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Abstract In this paper, we describe an attack against nonce
leaks in 384-bit ECDSA using an FFT-based attack due to
Bleichenbacher. The signatures were computed by a modern
smart card. We extracted the low-order bits of each nonce
using a template-based power analysis attack against the
modular inversion of the nonce. We also developed a BKZ-
based method for the range reduction phase of the attack, as it
was impractical to collect enough signatures for the collision
searches originally used by Bleichenbacher. We confirmed
our attack by extracting the entire signing key using a 5-bit
nonce leak from 4,000 signatures.

Keywords Side channel analysis · ECDSA · Modular
inversion · Hidden number problem · Bleichenbacher · FFT ·
LLL · BKZ

1 Introduction

In this paper, we describe an attack against nonce leaks in
384-bit ECDSA [2] running on a modern smart card. The
attack has several interesting and novel features. We first
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identified a leak during the modular inversion of the nonce,
and used differential power analysis (DPA) [17] to iden-
tify the likely inversion algorithm. Although the algorithm
contains conditional branches, they were not exploitable by
simple power analysis (SPA). Instead, we extracted a few
low-order bits of each nonce using a template-based power
analysis attack [8].

Such nonce leaks are commonly attacked by mapping
them to a hidden number problem (HNP), and using lat-
tice methods such as LLL [18], BKZ [26], and Babai’s
nearest plane algorithm [3] to solve the resulting closest
vector problem (CVP) or shortest vector problem (SVP).
While it might have been possible to use lattice attacks suc-
cessfully, our initial template attacks only recovered very
few bits reliably. We, therefore, chose to explore Blei-
chenbacher’s approach [4], which given enough signatures
can work with small, even fractional, bit leaks. In con-
trast, current lattice methods require a minimum number
of bits to leak, regardless of the number of signatures
used.

Bleichenbacher introduced his FFT-based attack in 2000
during an IEEE P1363 Working Group meeting [1]. He used
it to attack the pseudorandom number generator (PRNG)
specified by the then-existing DSA standard. While the
attack required a prohibitive amount of resources and
was not considered practical, there was enough concern
about the PRNG in the standard being modified [22].
Although this method is known to exist by the crypt-
analytic community [25,28], it remains largely undocu-
mented and has been referred to as an “underground”
attack [28]. To remedy this, we describe the technique in
enough detail so that interested parties can continue study-
ing it.

Bleichenbacher’s original analysis required millions of
signatures to reduce the range of certain values so they could
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be used in a practical inverse FFT. Since we only had about
4,000 signatures available, we looked for a different method
of range reduction. We developed a BKZ-based method for
this phase of the attack, thereby avoiding an impractical data
collection step.

We experimentally confirmed our attack methodology by
extracting the entire secret key from a 5-bit nonce leak using
about 4,000 power traces and corresponding signatures. The
attack is an iterative process. Each iteration involves the
derivation of about 3,000 usable points using BKZ, followed
by a pass through an inverse FFT. During each iteration, a
block of the most significant bits (MSBs) of the unknown
part of the secret key is recovered. Finally, our simulations
show that a 4-bit leak is also exploitable, with a signifi-
cant increase in required resources and available signatures.
Future research should improve these results.

1.1 Related work

Many attacks against nonce leaks in DSA and ECDSA have
been published. Boneh and Venkatesan [6] started looking at
the HNP in 1996. They mapped the HNP to a CVP and used
LLL lattice reduction together with Babai’s nearest plane
algorithm to study the security of the MSBs of the Diffie–
Hellman key exchange and related schemes.

In 1999 (and officially published in 2001), Howgrave-
Graham and Smart [13] applied similar techniques to attack
160-bit DSA given multiple signatures with a fixed signing
key and knowledge of some bits from each nonce. Experi-
ments using NTL [27] showed that they could recover the
secret key given 8 bits of each nonce from 30 signatures, but
experiments with 4 bits did not succeed.

In [23], Nguyen and Shparlinski gave a provable
polynomial-time attack against DSA in which the nonces
are partially known, under some assumptions on the mod-
ulus and on the hash function. They were able to recover a
160-bit key with only 3 bits of each nonce from 100 signa-
tures, using the NTL as well. They also showed that given
improved lattice reduction techniques, it should be possible
to recover the key with only two nonce bits known. In [24],
the same authors extended their result to the ECDSA.

At PKC 2005, Naccache et al. [21] employed glitch attacks
to ensure that the least significant bytes of the nonces were
flipped to zero, allowing the authors to apply the same lattice
techniques to recover keys from real smart cards. Recently,
Liu and Nguyen [19] developed a new algorithm which
allowed them to recover 160-bit keys with only two leaked
nonce bits.

1.2 Roadmap

The paper is organized as follows. Section 2 describes how
we used templates to extract the low-order bits of each nonce

during the inversion step. In Sect. 3, we describe Bleichen-
bacher’s solution to the HNP, followed by a description of the
BKZ-based range reduction technique in Sect. 4. We discuss
the parameter values used in the attack and some implemen-
tation issues encountered in Sect. 5. Finally, we summarize
our results in Sect. 6.

2 Analysis of the smart card

We analyzed a commercially available smart card that imple-
ments ECDSA. The card implements the algorithm for both
binary and prime field curves, and we focused on the signa-
ture generation process with the 384-bit prime field curve.

