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Abstract In recent years, hardware Trojans have drawn the
attention of governments and industry as well as the scientific
community. One of the main concerns is that integrated cir-
cuits, e.g., for military or critical-infrastructure applications,
could be maliciously manipulated during the manufacturing
process, which often takes place abroad. However, since there
have been no reported hardware Trojans in practice yet, little
is known about how such a Trojan would look like and how
difficult it would be in practice to implement one. In this paper
we propose an extremely stealthy approach for implement-
ing hardware Trojans below the gate level, and we evaluate
their impact on the security of the target device. Instead of
adding additional circuitry to the target design, we insert our
hardware Trojans by changing the dopant polarity of exist-
ing transistors. Since the modified circuit appears legitimate
on all wiring layers (including all metal and polysilicon),
our family of Trojans is resistant to most detection tech-
niques, including fine-grain optical inspection and checking
against “golden chips”. We demonstrate the effectiveness of
our approach by inserting Trojans into two designs—a dig-
ital post-processing derived from Intel’s cryptographically
secure RNG design used in the Ivy Bridge processors and a
side-channel resistant SBox implementation—and by explor-
ing their detectability and their effects on security.
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1 Introduction

Integrated circuits (ICs) are the heart of virtually all mod-
ern applications. This includes sensitive and safety critical
devices, such as medical devices, automotive, industrial con-
trol systems, power management or military devices. Often
circuit blocks in a single IC are designed by different parties,
manufactured by an external and possibly off-shore foundry,
packaged by a separate company and supplied by an inde-
pendent distributor.

This increased exploitation of out-sourcing and aggressive
use of globalization in circuit manufacturing has given rise
to several trust and security issues, as each of the parties
involved potentially constitutes a security risk. In 2005 the
Defense Science Board of the US Department of Defense
published a report in which it publicly voiced its concern
about US military reliance on ICs manufactured abroad [4].
One threat in this context is that malicious modifications, also
referred to as hardware Trojans, could be introduced during
manufacturing. All this raises the question of trust in the final
chip, especially if chips for military or safety-critical civilian
applications are involved. Even if chips are manufactured in a
trusted fab, there is the risk that chips with hardware Trojans
could be introduced into the supply chain. The discovery of
counterfeit chips in industrial and military products over the
past years has made this threat much more conceivable. For
instance, in 2010 the chip broker VisionTech was charged
with selling fake chips, many of which were destined for
safety and security critical systems such as high-speed train
brakes, hostile radar tracking in F-16 fighter jets and ballistic
missile control systems [6]. The threat of hardware Trojans
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is expected to only increase with time, especially with the
recent concerns about cyberwar, cf., e.g., [13,20].

Surprisingly, despite the major research efforts in the gen-
eral area of hardware Trojans, little is known about how to
built stealthy hardware Trojans at the layout level (post place
and route). Contrary to the majority of past works, in this
paper, we investigate a new family of Trojans that do not
need any extra logic resources but merely require a change
in the dopant polarity of a few transistors. Hence, these Tro-
jans add zero overhead in terms of additional transistors and
metal wires. We show that such a change will not be detected
by several of the common Trojan testing methods, including
optical inspection. A central question that arises is how such
minuscule manipulations can result in changes to the target
system which are meaningful to an attacker. We address this
question using two case studies. First, we show an attack
against a design derived from Intel’s RNG design used in
the Ivy Bridge processors, and second, a dopant Trojan that
allows attacking a side-channel resistant SBox implemen-
tation. Since the hardware is usually the root of trust in a
system, even small malicious modifications of the hardware
can be devastating to system security.

1.1 Related work

Research efforts targeting hardware Trojans can be divided
into two parts: one related to the design and the implemen-
tation of hardware Trojans, and one addressing the problem
of detecting hardware Trojans. In this section we summarize
some contributions from both areas.

1.1.1 Hardware Trojan designs

There have been relatively few research reports addressing
the question of creating (as opposed to defeating) hardware
Trojans, with the first hardware Trojans published around
2008. Most proposed hardware Trojans consist of small to
mid-size circuits which are added at the HDL level. For exam-
ple, King et al. [10] presented a hardware Trojan inserted
into a CPU that was capable of granting complete control
of the system to an external attacker. The attacker can make
arbitrary changes to the program code and can get unlimited
access to the memory by simply sending a specific mali-
cious UDP package to the processor. This Trojan shows
how vulnerable systems can become once the root of trust—
the hardware—is compromised. Another class of HDL-level
Trojans are those which create a hidden side-channel to leak
out secret keys by adding only a few additional gates [12].
Perhaps most of the Trojans proposed so far were shown
at the annual hardware Trojan challenge hosted by NYU-
Poly, where students insert hardware Trojans into a target
FPGA design with the goal of overcoming hardware detec-
tion mechanisms [18].

All these Trojans have in common that they are inserted at
the HDL level. The attack scenario here is that malicious cir-
cuitry is introduced into the design flow of the IC. However,
these Trojans are difficult to realize by a malicious foundry
which usually only has access to the layout masks. In this
context, finding the needed space and adding extra connec-
tions to place and route the Trojan gates can be impracti-
cal. Furthermore, adding additional gates to the design after
place and route can easily be detected using optical reverse-
engineering. How realistic these Trojans are in a foundry-
based attack model is therefore still unanswered.

