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Abstract Side-channel attacks are a serious threat for
physical implementations of public key cryptosystems and
notably for the RSA. Side-channel leakages can be explored
fromunprotected cryptodevices and several power or electro-
magnetic traces are collected in order to construct (vertical)
differential side-channel attacks. On exponentiations, the so-
called horizontal correlation attacks originally proposed by
Walter in “Sliding windows succumbs to big mac attack”
(Cryptographic hardware and embedded systems, 2001) and
improved by Clavier et al. in “Horizontal correlation analysis
on exponentiation” (ICICS, 2010) demonstrated to be effi-
cient even in the presence of strong countermeasures like the
exponent and message blinding. In particular, a single trace
is sufficient to recover the secret if the modular exponentia-
tion features long integer multiplications. In this paper, we
consider the application of vertical and horizontal correlation
attacks on residue number systems (RNS)-based approaches.
The montgomery multiplication, which is widely adopted in
the finite ring of an exponentiation, has different construc-
tion details in the RNS domain. Experiments are conducted
on hardware (parallel) and software (sequential) and leakage
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models for known and masked inputs are constructed for the
regular and SPA-protected Montgomery ladder algorithm.
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1 Introduction

Public key cryptographic algorithms, like RSA [32] or
ECC [22,26], when running on hardware devices leak
confidential information through unavoidable side-channels
(time, power consumption, electromagnetic radiations, etc).
Passive and non-invasive attacks are able of recovering
secrets from cryptodevices by analyzing side-channel leak-
ages.

In the context of exponentiation-based public key algo-
rithms, two categories of attacks have been widely investi-
gated in the recent years: differential power analysis, through
different classes of distinguishers (difference-of-means [23],
CPA [8], templates [9], MIA [16], clustering [4]) has been
largely investigated and need to process multiple traces in
order to retrieve the secret. The exponent blinding counter-
measure [24], which randomizes the bits of the exponent
at each exponentiation, is the main countermeasure. On the
other hand, single-trace analyses, based on a single execu-
tion of an exponentiation, exploit the leakage by analyzing
the trace in a horizontal manner. Since the pioneer work of
Kocher [24], sophisticated horizontal attacks have been pro-
posedwhich exploit regularity of long integermultiplications
(LIM) [5–7,11,12,33], targeting the square-and-multiply
atomicity [10] or the square-and-multiply always [13]. Their
basic principle relies on the identification of a particular
operand during modular multiplications.

In this paper, we present a detailed analysis of both vertical
and horizontal correlation attacks on RNS-based exponenti-
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ations, typically encountered in an RNS-RSA implementa-
tion [3]. In this case, the leakage model must be constructed
according to the features of the RNS modular exponentia-
tion algorithm. The main goal is to demonstrate the pros and
cons of RNS-based countermeasures in hardware and soft-
ware against correlation electromagnetic analysis.

The rest of the paper is organized as follows. In Sect. 2.1,
we give a brief overview of residue number systems (RNS) as
well as implementation details about the devices under test.
Known input and masked input correlation attacks and their
respective leakage models are detailed in Sects. 3 and 4. We
present the results of our vertical and horizontal correlation
attacks in Sects. 5 and 7 respectively.

2 Preliminaries

2.1 Device under test

Experiments were conducted on hardware and software
RNS-based RSA implementations. The devices under attack
were a Spartan-3E xc3s1600 FPGA and an ARM Cor-
tex M3 32-bit microcontroller STM32F103ZET6. In both
cases, we implemented an RNS version of RSA protected
against simple analysis with the Montgomery ladder [19]
and randomized using the leak resistant arithmetic (LRA)
approach [2]. Finally, the secret exponent d is protected using
the usual exponent blinding strategy: δ = d + rφ(N ), for a
(small) randomvalue r [23]. The term N is theRSAmodulus.

In a Residue Number System, integers are represented
according to a predefined base B = (b1, b2, . . . , bk) of
pairwise prime integers, called moduli. Any integer X is
thus expressed by a k-tuple of positive integers 〈X〉B =
(x1, x2, . . . , xk), where xi ≡ X mod bi , and 0 ≤ xi < bi ,
(i.e. xi is the remainder in the Euclidean division of X by
bi , denoted |X |bi in the sequel). We know from the Chinese
Remainder Theorem that this representation is unique mod-
ulo the product of the elements of B. Arithmetic operations
(±,×) are implicitly performed B = ∏k

i=1 bi .
In order to perform computations modulo N (with

gcd(N , B) = 1), several RNS variants of Montgomery mul-
tiplication have been proposed [1,3,15,20,31]. They are all
derivations of the original algorithm, where theMontgomery
constant is replaced by the constant B, and the usual division
by B, otherwise undefined, is computed in an extra RNS
basis, say A. The efficiency of an RNS modular multipli-
cation heavily depends on the two implied base extensions
between A and B.

In Algorithm 1, the operationMM(x, y, N ,B,A) returns
the Montgomery product xyB−1 mod N in the two RNS
bases A and B.

Algorithm 1 is easily embedded into any exponentiation
algorithm. For this study, we considered the Montgomery

Algorithm 1: RNS Montgomery Multiplication (MM)
with Fast Approximation Base Extensions [15,20]
Data: x, y ; 1 ≤ x, y < N , in A ∪ B, where A = (a1, a2, ..., ak),

B = (b1, b2, ..., bk), A = ∏k
i=1 ai , B = ∏k

i=1 bi ,
gcd(A, B) = gcd(B, N ) = 1, B > 4N and A > 2N

Result: w = xyB−1 mod N , in A ∪ B
1 Pre-Computations in A (i.e. modA): B−1, −BN B−1,

A−1
j = (A/a j )

−1 for all j = 1, . . . , k, and Bi, j N B−1 for all

i, j = 1, . . . , k, where Bi, j = B/bi mod a j ;

2 Pre-Computations in B (i.e. modB): −N−1B−1
i for all

i = 1, . . . , k, and Ai, j for all i, j = 1, . . . , k;

3 s = |x × y|B∪A;
4 #——— Base extension 1 ————

5 qbi =
∣
∣
∣si (−N−1B−1

i )

∣
∣
∣
bi
, for i = 1, . . . , k;

6 f =
⌊(∑k

i=1 qbi

)
/2ω

⌋
;

7 wai =
∣
∣
∣si B−1 + ∑k

j=1 qb j (Bi, j N B−1) − f BN B−1
∣
∣
∣
ai
, for

i = 1, . . . , k;
8 #——— Base extension 2 ————

9 qi =
∣
∣
∣wai (A

−1
i )

∣
∣
∣
ai
, for i = 1, . . . , k;

10 f =
⌊(

2ω−1 + ∑k
i=1 qbi

)
/2w

⌋
;

11 wbi =
∣
∣
∣
∑k

j=1 q j Ai, j − f A
∣
∣
∣
bi
, for i = 1, . . . , k;

ladder that we reinforced with Bajard et al. [2] Leak Resis-
tant Arithmetic concept. In the LRA, the RNS moduli can
be randomized before and/or during the course of an expo-
nentiation. This countermeasure acts as a message blinding
technique because it offers a high degree of randomization
to the data. The LRA adaptation of the Montgomery ladder
is illustrated in Algorithm 2.