Algorithm 1 ECDSA signature generation
Require: Elliptic curve E defined over prime field curve Fp , base point

G with order q, private key x , and message hash H = hash(m).
Ensure: Signature (r, s).
1: Generate a random nonce K ∈ [1, q − 1].
2: Compute K ∗ G = (u, v)

3: Compute r = u mod q. If r = 0 then go to Step 1.
4: Compute s = K −1(H + r x) mod q. If s = 0 then go to Step 1.
5: Return (r, s).

In this section, we describe how the algorithm is imple-
mented on the card. We also describe power analysis results
and identify the several different leakages on the card.
Finally, we describe attacks in which we recover either the
secret key x or some bits of the nonce K . This paper is pri-
marily concerned with the attack in which 7 bits from each
nonce are recovered using power analysis against the modu-
lar inversion of the nonce in Line 4 of Algorithm 1.

2.1 Description of the implementation

Using both reference documentation from the manufacturer
and power analysis we determined the card uses the following
parameters and techniques.

1. Built-in domain parameters from ECC-Brainpool [20].
We analyzed the implementation for brainpoolP384r1.

2. Values are represented in Montgomery form for efficient
arithmetic.

3. Curve points are represented in Jacobian projective coor-
dinates.

4. Scalar multiplications take place on the curve twist brain-
poolP384t1 and the final result is mapped back to brain-
poolP384r1.

5. Scalar multiplications use the signed comb method [11,
12] with seven teeth. The nonces K are represented in a
signed basis [15] with 385 bits.
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Fig. 1 Power trace of the ECDSA signature generation after post-processing

6. The signed basis representation requires that K is odd.
If K is even, q is added to it, which does not change the
final result of the scalar multiplication.

7. The card stores 64 pre-computed points in memory for
point additions, and computes points for subtraction on
the fly.

8. K −1 mod q is computed using a variant of the binary
inversion algorithm.

2.2 Power measurement setup

The power consumption of the smart card was measured
using an oscilloscope with a sampling frequency of 250 MS/s.
We used two active 25 dB amplifiers (+50 dB) and a passive
low-pass filter at 96 MHz. We also applied several filtering
techniques to isolate the data-dependent frequency bands and
downconvert them into baseband. These frequencies were
identified in a prior device characterization step. Figure 1
shows a single power trace of the entire ECDSA signature
generation process after signal processing.

Three main phases can be clearly identified: (1) The initial
phase where the nonce K is generated, (2) the scalar multi-
plication K × G and (3) the final phase where the signature
(r, s) is calculated.

2.3 Power analysis attacks against ECDSA

In this paper, we are primarily concerned with attacking the
modular inversion of the nonce K , in which only a few low-
order bits leak. However, we found two other exploitable
weaknesses in the card and will discuss them briefly.

2.3.1 Targeting the scalar multiplication with SPA

Implemented correctly, the signed comb technique is natu-
rally SPA resistant. If all the required points are pre-computed
and stored in a lookup table, then the main loop of the scalar
multiplication routine is very regular and avoids conditional
branches. However, our previous analysis showed that the
card only stores the points required for addition. When a point
subtraction is needed, the index into the table is computed by
complementing the tapped bits of the scalar, and then sub-
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Fig. 2 SPA leak of all 54 higher-order bits of the nonce during scalar
multiplication

0 2 4 6 8 10 12
x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

Sample points

Po
w

er
 c

on
su

m
pt

io
n

end of scalar
multiplication

Z−1 K−1

rx mod q I/O

SHA256

Fig. 3 Final ECDSA phase where the signature (r ,s) is calculated. The
DPA attack targets r x mod q

tracting the accessed point from the current result. The power
traces show a prominent spike which is only present when
the point subtraction is needed.

This SPA leak revealed all 54 higher-order bits of the
nonce. Figure 2 shows the leakage after signal processing.
We wrote a script to automatically extract the nonce bits.
First, we aligned all traces on the elliptic curve point addition
operation which could easily be identified and distinguished
from the point doubling operation. After that, we trimmed
all power trace segments that involve an addition operation
into one single power trace to facilitate the signal processing
effort. We also decimated (smoothed) the traces by a small
factor to increase the success rate of the bit extraction. Finally,
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we applied a simple threshold detection method to reveal the
54 nonce bits. The lattice-based attack of [13] then enabled
us to recover the entire secret key x using only nine power
traces.

2.3.2 Targeting the private-key multiplication with DPA

When computing the second half of an ECDSA signature, the
fixed secret key x is multiplied by the known, varying first
half of the signature r . This situation is typically vulnerable
to standard DPA attacks [14].

Figure 3 shows the final ECDSA signature phase of the
analyzed smart card. It shows the end of the scalar multi-
plication at the beginning of the power trace, two significant
power-consumption blocks in the middle, and an input/output
communication at the end of the trace. Using known-key
DPA, we identified that the two blocks in the middle are
modular inversions. The first is the modular inversion of the
‘Z ’ coordinate to map the result of the scalar multiplication
from Jacobian projective coordinates to affine coordinates.
The second is the modular inversion of the secret nonce K
(see Line 4 in Algorithm 1). Hashing of the message and the
modular multiplication of the signature output r and the pri-
vate key x is done right between the two modular inversions.

We performed the attack by targeting intermediate val-
ues during the modular multiplication of r x mod q. We mea-
sured 10,000 traces and aligned them using the least mean
squares (LMS) algorithm. This analysis revealed that the card
implements an MSB-first digit-serial modular multiplication
method with a full multiplication of r x followed by modular
reduction by division. The high-order 384 bits of the 768-
bit intermediate result leak at different positions during the
reduction step. Hence our attack proceeded as follows.