A more realistic scenario for a foundry-based Trojan inser-
tion are malicious modifications carried out at the layout
level. An example of such a Trojan is the Trojan proposed by
Shiyanovskii et al. [21]. In this work the dopant concentra-
tion is changed to increase the effects of aging on the circuit,
with the ultimate goal of reducing the expected lifetime of the
device. However, these Trojans have limited usability, since
it is hard to predict the exact time the ICs will fail and they
can usually only serve as a denial-of-service type of Trojan.

1.1.2 Hardware Trojan detection

Hardware Trojan detection mechanisms can be divided into
post-manufacturing and pre-manufacturing detection mech-
anisms. The input to pre-manufacturing Trojan detection is
usually the gate netlist or HDL description of the design
under test. Pre-manufacturing Trojan detection tries to detect
Trojans that have been inserted at the HDL level into the
design flow, e.g., by third party IPs, design tools or untrusted
employees. Usually the Trojan detection is based on func-
tional testing or formal verification. There have also been
proposals of how to defend against rather than detect hard-
ware Trojans at the HDL level. One approach is to replace
part of the hardware design that was not covered by func-
tional testing with software [8]. Another approach is to add
redundancy or a control circuitry between untrusted IPs that
will make Trojan activation based on counters and inputs
difficult [23]. However, these proposed Trojan detection and
prevention mechanisms cannot prevent Trojans inserted at
the sub-gate level, including the ones proposed in this paper.

Post-manufacturing Trojan detection mechanisms primar-
ily attempt to detect Trojans inserted during manufacturing.
They can be divided into two categories based on whether
they need a “golden chip” (also referred to as golden model)
or not. A golden chip is a chip which is known to not
include malicious modifications. The standard approach pro-
posed to detect layout-level hardware Trojans and to find
a golden chip is the use of optical reverse-engineering.
The idea is to decap the suspected chip and make pho-
tos of each layer of the chip with, e.g., a scanning elec-
tron microscope (SEM). These photos are then compared
to the layout mask to detect additional metal or polysilicon
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wires. Additional metal wires and transistors can usually
be detected very reliably. However, the overall process is
expensive, time consuming and also destroys the chip under
test. Hence, this method can only be used on a small num-
ber of chips. Also, optical reverse-engineering does not usu-
ally allow to detect changes made to the dopant, especially
in small technologies. A dedicated setup could eventually
allow to identify the dopant polarity. However, doing so in a
large design comprising millions of transistors implemented
with small technologies seems impractical and represents an
interesting future research direction. We exploit this limita-
tion to make our Trojans resistant against optical reverse-
engineering.

A different approach to test for hardware Trojans without
a golden chip is functional testing of the chip. Functional
testing is standard procedure in the IC design flow and to
some degree will always be performed. However, detecting
Trojans is different from detecting manufacturing defects.
Creating efficient test cases for hardware Trojan detection
is difficult since the tester does not know how the Trojan
gates look like. As a result, these Trojan gates are not taken
into account during the test case generation which usually
tries to optimize gate coverage. This leads to an inefficient
functional testing procedure in contrast to functional testing
at the netlist level, since in this case the Trojan gates will be
part of the input to the test case algorithms.

Trojan detection mechanisms that require a golden chip
are usually based on comparing side-channel information of
the golden chip and the suspected chip. The most popular
method is using the power side-channel for Trojan detection
[1] but other side-channels such as time [11,25], electro-
magnetics (EM) and heat have been proposed as well. Typ-
ically these detection mechanisms can only detect Trojans
that are at most three to four orders of magnitude smaller
than the target design [1]. Small Trojans, on the other hand,
are likely to stay undetected. Another approach to detect
Trojans is to add specific Trojan detection circuitry into
the design that can detect if the design was changed during
manufacturing. For example, Rajendran et al. [19] proposed
to add additional gates that transform parts of the design
into ring-oscillators. During testing, the frequencies of these
ring-oscillators are compared with a golden chip to detect
if the design was changed. These methods usually require a
golden chip to determine the expected output of the detec-
tion circuitry, since circuit simulations are often not accurate
enough. One big disadvantage of Trojan detection circuitry
is that the circuitry itself can be subject to Trojan modifica-
tions. For similar reasons, the build-in-self-tests (BIST) that
are employed in some designs to automatically detect man-
ufacturing and aging defects are of limited use when applied
to Trojan detection. This is not only due to the fact that a Tro-
jan can be inserted into the BIST itself but also because the
Trojan can be designed to not trigger the BIST, since BISTs

are usually designed to only detect a sub-set of all possible
errors.