Algorithm2:LRA-RNSMontgomeryPoweringLadder
[2]
Data: x in A ∪ B, where A = (a1, a2, ..., ak),

B = (b1, b2, ..., bk), A = ∏k
i=1 ai , B = ∏k

i=1 bi ,
gcd(A, B) = gcd(B, N ) = 1 and δ = (δ�−1 . . . δ1δ0)2

Result: z = xδ mod N in A ∪ B
1 Pre-Computations: 〈AB mod N 〉A∪B;

2 Randomize(A,B);
3 A0 = MM(1, AB mod N , N ,A,B), in A ∪ B;
4 A1 = MM(x, AB mod N , N ,A,B), in A ∪ B;
5 for i = � − 1 to 0 do
6 Aδi

= MM(Aδi
, Aδi , N ,B,A), in A ∪ B

7 Aδi = MM(Aδi , Aδi , N ,B,A), in A ∪ B
8 end
9 A0 = MM(A0, 1, N ,B,A), in A ∪ B

2.2 Leakage models

In this section, we define the univariate leakagemodels based
on the vertical and horizontal correlation attacks for theRSA-
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RNS implementations. The leakage modeling is based on the
available information to an adversary.

First, we assume that the adversary knows implementa-
tion details (i.e., RNS Montgomery algorithm and the two
RNS basesA and B) and LRA countermeasure is disabled in
order to construct a leakagemodel based on known input cor-
relation attacks. We assume that the targeted devices leak the
Hamming Weight of internal registers. Therefore, an adver-
sary is able of predicting the intermediate data in the course
of the exponentiation by guessing the exponent bits. The
leakage is assumed as having deterministic and independent
(Gaussian) noise parts. Further, he/she tries to correlate these
predicted data with the deterministic part of the leakage.

Second, inputs are randomized by adopting the LRA as
message blinding countermeasure. Therefore, a more robust
attack based on exploitable leakage of a masked RNSMont-
gomery ladder (Algorithm 2) is constructed. The proposed
attack is based on [7,12,34] and shows how a leakage model
can be constructed for randomized inputs if the adversary
knows the modular exponentiation algorithm.

The usage of the exponent blinding as an additional coun-
termeasure defines the attack setting as vertical (multiple
traces) or horizontal (single traces).

3 Known input correlation attacks

In this section, we detail known input correlation attacks on
RNS-based RSA implementations. The term known has the
same meaning of unmasked. We keep the term known to be
aligned with the terms used in the Refs. [5,7].

Correlation electromagnetic analysis (CEMA) is the elec-
tromagnetic version of CPA and aims at revealing the secret
key manipulated by a circuit by analyzing the correlation
between its EM emanations and predicted values of an inter-
nal register according to the guesses on the secret key.

In order to apply a CEMA, an attacker has to measure
the variations of the EM field during the RSA exponentia-
tion using the appropriate equipment. Our setup is composed
by an EM station equipped with a XYZ motorized table, a
home-made EM probe with a 2mm coil, an 200MHz-BW
amplifier, an oscilloscope, an evaluation board and a com-
puter to control the whole setting.

The CEMA procedure also depends on the proper choice
for the selection function. It is related to the targeted algo-
rithm, its implementation details and the randomly generated
input data x .

3.1 Key guesses and selection function

The first assumption is that the adversary knows the target
exponentiation algorithm, in our case theMontgomery ladder
(Algorithm 2). He generates 8-bit (or less) guesses on the

exponent, starting from the MSB. Then, for each guess h ∈
{0, 1, . . . , 28 − 1}, he computes a leakage model according
to the variations of the electromagnetic field, sampled over
a time period [1,J ] and the predicted values of an internal
register. Here, the adopted model is based on the Hamming
Weight of the register value (we consider that the Hamming
Distancemodel cannot be applied because the reference state
R is unknown). It typically corresponds to the computation
of an intermediate value by the algorithm according to the
input data x and the sub-key guess h. For any RSA, these
intermediate valuesmight be theMontgomerymultiplication
results. However, for an RNS implementation of RSA, the
adversarymust know themoduli inside the sets of RNS bases
A and B, as well as construction details of the Montgomery
multiplication algorithm (e.g., the base extension method),
in order to predict intermediate results. The sets of moduli
{ak} and {bk} can be recovered by performing a long and
tedious CEMA on the forward conversion (radix to RNS).
In this case, the guesses h on the selection function are the
values of the moduli itself, instead of the 8-bit portions of
the exponent. The set of RNS moduli is usually composed
of pseudo-Mersenne numbers of the form 2ω − c where 0 <

|c| < 2�ω/2	. Considering ω as usually 32 bits, the amount
of possible RNS moduli, and consequently the number of
guesses, is 216. If the adversary knows the RNS bases and the
constructing details of Montgomery algorithm, he may now
compute the selection function value d(xi , h) for each input
message xi and for each 8-bit exponent guess h. Because
the RNS Montgomery multiplication results are obtained in
parallel, he has to choose one RNS channel from A or B to
compute the selection function value d(xi , h). Furthermore,
assuming υ as being the width of the targeted register D,
the selection function follows the linear model d(xi , h) =
HW (D) − υ/2, where HW is the Hamming weight.

3.2 Correlation coefficient

The correlation coefficient is computed with Pearson linear
correlation between a set of predicted values d(xi , h) and a
set of traces Ti = {ti, j }, where 1 ≤ i ≤ Nt denotes the trace
index and j the sample index. The correlation coefficient
ρ(h, j) for each guess h and each sample j is computed as:

ρ(h, j) = cov
(
d(xi , h), ti, j

)

σd(xi ,h)σti, j
(1)

Since the guesses are made for 8-bit portions of the expo-
nent, the result ρ is a matrix with dimension 28 × J . The
CEMA is expected to return an estimate ĥ of the key by iden-
tifying the row of ρ that gives greater correlation values for
some samples j . It is noteworthy that the interval [1,J ] can
be reduced by computing the correlation coefficient over the
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samples j presenting the greatest variability with respect to
different input messages xi .