First, we defined a search range of 12 bits and targeted
the 8th bit. After calculating all possible 4,096 hypotheses,
we performed a difference of means test that showed peaks
for the correct hypotheses. The remaining bits of the secret x
can be recovered iteratively. In total, we recovered the entire
key x in a few hours, where most of the time was spent by
generating all possible intermediate values.

2.3.3 Side channel analysis reverse engineering (SCARE)
and template attack on the inversion algorithm

Several authors noticed that weak implementations of finite
field operations such as modular additions, subtractions or
multiplications can lead to successful side channel attacks
[10,16,29,30]. They proposed eliminating all conditional
statements and branches from both software and hardware
implementations. This includes final conditional subtractions
or reduction steps, which are often found in modular arith-
metic operations such as Montgomery multiplication. How-
ever, we did not find any publications describing successful
template attacks against modular inversions.

The analyzed smart card implements a variant of the
binary inversion algorithm. This was identified after a
detailed reverse engineering phase in which several interme-
diate variables of different inversion algorithms were targeted
in known-key DPA attacks.

Analysis of the (likely) binary inversion implementation
revealed that it does not run in constant time. The execu-
tion time depends on the values of both the nonce and the
modulus. This is because the algorithm has several condi-
tional branches that depend on the operands. Each branch
executes different operations such as modular addition, sub-
traction, or simple shifts. We were able to construct a set
of power consumption templates which represent the power
profile for each nonce value. In the next section, we describe
the template building and template matching phase in detail
and show how we extracted the seven low-order bits of the
nonce with 100 % accuracy.

2.4 Recovering the low-order bits of the nonce

We targeted the low-order bits of the nonce which are
processed at the beginning of the modular inversion. To limit
the computational complexity, we targeted the first 8 bits and
generated 256 templates. 1,000,000 traces were collected:
950,000 traces for building templates and 50,000 for testing.
Some sample traces are shown in Fig. 4.

To build the templates, we first aligned all the traces at
the beginning of the modular inversion. We then sorted the
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Fig. 4 Power traces during inversion of the first lower-order bits of the nonce
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traces by their similarity to the total mean trace using the LMS
algorithm, and excluded all traces which had a low matching
factor. A low matching factor occurred in situations when the
alignment was not possible and/or high noise was interfering
with the measurement. The traces with high matching factor
were then partitioned in 256 sets, based on the low-order 8
bits of the corresponding nonces. We then computed the 256
templates by averaging the traces in each partition.

To increase the success rate during the matching phase, we
applied two further enhancements. First, we filtered out all
the templates which had a high cross-correlation with other
templates. Very similar templates which differed by only a
few sample points were not used for the final byte classifi-
cation. As a result, we only used 102 templates out of 256.
Second, we added a length property for each template. Since
the processing time of each nonce byte is not constant but
variable during the inversion, the template had to be adapted
such that the entire processing time is covered completely.
Hence a different number of sample points were used to build
the template and to match them with test traces.

2.5 Analysis results

We used 50,000 test traces to evaluate the templates. First, we
aligned all traces and filtered out 4,000 traces due to misalign-
ment and high noise. Second, each trace was matched with
all 102 templates using the LMS algorithm. For the classifi-
cation, we followed a threshold detection approach by reject-
ing all traces that were below a certain matching threshold.
Only those traces with a high quality factor (high correla-
tion with a template) were considered as correctly classified.
We obtained 4,451 candidates that met all the requirements.
For these candidates, all seven low-order bits were classified
correctly, with a success rate of 100 %.

Although we were able to extract seven bits of each nonce
in our final template analysis, our earlier attempts recovered
only a couple of bits reliably. Hence we decided to implement
Bleichenbacher’s attack and see if it could succeed with fewer
bits. The remainder of this paper describes this attack for a
5-bit leak.

3 Bleichenbacher’s solution to the HNP

3.1 ECDSA nonce leaks and the HNP

We briefly review the basics of exploiting an ECDSA nonce
leak by mapping the problem to an HNP. Our notation is
mostly consistent with Bleichenbacher’s presentation [4,5].
Let q be the order of the base point. For 0 ≤ j ≤ L−1, where
L is the number of signatures, let Hj denote the hashes of the
messages to be signed, x the private key, K j the ephemeral
secret nonces, and r j and s j the two halves of the signatures.

Then

s j = K −1
j (Hj + r j x) mod q,

K j = s−1
j (Hj + r j x) mod q. (1)

In our case, the low-order b bits (b = 5) of K j , denoted
K j,lo, were recovered using a template attack. Writing K j =
2b K j,hi + K j,lo and rearranging Eq. (1), we get

2b K j,hi = (s−1
j H j − K j,lo) + s−1

j r j x mod q,

K j,hi = 2−b
(

s−1
j H j − K j,lo

)
+ 2−bs−1

j r j x mod q. (2)

If the original K j are randomly and uniformly generated
on [1, . . . , q − 1], then denoting qb = (q − 1)/2b, the
K j,hi will be randomly and almost uniformly distributed on
[0, . . . , �qb�].1

It simplifies our analysis and improves the attack to center
the K j,hi around zero. See Sect. 4 for details. Subtracting
�qb+1� from both sides of Eq. (2) gives

K j,hi − �qb+1� = 2−b
(

s−1
j H j − K j,lo

)

+2−bs−1
j r j x mod q − �qb+1�. (3)

Let k j = K j,hi − �qb+1�, h j = 2−b
(

s−1
j H j − K j,lo

)
−

�qb+1� mod q, and c j = 2−bs−1
j r j mod q, Eq. (3) becomes

k j = h j + c j x + α j q, (4)

where the k j are almost uniformly distributed on[−�qb+1�, . . . , �qb+1�
]

for appropriate multipliers α j .2 We
can, therefore, recover the secret x by solving the following
version of the HNP:

HNP: Let x ∈ [0, . . . , q − 1] be unknown, and suppose we
have an oracle which generates random, uniformly distrib-
uted c j ∈ [1, . . . , q − 1] and k j ∈ [−�qb+1�, . . . , �qb+1�

]
,

computes h j = (k j − c j x) mod q, and outputs the pairs(
c j , h j

)
. The goal is to recover x .