1.2 Our goal and contribution

One of the major concerns are Trojans inserted during manu-
facturing, e.g., by an untrusted foundry, but most of the pub-
lished hardware Trojans are implemented at the HDL level. In
this paper, we will, therefore, focus on Trojans inserted into
designs at the layout level, after the place and route phase.
We concentrate on constructing Trojans that can easily be
added by a foundry and that defeat Trojan detection mecha-
nisms. Especially, we propose layout-level hardware Trojans
that can resist optical inspection, which is believed to be a
reliable way to detect layout-level hardware Trojans. The pro-
posed Trojans are inserted by modifying only the polarity of
dopant in the active area and are, therefore, very close to invis-
ible to optical reverse-engineering. From a technical point of
view, such modifications are certainly feasible in practice:
a very similar approach is already used commercially for
hardware-obfuscation in which optical reverse-engineering
needs to be defeated as well [22]. By using two case studies,
a side-channel resistant SBox implementation and an imple-
mentation of a secure digital random number post-processing
design derived from Intel’s new RNG used in the Ivy Bridge
processors, we prove that the proposed dopant-based Trojans
can be used efficiently in practice to compromise the secu-
rity of the underlying target design. To the best of our knowl-
edge, our dopant-based Trojans are the first proposed, imple-
mented, tested and evaluated layout-level hardware Trojans
that can do more than act as denial-of-service Trojans based
on aging effects.

The remainder of the paper is organized as follows: in
the next section we will introduce the basic concept of our
dopant-based Trojans. In Sect. 3, the first case study, a Trojan
inserted into a design derived from Intel’s new RNG design
is discussed. The second case study is presented in Sect. 4,
showing how a side-channel resistant SBox implementation
can be modified to establish a hidden side-channel using the
dopant Trojans. In the last section the results are summarized
and conclusions are drawn.

2 Dopant-Trojans

In this section an efficient way to design hardware Trojans
without changing any metal or polysilicon layer of the target
design is introduced. The main idea of the proposed Trojan
is as follows: a gate of the original design is modified by
applying a different dopant polarity to specific parts of the
gate’s active area. These modifications change the behavior
of the target gate in a predictable way and are very similar to
the technique used for code-obfuscation in some commercial
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Fig. 1 Figure of an unmodified inverter gate (a) and of a Trojan inverter
gate with a constant output of VDD (b)

designs [22]. Using a simple inverter as an example, we
explain these dopant modifications by changing the behavior
of the target inverter gate in a way that it always outputs VDD .
However, the proposed techniques are sufficiently general to
be applied to other types of gates in a similar way.

An inverter consists of a p-MOS and an n-MOS transistor
whose drain contacts are connected via a metal layer as shown
in Fig. 1. The upper part of Fig. 1 shows a p-MOS transistor,
whose cross section is depicted on the left side of Fig. 2. As
it can be seen, a p-MOS transistor consists of an n-well, the
positively doped source and drain region and the gate region.
The active area defines the area in which the dopant masks
apply and hence also defines the source and drain area of the
transistor. The polysilicon wire defines the gate area of the
transistor.1

To create an inverter Trojan that constantly outputs VDD ,
the positively doped p-dopant mask of this p-MOS transistor
is exchanged with the negatively doped n-dopant mask. This
change can be seen in the right part of Fig. 2, which depicts the
cross section of a Trojan p-MOS transistor. Doping an active
area within an n-well with n-dopant basically creates a con-
nection to the n-well. N-wells are usually always connected
to VDD in a CMOS design. Since the n-dopant is applied to
the entire active area of the p-MOS transistor, including the
metal contacts, a direct connection from these contacts to the
n-well is created. From Fig. 2, it can be noticed that the source
contact, which is connected to VDD , has been transformed
into an n-well tap, creating an additional connection from
the n-well to VDD . The drain contact is also connected to the
n-well and thereby to VDD . Hence, we have created a con-
stant connection between VDD and the drain contact without
modifying the metal, polysilicon, n-well or active area. The

1 The silicon area below the polysilicon wire is not subject to the dopant
mask and hence remains the same polarity as the underlying well.

upper part of Fig. 1 shows the layout of the resulting p-MOS
transistor Trojan.

In the second step the connection between the n-MOS
transistor’s drain contact and GND is constantly disabled.
This is achieved by applying p-dopant to the source con-
tact of the n-MOS transistor while leaving the drain contact
untouched. Applying p-dopant to the source contact of the
n-MOS transistor transforms it into a well tap again and cuts
off any connection between the source contact and the nega-
tively doped source area of the n-MOS transistor. Therefore,
the n-MOS transistor is no longer connected to GND regard-
less of its gate input. The cross section of the original and the
Trojan inverter are depicted on the left and on the right part
of Fig. 2, while the layout can be seen in Fig. 1. The metal,
polysilicon, active and well layers are identical with the orig-
inal inverter in Fig. 1, but the Trojan gate always outputs VDD

regardless of its input.
Besides fixing the output of transistors to specific values,

it is also possible to change the strength of transistors in a
similar way. The strength of a transistor in CMOS is defined
by its width. Usually the entire active area of a transistor
is doped and, therefore, the width of a transistor is defined
by the active area. However, by decreasing the area which is
doped positively in a p-MOS transistor, it is possible to reduce
the effective width of the transistor. Hence, to decrease the
strength of a transistor it is sufficient to apply p-dopant to an
area smaller than the active area of the transistor.