4 Masked-input correlation attacks

In the presence of masking countermeasures (or message
blinding), intermediate variables are hardly predicted. Tech-
niques used for known input (unmasked) correlation attacks
are thus impractical. However, distinguishers can still exploit
information leakage if the masking procedure is executed
only once before the exponentiation.

In the sequence of modular multiplications, the goal of an
adversary is to detect when two modular multiplications use
the same operand (i.e., a register receives the same data at
two different, non-consecutive clock cycles). Attacks based
on this strategy are called collision-correlation attacks [6,
7,12,29,34]. They work differently for each modular expo-
nentiation algorithm. Next, we review collision-correlation
attacks on SPA-protected, atomic-square-and-multiply and
square-and-multiply always. The Montgomery ladder is a
regular, SPA-protected algorithm, too. Vertical and horizon-
tal collision-correlation attacks on the Montgomery ladder
have been proposed in [21] and [17], respectively. In this
work, we provide practical collision-correlation for this algo-
rithm. In Sect. 4.3, we present a leakage model for masked
input correlation attacks on the RNS Montgomery ladder.

4.1 Masked input correlation attacks on
square-and-multiply atomicity

Side-channel atomicity is SPA-resistant square-and-multiply
solution and was proposed in [10] in order to counteract sim-
ple side-channel attacks. It consists in removing conditional
branching from the left-to-right square-and-multiply algo-
rithm such that the same sequence of instructions is executed
whether the exponent bit is a 0 or a 1. It is shown in Algo-
rithm 3.

Algorithm 3: Side-Channel Atomicity-SPA-Resistant
Square-and-Multiply
Data: x̃ , N , d = (d�−1...d1d0)2.

Result: xd mod N

1 A0 = 1;
2 A1 = x̃ ;
3 i = � − 1;
4 k = 0;
5 while i ≥ 0 do
6 A0 = A0Ak mod N ;
7 k = k ⊕ di ;
8 i = i − ¬k
9 end

10 Return A0;

The recovery of the secret exponent by triangular trace
analysis (ROSETTA) attack was presented in [12]. It is
efficient against message and exponent blinding counter-
measures and can be considered as an improvement of the
horizontal correlation [11] and Big Mac [33] attacks. It is
based on two different distinguishers: Euclidean distance and
collision-correlation. They are constructed so that the result
indicates if an operation is a squaring or a multiplication.
These distinguishers can also detect if a modular operation
performs the long integer multiplication with a specific input
operand by using templates.

Initially, the adversary segments a trace representing a
Long Integer Multiplication as illustrated in Fig. 1.

Then, he constructs a matrix representing the long integer
multiplication X ×Y . The squaring matrix, corresponding to
the long integer multiplication X × X , is shown in Eq. (2).

TX×X =

⎡

⎢
⎢
⎢
⎣

T1,1 . . . T1,m
T2,1 . . . T2,m
...

...
. . .

...

Tm,1 . . . Tm,m

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1x1 x1x2 . . . x1xm
x2x1 x2x2 . . . x2xm

...
...

. . .
...

xmx1 xmx2 . . . xmxm

⎤

⎥
⎥
⎥
⎦

(2)

Since the square matrix is symmetric, the adversary may
apply an Euclidean distance distinguisher, on both the upper
and lower part of the matrix.

TED =
√
√
√
√

2

m2 − m

∑

0≤i< j<m

(Ti, j − Tj,i )2 (3)

wherem is the number of elementary multiplications or sub-
traces.

If the evaluated long integer multiplication is a squaring,
TED is expected to be close to zero. Otherwise, the opera-
tion is likely to be a multiplication. The collision-correlation
distinguisher, which computes the Pearson correlation coef-
ficient between two sets of sub-traces, can be used for the
same purpose:

ρ(t) = cov
(
Ti, j (t), Tj,i (t)

)

σTi, j (t)σTj,i (t)
(4)

Note that the two series of sub-traces Ti, j and Tj,i can also
be extracted from two different long integer multiplications.
Then, an adversary is able of identifying if both modular
multiplications are employing the same input operand or not.

4.2 Masked input correlation attacks on
square-and-multiply always

The square-and-multiply always algorithm [13] was
designed to address the issue of regularity. As shown in
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Fig. 1 Long integer
multiplication trace

Algorithm 4, a dummy multiplication is computed after the
squaring when the exponent bit is zero.

Algorithm 4: Square-and-Multiply Always
Data: x̃ , N , d = (d�−1...d1d0)2.

Result: xd mod N

1 A0 = 1;
2 for i = � − 1 to 0 do
3 A0 = A0A0 mod N ;
4 if di == 1 then
5 A0 = A0x mod N ;
6 else
7 D = A0x mod N ;
8 end
9 end

10 Return A0;

The result D is always discarded. Hence, even if the
attacker is able of distinguish between squarings and mul-
tiplications, this would not lead to the recovering of the
exponent.

An extension of collision-correlation attack [12] to the
square-and-multiply always algorithm was presented in [7],
in which the adversary may identify if the input operand of a
multiplication is employed as the input operand of the subse-
quent squaring, making possible to identify the occurrence of
dummymultiplications. Since the attack solution is proposed
for single traces, it can be considered as an horizontal attack.
In [34], the authors presented a cross-correlation attackwhich
can defeat the combination of message blinding (masked
input) and square-and-multiply always countermeasures.

4.3 Masked input correlation attacks on montgomery
ladder

The Montgomery powering ladder was initially proposed
for fast scalar multiplication on elliptic curves in [28] and
adapted to any exponentiation in Abelian groups in [19].
The Montgomery ladder is also very regular. Moreover, it
is more secure against fault attacks (safe-error attacks) than
the square-and-multiply always. For this reason, it is consid-
ered as an SPA-protected exponentiation. The Montgomery
ladder is shown in Algorithm 5.

One can observe that both registers A0 and A1 are
updated at each iteration. Hence, the modular multiplica-

Algorithm 5: Montgomery ladder
Data: x , N , d = (d�−1...d1d0)2.

Result: xd mod N

1 A0 = 1;
2 A1 = x ;
3 for i = � − 1 to 0 do
4 if di == 1 then
5 A0 = A0A1 mod N ;
6 A1 = A1A1 mod N ;
7 else
8 A1 = A0A1 mod N ;
9 A0 = A0A0 mod N ;

10 end
11 end
12 Return A0;

tions receive different input operands at each iteration. This
is illustrated in Table 1 with the four modular multiplica-
tions (M1–M4) performed by two consecutive iterations of
the algorithm. Attacks based on the identification of common
input operands in two different modular multiplications are
thus impractical.

