the
additions in Step 15 treated in the previous paragraph. This
means that an exception can only be Q ∈ T−1 as above and
again we look at the minimal value zmin after carrying out the
exceptional addition, the addition of Q and the followingw−
1 doublings and subsequent addition (also the steps including
the merged doubling and addition algorithm can be treated
as such). This value is zmin ≥ 2w−1 · (2r − 3(2w−1 − 1)) −
(2w−1 − 1) = 2wr − (3 · 2w−1 + 1)(2w−1 − 1). Again, this
value is larger than r , because otherwise we would have r ≤
3 · 2w−1 + 1, which does not hold for our curve parameters.
As above this means that the scalar k < r cannot be reached
as the final value of z, contradicting any exception in the first
addition in (Q + R)+ Q. Finally, we assume that there is an
exception in the second addition. We have already excluded
Q = O and Q + R = O. Hence, the only two possibilities
for an exception are Q + R = Q or Q + R = −Q. The
first condition means that R = O which is not possible since
R ∈ T ∪ T−1. We are thus left with the condition 2Q = −R
and hence either 2Q ∈ T or 2Q ∈ T−1. Since 2Q ∈ Seven,
it cannot be in T , which leaves 2Q ∈ T−1. This means
that 2z ≥ r − (2w−1 − 1). The minimal value zmin after the
computation (Q+R)+Q and the followingw−1 doublings
and another addition is zmin ≥ 2w−1(r − 2(2w−1 − 1)) −
(2w−1−1) = 2w−1r−(2w +1)(2w−1−1). Again, this value
is larger than r , leaving no way to achieve the scalar k during
the remaining computation. This excludes all exceptions in
Line 12 and therefore all exceptions in Algorithm 1. ��
Given that the recoding always produces a fixed length for
the scalar, this means that after a successful validation step,
we do not execute any conditional statements.

The fixed-base scenario In this setting, the point P is fixed
(e.g., as a public parameter of the system), so multiples of P

can be precomputed offline and used to speedup the online
computation of kP . In terms of performance, it might be
difficult to select the “optimal” size of the precomputed table.
A larger table with more multiples of P typically means a
reduced number of elliptic curve operations at runtime, but
such tables might result in cache-misses which can result in
a performance penalty. Moreover, when one wants to extract
elements from this table in a cache-attack resistant manner,
one should access every element and mask out the correct
value to avoid leaking access patterns. Hence, using a larger
table implies an increased access cost for every table-lookup.

This is not the only problem with large precomputed
tables. As far as we know, one cannot show (for all inputs)
that a current active point in the fixed-base scalar multipli-
cation will not be the same (or have an opposite sign) as one
of the many precomputed values. Although this might hap-
pen only with extremely low probability, such that honest
parties may never encounter this by accident, active adver-
saries could manipulate such scalar/point combinations to
force exceptions. This means that, unlike the variable-base
multiplication, the implementation of the group law must
cover exceptional cases. One solution is to use complete for-
mulas (which have no exceptional cases). Unfortunately, the
completeWeierstrass formulas from [18] (seeAppendix C.1)
are expensive compared to their incomplete counterparts,
and using these would incur a much larger relative penalty
than the complete formulas on (twisted) Edwards curves do.
Another possible solution is to always compute two candi-
dates for the addition, C1 = 2P and C2 = P + L , and select
(in a constant time manner)C1 if P = L ,O if P = −L , L if
P = O, P if L = O, and C2 otherwise. At a first glance this
approach seemingly increases the cost of an addition to be at
least that of computing both an addition and a doubling.How-
ever, as noted by Chevallier-Mames et al. [22] for the case of
binary affine operations, doubling and addition share several
similarities in their formulas. By observing that these similar-
ities naturally reflect to the projective formulas, we present a
solution that achieves the required behavior explained above
without increasing the number of modular multiplications or
squarings required in a dedicated point addition (see Algo-
rithms 18 and 19). The idea is to exploit the similarities in
the doubling and addition routines by masking out the cor-
rect operands first, and using these as inputs to the arithmetic
operations.

Hence, Algorithms 18 and 19 work for any input points,
do not have any exceptional cases and have roughly the
same run-time as their corresponding dedicated point addi-
tions. We note that Chevallier-Mames et al.’s approach tries
to address a different problem and hence produces differ-
ent formulas. In particular, they exploit similarities in the
affine formulas to build (separate) routines for doubling and
addition with the same pattern of field operations. This is
done in order to eliminate differences in the power traces of
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the doubling and addition executions. In projective coordi-
nates, however, the same approach would not work because
of the extra operations required by addition in comparison
to doubling (in this case, point operations are partitioned
into smaller atomic units, each with the same pattern of field
operations. Thus, this technique does not exploit similarities
between doubling and addition).

For a scalar k and the fixed point P = (x1, y1), we make
use of these formulas to perform the following steps.

Offline computation

1. Point validation Validate that P = (x1, y1) ∈ Eb(Fp)

\{O} by checking that y21 = x31 − 3x1 + b. Otherwise,
return false (see Algorithm 2).

2. Precomputation For a fixed window size 2 ≤ w < 10,
compute v > 0 tables of 2w−1 points (each) for the
mLSB-set comb method (see Line 2 of Algorithm 7).
Convert all points in the lookup table to affine form.

Online computation

3. Scalar validation Validate that the scalar k ∈ [1, r).
Let the maximum bit-length of all valid scalars be t =
�log2(r)�.

4. Recoding Convert the scalar k to odd by replacing it with
r − k (if even) and recode it into the mLSB-set represen-
tation (see Algorithm 8).

5. Evaluation Using the precomputed values from the
offlineprecomputation, compute kP with exactly � t

w·v �−
1 point doublings and v� t

w·v � − 1 point additions.4

All point additions are computed using the “complete
masked” approach inAlgorithm 18 inAppendix C.1. The
final result is negated if the original value of k was even.

This approach is outlined in Algorithm 7 in Appendix A.

Proposition 2 When computing fixed-base scalar multipli-
cations on any of the Weierstrass curves in Table 1 using
Algorithm 7 to implement the steps above, no exceptions
occur.

Proof Following the proof of Proposition 1, point doublings
computed via Algorithm 10 do not fail for any rational points
in Eb(Fp) for any of the curves Eb in Table 1. Further-
more, Algorithm 10 also correctly computes doublings at
the point at infinity, O. Thus, no exceptions can arise in
point doublings; and, since all online additions are imple-
mented using the “complete” masking technique described
in Appendix C.1, it follows that no exceptions can arise at
any stage of the online computation (offline computations
can also make use of this technique if necessary). ��

4 We note that this cost increases by a single point additionwhenwv | t ,
since an extra precomputed point is needed in this case.

4.2 Twisted Edwards scalar multiplications

Let Ed/Fp : − x2 + y2 = 1 + dx2y2 be any of the twisted
Edwards curves in Table 2, with #E(Fp) = 4r for r prime.
In a similar vein to [5,34], we avoid small subgroup attacks
by requiring all scalar multiplications to include a cofactor 4.
Thus, let the integer k̂ be defined as k̂ := 4k with k ∈ [1, r),
and let P = (x1, y1) be in Fp × Fp.

The variable-base scenario On input of k̂ and (variable)
P = (x1, y1) ∈ Fp × Fp, we perform the following steps.

1. Validation Validate that k̂ ∈ [4 · 1, 4 · 2, . . . , 4(r − 1)].
Validate that P = (x1, y1) ∈ Ed(Fp)\{O} by checking
that −x21 + y21 = 1 + dx21 y

2
1 and that P �= (0, 1) = O

(see Algorithm 3). Otherwise, return false.
2. Clear torsion Compute Q ← [4]P using two consecu-

tive doublings (as in Algorithm 3).
3. Revalidation Validate that (the projective point) Q �= O.