We want to stress that one of the major advantages of the
proposed dopant Trojan is that they cannot be detected using
state-of-the-art optical reverse-engineering since we only
modify the dopant masks. The introduced Trojans are sim-
ilar to the commercially deployed code-obfuscation meth-
ods [22] which also use different dopant polarity to prevent
optical reverse engineering. This suggests that our dopant
Trojans are extremely stealthy as well as practically feasible.

3 Case-study 1: Intel’s Ivy Bridge RNG

In this section we apply the concepts of our dopant Trojans to
a meaningful, high-profile target to demonstrate the danger
and practicability of the proposed Trojans. Our first target is
a design based on Intel’s new cryptographically secure RNG.
Most prominently, it is used in the Ivy Bridge processors but
will most likely be used in many more designs in the future.
We chose this target because of its potential for real-world
impact and because there is detailed information available
about the design and especially the way it is tested [7,9,24].

The cryptographically secure RNG generates unpre-
dictable 128-bit random numbers. The security has been ver-
ified by an independent security company [7] and is NIST
SP800-90, FIPS 140-2++ and ANSI X9.82 compliant. We
will modify the digital post-processing of the design at the
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Fig. 2 Figure of an unmodified p-MOS Transistor and Trojan p-MOS (a) transistor as well as of an n-MOS Transistor and Trojan n-MOS transistor
(b)

sub-transistor level to compromise the security of keys gen-
erated with this RNG. Our Trojan is capable of reducing
the security of the produced random number from 128 bits
to n bits, where n can be chosen. Despite these changes,
the modified Trojan RNG passes not only the Built-In-Self-
Test (BIST) but also generates random numbers that pass the
NIST test suite for random numbers.

In the following section we first summarize the design of
Intel’s RNG and then discuss our malicious modifications.

3.1 Intel’s TRNG design

Like most modern RNGs, Intel’s RNG design consists of an
entropy source (ES) and digital post-processing. The design
also features a Built-In-Self-Test (BIST) unit that checks, at
each power up, the correct functioning of the entropy source
and the digital post-processing.

The ES is a metastable circuit based on two cross cou-
pled inverters with adaptive feedback. The digital post-
processing consists of a Online Health Test (OHT) unit and
a cryptographically secure deterministic random bit genera-
tor (DRBG). The OHT monitors the random numbers from
the entropy source to ensure that the random numbers have
a minimum entropy.

The deterministic random bit generator itself consists of
two parts, a conditioner and a rate matcher. The conditioner
is used to compute new seeds for the rate matcher. Based on
the current state, the rate matcher computes 128-bit random
numbers. Reseeding is done whenever the conditioner has
collected enough random numbers from the entropy source,
or if at most 512 128-bit random numbers have been gen-
erated by the rate matcher. The conditioner as well as the
rate-matcher is based on AES. Figure 3 gives an overview of
the RNG design.

The rate matcher generates the 128-bit output r of the
RNG and takes the seed (s, t) generated by the conditioner
unit as input. The rate matcher has two internal state reg-
isters: a 128-bit register K and a 128-bit register c. During

Fig. 3 Overview of Intel’s RNG design. An entropy source (TRNG)
generates truly random numbers whose entropy is monitored by the
Online Health Test (OHT). The random numbers are then fed to a digital
random bit generator (DRBG) consisting of a conditioner and a rate
matcher. The conditioner is used to periodically reseed the Rate Matcher
which provides the output RnRand of the RNG. The correct functioning
of the RNG is checked at each power up using the Build-In Self Test
(BIST). The Trojan is inserted into the 256-bit state of the rate matcher

normal operation, the rate matcher generates 128 random
bits r and updates the state registers in the following way
(r, c, K )=Generate(c, K ):

1. c = c + 1, r = AESK (c)
2. c = c + 1, x = AESK (c)
3. c = c + 1, y = AESK (c)
4. K = K ⊕ x
5. c = c ⊕ y

Whenever the conditioner has a new seed, consisting of the
128-bit values s and t , available the internal states c and K
are reseeded using the (c, K ) = Reseed(s, t, c, K ) function:

1. c = c + 1, x = AESK (c)
2. c = c + 1, y = AESK (c)
3. K = K ⊕ x ⊕ s,
4. c = c ⊕ y ⊕ t

Under low load, the rate matcher reseeds after each output
of r . Under heavy load, the rate matcher generates several
random numbers r before it reseeds, up to a maximum of
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Fig. 4 Layout of the Trojan
DFFR_X1 gate. The gate is only
modified in the highlighted area
by changing the dopant mask.
The resulting Trojan gate has an
output of Q = VDD and
QN = G N D

512. However, even under heavy load the rate matcher should
reseed long before reaching its maximum of 512 [7].

3.2 Dopant-Trojan for Intel’s DRBG

A 128-bit random number r generated by the rate matcher
is the result of an AES encryption with an unknown 128-bit
random input c and an unknown, random key K . The attacker
has a chance of 1/2128 to correctly guess a random number
resulting in an attack complexity of 128-bits. The goal of
our Trojan is to reduce the attack complexity to n bits, while
being as stealthy as possible. This is achieved by cleverly
applying our dopant-based Trojan idea described in Sect. 2
to internal flip-flops used in the rate matcher. In the first step
we modify the internal flip-flops that store K in a way that K
is set to a constant. In the second step the flip-flops storing
c are modified in the same way, but n flip-flops of c are not
manipulated. Hence, only (128 − n) flip-flops of c are set to
a constant value. This has the effect that a 128-bit random
number r depends only on n random bits and 128+(128−n)

constant bits known to the Trojan designer. The owner of
the Trojan can, therefore, predict a 128-bit random number r
with a probability of 1/2n . This effectively reduces the attack
complexity from 128-bit down to n bits. On the other hand,
for an evaluator who does not know the Trojan constants,
r looks random and legitimate since AES generates outputs
with very good random properties, even if the inputs only
differ in a few bits.