A way out is to correlate the leakage associated with the
clock cycle when the result of M1 (resp. M2) is written in the
memory, together with the leakage associated to the loading
of the input operands of M4. Let L1w (resp. L2w) be the
leakage associated to the writing of the result of M1 (resp.
M2), and let L4l be the leakage associated to the loading of
operands of M4 (see Fig. 2).

A distinguisher may be defined according to Table 1. Sim-
ply observe that the correlation coefficient:

ρL2,L4 = cov (L2w, L4l)

σL2wσL4l

is expected to be greater than:

ρL1,L4 = cov (L1w, L4l)

σL1wσL4l

when two consecutive bits of the exponent are 0.
In the next sections, vertical and horizontal correlation

attacks on RNS-based exponentiation are presented.
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Table 1 Sequence of modular
multiplication in the
Montgomery Ladder for
consecutive exponent bits

di di−1 = · · · 00 · · · di di−1 = · · · 01 · · ·
M1: (x)i (x)i+1 = (x)2i+1 M1: (x)i (x)i+1 = (x)2i+1

M2: (x)i (x)i = (x)2i M2: (x)i (x)i = (x)2i

M3: (x)2i (x)2i+1 = (x)4i+1 M3: (x)2i (x)2i+1 = (x)4i+1

M4: (x)2i (x)2i = (x)4i M4:(x)2i+1(x)2i+1 = (x)4i+2

di di−1 = · · · 10 · · · di di−1 = · · · 11 · · ·

M1: (x)i (x)i+1 = (x)2i+1 M1: (x)i (x)i+1 = (x)2i+1

M2: (x)i+1(x)i+1 = (x)2i+2 M2: (x)i+1(x)i+1 = (x)2i+2

M3: (x)2i+1(x)2i+2 = (x)4i+3 M3: (x)2i+1(x)2i+2 = (x)4i+3

M4: (x)2i+1(x)2i+1 = (x)4i+2 M4: (x)2i+2(x)2i+2 = (x)4i+4

Fig. 2 Leakage model for the
masked Montgomery ladder

5 Vertical correlation attacks on RNS-based
exponentiations

5.1 Known input correlation attack on hardware

A typical RNS hardware implementation of RSA computes
all the instructions over parallel and independent data paths.
Thus, intermediate results are available for all the RNSmod-
uli at the same clock cycle. In this section, we will show
how this may be an advantage for the known input CEMA
compared to usual multiple-precision implementations.

In order to set up an attack, the adversary first chooses a
channel ofB. Then he constructs the leakage model based on
a selection function d(x, h) by only considering ω bits of the
intermediate result (because themoduliω-bit integers). In the
case of the device under test described in Sect. 2, there are 16
moduli of 32 bits each. Thus the adversary must compute 16
correlation coefficients, one per modulus, to obtain the esti-
mate ĥ for all the RNS channels of B. The presented attack
was performed with the acquisition of Nt = 500 traces.
Figure 3 shows the results for the electromagnetic correla-
tion analysis for each of the 16 moduli. Note that, for each

modulus, the correlation coefficient from (1) is computed by
processing the same set of traces.

Observing Fig. 3, the correlation coefficient for the cor-
rect (portion of) 8-bit guess is more evidently detected for
the channels b2 and b14. For the other channels, the low cor-
relation coefficients may occur for different reasons: first,
the probe position may be far from the targeted register,
decreasing the magnitude contribution in the measured elec-
tromagnetic field during the time interval the data inside this
register is processed; second, the number of measured elec-
tromagnetic traces is insufficient to detect this magnitude
contribution. Third, a different leakage model may lead to
different results. Results of Fig. 3 were obtained with a stan-
dard leakage model, i.e., the Hamming weight of each RNS
channel of the Montgomery multiplication output result. For
a more precise evaluation of the efficiency of the correlation
electromagnetic analysis against the hardware implementa-
tion, Figure 4 shows the success rate evolution for all RNS
channels with respect to the number of traces. RNS channels
b2 and b14 present a success rate of 95% after the processing
of 500 traces. The better results obtained for b2 and b14 are
related to the EM probe positioning.
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Fig. 3 Correlation electromagnetic analyses on the RNS hardware implementation of RSA for each of the 16 RNS channels
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Let us now consider a combination of the leakage mod-
els from all the moduli in the same correlation coefficient
calculation. More precisely, we evaluate:

ρ(h, j) =
∑16

k=1 cov
(
d(x1:Nt , h)(bk ), t1:Nt , j

)

∑16
k=1 σ

(
d(x1:Nt , h)(bk )

) ∑16
k=1 σ

(
t1:Nt , j

) , (5)

where the function d(x1:Nt , h)(bk ) is a vector of predicted
intermediate Hamming Weight values according to the input
message x and key hypothesis h considering the RNSmoduli
bk , for Nt executions of the algorithm. The term t1:Nt , j is a
vector in which each element is the sample j over all Nt

traces.
The covariances between all the sets of selection func-

tion values d(xi , h)(bk ) and the set of traces Ti = {ti, j }
are summed up as well as the standard deviations in the
denominator. As a result, this formulation returns the com-
bination of leakages from all the RNS channels of base B.
It is interesting to note that the number of measured traces
remains unchanged. Figure 5 shows the correlation coeffi-
cient obtained from Eq. (5) for 200 and 500 traces.

The correlation coefficient computation for the correct
guess h and for the combined leakage models is detectable
by processing around 100 traces (80% of success rate), as
shown in Fig. 5c. Note however that the targeted implemen-
tation was unprotected. The RNS bases were fixed during the
successive executions of the exponentiation algorithm. This
proves, once again, the importance of randomizing the RNS
bases.

5.2 Known input correlation attack on software

The operations of a modular exponentiation are computed
sequentially. The intermediate results in theRNSbasesA and
B are provided at different clock cycles. As a consequence,
the leakage model containing the set of selection function
values d(x, h)(bk ), for anRNSchannel, is associated to the set
of traces Ti = {ti, j }, where the time interval [1,J ] comprises
the leakage of this RNS channel only. It is not possible to
combine the leakage of all the RNS channels with the same
set of trace samples as proposed in the previous subsection.

Nonetheless, the correlation index in software is higher
than that of the hardware implementations when the EM
probe is located at a proper position (greater leakages of
information) over the integrated circuit. At the time of greater
linear correlation peak, the microcontroller is only executing
the computations regarding the targeted intermediate data.
There is nomagnitude contribution from parallel algorithmic
executions (algorithmic noise) during this short time interval.
Figure 6 shows the correlation index for CEMA on an unpro-
tected software implementation. Applying (1), the obtained
correlation index is equal to 0.82, i.e., much higher than for
the incorrect guesses. The success rate of this attack is illus-
trated in Fig. 6c. Only 30 traces are necessary to achieve 80%
of success.