Lattice-based solutions have been studied extensively and
will not be covered here. We only briefly note our own results
with these techniques for a 384-bit modulus. Using both the
CVP and SVP approaches, we were able to attack 6-bit leaks
using both LLL and BKZ (fplll v.4.0.1 [7]) for lattice reduc-
tion. We could attack 4 and 5-bit leaks with BKZ, but not
LLL. The 4-bit attack succeeded twice in 583 trials over a
range of 100–200 points per lattice.

1 Pr{K j,hi == �qb�} will be less than for all other values of K j,hi in
the interval.
2 We wrote Eq. (4) as an equality because the k j can take on negative
values. With this understanding, for the remainder of the paper, we will
simply write ‘ mod q’.
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3.2 Bias definition and properties

Let X be a random variable over Z/qZ. Bleichenbacher
defines the bias of X as

Bq(X) = E(e2π i X/q) = Bq(X mod q). (5)

For a set of points V = (v0, v1, . . . , vL−1) in Z/qZ, he
defines the sampled bias as

Bq(V ) = 1

L

L−1∑
j=0

e2π iv j /q . (6)

Some properties of the bias are listed in Lemma 1 below,
taken from [5].

Lemma 1 Let 0 < T ≤ q such that X is uniformly distrib-
uted on the interval [−(T − 1)/2, . . . , (T − 1)/2]. Then

a. For independent random variables X and X ′,
Bq(X + X ′) = Bq(X)Bq(X ′).

b. Bq(X) = 1
T

sin (πT/q)
sin (π/q)

. Hence Bq(X) is real-valued with
0 ≤ Bq(X) ≤ 1.

c. If X is uniformly distributed on [0 . . . q − 1], then
Bq(X) = 0.

d. Let a be an integer with |a|T ≤ q, and Y = aX. Then,
Bq(Y ) = 1

T
sin (πaT/q)
sin (πa/q)

.

e. Bq(Y ) ≤ Bq(X)|a|.

Proof a. This formula follows from the fact that the proba-
bility distribution of the sum of independent variables is
the convolution of the variables’ distributions, together
with the relationship between Fourier transforms and
convolutions.

b. This formula can be computed directly using the stan-
dard formula for geometric sequences. The value is real
because we centered the distribution of points about zero,
and the resulting values on the unit circle are symmet-
ric about the x-axis. Without centering, the bias would
be complex, with the same absolute value. Also, if T is
even, then the formulas still hold, with the shifted points
taking on half-integer values.

c. Follows immediately from setting T = q in part b.
d. Same as part b.
e. Write

Bq(X) = 1

T

sin (πT/q)

sin (π/q)
=

sin (πT/q)
πT/q

sin (π/q)
π/q

(7)

Setting y = π/q and F(y) = log (sin (y) /y) we want
to show that

F(aT y) − F(ay) ≤ a (F(T y) − F(y)) . (8)

This will be true if F is concave down. Taking the second
derivative gives F ′′(z) = 1/z2 − 1/ sin2(z), which is
negative for z ∈ (0, π). Hence Eq. (8) holds and the
result is proved. 	


We can find convenient approximations to the formulas in
Lemma 1 by taking limits as q → ∞.

Lemma 2 Suppose R = T/q remains fixed as q varies, with
random variables Xq uniformly distributed on
[− (T − 1) /2, . . . , (T − 1) /2] for each q. Let Yq = aXq .
Finally define B∞(X) = limq→∞Bq(Xq) and B∞(Y ) =
limq→∞Bq(Yq). Then

a. B∞(X) = sin (π R)/π R.
b. B∞(Y ) = sin (aπ R)/aπ R.

Proof L’Hôpital’s rule. 	


Some example bias values for R = T/q = 2−b, for large q,
are shown in Table 1.

3.2.1 Most significant vs. least significant bit leaks

In [23], the authors noted that depending on the modulus,
the MSB can carry less information than lower-order bits.
This difference can be quantified in terms of the bias. We
illustrate this by comparing 5-bit leaks for NIST P-384 and
brainpoolP384r1.

The base point for the NIST curve has order
q = 0XFFFFFFFF. . ., and for the Brainpool curve
q = 0X8CB91E82. . . If the low-order 5 bits leak, then for
either prime we get T = �q/25� and R = T/q ≈ 2−5, for a
bias of 0.9984.

If the high-order 5 bits leak, then T = 2379. For the NIST
prime, we still have R = T/q ≈ 2379/2384 = 2−5. Hence
the work to attack a 5-bit leak is the same whether the MSBs
or LSBs are recovered. On the other hand, for the Brainpool
prime we have R = T/q ≈ 0X8/0X8C =1/17.5 and a result-
ing bias of 0.9946. This is much closer to the value for a 4-bit
LSB leak.