If not, reject.
4. Precomputation Compute the 2w−2 odd, positive multi-

ples {Q, 3Q, . . . , (2w−1 − 1)Q} of Q, and store them
in a lookup table. This precomputation can be achieved
using one point doubling and 2w−2 − 1 point additions5

(see Algorithm 4).
5. Scalar recoding Using a window size of 2 ≤ w < 10,

convert the updated scalar k := k̂/4 ∈ [1, r − 1] to odd
by setting k to r − k (if even) and recode it into exactly
�log2(r)/(w − 1)� + 1 odd, signed, non-zero digits in
{±1,±3, . . . ,±(2w−1 − 1)} (see Algorithm 6).

6. Evaluation Compute k̂ P as kQ, using exactly (w −
1)�log2(r)/(w −1)� point doublings and �log2(r)/(w −
1)� point additions. Note that every time an addition is
performed, we also negate the selected point in the look-
up table, and choose the correct one according to the sign
of the digit in the recoded scalar. This is repeated until
the last iteration, when crucially, the final addition is per-
formed using the unified formula in [35, Eq. (5)]. The
final result is negated if the original value of k was even.

This computation is given in Algorithm 1 in Appendix A.

Proposition 3 When computing variable-base scalar multi-
plications on any of the twisted Edwards curves in Table 2
using Algorithm 1 to implement the steps above, no excep-
tions occur.

Proof The first three steps (validation, clear torsion, and
revalidation) detailed in Sect. 4.2 ensure that the point Q has
large prime order r . Furthermore, only elements of 〈Q〉 are
encountered after the revalidation stage, meaning that Corol-
lary 1 from [35] can be invoked to say that the additions in

5 Again, except for when w = 2, where this comes for free.
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Algorithm 15 (from [35], but extended according to the rep-
resentation suggested in [32]) will never fail to add points P
and Q of odd order, except when P = Q. This corollary also
tells us that the formulas for point doubling in Algorithm 14
never fail for points of odd order. Similar to the addition
formulas, these doubling formulas, which are from [7], are
extended according to [32]. Thus, the proof from this point
is identical to the proof of Proposition 1: we partition the
elements in 〈Q〉\{O} into Sodd and Seven to categorize the
elements in the look-up table, and use this to show that the
running value that is input into point additions can never be
equal to an element in the look-up table, except possibly in
the final addition, where we use the formula in [35, Eq. (5)],
which is slightly slower, but is exception-free in 〈Q〉. ��
The fixed-base scenario Let P = (x1, y1) ∈ Fp × Fp be
a fixed point and let k̂ = 4k be an integer scalar, which is a
multiple of the cofactor 4. Then perform the following steps.

Offline computation

1. Validation Validate that k̂ ∈ [4 · 1, 4 · 2, . . . , 4(r − 1)].
Validate that P = (x1, y1) ∈ Ed(Fp)\{O} by checking
that −x21 + y21 = 1 + dx21 y

2
1 and that P �= (0, 1) = O

(see Algorithm 3). Otherwise, return false.
2. Clear torsion Compute Q ← [4]P using two consecu-

tive doublings (see Algorithm 3).
3. Revalidation Validate that Q �= O. If not, reject.
4. Precomputation For a fixed window size 2 ≤ w < 10,

compute v > 0 tables of 2w−1 points (each) for the
mLSB-set comb method (see Line 2 of Algorithm 7)—
convert all points in the lookup table to affine form.

Online computation.

5. Recoding Convert the updated scalar k := k̂/4 to odd by
setting k to r−k (if even) and recode it into themLSB-set
representation (see Algorithm 8).

6. Evaluation: Using the precomputed values from the
offline precomputation, compute k̂ P as kQ with exactly
� t

w·v � − 1 point doublings and v� t
w·v � − 1 point addi-

tions.6 Every one of these additions is computed using
the unified formulas from [35, Eq. (5)]. The final result
is negated if the original value of k was even.

Algorithm 7 in Appendix A outlines this computation.

Proposition 4 When computing fixed-base scalar multipli-
cations on any of the twisted Edwards curves in Table 2 using
Algorithm 7 to implement the steps above, no exceptions
occur.

Proof As in the proof of Proposition 3, we start by noting
that the (updated) point Q has odd order r , and that we only
compute on elements in 〈Q〉. The only algorithm we use for

6 Again, we note that when wv | t , an extra precomputed point is
needed.

online additions corresponds to the formulas in [35, Eq. (5)],
which do not fail for any pair of inputs in 〈Q〉. Additionally,
the only algorithm we use for doublings is Algorithm 14
(from [7]), which is also exception-free on all inputs from
〈Q〉. ��

4.3 The Montgomery ladder

Let EA/Fp : y2 = x3 + Ax2 + x be the Montgomery form
of any of the curves in Table 2, with #EA(Fp) = 4r , for r a
large prime. Since the Montgomery ladder is not compatible
with the recoding techniques discussed in Sect. 4, we take the
following route to guarantee a fixed length scalar. For all k ∈
[1, r−1], we use the updated scalar k̂ = 4(αr+k), whereα is
the smallest positive integer such that αr+1 and (α+1)r−1
have the same bitlength; α is specific to r , but for each of
the curves in Table 2 we have α ∈ {1, 2, 3}. Note that scalar
multiplication by k̂ corresponds to scalarmultiplication by 4k
on EA, which thwarts small subgroup attacks in the sameway
as the twisted Edwards scalar multiplications in Sect. 4.2.

On input of k̂ and x1 ∈ Fp, we perform the following
steps.

1. Scalar validation First validate that k̂ ∈ 4Z, and then
that the integer k̂/4 ∈ [αr +1, (α +1)r −1]. Otherwise,
reject.

2. Evaluation Process the scalar by inputting k̂ and (x1 : 1)
into the standard (X : Z)-only Montgomery ladder rou-
tine [47, §10], with constant (A + 2)/4 in the addition
formula. Since k̂ = 4(αr + k), this can be done by
inputting thefixed-length scalar k̂/4 = αr+k and (x1 : 1)
into the Montgomery ladder to give (X1 : Z1), before
finishing with two repeated, standalone Montgomery
doublings of (X1 : Z1) to give (X̂ : Ẑ) = 4(X1 : Z1)

3. Normalize: If Ẑ = 0, return O, otherwise return x̂1 =
X̂/Ẑ .

Notice that there is no validation of the input coordinate x1 ∈
Fp, i.e., thatwedonot checkwhether x31+Ax21+x1 is a square
in Fp, so that x1 corresponds to a point (or points) on EA.
Avoiding this check in the presence of twist-security is due
to Bernstein (cf. [5]), since even if x1 corresponds to a point
on the quadratic twist E ′

A, the output of the Montgomery
ladder corresponds to a scalar multiplication on E ′

A, because
scalar multiplications on both curves use the same constant
(A + 2)/4. In this case, multiplication by k̂ = 4(αr + k) on
E ′
A no longer corresponds to the scalar 4k, but rather to the

scalar 4k′, where k′ ≡ (αr+k) mod r ′ for #E ′
A(Fp) = 4r ′.

This is not a problem in practice since the cofactor of 4 still
clears torsion on the twist, and the twist-security ensures
that the discrete logarithm problem has a similar difficulty
in E ′

A(Fp) as it does in EA(Fp). Following the arguments
developed in [4] (see also [5, App. A–B]), it could be pos-
sible to prove that no exceptions can occur in Montgomery
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ladder implementations of the curves in Table 2 that follow
Steps 1–3 above, subject to addressing the issues below.