Our Trojan can be implemented by only modifying the
flip-flops storing c and K , while all other parts of the tar-
get design remain untouched. Two different Trojan flip-flops
are needed: one which sets the flip-flop output to a constant
‘1’ and one which outputs a constant ‘0’ regardless of the
inputs. The DFFR_X1 flip-flop of the used Nangate Open
Cell library [15] has two outputs: Q and its inverse QN . To
implement our Trojan, the drain contact of the p-MOS tran-
sistor that generates signal Q is shortened to VDD by apply-
ing n-dopant above the drain contact, as explained in Sect. 2.

Simultaneously, the source contact of the n-MOS transistor
for signal Q is disabled by applying p-dopant to the source
contact. Hence, the output signal Q generates a constant out-
put of VDD regardless of its input. The inverse output QN
is modified in the same way, only that this time the drain
contact of the n-MOS transistor is shortened to GND and the
source contact of the p-MOS transistor is disabled. This leads
to a constant output of ‘0’ for QN . The same modifications
are used to generate a flip-flop Trojan to constantly provide
an output of Q =‘0’ and QN =‘1’ by switching the roles of
the n-MOS and p-MOS transistors. Note that only four of the
32 transistors of the DFFR_X1 flip-flop are modified as can
be seen in Fig. 4. But 28 transistors, on the other hand, stay
untouched and, therefore, will still switch according to the
input. This results in a smaller but still similar power con-
sumption for a Trojan flip-flop compared with a Trojan-free
flip-flop.

3.3 Defeating functional testing and statistical tests

It is a standard procedure to test each produced chip for man-
ufacturing defects. In addition to these tests, the produced
RNGs will also be tested against a range of statistical tests
to be NIST SP800-90 and FIPS 140-2 compliance. Further-
more, to be compliant with FIPS 140-2, the RNG needs to
be tested at each power-up to ensure that no aging effects
have damaged the RNG. For this purpose Intel’s RNG design
includes a Built-In-Self-Test unit that checks the correct func-
tioning of the RNG in two steps after each power-up. In the
first step, the entropy source is disabled and replaced by a 32-
bit LFSR that produces a known stream of pseudo-random
bits. The BIST uses this pseudo-random bit stream to verify
the correct functioning of the OHT and feeds this bitstream
to the conditioner and rate matcher. A 32-bit CRC check-
sum of the 4 × 128-bit output buffer that stores the last four
outputs r1,...,r4 of the rate matcher is computed. This 32-
bit CRC checksum is compared against a hard-coded value
to verify the correct functioning of the conditioner and rate
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matcher. If the checksum matches, the RNG has passed the
first part of the BIST. In the second part of the BIST the condi-
tioner, rate matcher and output buffer are reset and the entropy
source is connected again. The OHT tests the entropy of the
entropy source and simultaneously seeds the conditioner and
rate matcher. If the OHT signals the BIST that the entropy
of the entropy source is high enough, the BIST is passed and
the RNG can generate random numbers.

In [9] it is stated that “This BIST logic avoids the need for
conventional on-chip test mechanisms (e.g., scan and JTAG)
that could undermine the security of the DRNG.” This fact is
also mentioned in an Intel presentation in which it is argued
that for security reasons the RNG circuitry should be free of
scan chains and test ports [24]. Therefore, to prevent physical
attacks, only the BIST should be used to detect manufactur-
ing defects. From an attacker’s point of view, this means that
a hardware Trojan that passes the BIST will also pass func-
tional testing. Although Intel’s BIST is very good at detecting
manufacturing and aging defects, it turns out that it cannot
prevent our dopant Trojans. One simple approach to over-
come the BIST would be to add a dopant Trojan into the
BIST itself to constantly disable the error flag. However, it
could be very suspicious if the BIST never reports any man-
ufacturing defects.

To pass the BIST, the Trojan rate matcher needs to generate
outputs r ′

1, ..., r ′
4 during the BIST that have the same 32-bit

CRC checksum as the correct outputs r1, ..., r4. Since the
input to the rate matcher during the BIST is known, the Trojan
designer can compute the expected 32-bit CRC checksum.
He then only needs to find a suitable value for the Trojan
constants c[1 : 128] and K [1 : 128 − n], which generate
the correct CRC checksum for the inputs provided during the
BIST. Since the chance that two outputs have the same 32-bit
CRC is 1/232, the attacker only needs 232/2 tries on average
to find values for c and K that result in the expected 32-bit
CRC. This can easily be done by simulation. By cleverly
choosing c and K the Trojan now passes the BIST, while the
BIST will still detect manufacturing and aging defects and,
therefore, raises no suspicion.