5.3 Masked input correlation attack on hardware

We used the leak resistant arithmetic approach, which acts
as a message masking countermeasure. Intermediate results
are thus hardly predicted by an adversary. In this case, we
considered the leakage model described in Sect. 4.3 for a
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Fig. 5 Correlation electromagnetic analyses on the RNS hardware implementation of RSA for all moduli. a 200 Traces. b 500 Traces. c Success
rate vs number of traces
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Fig. 6 Correlation electromagnetic analyses on the software implementation of RSA without countermeasures a correlation vs time, b correlation
vs number of traces, c success rate vs number of traces
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masked Montgomery ladder. Note that in the RNS version
of the Montgomery ladder (see Algorithm 2), the outputs of
operations M1–M4 are the registers wai and wbi , containing
the partial results of the exponentiation in the RNS bases A
and B.

Assuming the first ν bits of the exponent known, the adver-
sary aims at recovering the exponent bit dν+1. Figures 7 and 8
show the correlation coefficients ρL2,L4 and ρL1,L4 when
dv = dv+1, and when dv �= dv+1 respectively. The correla-
tion coefficients are computed considering the time intervals
depicted by L1w, L2w and L4l in Fig. 2.

In Fig. 7, one can observe that the correlation coefficient
ρL2,L4 is greater thanρL1,L4 for some trace samples (between
400 and 1200). We observe the opposite situation in Fig. 8.
Hence, an adversary can compare the obtained correlation
results with Table 1 and deduce the exponent bits one by
one. Besides the results presented here for the Montgomery
ladder, the leakage model for this masked-input vertical cor-
relation attack can be easily extended to square-and-multiply
always and atomic-square-and-multiply exponentiations.

6 Opimizing probe positioning

Electromagnetic side-channel attacks are heavily dependent
on the probe position over the surface of the integrated circuit.
In order to set the best localization, we performed a scanning
procedure by collecting a set of EM traces from each (x, y)
position and by computing the correlation coefficient for the
correct key value at each position. As will be seen in Sect. 7,
horizontal correlation attacks have a limitation of available
information, which is related to the key size and implementa-
tion aspects of the targeted algorithm. Thus, horizontal attack
results are performed by placing the EM probe at a position
providing the best correlation coefficient.

The components of the EM measurement setup are
described in Sect. 3. The EM scans were performed over the
surface of the chips, considering an area of 10mm × 10mm.
The configured stepwas 0.33mm. Traces were acquiredwith
a sampling rate of 20GS/s.

The first evaluation concerns the FPGA Spartan-3E
xc3s1600. The clock frequency of the circuit operates at a
frequency of 50MHz. One thousand EM traces were mea-
sured from each (x, y) position, 1 ≤ x, y ≤ 30, and the
linear correlation coefficient was computed according to the
combined formula (5). The results are illustrated in Fig. 9.

For the STM32F103ZET6microcontroller, 500EM traces
were acquired for each (x, y) position. The clock frequency
was configured to operate at a 48MHz. Figure 10 shows the
scanning results with respect to the linear correlation coeffi-
cient obtained from (1).

7 Horizontal correlation attacks on RNS-based
exponentiations

Data-dependent attacks, which require hundreds or thou-
sands exponentiation traces cannot be mounted in the pres-
ence of the exponent randomization. Likewise, the LRA
countermeasure randomizes the intermediate results and
reduces the correlation between the predicted Hamming
Weight of a register and source of leakage monitored. In
those cases, an adversary must consider an attack based on
a single exponentiation. The collected trace should then be
analyzed in a horizontal manner.

The first single-execution attack on exponentiations was
proposed by Walter in [33]. The so-called Big Mac attack
considers that long integer multiplications take a large num-
ber of cycles and consequently a large number of consecutive
elementary multiplications, interleaved with the modular
reduction such as the multiple-precision Montgomery mul-
tiplication algorithm [27]. This attack detects if an observed
operation is a squaring or a multiplication. The basic idea
consists in the construction of a template trace characterizing
a specific operation (multiplication or squaring) during the
long integermultiplication X×Y and considering that at least
oneof the operands (X orY )will be recalled in the subsequent
modular operations. Then, the Euclidean distance between
this template trace and each long integer multiplication gives
a metric to conclude that such operation is a squaring or a
multiplication. TheBigMac attack is a template-based analy-

Fig. 7 Masked input
correlation electromagnetic
analysis on the hardware
implementation of RSA
(dv = dv+1)

Fig. 8 Masked input
correlation electromagnetic
analysis on the hardware
implementation of RSA
(dv �= dv+1)
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Fig. 9 Correlation coefficient
for different (x, y) positions for
the FPGA Spartan-3E xc3s1600

Fig. 10 Correlation coefficient
for different (x, y) positions for
the STM32F103ZET6
microcontroller

sis and it is efficient against exponent and message blinding
countermeasures.

Clavier et al. proposed an horizontal correlation attack
in [11] based on known inputs for the exponentiations. It
also uses the differences between long integer squarings and
real multiplications. The method proposed in [11] correlates
the selection function—for example the Hamming Weight
HW (x) of a knownmessage x—with carefully selected sam-
pled points of a single trace. It is assumed to be efficient
even in the presence of exponent blinding countermeasure
because the randomized exponent δ = d + r · φ(N ) can be
used in the place of d for decryption and digital signature.
Proposed countermeasures consist in randomizing the loops
of the modular multiplication algorithm.

The ROSETTA [12], an improved Big Mac attack, was
already recalled in Sect. 4.

In the next sections, we analyze the performance of hor-
izontal attacks on hardware coprocessors implemented with
parallel multipliers and we demonstrate that horizontal cor-
relation attacks are inefficient against RNS implementations
of RSA. We show that only a sequential implementation of
RSA-RNS is vulnerable to horizontal attack when no mes-
sage blinding or hardware countermeasure are considered.

7.1 Horizontal correlation attack on unprotected RNS
implementations of RSA

In this subsection, the Clavier et at.’s horizontal corre-
lation attack is applied on the RNS implementations of
RSA, and its performance and feasibility on parallel (FPGA)

and sequential (microcontroller) designs are compared. The
implementations are considered as unprotected because the
RNS bases are always fixed and the adversary knows them
(LRA is disabled).

In the multiple-precision arithmetic, each modular multi-
plication canbe characterizedby a long integermultiplication
X × Y . In the RNS context, the modular multiplication
involves complex operations as elementary modular reduc-
tions and base extensions. Thus, the application of a hori-
zontal correlation analysis requires more knowledge about
implementation aspects of a targeted cryptocore if compared
to a multiple-precision-based approach.