It should first be pointed out that the lack of validation
means that there are some scalar/point combinations which
could produce exceptions. For example, suppose k is cho-
sen as the unique integer less than r ′ such that k ≡ −αr
mod r ′. If k is also less than r , then k̂ := 4(αr + k) is
a valid scalar according to Step 1 above. But, if an unval-
idated x-coordinate, say x ′

1, corresponds to a point P ′
1 on

E ′
A, then k̂ P1 = O, because (αr + k) ≡ 0 mod r ′; note

that outputting O in Step 3 above could leak information
to an attacker. Furthermore, in practice these ladder imple-
mentations are often used in conjunction with non-ladder
implementations on (most likely a twisted Edwards model
of) the same curve—see Sect. 6. In such a scenario, the
refined forms of the scalars in this section do not match
the forms of the scalars in Sect. 4.2, so if the scalars above
were to be used on the twisted Edwards form of EA, then
Proposition 3 and Proposition 4 no longer provide any guar-
antees. More specifically, if an implementation synchronizes
the inherently larger Montgomery ladder scalars above to
also be used on the twisted Edwards curve, then the argu-
ment of k̂ ∈ [4, 8, . . . , 4(r −1)] that was used in the proof of
Proposition 3 no longer holds when α > 0. Roughly speak-
ing, the fact that k̂/4 is now outside the range [1, r−1]means
that the running multiple of an input point can now reach the
dangerous stage of a scalar multiplication (which we handle
by using complete additions) before the final addition.

In the Montgomery ladder implementation of
Curve25519 [5], and in the complementary Edwards
“Ed25519” implementation [9], it seems that the above prob-
lems are overcomeby restricting the set of permissible scalars
to be of a lesser cardinality than the prime subgroup order.
Namely, Curve25519 has r, r ′ > 2252, with all scalars being
of the form k̂ = 8 ·(2251+k) for k ∈ [0, 2251−1]. As well as
guaranteeing that all of the possible scalars k̂ have the same
bitlength, this prevents the existence of a k̂ such that k̂ ≡ 0
mod r or k̂ ≡ 0 mod r ′. On the other hand, it also means
that for a fixed base point P of order r on Ed25519, less
than half of the elements in 〈P〉 are possible outputs when
computing scalar multiplications of P .

As one potential alternative, we remark that a hybrid
solution which uses both Montgomery and twisted Edwards
scalar multiplications could parse scalars differently: k ∈
[0, r − 1] could be modified to k̂ := 4(αr + k) in the
Montgomery implementation, but modified to k̂ := 4k in
the twisted Edwards implementation. If, in addition, all x-
coordinates were validated in Step 1 of the Montgomery
ladder routine,7 then thismaywell be enough to prove that all

7 Validating that x1 ∈ Fp corresponds to EA would incur the small
relative cost of an exponentiation and a few multiplications: namely,
we reject x1 if (x31 + Ax21 + x1)(p−1)/2 = −1.

scalar multiplications compute correctly and without excep-
tion: Proposition 3 would then apply directly to the twisted
Edwards part, while the techniques in [4,5] could be used to
prove the Montgomery ladder part.

5 Implementation results

To evaluate the performance of the selected curves, we devel-
oped a software library8 that includes support for three
scenarios: variable-base, fixed-base and double-scalar multi-
plication. The library can perform arithmetic on a = −1
twisted Edwards, a = −3 Weierstrass and Montgomery
curves, and supports all of the new curves from Sect. 3, with
exception of the Weierstrass curves with reduced bitlength
(see Tables 1, 2). The implementation of the library is largely
in the C-programming language with the modular arithmetic
implemented in x64 assembly for Windows.

Taking the above into account, we remark that the pur-
pose of the library is to allow the comparison and evaluation
of a large number of curve options, using a generic design
that is flexible, reduces code size, and eases maintenance
effort. Nevertheless, the library achieves good performance
in comparison with standalone implementations that are tai-
lored towards speed records.

It is well known that it is non-trivial to create an efficient
and secure implementation of cryptographic primitives (for
use in elliptic curve cryptography). Complete formulasmight
avoid certain pitfalls to the programmer, but this can come
at a performance cost. As illustrated in Sect. 4, and by our
software library, it is possible to have efficient, constant-time,
and exceptionless scalar multiplications with a reasonable
easy implementation strategy.

Table 3 shows the performance details of scalar multi-
plication in the three scenarios of interest. Variable-base
scalar multiplication is computed with the fixed-window
method (see Algorithm 1 in Appendix A) using window
widthw = 6. Fixed-base scalarmultiplicationwas computed
using the mLSB-set method (see Algorithm 7 in Appen-
dix A) using parameters w = 5 and v = 4 for the twisted
Edwards curves at the 128-bit security level; all other cases
use w = 6 and v = 3. These values correspond to precom-
puted tables of sizes: 6, 9 and 12KB for Weierstrass curves
at the 128-, 192- and 256-bit security levels, respectively,
and 6, 13.5 and 18KB for twisted Edwards curves at the
128-, 192- and 256-bit security levels, respectively. Double
scalar multiplication was computed using thewNAFmethod
with interleaving (see Algorithm 9 in Appendix A) using
window width w1 = 6 for the variable base and w2 = 7

8 A version of the library (known as MSR ECCLib [44]) which
supports a subset of the curves presented in this work is
publicly available at http://research.microsoft.com/en-us/downloads/
149804d4-b5f5-496f-9a17-a013b242c02d/.

123

http://research.microsoft.com/en-us/downloads/149804d4-b5f5-496f-9a17-a013b242c02d/
http://research.microsoft.com/en-us/downloads/149804d4-b5f5-496f-9a17-a013b242c02d/


272 J Cryptogr Eng (2016) 6:259–286

Table 3 Experimental results
for variable-base, fixed-base and
double-scalar multiplication

Security level Curve name Variable-base Fixed-base Double scalar

128 w-256-mont 280,000 110,000 287,000

w-256-mers 278,000 113,000 288,000

ed-256-mont 233,000 87,000 237,000

ed-254-mont 194,000 73,000 198,000

ed-256-mers 228,000 89,000 236,000

ed-255-mers 223,000 88,000 228,000

m-254-mont 196,000 N/A N/A

m-255-mers 219,000 N/A N/A

192 w-384-mont 795,000 279,000 812,000

w-384-mers 744,000 271,000 761,000

ed-384-mont 657,000 228,000 672,000

ed-382-mont 590,000 211,000 605,000

ed-384-mers 610,000 220,000 624,000

ed-383-mers 596,000 213,000 607,000

m-382-mont 632,000 N/A N/A

m-383-mers 580,000 N/A N/A

256 w-512-mont 1,762,000 573,000 1,821,00

w-512-mers 1,538,000 513,000 1,592,000

ed-512-mont 1,461,000 467,000 1,507,000

ed-510-mont 1,335,000 432,000 1,369,000

ed-512-mers 1,282,000 420,000 1,320,000

ed-511-mers 1,240,000 411,000 1,274,000

m-510-mont 1,437,000 N/A N/A

m-511-mers 1,299,000 N/A N/A

The results (rounded to thousand cycles) are the average of 104 runs of the scalar multiplication including
the final modular inversion to convert the result to its affine form. These results have been obtained on a
3.4GHz Intel Core i7-2600 Sandy Bridge processor with Intel’s Turbo Boost and Hyper-Threading disabled.
The library was compiled with Visual Studio 2012 on Windows 8 OS

for the fixed base. The latter corresponds to precomputed
tables with sizes: 2, 3 and 4KB for Weierstrass curves at
the 128-, 192- and 256-bit security levels, respectively, and
3, 4.5 and 6KB for twisted Edwards curves at the 128-,
192- and 256-bit security levels, respectively. The results
(expressed in terms of computer cycles) were obtained by
running and averaging 104 iterations of each computation on
an Intel Core i7-2600 (Sandy Bridge) processor with Intel’s
Turbo Boost and Hyper-Threading disabled. The variable-
and fixed-base scalar multiplication routines have a constant
running time which guards against various types of timing
attacks [20,38], including cache attacks [50] (e.g., see [19]
in the asymmetric setting). This means that no conditional
branches on secret data or secret indexes for table lookups
are allowed in the implementations.