Since the Trojan RNG has an entropy of n bits and uses a
very good digital post-processing, namely AES, the Trojan
easily passes the NIST random number test suite if n is chosen
sufficiently high by the attacker. We tested the Trojan for
n = 32 with the NIST random number test suite and it passed
for all tests. The higher the value n that the attacker chooses,
the harder it will be for an evaluator to detect that the random
numbers have been compromised.

Detecting this Trojan using optical reverse engineering
is extremely difficult since only the dopant masks of a few
transistors have been modified. As discussed, detecting mod-
ifications in the dopant mask is extremely difficult in a large
design, especially since only a small portion of a limited num-
ber of gates was modified. Since optical reverse-engineering

is not feasible and our Trojan passes functional testing, a ver-
ifier cannot distinguish a Trojan design from a Trojan-free
design. This also means that the verifier is not able to reli-
ably verify a golden chip. But without such a verified golden
chip, most post-manufacturing Trojan detection mechanisms
do not work.

4 Case-study 2: side-channel Trojan

In the first case study we showed how our dopant Trojan can
be used to compromise the security of a real-world system by
shorting specific signals to GND and VDD . With the second
case study we want to emphasize the flexibility of the dopant
Trojan. Instead of modifying the logic behavior of a design,
the dopant Trojan is used to establish a hidden side-channel
to leak out secret keys. We prove this concept by inserting
a hidden side-channel into an AES SBox implemented in a
side-channel resistant logic style.

We chose the side-channel resistant logic style iMDPL
for our target implementation despite the fact that it has
some known weaknesses, namely imbalanced routing, that
can enable some side-channel attacks [14]. Our target iMDPL
SBox is reasonably secure and we would like to stress that
the focus of this work is hardware Trojans and not side-
channel resistant logic styles. Our point here is that our Tro-
jan modifications do not reduce the side-channel resistance
against common side-channel attacks while enabling the Tro-
jan owner to recover the secret key. In the following section
a brief introduction of iMDPL is given and then the dopant-
based side-channel Trojan is explained.

4.1 iMDPL

The improved masked +++dual-rail logic (iMDPL) was
introduced in [16] as an improvement of the masked dual-rail
logic (MDPL) [17]. There are three main ideas incorporated
in iMDPL:

1. Dual-rail: For every signal a, both the true and the
complementary signal (indicated with ā) are computed.
Therefore, the same number of 1’s and 0’s are computed
regardless of the input. This prevents attacks based on
the Hamming weight.

2. Precharge phase: Between two clock cycles, there is
always a precharge phase in which all iMDPL gates
(besides registers which have to be treated differently)
are set to 0. This prevents attacks based on the Hamming
distance.

3. Mask bit: Due to imbalances in routing inverse signals
and process variations, the power consumption of a signal
a might differ from that of its inverse signal ā which can
lead to side-channel attacks. In iMDPL a random mask
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Fig. 5 Schematic of an iMDPL-AND gate consisting of two Majority
gates, a detection logic and an SR-latch stage [16]

bit is used to randomly choose between a and ā to mask
the power consumption.

In an iMDPL gate, every input and output bit as well as
its inverse is masked with a mask bit m. An iMDPL-AND
gate performing the operation q = a&b has six inputs: The
masked input values am = a ⊕ m, ām = a ⊕ m̄, bm =
b ⊕ m, b̄m = b ⊕ m̄ and the mask bit m and its inverse m̄.
The two outputs of an iMDPL-AND are qm = q ⊕ m and
q̄m = q ⊕ m̄.

The schematic of an iMDPL-AND gate is shown in Fig. 5.
It consists of a detection stage, an SR-latch stage and two
majority gates with complementary inputs. If one input of a
3-input majority gate is set to 0, the majority gate behaves like
an AND gate. If one input is set to 1, the majority gate behaves
like an OR gate. For the mask bit m = 0, the lower Majority
gate with the inputs am, bm and m computes q = qm = a&b
and the upper majority gate computes q̄ = q̄m = ā|b̄. For
the mask bit m = 1, on the other hand, the lower majority
gate computes q̄ = qm = ā|b̄ and the upper majority gate
computes q = q̄m = a&b. Hence, the current mask bit
decides which inputs and outputs are the correct ones and
which the inverse. It is also possible to create an iMDPL-OR
and iMDPL-NOR gate using the same structure by switching
the outputs and/or inputs. In iMDPL all combinational logic
is built using these four basic operations (AND, NAND, OR
and NOR). The detection and SR-latch stage was introduced
in iMDPL to prevent the early propagation effect and glitches
by making sure that all inputs are in a complementary stage
before evaluating. A more detailed description of iMDPL can
be found in [16].