Because the efficiency of this attack is related to the
amount of elementary multiplications xi y j , the RNS allows
that such computations can be done in parallel and it lim-
its the quantity of available information to the adversary.
Therefore, if the application of horizontal correlation attacks
on multiple-precision hardware coprocessors is already very
difficult, onRNS-based approaches the scenario is evenmore
critical.

Again, we consider that the adversary has a full knowl-
edge about the design and the only unknown value is the
exponent. Since he knows the instants of time at which each
specific operation is computed, he can associate each pre-
dicted results, according to his guesses, to the samples of
measured traces.

Hardware (trace characterization) Let us consider an EM
trace acquired from a single execution of an exponentiation,
running on an FPGA and executed with the RNS Mont-
gomery Ladder algorithm, as illustrated in Fig. 11. The
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Fig. 11 Montgomery ladder
exponentiation trace

(a) (b)

Fig. 12 Horizontal correlation attack on RNS hardware implementation of RSA. a Correlation coefficient for the processing of 250 sub-traces.
b Success rate

multiplication X × Y is computed in two RNS bases A and
B. Because the elementary modular multiplications xAyA
(resp. xB yB) are computed in parallel and over all the mod-
uli, the adversary has no sufficient information to construct
a known input horizontal correlation attack, as demonstrated
by practical results.

According to the Fig. 11, the adversary can truncate the
elementary modular multiplications xAyA and xB yB of each
RNS Montgomery multiplication. These truncated windows
are named sub-traces herein and denoted by TA

i (resp. TB
i ),

which are the time interval of the elementary modular mul-
tiplication xAyA (resp. xB yB) of the i-th RNS Montgomery
multiplication. Thus, a matrix T of sub-traces TA

i = {tAi, j }
and amatrix H of selection function resultsd(xB yB, h) [resp.
d(xAyA, h)], computed according to the inputmessage x and
the guesses h for these intermediate elementary results, are
constructed:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

TA
1

TB
1

TA
2

TB
2

...

TA
�

TB
�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tA1,1 tA1,2 . . . tA1,J
tB1,1 tB1,2 . . . tB1,J
tA2,1 tA2,2 . . . tA2,J
tB2,1 tB2,2 . . . tB2,J
...

...
. . .

...

tA�,1 tA�,2 . . . tA
�,J

tB�,1 tB�,2 . . . tB
�,J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d(xAyA, h)

d(xB yB, h)

d(xAyA, h)

d(xB yB, h)

...

d(xAyA, h)

d(xB yB, h)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

The question now is: howmany sub-traces are necessary to
mount the attack? To demonstrate more precisely this analy-
sis, the entire correct exponent is considered known.As in the
classical correlation attack, the adversary can associate each
element or row of matrix H to each element of the matrix
T , in the case, each sub-trace. Figure 12a presents the cor-
relation coefficient calculation for different guesses for the
MSB 8-bit exponent values and considering 250 sub-traces.
The success rate is illustrated in Figure 12b and for achieving
approximately 80% of success rate, at least 165 sub-traces
are needed.

These results lead to the following conclusions: each RNS
Montgomery multiplication provides two sub-traces. Con-
sidering that the adversary wants to recover the exponent
byte-by-byte by attacking the Montgomery ladder, he has 32
sub-traces for computing the correlation coefficient for each
one of all the 28 possible guesses for the exponent bytes. As
demonstrated here, the single-execution exponentiation trace
was collected from the highest correlation position and with
32 sub-traces the success rate is approximately 10%. Thus,
the Montgomery ladder implemented with parallel residue
number systems offers strong limitations for the horizontal
correlation analysis.

The attack setup proposed in [7] would be seen as a solu-
tion to deal with this limited number of sub-traces. It takes
advantage of partial and exposed information about the RSA
private key; the upper half part of the exponent (private key) d
is exposed (if public key e is small) as well as the upper half
part of randomized exponents when the exponent blinding
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equation δ = d + rφ(N ) is adopted as countermeasure. This
is done by approximatingφ(N ) by N in thewell-knownRSA
equation de ≡ 1 mod φ(N ). There exists a integer k ∈ Z

such that:

ed = 1 + kφ(N ) (7)

The Euler’s totient function φ(N ), of size �, can be rep-
resented by pq − q − p + 1. Considering that the size of
primes p and q is roughly approximated by �/2, because
p, q ≈ √

N . Then, the upper half part of φ(N ) is equal to
the upper half part of the modulus N . For small public key
values, such as 3, 17 or 216 + 1, this condition allows us to
deduce the half most significant bits of d. Then, by running
all the possible values for r ∈ [0, 232 − 1], the adversary
derives 232 different sequences of modular multiplications
for the upper half part of δ. In the Montgomery ladder case,
if � is the exponent length, the adversary has an amount of
2� sub-traces. For the target implementation where the bit
length is 512 bits, 1024 sub-traces related to the upper half
part of δ would be available to the adversary. Finally, the cor-
relation coefficient is computed for each one of all the 232

possible values of r ; the result giving the highest absolute
value for the correlation coefficient indicates the best candi-
date for the random number r . However, this attack would be
limited when the adversary must recover the lower half part
of d. According to [7], the adversary should guess portions
of ω bits of the lower half part of d and verify the correspon-
dent value δ according to the estimated random numbers r
in the previous step. To limit the exhaustive search, ω must
be small (e.g. 8 bits). Therefore, the same problem related to
the minimal number of sub-traces arises, limiting the attack.

Software (trace characterization) A sequential (software)
RNS implementation of RSA is more vulnerable to (known
inputs) horizontal correlation attacks. The multiplication
X × Y in the two RNS bases A and B needs at least 2n
elementary modular multiplications |xy|ak and |xy|bk , for all
k, which brings more information (sub-traces) to the adver-
sary. To deal with this available information, the horizontal
attack can be constructed by making guesses on portions of
the key, thus obtaining all the possible intermediate results
in the sequence of modular multiplications according to the
guessed exponent and finally horizontally computing the
Pearson correlation coefficient by considering a single trace.
The RSA-RNS software is implemented with the Mont-
gomery ladder, too. Therefore, considering portions of 8 bits
for the exponent guesses, the number of sub-traces represent-
ing |X×Y |A∪B will be 32k, which is sufficient for identifying
the correct exponent bit guess (see Fig. 13).