Our experiments confirm these calculations. For the NIST
prime, the work factor for the attack does not depend on
whether the MSBs or LSBs are leaked. On the other hand,
for the Brainpool prime, the work required to attack a 5-bit
leak of the MSBs is on par with the work to attack a 4-bit leak
of the LSBs. Given the form of the Brainpool prime, about
8/9 of the time the high-order bit of a randomly generated
nonce is zero. Hence when the MSBs are leaked, we gain
on average very little additional information about the high-
order bit.
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Table 1 Example bias values for R = 2−b

b 1 2 3 4 5 6 7 8

Bq (X) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944 0.9995985 0.9998996 0.9999749

3.3 Connecting the HNP to the bias

In an instance of the HNP, we are given a modulus q and a
set of pairs (c j , h j ), 0 ≤ j < L , and we wish to find the
secret and presumably unique x for which the set of values
Vx = {h j +c j x mod q}L−1

j=0 all fall near 0 or q. If they do, then
this set of values will show a significantly nonzero sampled
bias. Furthermore, for any w different from x , we expect
that the values Vw = {h j + c jw mod q}L−1

j=0 would show a
relatively small sampled bias. To see why, for 0 ≤ w < q let
us define 3

Bq(w) = 1

L

L−1∑
j=0

e2π i(h j +c j w)/q

=
q−1∑
t=0

⎛
⎝ 1

L

∑
{ j |c j =t}

e2π ih j /q

⎞
⎠ e2π i tw/q

=
q−1∑
t=0

⎛
⎝ 1

L

∑
{ j |c j =t}

e2π i(h j +c j x)/q

⎞
⎠ e2π i t (w−x)/q

=
q−1∑
t=0

⎛
⎝ 1

L

∑
{ j |c j =t}

e2π ik j /q

⎞
⎠ e2π i t (w−x)/q . (9)

If w = x , then Bq(w) = 1
L

∑L−1
j=0 e2π ik j /q is just the

sampled bias of the points k = (k0, k1, . . . , kL−1). Given a
b-bit nonce leak (R = 2−b in Table 1) and enough samples,
Bq(x) will have a value close to 1, as all the terms e2π ik j /q

are confined to the part of the unit circle with phase −π/2b <

θ < π/2b.
If w �= x , then Bq(w) will be close to zero. The inner sums

in the last line of Eq. (9) get rotated around the unit circle
by the e2π i t (w−x)/q terms, and largely cancel each other out.
This effect is illustrated by Figs. 5 and 6.

Thus, the bias calculation gives us a way to score putative
solutions to the HNP, allowing us to search for the correct
value x which maximizes Bq(w). Evaluating it for all w in
[0, . . . , q − 1] is, of course, impractical for large q.4

Bleichenbacher’s insight [5] was that if the c j are small
enough, the peak in Bq(w) centered about x will be broad

3 We acknowledge the abuse of notation in writing Bq (w) instead of
Bq (Vw), but this is consistent with Bleichenbacher’s notes and will
simplify the exposition.
4 Throughout the paper, we will refer to the size of Bq (w), by which
we mean |Bq (w)|. With this understanding, for the remainder of the
paper, we will leave off the absolute value bars.

π/2 b

-π/2 b

Fig. 5 When w = x , all the summands in Eq. (9) have bounded
phase −π/2b < θ < π/2b

Fig. 6 When w �= x , the inner sums in the last line of Eq. (9) get
rotated around the unit circle by different angles and cancel each other
out

enough to discern even if we only calculate Bq(w) for an
extremely sparse set of w. Furthermore, we can synthesize
(c j , h j ) pairs with small c j by taking linear combinations
(mod q) of the original (c j , h j ) pairs.

To see why the peak of Bq(w) is broad when the c j are
small, note that in the second line of Eq. (9), Bq(w) is a
weighted sum of terms e2π i tw/q , with frequencies t/q =
c j/q. If those frequencies are all much smaller than 1, the
peak of Bq(w) will be broad, reducing the search work pro-
portionally. How small must the c j be to make the peak cen-
tered at x broad enough to find?

Suppose we have a bound 0 < C � q such that all
the c j satisfy 0 ≤ c j < C . Then, the inner sums in the
last line of Eq. (9) will be combined after rotation by angles

123



40 J Cryptogr Eng (2014) 4:33–45

π/2b + 2πC(w-x)/q

-π/2bπ/2b

Fig. 7 When the c j are bounded and w is close to x , there is little or
no cancellation of the inner sums in the last line of Eq. (9)

θt = 2π t (w− x)/q satisfying |θt | < 2πC |w− x |/q, as only
those terms for which t < C will be nonzero. If C is small
enough, then for w close to x these rotations will be small.
There will be no cancellation of terms during summation, and
Bq(w) will approximate Bq(x). This situation is illustrated
in Fig. 7.

At what values of θt do we expect the terms to begin
canceling out? Referring again to Fig. 7, we can see cancel-
lation starts occurring once |θt | > π/2, as the real parts
of those terms begin to take on negative values. Accord-
ingly, Bq(w) begins falling significantly below its peak when
2πC |w−x |/q ≈ π/2, or equivalently |w−x | ≈ q/4C . This
implies the peak of Bq(w) centered at x should have a width
of approximately q/2C .

Therefore, if the c j are bounded by C we can find an
approximation to x by searching for the peak value in Bq(w)

over n = 2C evenly spaced values of w between 0 and q. To
do so, set wm = mq/n, m ∈ [0, n − 1], in Eq. (9). Then

Bq(wm) = 1

L

L−1∑
j=0

e2π i(h j +(c j mq/n))/q

= 1

L

L−1∑
j=0

e(2π ih j /q)+(2π ic j m/n)

=
n−1∑
t=0

⎛
⎝ 1

L

∑
{ j |c j =t}

e2π ih j /q

⎞
⎠ e2π i tm/n

=
n−1∑
t=0

Zt e
2π i tm/n (10)

where Zt = 1
L

∑
{ j |c j =t} e2π ih j /q .