Our results suggest that reducing the size of the pseudo-
Mersenne primes does not have a significant effect on the
performance: below a factor 1.04 reduction of the running
time at the expense of roughly half a bit of ECDLP secu-
rity. However, using slightly smaller moduli in the setting

of the Montgomery-friendly primes does pay off: a reduc-
tion of the running time by a factor 1.20, 1.11, and 1.09
at the 128-, 192-, and 256-bit security level, respectively.
This performance difference between pseudo-Mersenne and
Montgomery-friendly primes can be explained by the fact
that the final constant-time conditional subtraction in Mont-
gomery multiplication can be omitted when reducing the
modulus size appropriately. The size-reduced Montgomery-
friendly primes are the best choice (with respect to perfor-
mance) at the 128- and 192-bit security levels while the
size-reduced pseudo-Mersenne prime is faster for the 256-bit
security level. For full-word length moduli, Montgomery-
friendly and pseudo-Mersenne primes achieve similar perfor-
mance at the 128-bit security level, whereas full-word length
pseudo-Mersenne moduli are the best option for the 192- and
256-bit security levels. The better performance of pseudo-
Mersenne primes at high security levels can be explained by
the inherent higher register pressure in our Montgomery-
friendly implementations which results in more load and
store operations for large moduli sizes. The faster arithmetic
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operations in the base field translate directly to optimizations
in the different scenarios for the scalar multiplication.

In the setting of variable-base scalar multiplication the
twistedEdwards implementation and theMontgomery ladder
achieve similar performance at the 128 and 192-bit security
levels. At the 256-bit security level the gap increases in favor
of twisted Edwards which outperforms theMontgomery lad-
der by a factor 1.05.

Note that our best results using the twisted Edwards and
Montgomery forms at the 128-bit security level are virtu-
ally equivalent to the state-of-the-art Montgomery ladder
implementation of Curve25519 [5] (194, 000 cycles on the
benchmark machine “sandy0” [13]). Given the significant
level of code optimization applied on the Curve25519 imple-
mentation which includes full use of assembly for the curve
and field arithmetic, this comparison demonstrates the high
efficiency of the chosen 254-bitMontgomery-friendly prime.

The state-of-the-art implementation of the NIST P-256
curve [31] can compute a variable-base scalar multiplication
in 400, 000 cycles on a Sandy Bridge CPU. Our curve w-
256-mont offers better security properties and results in a
1.43 times reduction of the running time compared to [31].
When switching from prime order Weierstrass curves using
full size moduli to composite order twisted Edwards curves
with size-reduced moduli one can expect a reduction in the
running time by a factor between 1.25 and 1.44 at the price
of a slight decrease in ECDLP security.

6 Real-world protocols

Although significant research has been devoted to optimize
the most popular ECC operation (the variable-base scalar
multiplication), in real-world cryptographic solutions it is
often not as simple as computing just a single scalar multipli-
cation with an unknown base. Cryptographic protocols typi-
cally require a combination of different types of scalar multi-
plications including fixed-, variable-base andmultiple-scalar
operations. In this section we study the TLS protocol, more
specifically the computation of the TLS handshake using the
ECDHE–ECDSAcipher suite.Weoutline the impact of using
different curve and coordinate systems in practice.

TLS with perfect forward secrecy Support for using ellip-
tic curves in the TLS protocol is specified in RFC 4492 [14].
The cipher suites specified in this RFC use the elliptic curve
Diffie–Hellman (ECDH) key exchange, whose keys may
either be long-term or ephemeral. We focus our analysis on
the latter case (denoted byECDHE) since it offers perfect for-
ward secrecy. Besides the usage of elliptic curves in the DH
key exchange, TLS certificates contain a public key that the
server uses to authenticate itself: this is an ECDSA public
key for the case of the ECDHE–ECDSA cipher suite. The

TLS handshake, using the ECDHE–ECDSA cipher suite,
consists of three main components. The ECDSA signature
generation (fixed-base scalar multiplication), ECDSA signa-
ture verification (double scalar multiplication), and ECDHE
(one fixed- and one variable-base scalar multiplication).9 We
consider Weierstrass and twisted Edwards curves separately,
with andwithout point compression. The cost of decompress-
ing a point inWeierstrass and twisted Edwards form is stated
in Table 7 (where we follow the approach described in [9] to
decompress points on twisted Edwards curves).

When usingWeierstrass curves the situation is not compli-
cated: transmitting compressed points costs a single conver-
sion while no additional cost is needed when transmitting
uncompressed points. In the setting of twisted Edwards
curves there are more possibilities. The simplest approach
is to only use the Montgomery form; however, this is expen-
sive since the Montgomery ladder cannot take advantage of
the fixed-base setting. One might consider a hybrid solu-
tion: computing the fixed-base scalar multiplication using
the birationally equivalent twisted Edwards curve while
computing the variable-base scalar multiplication using the
Montgomery ladder. In such a hybrid solution the pro-
tocol should specify if the coordinates are transmitted in
(compressed) twisted Edwards or Montgomery coordinates
(which are already in compressed form). When using such
a hybrid solution in the setting of ECDHE, transmitting the
points inMontgomery form is best (see Table 7). The cost for
the conversion (between Montgomery and twisted Edwards)
is roughly the same as when only using twisted Edwards
curves and transmitting compressed points.

Table 4 gives the cost estimates for the separate com-
ponents and total cost of the TLS handshake using the
ECDHE–ECDSA cipher suite for different security levels.
It includes the options with the best results for the cases of
Weierstrass curves, twisted Edwards curves and the hybrid
approach combining the use of the Montgomery ladder and
twisted Edwards. The results suggest that the approach using
only twisted Edwards achieves similar performance to the
hybrid approach using the Montgomery ladder, while it
avoids conversions between coordinate systems (the perfor-
mance gap between both approaches is below 4% in all the
cases, compressed or uncompressed form). Furthermore, our
Montgomery ladder implementations do not include the extra
validation step discussed at the end of Sect. 4.3; if incorpo-
rated, this would incur additional overhead.

The results in Table 4 also show that the use of twisted
Edwards for the ECDHE and full ECDHE–ECDSA compu-
tations are approximately a factor 1.46, 1.26 and 1.24 faster
in comparison to the Weierstrass curves at the 128-, 192-
and 256-bit security levels, respectively. We also include the

9 This cost assumes the use of the simplest,most secure implementation
approach, i.e., each ephemeral key is used once and then discarded.
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Table 4 Cost estimates for the TLS handshake using the ECDHE–ECDSA cipher suite for different security levels where we consider the elliptic
curve scalar multiplications

Security level Curve names T Estimated cost (in cycles)

ECDHE ECDSA sign ECDSA ver Total cost

128 w-256-mont U 390,000 110,000 287,000 787,000

C 412,000 809,000

ed-254-mont U 267,000 73,000 198,000 538,000

C 283,000 554,000

Hybrid ed-254-mont + m-254-mont U 269,000 73,000 198,000 540,000

C

NIST P-256 [31] U 490,000 90,000 530,000 1,110,000

Ed25519 signature scheme [9] C N/A 69,000 225,000 N/A

192 w-384-mers U 1,015,000 271,000 761,000 2,047,000

C 1,072,000 2,104,000

ed-382-mont U 801,000 211,000 605,000 1,617,000

C 854,000 1,670,000

Hybrid ed-382-mers + m-382-mers U 793,000 213,000 607,000 1,613,000

C

256 w-512-mers U 2,051,000 513,000 1,592,000 4,156,000

C 2,159,000 4,264,000

ed-511-mers U 1,651,000 411,000 1,274,000 3,336,000

C 1,753,000 3,438,000

Hybrid ed-511-mers + m-511-mers U 1,710,000 411,000 1,274,000 3,395,000

C

Costs in cycles are estimated using the performance numbers from Table 3. These estimates do not include the modular inversion required outside
scalar multiplication during ECDSA signing and verification. Estimates for the total cost correspond to the full handshake ECDHE–ECDSA
involving authentication in both the server and client side. We assume the use of precomputed tables with 96 points to accelerate fixed-base scalar
multiplication (64 points for twisted Edwards curves at the 128-bit security level). Similarly, we assume the use of precomputed tables with 32
points to accelerate double scalar multiplication (where one base is fixed). For comparison we state performance numbers for NIST P-256 [31]
which uses 150KB of storage, and performance numbers when using the Ed25519 signature scheme [9] (obtained from the benchmark machine
“sandy0” [13]). We consider that point transmission (T) in the key-exchange can be performed in uncompressed (U) or compressed (C) form

results from [31] when using NIST P-256. In [31] the fixed-
base scalar multiplication is implemented using a relatively
large (slightly over 150KB) lookup table for the fixed-base
scalar multiplication. It is unclear if this implementation
accesses the table-lookup elements in a cache-attack resis-
tant manner and if the dedicated addition formula used takes
care of exceptions, and if so if this is done in constant time.
This might explain the faster implementation results.