Let us consider that the first u most significant bits of the
randomized exponent, δ�−1:�−ν−1, are already known. An
adversary guesses all the possible 28 values for the next 8

bits, δ�−ν−1:�−ν−9, and stores the series of HammingWeight
values of intermediate results |X×Y |A∪B . Then, thematrices
T and H are obtained as follows:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T (1)
|xy|b1 T (1)

|xy|b2 . . . T (1)
|xy|bk

T (1)
|xy|a1 T (1)

|xy|a2 . . . T (1)
|xy|ak

T (2)
|xy|b1 T (2)

|xy|b2 . . . T (2)
|xy|bk

T (2)
|xy|a1 T (2)

|xy|a2 . . . T (2)
|xy|ak

...
...

. . .
...

T (�)
|xy|b1 T (�)

|xy|b2 . . . T (�)
|xy|bk

T (�)
|xy|a1 T (�)

|xy|a2 . . . T (�)
|xy|ak

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
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⎥
⎦
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⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, the adversary computes the linear Pearson correla-
tion coefficient ρ(T, H). To demonstrate the efficiency of
a horizontal correlation analysis in practice, we acquired
a single trace from the STM32F1 (ARM) microcontroller
implemented with the RSA-RNS algorithm. Figure 14a
shows the correlation coefficient during the interval of a sub-
trace for all the 28 exponent bit guesses. Figure 14b shows the
success rate related to the number of sub-traces. Note that in
both figures, the correlation coefficient for the correct guess
of the exponent bits is the one presenting the highest index.

Considerations about HCA the practical experiments devel-
oped in this work revealed that in comparison with classical
CPA, horizontal correlation attacks are very hard-working
methods. Trace pre-processing is crucial when performing
this attack, because the selection and truncation of the sub-
traces should be done very carefully.

7.2 Horizontal correlation attacks vs LRA

LRA randomizes internal variables in a RNS representation
and due to the high amount of possible RNS moduli combi-
nations, the number of guesses is unaffordable. In this case,
the attack proposed in [11] cannot be mounted, since the
adversary should know (or guess) the processed message x .
The modular exponentiation using the LRA countermeasure
starts by transforming the input message into the RNSMont-
gomery domain (Algorithm 2, line 4):
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Fig. 13 Sequential RNS
exponentiation trace

Fig. 14 Horizontal correlation attack on RSA-RNS

MM(x, AB mod N , N ,A,B) = (x)(AB mod N )(A−1)

= x B mod N

In this case, x is given in the two RNS bases A and B
and may be known if the two sets of RNS bases are also
known. The immunity against horizontal correlation attacks
is due to the constant Montgomery B that is carried out in
the result. This constant receives randomized values for each
modular exponentiation. By doing so, the result x B is also
randomized.

The improved methods [7] and [12] are independent of
the message blinding, because they correlate trace segments
of two long integer multiplications by computing a collision-
correlation coefficient between them, or even a distinguisher
based on the Euclidean distance. In the following, we explain
why ROSETTA analysis is limited by adding the RNSMont-
gomery Ladder as an algorithmic countermeasure in the first
level of abstraction. The operand x B, represented in the
Montgomery domain and adopted as a reference to find the
collision-correlations, is not recalled as an input operand in
the subsequent modular multiplications.

As shown in Table 1, the sequence of modular multiplica-
tions always has different input operands, providing different
results. As a consequence, the leakage model described in
Sect. 4.3 can be adapted to a horizontal attack. By doing

so, with a practical experiment using an RSA-512 hard-
ware implementation, 61% of the randomized exponent was
recovered in the application of the Euclidean distance or
Pearson’s linear correlation. Therefore, horizontal correla-
tion attacks [5,7,11,12] are very limited by the combination
of LRA and RNS Montgomery Ladder countermeasures on
hardware devices. Moreover, RNS bases can be random-
ized during the exponentiation by randomizing the moduli
choice before each exponent bit processing. This solution
was addressed in [2]. As a consequence, the exponentiation
become twice slower, because two extra Montgomery mul-
tiplications must be computed each time new RNS basis is
selected.

On a software implemented with LRA and RNS Mont-
gomery ladder, the RNS bases permutations [30] can be
freely jointed as an additional countermeasure. To mount the
same attack, the adversary must again correlate the leakage
of M1 and M2 with the leakage on M4. As seen in previ-
ous sections, our software implementation presented more
leakage of information with correlation-based attacks. Per-
muting the RNS bases means a temporal displacement of
computations, defeating this attack. Before the processing of
each exponent bit, the position of the moduli inside each
RNS base is randomly permuted. In software implemen-
tations, this countermeasure can be implemented without
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any additional time overhead, i.e., the permutations relies
in a different indexation of arrays and variables. The Mont-
gomery constants A and B remain unchanged and new
pre-computations become unnecessary when RNS bases are
permuted.

8 Conclusion

In this paper, we evaluated different classes of RSA coun-
termeasures against vertical and horizontal attacks. The
algorithmic and arithmetic countermeasures were coupled
together with RNS features.We proposed leakagemodels for
known and masked input correlation attacks. The vulnerabil-
ities of a masked RNS implementation of the Montgomery
ladder algorithm were demonstrated through the application
of vertical correlation attacks.

Horizontal attacks were applied on RNS software and
hardware implementations of RSA. The parallel feature
of RNS offered resistance against known input horizon-
tal attacks. Masked input horizontal attacks were defeated
by the combination of leak resistant arithmetic, Mont-
gomery ladder and exponent blinding countermeasures. In
this case, SPA-related leakages (control decisions, mem-
ory addresses) are still a remaining source of leakage
and must be defeated by adding hardware countermea-
sures like RAM addressing randomization or random delays
[25]. In [18], the authors demonstrate how to recover the
leakage from address-bits (SPA-leakages) in exponentia-
tion using clustering algorithms. An alternative solution to
defeat horizontal correlation analysis is to randomize the
RNS bases during the exponentiation, as proposed in [2].
The insertion of more RNS cells in a hardware design or
the implementation of dummy RNS channel computations
in a software design increase the noise and misalignment
in the measured traces, respectively. Redundant modular
arithmetic [14] also offers different representation to the
numbers, increasing the robustness against side-channel
attacks.