As in the previous sections, the 45-nm Nangate Open Cell
library was used for our implementation of an area optimized
Canright [3] AES SBox in iMDPL. Since the target library
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Fig. 6 Schematic of the Trojan-free and Trojan AOI222_X1 gate con-
figured as a 3-input not-majority gate

does not have a 3-input majority gate, we used a 6-input
AND-OR-INVERTER (AOI) gate configured as a 3-input
not-majority gate together with an inverter to build the major-
ity gate.2

4.2 iMDPL-Trojan

To insert a Trojan into the iMDPL SBox implementation,
we replace two AOI gates from a single iMDPL gate with
Trojan AOI gates that create a predictable, data-dependent
power consumption independent from the mask bit. Modi-
fying only single gates makes inserting the Trojan into the
design after place and route very simple, since we do not
need to worry about any additional routing or find empty
space in the design. Figure 6 shows the schematic of the
used AOI gate configured as a 3-input not-majority gate. Two
changes are made to this not-majority gate to create a large
data-dependent power consumption. First, the two topmost
p-MOS transistors are removed by shorting their output con-
tacts to VDD. Second, the strength of the remaining p-MOS
transistors is decreased by decreasing their effective width.
These changes are depicted on the right side of Fig. 6.

The Trojan not-majority gate behaves like the Trojan-free
gate except for the input pattern A = 0, B = 1 and C = 1.
In the unmodified not-majority gate the pull-up network is
inactive and the pull-down network is active, resulting in an
output value of 0. However, in the Trojan gate the pull-up as
well as the pull-down network are both active for this input
pattern. Due to the reduced size of the p-MOS transistors, the
pull-up network is much weaker than the pull-down network
and the resulting output voltage is, therefore, still close to 0.
In a sense we have turned the not-majority gate into a pseudo-
n-MOS gate for this input pattern. Hence, the output values

2 We would like to note that the layout of a majority gate is very similar
to an AOI gate and we verified that the Trojan also works with a standard
majority gate.
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Fig. 7 On the left (a) the layout
of the unmodified AOI222_X1
gate and on the right (b) the
Trojan AOI222_X1 gate is
shown. In the Trojan gate the
p-MOS transistors in the upper
left active area have been
shorted with the n-well by
replacing the p-implant with
n-implant. The strength of the
remaining p-MOS transistors in
the upper right active area has
been reduced by decreasing the
p-implant in this area

of both the Trojan-free and Trojan gate are the same, but
there is a large power consumption in the Trojan gate for this
input pattern due to the connection between GND and VDD .
For all other inputs only the pull-up or pull-down network is
active for the Trojan gate as well as the Trojan-free gate.

If the two not-majority gates of the iMDPL gate are
exchanged with this Trojan gate, a high power consumption
is generated whenever one of the two AOI gates has the input
A = 0, B = 1 and C = 1. In our configuration this is the case
if am = 0, bm = 1, m = 1 or if ām = 0, b̄m = 1, m̄ = 1
which turns out to be the case for a = 1, b = 0 regard-
less of the value of m. Hence, the Trojan iMDPL gate has
a data-dependent power consumption that is independent of
the mask bit m.

We used the technique of dopant Trojans described in
Sect. 2 to realize our Trojan AOI gate. The modifications
were done using Cadence Virtuoso Layout editor and are
shown in Fig. 7. The Trojan gate passed the DRC check and
we used Calibre PEX in Virtuoso to do the netlist and par-
asitic extraction. The Trojan and Trojan-free gate were sim-
ulated in HSpice. The propagation delay, rise and fall time
of a Trojan iMDPL gate are very similar to the Trojan-free
iMDPL implementation. This makes it possible to place our
Trojan gates even in the critical path without creating timing
violations. The additional power consumption when the Tro-
jan activates depends on the used clock frequency, since the
majority of power consumption of the Trojan is static cur-
rent due to the connection between VDD and G N D. Even
at a very high frequency such as 10 GHZ, the Trojan gate
consumes roughly twice as much power when the Trojan
activates compared with the Trojan-free counterpart.

To insert our Trojan iMDPL gate in the layout of the target
SBox implementation after place and route we need to iden-
tify an iMDPL gate that serves as a suitable Trojan location
and replaces the AOI gates of this target iMDPL gate with the
Trojan AOI gate. Finding a suitable location does not require
a detailed knowledge of the target SBox. In fact, the right
location can be identified using simulation. The individual
iMDPL gates can easily be identified by searching for AOI

gates connected with inverse inputs. In the first step, we sim-
ulated the SBox for all 512 possible inputs (for each mask
there are 256 different inputs) and stored the inputs and out-
puts for the tested AOI gates. Then, a matlab script was used
to test the performance of possible Trojan target locations. We
chose a target location that (1) had a small correlation with
the Trojan power model for all false key guesses to make it
easy for the owner of the Trojan to use it and (2) a location
which did not increase the vulnerability against the consid-
ered side-channel attacks. We tested (2) by performing the
considered side-channel attacks on hypothetical power traces
based on the Trojan power model. Once we located a good
Trojan location we simply replaced the corresponding AOI
gates with the Trojan AOI gate.