As a reference we also include the results for Ed25519 [9]
(obtained from the “sandy0” benchmark machine [13]),
which is a Schnorr-like signature scheme based on a twisted
Edwards curve isomorphic to Curve25519. Note that [9] only
computes signatures; when computing ECDH one could use
the approach as described in [5] which uses the Montgomery
ladder. In order to achieve perfect forward secrecy (ECDHE),
the implementation can compute the fixed-base scalar mul-
tiplication using the Montgomery ladder (which is slow) or
convert the point and compute the fixed-base scalar multipli-
cation using the corresponding twisted Edwards curve (using
a hybrid approach).

7 Conclusions

In this paper we have presented new elliptic curves for cryp-
tography targeting the 128-, 192-, and 256-bit security levels.
By considering different choices for the base field arithmetic,
pseudo-Mersenne and Montgomery-friendly primes, we
deterministically selected efficient twisted Edwards curves
as well as traditional Weierstrass curves. Instead of resorting
to the slower complete formulas, we show how to com-
pute efficient scalar multiplications by using constant-time,
exceptionless, dedicated group operations. For the cases in
which they are not guaranteed to be exceptionless, we have
proposed an efficient “complete” addition formula based on
masking techniques for Weierstrass curves. Our implemen-
tation of the scalar multiplication in the three most-widely
deployed scenarios show that our new backwards compatible
Weierstrass curves offer enhanced security properties while
improving the performance compared to the standard NIST
Weierstrass curves. At the expense of at most a few bits of
ECDLP security, our new twisted Edwards curves offer a per-
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formance increase of a factor 1.2–1.4 compared to our new
Weierstrass curves. We demonstrated the potential crypto-
graphic impact by showing cost estimates for these curves
inside the TLS handshake protocol.
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Appendix A: Algorithms for scalar multiplication

Algorithms for variable-base scalar multiplication Algo-
rithm 1 computes scalar multiplication for the variable-base
scenario using the fixed-windowmethod from [49]. We refer
to Sects. 4.1 and 4.2 for details on its usage with Weierstrass
and twisted Edwards curves, respectively. The computation
of this operation mainly consists of four different stages:
input and point validation, precomputation, recoding and
evaluation. Input and point validation are computed at the
very beginning of the execution usingAlgorithm 2 forWeier-
strass curves and Algorithm 3 for twisted Edwards curves.
In particular, Algorithm 3 performs two doublings over the
input point in twisted Edwards to ensure that subsequent
computations are performed in the large prime order sub-
group (avoiding small subgroup attacks). We remark that it
is the protocol implementer’s responsibility to ensure that
timing differences during the detection of errors do not leak
sensitive information to an attacker. In the precomputation

stage, the implementer should first select a window width
2 ≤ w < 10 according to efficiency and/or memory consid-
erations. For example, selecting w = 6 for 256-, 384- and
512-bit scalar multiplication was found to achieve optimal
performance in our implementations of Weierstrass curves.
Precomputation is then computed by successively executing
P + 2P + 2P + · · · + 2P with 2w−2 − 1 point additions
and storing the intermediate results. Explicit schemes are
given in Algorithms 4 and 5 for a = −3 Weierstrass and
a = −1 twisted Edwards curves, respectively. In the recod-
ing stage, we use a variant of the regular recoding by [36] that
ensures fixed length (see Algorithm 6). Since Algorithm 6
only recodes odd integers, we include a conversion step at
Step 6 to deal with even values. The corresponding correc-
tion is performed at Step 20. These computations should be
executed in constant time to protect against timing attacks.
For example, a constant time execution of Step 6 could be
implemented as follows (assuming a two’s complement rep-
resentation inwhich−1 ≡ 0xFF. . .FF, and bitlength(odd) =
bitlength(k)):

odd = −(k AND 1) {If k is even
then odd = 0xFF . . . FF else odd = 0}
k′ = k − r

k = (odd AND (k XOR k′)) XOR k′ {If odd = 0 then

k = k − r}
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The main computation in the evaluation stage consists of
t = �log2(r)/(w − 1)� iterations each computing (w − 1)
doublings and one addition with a value from the precom-
puted table. For a = −3 Weierstrass curves, the use of
Jacobian coordinates is a popular choice for efficiency rea-
sons. If this is used, then Algorithm 1 can use an efficient
merged doubling-addition formula [42] when w > 2 by set-
ting DBLADD = true. Other cases, including Weierstrass
curves with w = 2 or twisted Edwards curves, should use
DBLADD = f alse. Note that the evaluation of DBLADD
is used to simplify the description of the algorithm. An
implementation might choose for having separate functions
for twisted Edwards and Weierstrass curves. Following the
recommendations from Sect. 4, the last addition should be
performed with a unified formula (denoted by ⊕) in order
to avoid exceptions and it has been separated from the main
loop; see Steps 18 and 19. To achieve constant-time exe-
cution, the points from the precomputed table should be
extracted by doing a full pass over all the points in the
lookup table and masking the correct value with the index
(|ki | − 1)/2. Finally, a suitable conversion to affine coordi-
nates may be computed at Step 21 (if required).

Algorithm 7 computes scalar multiplication for the fixed-
base scenario using the modified LSB-set method [27]
(denoted by mLSB-set), which combines the comb
method [40] and LSB-set recoding [28]. Refer to Sects. 4.1
and 4.2 for details on the use of the method with Weierstrass
and twisted Edwards curves, respectively. This operation
consists of computations executed offline, which involve
point validation and precomputing multiples of the known
input point, and computations executed online, which involve
scalar validation, recoding and evaluation stages. As before,
point validation for twisted Edwards using Algorithm 3 dur-
ing the offline phase performs two doublings over the input
point to ensure that the computation takes place in the large

prime order subgroup.Again, it is the protocol implementer’s
responsibility to ensure that timing differences during the
detection of errors do not leak sensitive information to an
attacker. The implementer should choose a window width
2 ≤ w < 10 and a table parameter v ≥ 1 according to effi-
ciency and/or memory constraints, taking into account that
the mLSB-set method requires v ·2w−1 precomputed points.
For example, selecting w = 6 and v = 3 for 256-bit scalar
multiplication was found to achieve optimal performance
in our implementations of Weierstrass curves when storage
is constrained to 6KB. During the online computation, the
recoded scalar obtained from Algorithm 8 has a fixed length,
which enables a fully regular execution when the representa-
tion is set up as described at Step 7. Since Algorithm 8 only
recodes odd integers, we include a conversion step at Step
6 to deal with even values. The corresponding correction is
performed at Step 13. In the evaluation stage, the main com-
putation consists of e−1 = ��log2(r)�/(wv)�−1 iterations
each computing one doubling and v additions with a value
from the precomputed table. Following Sect. 4, the additions
should be performedwith a unified formula (denoted by⊕) to
avoid exceptions. Note that, as described in the variable-base
case, all the conditional computations using “if” statements
as well as the extraction of points from the precomputed
table should be executed in constant time in order to protect
against timing attacks (with the exception of Step 3, which
depends on public parameters; any potential leak through the
detection of errors at Step 4 should be assessed by the pro-
tocol’s implementer). Finally, a suitable conversion to affine
coordinates may be computed at Step 14 (if required).