The observant reader may recognize the above formula
as the inverse FFT of Z = (Z0, Z1, . . . , Zn−1). Note that
since n = 2C and all the c j are less than C , the coeffi-
cients (ZC , . . . , Zn−1) are all zero. Hence the Bq(wm) can

be efficiently computed by first computing the vector Z , and
then taking the inverse FFT. In practice, we are limited in
the number of Bq(w) we can evaluate at a given time by the
maximum FFT size we can efficiently compute. Hence, we
require (c j , h j ) pairs with sufficiently small c j . We will dis-
cuss range reduction in Sect. 4. For the next section we will
assume that the c j are appropriately bounded.

3.4 Recovering the secret x with Bounded c j

Suppose we can compute an n = 2N -point inverse FFT.
Then, we can recover the high-order N bits of the x as fol-
lows.

1. Zero the vector Z .
2. Loop over all L pairs (c j , h j ). For each pair, add e2π ih j /q

to the appropriate Zt , namely t = c j .
3. Compute the inverse FFT of Z and find the m for which

Bq(wm) is maximal.
4. The most significant N bits of x are msbN (x) =

msbN (�mq/n�).

We can repeat the process iteratively to recover the remain-
ing bits of x . Let x = 2u xhi + xlo, where xhi are the known
bits previously recovered, and xlo is u bits in length and
unknown. We first rewrite Eq. (4) to absorb the known bits
xhi into h j :

k j = (h j + c j x) mod q

= ((h j + 2uc j xhi ) + c j xlo) mod q

= (h′
j + c j xlo) mod q. (11)

The computation proceeds as before, except we evaluate
Bq(w) over n evenly spaced values of w between 0 and 2u ,
since only u bits remain unknown. Mimicking the previous
computation, set wm = 2um/n, m ∈ [0, n − 1] in Eq. (10):

Bq(wm) = 1

L

L−1∑
j=0

e2π i(h′
j +(2uc j m/n))/q

= 1

L

L−1∑
j=0

e(2π ih′
j /q)+(2π i(2uc j m/qn))

=
n−1∑
t=0

⎛
⎝ 1

L

∑
{ j |(2uc j /q)=t}

e2π ih′
j /q

⎞
⎠ e2π i tm/n

=
n−1∑
t=0

Zt e
2π i tm/n (12)

where Zt = 1
L

∑
{ j |�2uc j /q�=t} e2π ih′

j /q . As before, compute
the Bq(wm) by taking the inverse FFT of Z , and find the m
with the maximum value for Bq(wm). The most significant
N bits of xlo are msbN (�2um/n�).
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If the c j remain bounded by C = n/2 as the attack
proceeds, then 2uc j/q would always be zero as soon as
2u < 2q/n, and the only nonzero coefficient would be Z0.
Instead, we want 2uc j/q to range between 0 and n/2, so we
relax the bound on the c j and set C = nq/2u+1 as additional
bits of x are recovered.

Note that in the above description, and in the attack we
implemented, we rounded mq/n and 2um/n down, and used
those values as the recovered bits of x . This strategy was
probably not ideal, and was undoubtedly helped by the win-
dowing we also performed (see Sect. 5). It would be a more
robust strategy to round those values both up and down, and
then use both in the next iteration. The incorrect value should
be easily identified and discarded, as using it in the next iter-
ation should result in all the calculated biases being small.

4 Range reduction

The original c j will be uniformly distributed in [1, q − 1] and
not nicely constrained as required for the attack described
above. It remains for us to demonstrate how to find (c j , h j )

pairs whose c j values lie in an extremely narrow range. Sup-
pose we have L pairs (c j , h j ) such that the corresponding
values k j = h j + c j x mod q are biased. Then, the L2 − L
values

ki, j = (hi + h j ) + (ci + c j )x mod q, i �= j, (13)

will also be biased. Assuming independence of the new pairs
(an untrue but useful assumption), Lemma 1 tells us that the
bias of the new ki, j will be the square of the bias of the
original k j .

We demonstrate the effect of taking linear combinations
on the bias using a toy example. We set the modulus to q =
216 + 1 and selected the secret x . We also generated 212

random k j bounded by 213, to simulate a 3-bit leak, and 212

random c j in [1, . . . , q − 1]. We then solved for the h j such
that k j = h j + c j x mod q. The pdf of the k j and their bias
is shown in the top pair of graphs in Fig. 8.

We then randomly added or subtracted pairs of c j mod q,
and took the corresponding linear combinations of the h j

and k j , until we had 212 new c j which were bounded by
214. This process was repeated, reducing the c j by two bits
each iteration, until we had 212 c j bounded by 24 = 16.
The effects on the probability distributions and biases of the
corresponding k j are shown on the left and right hand sides
of Fig. 8.

As the k j get combined, their probability distributions get
increasingly flattened and spread out over the entire interval
[0, . . . , q−1]. The bias for the correct value x also decreases,
but the biases for w near x also start increasing, as the range
of the c j decreases. In the final row, we see a shorter but

broad and clearly dominant peak centered around the correct
value x . We can, therefore, find the high-order 4 bits of x
by searching over 24 = 16 equally spaced values in [0, . . . ,

q − 1], rather than find all 16 bits of x with a 216 search.
The goal of range reduction is to broaden the peak cen-

tered about x so that it can be found with an exhaustible
search, without flattening it so much that it becomes indistin-
guishable from noise. If successful, this allows a divide-and-
conquer strategy in which blocks of bits of x are recovered
in an iterative fashion.