References

1. Bajard, J.-C., Didier, L-Stéphane, Kornerup, P.: An RNS Mont-
gomery modular multiplication algorithm. IEEE Trans. Comput.
47(7), p. 766–776, 62–75 (1998)

2. Bajard, J.-C., Imbert, L., Liardet, P.-Y., Teglia, Y.: Leak resistant
arithmetic. In: Cryptographic Hardware and Embedded Systems,
CHES’04, ser. Lecture Notes in Computer Science, vol. 3156. pp.
62–75, Springer, Berlin (2004)

3. Bajard, J.-C., Imbert, L.: A full RNS implementation of RSA. IEEE
Trans. Comput. 53(6), 769–774 (2004)

4. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential clus-
ter analysis, cryptographic hardware and embedded systems,

CHES’09, ser. Lecture Notes in Computer Science, vol. 5747. pp.
112–127, Springer, Berlin (2009)

5. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and ver-
tical side-channel attacks against secure rsa implementations. In:
Proceedings of CT-RSA, pp. 1–17 (2013)

6. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision
correlation attack on elliptic curves, research gate (2014)

7. Bauer, A., Jaulmes, E.: Correlation analysis against protected SFM
implementations of RSA. In: Proceedings of INDOCRYPT, pp.
98–115 (2013)

8. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with
a leakage model. In: Cryptographic Hardware and Embedded Sys-
tems,CHES’04, ser. LectureNotes inComputer Science, vol. 3156.
pp. 16–29, Springer, Berlin (2004)

9. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks, cryptographic
hardware and embedded systems, CHES’02, ser. Lecture Notes in
Computer Science, vol. 2523. pp. 13–28, Springer, Berlin (2002)

10. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for
preventing simple side-channel analysis: side-channel atomicity,
IACR Cryptology ePrint Archive (2003)

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.:
Horizontal correlation analysis on exponentiation. In: Proceedings
of ICICS, pp. 46–61 (2010)

12. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Proceedings of
INDOCRYPT, pp. 140–155 (2012)

13. Coron, J.-S.: Resistance against differential power analysis for
elliptic curve cryptography. In: Cryptographic Hardware and
Embedded Systems, CHES’99, ser. Lecture Notes in Computer
Science, vol. 1717. pp. 292–302, Springer, Berlin (1999)

14. Dupaquis, V., Venelli, A.: Redundant modular reduction algo-
rithms. In: Proceedings of CARDIS. Lecture Notes in Computer
Science, vol. 7079, pp. 102–114 (2011)

15. Gandino, F., Lamberti, F., Montuschi, P., Bajard, J.-C.: A general
approach for improving RNS montgomery exponentiation using
pre-processing. In: Proceedings of the 20th IEEE Symposium on
Computer Arithmetic, ARITH20. IEEE Computer Society, 2011,
pp. 195–204 (2011)

16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual informa-
tion analysis—a generic side-channel distinguisher, cryptographic
hardware and embedded systems, CHES’08. Lect. Notes Comput.
Sci. 5154, 426–442 (2008)

17. Hanley, N., Kim, H., Tunstall, M.: Exploiting collisions in addi-
tion chain-based exponentiation algorithms using a single trace,
Cryptology ePrint Archive, Report 2012/485, (2012)

18. Heyszl, J., Ibing, A., Mangard, S., Santis, F., Sigl, G.: Clustering
algorithms for non-profiled single-execution attacks on exponenti-
ations, IACR Cryptology ePrint Archive, Report 2013/438 (2013)

19. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In:
Cryptographic Hardware and Embedded Systems, CHES’02, ser.
Lecture Notes in Computer Science, vol. 2523. pp. 291–302,
Springer, Berlin (2002)

20. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower archi-
tecture for fast parallel montgomery multiplication. In: Advances
in Cryptology, EUROCRYPT’00, ser. Lecture Notes in Computer
Science, vol. 1807. pp. 523–538, Springer, Berlin ( 2000)

21. Kim, H., Kim, T.H., Yoon, J.C., Hong, S.: Practical second-order
correlation power analysis on the message blinding method and its
novel countermeasure for RSA. ETRI J 32(1), 102–111 (2010)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–
209 (1987)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis,
CRYPTO, pp. 388–397 (1999)

24. Kocher, P.C.: Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems, CRYPTO, pp. 1104–1113
(1996)

123



J Cryptogr Eng (2015) 5:171–185 185

25. Mangard, S.: Hardware countermeasures against DPA—a statisti-
cal analysis of their effectiveness. In: Proceedings of CT-RSA, pp.
222–235 (2004)

26. Miller, V.: Use of elliptic curves in cryptography. Adva. Cryptol.
CRYPTO’85, (LCNS 218)[483], pp. 417–426 (1986)

27. Montgomery, P.L.: Modular multiplication without trial division.
Math. Comput. 44(170), 519–521 (1985)

28. Montgomery, P.L.: Speeding the pollard and elliptic curvemethods
of factorization. Math. Comput. 48(177), 243–264 (1987)

29. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced
power analysis collision attack, cryptographic hardware and
embedded systems, CHES’10, ser. LNCS, vol. 6225, pp. 125–139,
Springer, Berlin (2010)

30. Perin, G., Imbert, L., Torres, L., Maurine, P.: Electromagnetic
analysis on RSA algorithm based on RNS. In: Proceedings of 16th
Euromicro Conference on Digital System Design (DSD), pp. 345–
352. IEEE, September (2013)

31. Posch, K., Posch, R.:Modulo reduction in residue number systems.
IEEE Trans. Parallel Distrib. Syst. 6(5), 449–454 (1995)

32. Rivest, R., Shamir, A., Adleman, L.: Amethod for obtaining digital
signatures and public key cryptosystems. Commun. ACM 21(2),
120–126 (1978)

33. Walter, C.: SlidingWindows Succumbs toBigMacAttack, Crypto-
graphic Hardware and Embedded Systems, CHES’01, ser. LNCS,
vol. 2165, pp. 286–299. Springer, Berlin (2011)

34. Witteman, M.F., Woudenberg, J.G.J., Menarini, F.: Defeating RSA
multiply-always and message blinding countermeasures. In: Pro-
ceedings of CT-RSA, ser. LNCS, vol. 6558, pp. 77–88 (2011)

123


	Vertical and horizontal correlation attacks on RNS-based exponentiations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Device under test
	2.2 Leakage models

	3 Known input correlation attacks
	3.1 Key guesses and selection function
	3.2 Correlation coefficient

	4 Masked-input correlation attacks
	4.1 Masked input correlation attacks on square-and-multiply atomicity
	4.2 Masked input correlation attacks on square-and-multiply always
	4.3 Masked input correlation attacks on montgomery ladder

	5 Vertical correlation attacks on RNS-based exponentiations
	5.1 Known input correlation attack on hardware
	5.2 Known input correlation attack on software
	5.3 Masked input correlation attack on hardware

	6 Opimizing probe positioning
	7 Horizontal correlation attacks on RNS-based exponentiations
	7.1 Horizontal correlation attack on unprotected RNS implementations of RSA
	7.2 Horizontal correlation attacks vs LRA

	8 Conclusion
	References