Algorithm9computes double-scalarmultiplication,which
is typically found in signature verification schemes, and
uses the width-w non-adjacent form [54] with interleav-
ing [30,45]. We assume that one of the input points is
known in advance (P2) whereas the other one is a vari-
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able base (P1). Hence, we distinguish two phases: offline,
which involves validation of P2 and a precomputation stage
using the value w2; and online, which involves scalar val-
idation, point validation of P1 and precomputation (using
w1), recoding and evaluation stages. Again, point valida-
tion for twisted Edwards curves with Algorithm 3 performs
two doublings over the input points to ensure computation
in the large prime order subgroup. The precomputation for
both input points are performed as in the variable-base sce-
nario using Algorithms 4 and 5 for a = −3 Weierstrass and
a = −1 twisted Edwards curves, respectively. However, the
implementer has additional freedom in the selection of w2

since the precomputation for the fixed-base is done offline.

For example, we found that using w1 = 6 and w2 = 7
results in optimal performance in our implementations of
Weierstrass curves when storage was restricted to 2, 3 and
4KB for 128-, 192- and 256-bit security levels. In the online
computation, recoding of the scalars is performed using [34,
Algorithm 3.35]. Accordingly, the evaluation stage consists
of �log2(r)� + 1 iterations, each consisting of one doubling
and at most two additions (one per precomputed table). As in
the variable-base case, for a = −3 Weierstrass curves using
Jacobian coordinates one may use the merged doubling-
addition formula [42] by settingDBLADD= true. A suitable
conversion to affine coordinates may be computed at Step 39
(if required).
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Appendix B: Algorithms for point operations

Refer to Algorithms 10–17.

Appendix C: Implementing the group law
Weierstrass curves It is standard to represent points on
Eb : y2 = x3−3x+b using Jacobian coordinates [21,48,57]:
for non-zero Z ∈ Fp, the tuple (X : Y : Z) is used to repre-
sent the affine point (X/Z2,Y/Z3) on Eb. There are many
different variants of the Jacobian formulas originally pro-
posed in [23]. In our implementation we use the doubling
formula from [41] (see Algorithm 10). Point additions are
usually performed between a running point and a point from
a (precomputed) ‘look-up’ table. Typically, it is advanta-
geous to leave the precomputed points in projective form for
variable-base computations, and to convert them (offline) to
their affine form for fixed-base computations.When elements
in the table are stored in affine coordinates, point addition is
performedusingmixed Jacobian/affine coordinates using, for
example, the formula presented in [34] (see Algorithm 13).
There are cases in which exceptions in the formulas might
arise. This is the case, for example, for fixed-base scalar mul-
tiplication. To achieve constant-time execution, we devised
a complete formula based on masking that works for point
addition, doubling, inverses and the point at infinity (see
Algorithm 18). If points from the precomputed table are
stored in projective coordinates, we use Chudnovsky coor-
dinates to represent the affine point (X/Z2,Y/Z3) ∈ Eb

by the projective tuple (X : Y : Z : Z2 : Z3). The corre-
sponding addition formula is given as Algorithm 12. More
efficiently, whenever a doubling is followed by an addition
(as in themain loop of the variable-base scalarmultiplication;
seeAlgorithm1) one can use amerged doubling-addition for-
mula [42] that is based on the special addition with the same
Z -coordinate from [43] (see Algorithm 11). The different
costs of the point formulas used in our implementation can
be found in Table 5. Finally, the exact routine to perform the
precomputation for the variable-base scenario is outlined in
Algorithm4.The schemeuses a straightforward variant of the
general formulas, including the special addition from [43].
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Twisted Edwards curves Hisil et al. [35] derive effi-
cient formulas for additions on (special) twisted Edwards
curves [7] by representing affine points (X/Z ,Y/Z) on
Ed : − x2 + y2 = 1 + dx2y2 by the projective tuple
(X : Y : Z : T ), where T = XY/Z . Hamburg [32] proposes
to represent such a projective point using five elements: (X :
Y : Z : T1 : T2), where T = T1T2. This has the advantage of
avoiding a required look-ahead when computing the elliptic
curve scalar multiplication using the techniques from [35].

If the addition formulas are “dedicated” they do not work for
doublingbut are usuallymore efficient. Thedetails of the ded-
icated additions used in our implementation are outlined in
Algorithms 15 and 16. For settings that might trigger excep-
tions in the formulas (e.g., fixed-based scalar multiplication),
one can use the unified addition formula proposed by [35]
(see Algorithm 17). The algorithm for point doubling on Ed
is given in Algorithm 14: this extends the formula from [7]
by using the five element representation as suggested in [32].
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When storing precomputed points, we follow the caching
techniques described in [35]: we store affine points as
(x + y, y − x, 2t) with t = xy, or projective points as
(X + Y : Y − X : 2Z : 2T ) with T = XY/Z , both of which
can speed up the scalar multiplication computation. Just as in
the case of the Weierstrass curves above, it is usually advan-
tageous to leave the precomputed points in projective form
for variable-base computations, and to convert them (offline)

to their affine form for fixed-base computations. The explicit
routine that performs the precomputation for the variable-
base scenario is outlined in Algorithm 5. The costs of the
different formulas used in our implementation are displayed
in Table 5.
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Appendix C.1: Complete addition laws

An elliptic curve addition law is said to be complete if it
correctly computes the group operation regardless of the two
input points. Although employing such an addition law on its
owncan simplify the task of the implementer, it usually incurs
a performance penalty. This is because the fastest formulas
available for a particular curve model, which work fine for
most input pairs, tend to fail on certain inputs. However, it is
often the case that implementers can safely exploit the speed
of such incomplete formulas by correctly dealing with all
possible exceptions, or by designing the scalar multiplication
routine such that exceptions can never arise.

All of the twisted Edwards curves presented in this paper
can make use of the complete addition law in [11] by work-
ing on the birationally equivalent Edwards model E−1/d :
x2 + y2 = 1− (1/d)x2y2. However, the complete formulas
are slower compared to the fastest formulas on the twisted
Edwards curve [35]. But even when working on an Edwards
curve with complete formulas, an implementation of the
scalar multiplication could still be sped up by mapping to
a different curve, while remaining with the complete formu-
las for all other operations. One could for example follow the
approach suggested in [33], and use an isogeny to the twisted
Edwards curve E−1/d−1 : x2 + y2 = 1 − (1/d + 1)x2y2; or
use the birational equivalence to E : −x2 + y2 = 1+dx2y2.

The situation for the prime order Weierstrass curves in
this paper is more complicated. As pointed out by Bosma
and Lenstra [18], the best that we can do for general elliptic
curves is as follows: on input of two points P1 and P2, we
must compute two candidate sums, P3 and P ′

3, for which we
can only be guaranteed that at least one of them is a correct
projective representation for P1 + P2. In the case that pre-
cisely one of P3 and P ′

3 correctly corresponds to P1+ P2, the
other candidate has all of its coordinates as zero; although this
makes it straightforward to write a constant-time routine for
complete additions, it also means that computing complete
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Table 5 An overview of the number of modular operations required to implement the group law for a = −3 Weierstrass, a = −1 twisted Edwards
and Montgomery curves using different coordinate systems

Refs. #mul #sqr #mulc #add #sub #div2 #lut See

Weierstrass double [41] 4 4 0 2 5 1 0 Algorithm 10

Weierstrass add:

Jac + Chud → Jac [23] 11 3 0 0 7 0 0 Algorithm 12

Jac + aff. → Jac [34] 8 3 0 1 6 0 0 Algorithm 13

Weierstrass dbl-add [42] 16 5 0 2 11 0 0 Algorithm 11

(Complete) Jac + aff → Jac This work 8 3 0 2 8 1 1 Algorithm 18

(Complete) Jac + Jac → Jac This work 12 4 0 2 8 1 1 Algorithm 19

Edwards doubling [7] 4 3 0 3 2 0 0 Algorithm 14

Edwards addition proj. [35] 8 0 0 3 3 0 0 Algorithm 15

Edwards addition aff. [35] 7 0 0 4 3 0 0 Algorithm 15

(Unified) Edwards addition proj. [35] 9 0 0 3 3 0 0 Algorithm 17

(Unified) Edwards addition aff. [35] 8 0 0 4 3 0 0 Algorithm 17

Montgomery ladder step double-and-add [47] 5 4 1 4 4 0 0

TheWeierstrass point doubling works on Jacobian coordinates while the point addition formula takes as input one Jacobian (Jac) coordinate and the
other in either affine (aff) or (projective) Chudnovsky coordinates. We also show a merged double-and-add approach which computes R = 2P + Q
where R and P are in Jacobian and Q in Chudnovsky coordinates. The complete addition formulas also include the number of table look-ups
(denoted by #lut) that are required for their realization. The Edwards doubling uses the five-element projective coordinates (X : Y : Z : T1 : T2). The
Edwards addition adds a five-element projective coordinate (X : Y : Z : T1 : T2) to a four-element projective coordinate (X +Y : Y − X : 2Z : 2T )

(proj.) or a three-element extended affine coordinate (x + y, y − x, 2t) (aff.) resulting in a five-element coordinate as a result. The performance of
a single step of the Montgomery ladder (which computes a doubling and a differential addition) is stated as well

additions in this way is much more costly than computing
incomplete additions.

For the sake of comparison, we present the simplified
version of the complete formulas10 from [18], which are spe-
cialized to short Weierstrass curves of the form E : y2 =
x3 + ax + b. For two input points P1 = (X1 : Y1 : Z1)

and P2 = (X2 : Y2 : Z2) in homogeneous projective space,
the two candidate sums P3 = (X3 : Y3 : Z3) and P ′

3 =
(X ′

3 : Y ′
3 : Z ′

3) are computed as

X3 = (X1Y2 − X2Y1)(Y1Z2 + Y2Z1)

−(X1Z2 − X2Z1)(a(X1Z2 + X2Z1)

+ 3bZ1Z2 − Y1Y2);
Y3 = −(3X1X2 + aZ1Z2)(X1Y2 − X2Y1)

+(Y1Z2 − Y2Z1)(a(X1Z2 + X2Z1)

+ 3bZ1Z2 − Y1Y2);
Z3 = (3X1X2 + aZ1Z2)(X1Z2 − X2Z1)

−(Y1Z2 + Y2Z1)(Y1Z2 − Y2Z1);
X ′
3 = −(X1Y2 + X2Y1)(a(X1Z2 + X2Z1)

+3bZ1Z2 − Y1Y2) − (Y1Z2 + Y2Z1)

(3b(X1Z2 + X2Z1) + a(X1X2 − aZ1Z2));
Y ′
3 = Y 2

1 Y
2
2 + 3aX2

1X
2
2 − 2a2X1X2Z1Z2

−(a3 + 9b2)Z1Z
2
2 + (X1Z2 + X2Z1)

(3b(3X1X2 − aZ1Z2) − a2(X2Z1 + X1Z2));
10 We also corrected some typos in [18] that were pointed out in [6].

Z ′
3 = (3X1X2 + aZ1Z2)(X1Y2 + X2Y1)

+(Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2

+a(X1Z2 + X2Z1)). (1)

In the case of a = −3 shortWeierstrass curves, like the prime
order curves in this paper, we found that the computations
in (1) require at most11 22 multiplications, 3 multiplications
by b, and one multiplication by b2 −3. The adaptation of the
formulas to points in Jacobian coordinates can be achieved in
the obvious way at an additional cost of 6multiplications and
3 squarings: preceding (1), we can transform from Jacobian
coordinates to homogeneous coordinates by taking Xi ←
Xi · Zi and then Zi ← Z3

i for i = 1, 2; and, following the
correct choosing of P3 = (X3 : Y3 : Z3), we can move back
to Jacobian coordinates by taking X3 ← X3 · Z3 and then
Y3 ← Y3 · Z2

3.
Although the formulas in (1) are mathematically satis-

factory, their computation costs around twice as much as
an incomplete addition (see Table 5), which renders them
far from satisfactory in cryptographic applications. On the
other hand, the work-around we present in Algorithm 19 and
Algorithm 18, while perhaps not as mathematically elegant,
is equivalent for all practical purposes and incurs a much
smaller overhead over the incomplete formulas. In particular,
there are no additional multiplications or squarings (on top of

11 We did not optimize (1) aggressively; we simply grouped com-
mon subexpressions and employed obvious operation scheduling—it
is likely that there are faster routes.
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Table 6 The traces of Frobenius
t for the curves in Tables 1 and 2

Curve Eb Trace

w-256-mont 0x3AE8AEC191AF8B462EF3A1E5867A815

w-254-mont 0x147E7415F25C8A3F905BE63B507207C1

w-256-mers 0x1BC37D8A15D9A39FDF54DFD6B8AE571F

w-255-mers 0x79B5C7D7C52D4C2054705367C3A6B219

w-384-mont 0x456480EB358AEDAC85B1232C7583BE25D641B76B4D671145

w-382-mont 0x5914E300B421DEB28C4CDE002717D32E9F54797FC144CFE3

w-384-mers 0x29E150E114A2977E412562C2B3C81D859FB27E0984F19D0B

w-383-mers 0x563507EB575EE952604F4BFCABE8550CE6D6803F4485BABD

w-512-mont 0x9C757286D118AFD67F9B550F47B6719E20C2C66AF9B128C46C69D70E81670237

w-510-mont 0x46EB93321EAF10CC8B854D62E19A8C272DD216A1CDDCFC0C5FF4DFF6790565D3

w-512-mers 0xA4C35B046B187CE4B03DA712682F4239C4A974C99F832DBC31EAC0C6FBCCA86B

w-511-mers 0x724105C0A12627C65D2B01900AE91780572C19A95F06605E0FEFA08C4C462C81

Curve Ed Trace

ed-256- mont 0x13AAD11411E6330DA649B44849C4E1154

ed-254- mont 0x51AB3E4DD0A7413C5430B004EE459CE4

ed-256-mers 0x106556A94BD650E6C691EC643BB752C90

ed-255-mers 0x8C3961E84965F3454ED8B84BEF244F30

ed-384- mont 0x2A4BE076C762D8C9825225944DFC2407E406C7167336DD94

ed-382- mont 0xB394157AB7C8FA209CFA7E8EDF87E5F659DFF2586830167C

ed-384-mers 0x4CA0BB84A976997697B17EE9C7182C6EB8A4A3823EF64630

ed-383-mers 0x3BBDA3EC630981110CAA5E0D854D777E40050C4F9160DDE8

ed-512- mont 0xCCC0A98C8F32E3CBBF3E7EBB024842CB2099437935363F81733ADE04D1C927EC

ed-510- mont 0xA0C4BB860F4395023A482F564F6E7DFD280CF7DBA06996F4DE9F78C8324AB93C

ed-512-mers 0x1606BDFD840951119676E1EC2EDAAE83C8C56803CD1FFC1DAC61CB8D3D283F7A4

ed-511-mers 0x560F2F9F46F87459155B3C6E1CEDD9236AF63E504E83379AC20F45C1CBAF41DC

Compute group orders as #E(Fp) = p + 1 − t and #E ′(Fp) = p + 1 + t for E ∈ {Eb,Ed }

Table 7 The cost of converting
points when using the curves
from Tables 1 and 2

Conversion Formula Cost

Edwards to Montgomery

(x, y) to (u) u = (1 + y)(1 − y)p−2 1 exp, 1 mul

(y) to (u) u = (1 + y)(1 − y)p−2 1 exp, 1 mul

(X : Y : Z) to (u) u = (Z + Y )(Z − Y )p−2 1 exp, 1 mul

Edwards to Edwards

(y) to (x, y) a = y2 − 1 1 exp, 3 mul, 2 squ

b = dy2 + 1

x = ab(ab3)(p−3)/4

Montgomery to Edwards

(u) to (y) y = (u − 1)(u + 1)p−2 1 exp, 1 mul

(u) to (x, y) x = u
√
B(u3 + Au2 + u)(3p−5)/4 2 exp, 2 mul, 1 mulc, 1 squ

y = (u − 1)(u + 1)p−2

Weierstrass to Weierstrass

(x) to (x, y) y = (x3 − 3x + b)p−2 1 exp, 1 mul, 1 squ

This is used for point decompressing and converting between twisted Edwards and Montgomery (and vice
versa). The cost is expressed in the number of exponentiations (exp), multiplications (mul), multiplication by
constants (mulc) and squarings (squ). Let EA/Fp : v2 = u3 + Au2 + u and Ed/Fp : −x2 + y2 = 1+ dx2y2

with B = −(A + 2) a square in Fp and d = −(A − 2)/(A + 2). Let (X : Y : Z) be the projective
coordinates for E . We follow the approach described in [9] to decompress twisted Edwards points
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those incurred during an incomplete addition) required when
performing a complete addition via this masking approach
(Tables 6, 7).