Bleichenbacher’s original analysis was for very small,
even fractional, bit leaks, and he used millions of signatures,
and large FFT sizes. His range reduction strategy was to look
for collisions in the high-order bits of the c j and take their dif-
ferences. For example, if you have L points in [0, q − 1], sort
them by size, and subtract each point from the next largest
one, you get a list of L − 1 points, which are on average
about log(L) bits smaller. This process can be repeated until
the points are in the desired ranges.

In our case we are working with a larger bit leak, but
we only have a few thousand signatures, a 384-bit modulus
instead of a 160-bit modulus, and a 228-point FFT. If we
had 230 signatures, we could employ the sort-and-difference
method to the c j for 12 rounds, taking differences of the
corresponding h j as well. This would result in a large number
of c′

j satisfying 0 ≤ c′
j < 224. The sampled bias for the

corresponding points k′
j = h′

j + c′
j x mod q would be about

(0.9984)212 = 0.0014, which is large enough for the attack
to succeed.

If we had 220 signatures and applied the sort-and-
difference method for 18 rounds, the resulting c′

j would also
be in the same range, but the sampled bias would be about
10−182, far too small to be useful. With about 4,000 signa-
tures available, we looked for another strategy to reduce the
range of the c j without reducing the bias too much.

Given subsets cJ = (cJ,0, cJ,1, . . . , cJ,d−1) of the c j , we
want to find sets of integer coefficients

AJ = (aJ,0, aJ,1, . . . , aJ,d−1),

such that

cAJ = 〈AJ , cJ 〉 mod q =
d−1∑
t=0

aJ,t cJ,t mod q (14)

satisfies 0 ≤ cAJ < C . Applying the AJ to Eq. (4) gives

kAJ = (h AJ + cAJ x) mod q, (15)

where kAJ = 〈AJ , kJ 〉 mod q, h AJ = 〈AJ , h J 〉 mod q, and
the cAJ are small enough to be used in the FFT calculation.
The expected bias of the kAJ can be approximated by apply-
ing the rules from Lemma 1 and Lemma 2.
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Fig. 8 Effect of taking linear combinations of the c j , on the distribution of the nonces and their biases
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It is actually a trivial task to find such AJ . The difficulty
lies in finding them subject to the condition that the bias
of the resulting kAJ still be large enough to detect against
background noise.

The most relevant metrics are the L1 norm ‖AJ ‖1, and
the L∞ norm ‖AJ ‖∞, which must be sufficiently bounded.
Finding bounds G1 and G∞ for these norms for which the
attack succeeds is discussed in Sect. 4.1. Given these bounds,
however, we can use BKZ for range reduction and keep only
those points which satisfy them.

Consider the lattice spanned by the rows of the following
matrix:

⎡
⎢⎢⎢⎢⎢⎣

W 0 0 · · · 0 cJ,0

0 W 0 · · · 0 cJ,1
...

...
...

...
. . .

...

0 0 0 · · · W cJ,d−1

0 0 0 · · · 0 q

⎤
⎥⎥⎥⎥⎥⎦

. (16)

The cJ,l are randomly chosen from our list of points, and W
is a weight factor to balance the reduction of the cJ,l , and
the size of the resulting coefficients. Applying BKZ to the
matrix gives

⎡
⎢⎢⎢⎣

aJ,0,0W aJ,0,1W aJ,0,2W · · · aJ,0,d−1W cAJ,0

aJ,1,0W aJ,1,1W aJ,1,2W · · · aJ,1,d−1W cAJ,1
...

...
...

...
. . .

...

aJ,d,0W aJ,d,1W aJ,d,2W · · · aJ,d,d−1W cAJ,d

⎤
⎥⎥⎥⎦ (17)

where AJ,l = (aJ,l,0, aJ,l,1, . . . , aJ,l,d−1) for 0 ≤ l ≤ d
and cAJ,l = 〈AJ,l , cJ 〉 mod q = ∑d−1

t=0 aJ,l,t cJ,t mod q. To
simplify notation, we will drop the second index l for the rest
of the paper.

We want the above lattices to contain points cAJ ∈
(−C, C) for which ‖AJ ‖1 ≤ G1, and the ‖AJ ‖∞ ≤ G∞.
The number of good points per lattice depends not only on
those bounds, but also the dimension d, the weight W , and
the BKZ parameters. We determined these experimentally.
For the first iteration of the attack, we used d = 128, a
BKZ blocksize of 20, W = 225, C = 228, G1 = 325 and
G∞ = 8.

Recall from the discussion in Sect. 3.3 that C should
be 227, not 228. However, we increased it by a bit to
find more reduced points. This doubled the size of the
maximum rotation angles to |θt | ≈ π and accordingly
decreases Bq(w) for w near the endpoints of the inter-
val containing x . Nevertheless, the peak in the bias was
still broad and tall enough to identify the correct inter-
val.

We can now explain the main reason for centering the
k j around zero. It mitigates the reduction of the bias when
taking linear combinations. To see why, suppose the range

of two independent variables X and X ′ is [0, . . . , T − 1].
Then, the range of ±(X ± X ′) is [−2(T − 1), . . . , 2(T −
1)]. On the other hand, if the range of X and X ′ is
[−(T − 1)/2, . . . , (T − 1)/2], then the range of ±(X ± X ′)
is [−(T − 1), . . . , T − 1]. Hence if the original k j are cen-
tered about zero, then the kAJ in [0, . . . , q − 1] are more
densely clustered near 0 and q and, therefore, have a larger
bias. In fact, centering the k j improves the performance
of the attack by about a bit in number of leaked nonce
bits.

4.1 Finding BKZ parameters for range reduction

The weights W are required to balance the reduction of the
c j with the size of the coefficients. If W is too small, say
W = 1, then the lattice would contain many cAJ ∈ (−C, C)

but the coefficients would be too large. On the other hand, if
W is too large, say C ≤ W , the coefficient norms would be
smaller, but there would be very few if any cAJ ∈ (−C, C).
The values for W which appear to work best are those which
are just a few bits smaller than C . In our lattices, we set
W = 2�log(C)�−3.

We now turn to the question of the coefficient bounds G1

and G∞. We need to know for which bounds the attack will
work, and how many

(
cAJ , h AJ

)
pairs are required. Ideally,

we would run experiments using reduced points output by
BKZ. Unfortunately, the lattices which worked best were
large, containing 128 or more points. Each lattice reduction
took 1–2 min, and yielded only a few, if any useful points.
This made it impractical to use BKZ outputs of our real data
to analyze coefficient bounds.

We, therefore, analyzed the distribution of coefficients
output by BKZ to simulate them. For our analysis and attack,
we used BKZ with d = 128, and a blocksize of 20. We ran-
domly populated and reduced lattices, and sorted the cAJ

based on the bounds C , G1 and G∞ they satisfied. Once we
had enough cAJ for each set of bounds, we examined the
distribution of nonzero coefficients. An example is shown in
Fig. 9, for C = 228, G1 = 325 and G∞ = 8. The distribu-
tion strongly resembles a normal distribution, and a normal
fit also appears to match the data.5 We, therefore, modeled
the output of BKZ using normal distributions, after getting
estimates of the coefficient standard deviations for different
sets of bounds.

Note that this was not intended as a rigorous mathematical
analysis. We only needed a reasonable model of the coef-
ficient distribution for our simulations. Once we had that,
we generated simulated data points

(
c j , h j

)
and coefficients

AJ with ‖AJ ‖1 ≤ G1 and ‖AJ ‖∞ ≤ G∞ such that the
cAJ ∈ (−C, C). We then performed the FFT phase of the

5 Curiously, the coefficient distributions output by LLL were better
modeled by geometric distributions.
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Fig. 9 Distribution and normal fit of the nonzero coefficients output
by BKZ

attack to determine the number of
(
cAJ , h AJ

)
pairs required

for success. The simulations were accurate, and success-
fully predicted the number of points required by the attack
on actual data. For example, our simulations predicted that
for a 5-bit leak with bounds G1 = 325 and G∞ = 8, the
first phase of the attack would succeed with about 3,000
reduced pairs

(
cAJ , h AJ

)
, matching what occurred in the real

attack.

5 Attack details and observations

The attack consists of multiple iterations, in which additional
bits of x are recovered in each iteration. Each iteration con-
sists of two phases: range reduction using BKZ, followed by
the inverse FFT calculation. The first iteration, with the small-
est value for C , is the most difficult. As the attack proceeds
and C increases, we can find more points cAJ ∈ (−C, C)

with smaller coefficient bounds G1 and G∞, so fewer points
are required for the FFT phase.

We kept a short list of the top 10 scoring candidates for
x from each iteration. We chose to keep 10 candidates based
on our experiments with the given bias and the number of
points available for the inverse FFT. The correct answer x
was not always the top candidate, but was always in the top
10, and was the top candidate after the final iteration.

We also used overlapping windows as we successively
recovered bits of x , keeping the high-order 20 bits out of the
28 recovered. We did this for two reasons. First, the results
of the FFT are sometimes off by a few of the low order bits.
This is more of an issue when the number of points available
is barely sufficient. The second reason is that we used this
8-bit value to round the current approximation of x for the
next iteration. We found this rounding essential for getting

the correct result in the next iteration. After the next block of
bits of x is recovered, the rounding from the previous iteration
is undone.

The attack succeeded using 3,000 reduced points for each
iteration, derived from the original 4,000 signatures. How-
ever, the work factor and time required were worse than the
standard lattice attacks. For the BKZ phase of the first iter-
ation, we used the bounds and lattice parameters discussed
above. Each lattice reduction took about 2 min, and returned
on average two usable points. This phase is easy to paral-
lelize, and took about 4 h to complete on 12 cores. Each
228-point FFT took 30 s, for a total of 5 min. The second
iteration was similar, as the increase in C did not improve
the BKZ outputs much. The remaining iterations were sig-
nificantly easier, and the rest of the attack took a few hours
to complete.

6 Conclusions

In this paper, we described an attack against a nonce leak in
384-bit ECDSA running on a smart card. We used a template
attack to recover a few low-order bits from each nonce. We
then used Bleichenbacher’s solution to the HNP, where we
had a much larger modulus and far fewer signatures than in
his original analysis. Without enough signatures to perform
his collision searches, we used BKZ for range reduction.

Our attack succeeded against a 5-bit leak with about 4,000
signatures, although the time and resources required are
worse than what can be done with standard lattice-based
attacks. However, our technique will continue to scale with
fewer bits. For example, our simulations also show that we
could attack a 4-bit leak with 500,000 reduced points satis-
fying G1 = 250 and G∞ = 5. Finding these points does not
appear feasible with the lattice reduction software we used.
However, it may be possible to find them using improved
implementations such as BKZ 2.0 [9]. There is still a lot of
room for improvement in our results, and we hope this paper
spurs more research on Bleichenbacher’s method.
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