As briefly discussed in Sect. 4.1, the idea is to exploit the
similarity between the sequences of operations computed in
a doubling and an addition. On input of P and Q, one would
ordinarily compute the doubling 2P and the (non-unified)
addition P + Q and mask out the correct result at the end,
depending on whether P = Q. However, the detection of
P = Q (or not) can be achieved much earlier in projec-
tive space using only a few operations that are common to
both doublings and non-unified additions—seeLine 17 (resp.
Line 12) in Algorithm 19 (resp. Algorithm 18). After this
detection, the required operation (doubling or addition) is
achieved by masking the correct inputs and outputs through
a sequence of subsequent computations, those which overlap
in the explicit formulas for point doublings and additions. Of
course, in the case that one or both of P or Q is O, or that
P = −Q, these superfluous computations are still computed
in constant-time such that the correct result is masked out in
a cache-attack resistant manner.

Appendix D: Traces of Frobenius

Refer to Table 6.

Appendix E: Costs of point conversion

Refer to Table 7.
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37. Knežević,M.,Vercauteren, F., Verbauwhede, I.: Speeding up bipar-
tite modular multiplication. In: Hasan, M., Helleseth, T. (eds.)
Arithmetic of Finite Fields—WAIFI 2010, vol. 6087 of LNCS,
pp. 166–179. Springer, Berlin/Heidelberg (2010)

38. Kocher, P.C.: Timing attacks on implementations of Diffie–
Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.)
Crypto 1996, vol. 1109 of LNCS, pp. 104–113. Springer, Heidel-
berg (1996)

39. Lenstra, A.K.: Generating RSA moduli with a predetermined por-
tion. In: Ohta, K., Pei, D. (eds.) Asiacrypt’98, vol. 1514 of LNCS,
pp. 1–10. Springer, Berlin/Heidelberg (1998)

40. Lim, C.H., Lee, P.J.: More flexible exponentiation with precom-
putation. In: Desmedt, Y. (ed.) CRYPTO, vol. 839 of LNCS, pp.
95–107. Springer, Berlin (1994)

41. Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic
curve cryptography. In: Mangard, S., Standaert, F.-X. (eds.) Pro-
ceedings of CHES 2010, vol. 6225 of LNCS, pp. 80–94. Springer,
Berlin (2010)

42. Longa, P., Miri, A.: New composite operations and precomputa-
tion scheme for elliptic curve cryptosystems over prime fields. In:
Cramer, R. (ed.) Proceedings of PKC 2008, vol. 4939 of LNCS,
pp. 229–247. Springer, Berlin (2008)

43. Meloni, N.: New point addition formulae for ECC applications.
In: Carlet, C., Sunar, B. (eds.) Workshop on Arithmetic of Finite
Fields (WAIFI), vol. 4547 of LNCS, pp. 189–201. Springer, Berlin
(2007)

123

http://eprint.iacr.org/
http://cr.yp.to/papers.html#curvezero
http://cr.yp.to/talks/2010.04.19/slides.pdf
http://cr.yp.to/talks/2010.04.19/slides.pdf
http://safecurves.cr.yp.to
http://bench.cr.yp.to
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://eprint.iacr.org/2005/222
http://eprint.iacr.org/2005/222
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


286 J Cryptogr Eng (2016) 6:259–286

44. Microsoft Research.: MSR Elliptic Curve Cryptography Library
(MSR ECCLib) (2014). http://research.microsoft.com/en-us/
projects/nums

45. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S.,
Youssef, A.M. (eds.) Selected Areas in Cryptography, vol. 2259 of
LNCS, pp. 165–180. Springer, Berlin (2001)

46. Montgomery, P.L.: Modular multiplication without trial division.
Math. Comput. 44(170), 519–521 (1985)

47. Montgomery, P.L.: Speeding the Pollard and elliptic curvemethods
of factorization. Math. Comput. 48(177), 243–264 (1987)

48. National Security Agency.: Fact sheet NSA Suite B Cryptogra-
phy. http://www.nsa.gov/ia/programs/suiteb_cryptography/index.
shtml (2009)

49. Okeya, K., Takagi, T.: The width-w NAF method provides small
memory and fast elliptic curve scalars multiplications against side-
channel attacks. In: Joye, M. (ed.) Proceedings of CT-RSA 2003,
vol. 2612 of LNCS, pp. 328–342. Springer, Berlin (2003)

50. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and counter-
measures: the case of AES. In: Pointcheval, D. (ed.) CT-RSA, vol.
3860 of LNCS, pp. 1–20. Springer, Berlin (2006)

51. Schoof, R.: Counting points on elliptic curves over finite fields.
Journal de théorie des nombres de Bordeaux 7(1), 219–254 (1995)

52. Shumow, D., Ferguson, N.: On the possibility of a back door
in the NIST SP800-90 dual ec prng. http://rump2007.cr.yp.to/
15-shumow.pdf (2007)

53. Solinas, J.A.: Generalized Mersenne numbers. Technical report
CORR 99–39, Centre for Applied Cryptographic Research, Uni-
versity of Waterloo (1999)

54. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes
Cryptogr. 19, 195–249 (2000)

55. The New York Times: Government announces
steps to restore confidence on encryption standards.
http://bits.blogs.nytimes.com/2013/09/10/government-announces-
steps-to-restore-confidence-on-encryption-standards (2013)

56. Tibouchi,M.:Elligator squared: uniformpoints on elliptic curves of
prime order as uniform random strings. Cryptology ePrint Archive,
Report 2014/043 (2014) http://eprint.iacr.org/

57. U.S. Department of Commerce/National Institute of Standards and
Technology: Digital signature standard (DSS). FIPS-186-4 (2013).
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

58. Walter, C.D.: Montgomery exponentiation needs no final subtrac-
tions. Electron. Lett. 35(21), 1831–1832 (1999)

123

http://research.microsoft.com/en-us/projects/nums
http://research.microsoft.com/en-us/projects/nums
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
http://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
http://eprint.iacr.org/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

	Selecting elliptic curves for cryptography: an efficiency  and security analysis
	Abstract
	1 Introduction
	2 Modular arithmetic: choosing primes
	3 Curve selection
	3.1 Curve selection for Weierstrass curves
	3.2 Curve selection for twisted Edwards  (and Montgomery) curves
	3.3 Correspondence between minimal A and d  for twisted Edwards curves
	3.4 Curve properties

	4 Efficient, constant-time, and exceptionless  scalar multiplications
	4.1 Weierstrass scalar multiplications
	4.2 Twisted Edwards scalar multiplications
	4.3 The Montgomery ladder

	5 Implementation results
	6 Real-world protocols
	7 Conclusions
	Acknowledgments
	Appendix A: Algorithms for scalar multiplication
	Appendix B: Algorithms for point operations
	Appendix C: Implementing the group law
	Appendix C.1: Complete addition laws

	Appendix D: Traces of Frobenius
	Appendix E: Costs of point conversion
	References