4.3 Trojan effectiveness evaluation

To verify the correct functioning of the Trojan iMDPL gate
and to show that the Trojan gates do not violate timing
requirements even if the Trojan gate is placed in the critical
path, transistor-level simulations were performed. These sim-
ulations of a Trojan and a Trojan-free iMDPL gate were per-
formed using HSpice and the parasitic extraction was done
by Calibre PEX. Table 1 shows the delay, rise and fall times of
the Trojan-free and the Trojan iMDPL gate for a load capac-
itance of 5.4fF, the equivalent of the gate capacitance of two
iMDPL gates. The Trojan-free and the Trojan gate have very
similar timing characteristics. In most cases the Trojan gate
is even faster than the Trojan-free gate. Therefore, it is pos-
sible to exchange an iMDPL gate with a Trojan iMDPL gate
even if it is in a time-critical path.

For the simulation of the entire SBox after place and route
Synopsys Nanosim was used. Nanosim is not as precise as
HSpice but the used simulation configuration3 is still very
precise and does take internal and routing capacitances into

3 Simulations were performed with Synopsis Nanosim using the fol-
lowing configuration: sim = 4, model = 4, net = 4, set powernet default
mode = 5, set sim ires 1pA, set print ires 1pA and set sim leak ires =
1fA.

123



28 J Cryptogr Eng (2014) 4:19–31

Table 1 Performance of the Trojan-free and Trojan iMDPL-AND gate for different input patterns and a load capacitance of 5.4fF

Trojan-free Trojan gate

A B M 0→1 1→0 Risetime 0→1 1→0 Risetime

0 0 0 121.7 ps 83.51 ps 20.70 ps 115.6 ps 85.78 ps 20.23 ps

0 0 1 119.0 ps 78.45 ps 19.67 ps 111.7 ps 79.88 ps 19.44 ps

0 1 0 147.0 ps 84.00 ps 31.60 ps 134.2 ps 85.65 ps 26.75 ps

0 1 1 149.0 ps 81.82 ps 26.49 ps 136.1 ps 82.78 ps 27.78 ps

1 0 0 153.2 ps 85.49 ps 31.60 ps 142.1 ps 74.69 ps 32.74 ps

1 0 1 152.0 ps 82.47 ps 28.45 ps 139.3 ps 70.72 ps 31.15 ps

1 1 0 135.0 ps 78.15 ps 25.80 ps 125.7 ps 81.12 ps 25.37 ps

1 1 1 138.1 ps 80.66 ps 27.57 ps 128.6 ps 84.54 ps 26.83 ps

A and B depict the unmasked inputs to the iMDPL-AND gate and M the mask bit. The column “ 0 → 1” shows the propagation delay of the
evaluation phase and “1 → 0” the propagation delay of the precharge phase in picoseconds. “Risetime” represents the risetime of either Ym or Ȳm
during the evaluation phase

Fig. 8 1-Bit CPA on a the
Trojan design and b the
Trojan-free design using the
Trojan power model with the
evaluation phase starting at 0ns
and the precharge phase starting
at 15 ns. The correct key is
shown in black and the false
keys are shown in gray. The
correlation for the correct key in
the Trojan design goes up to
0.9971

account. The needed interconnect parasitics were extracted
using Cadence Encounter and Calibre PEX was used again to
extract the transistor level parasitics of the Trojan and Trojan
free AOI gate. The transistor level parasitics for the other
gates were taken from the NangateOpenCell library. The
side-channel analysis was performed using Matlab scripts.

To verify the correct functioning of our Trojan we per-
formed a side-channel attack with the Trojan power model
using the Trojan Sbox implementation and the Trojan-free
implementation on simulated power traces. Figure 8 shows
the result of the attack on the Trojan SBox and Fig. 8 shows
the result of performing the same attack on the Trojan-free
implementation. The correct key can clearly be distinguished
for the Trojan SBox with a correlation close to 1. It is
also interesting to note that the Trojan generates leakage
current compared with switching current. Hence, one can
make power measurements after most switching activity has
occurred and use integration to increase the signal-to-noise
ratio. This makes using the Trojan easy in a practical setting.
As expected, the Trojan power model does not reveal the
key in the Trojan-free implementation, which shows that the
side-channel was indeed produced by the added Trojan.

We then compared the side-channel resistance of the Tro-
jan implementation with the Trojan-free implementation.
Covering all possible side-channel attacks out of the scope of
this paper. We, therefore, only considered some of the most
common side-channel attacks, namely 1- and 8-bit CPA [2]
and MIA [5]. We found a small vulnerability in the Trojan-
free design, which is in line with the results from [14]. How-
ever, the Trojan did not increase this weakness and the Trojan
design is as side-channel resistant as the Trojan-free design
against the considered side-channel attacks. In the follow-
ing, a detailed analysis of the side-channel resistance of the
Trojan and Trojan-free design is provided.

4.4 Side-channel analysis of the Trojan and Trojan-free
design

The target iMDPL SBox implementation suffers to a cer-
tain degree from the general problem of iMDPL, pointed
out by Moradi et al. [14], namely that the different masks
have different routing and timing characteristics and, there-
fore, a different power profile. During the precharge phase a
correlation-power analysis (CPA) [2] using an 8-bit hamming
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Fig. 9 8-Bit HW CPA attack
on a the Trojan-free design and
b the Trojan design with the
precharge phase starting at
15 ns. The correct key,
highlighted in black, can be
distinguished. However, the
correlation coefficient of the
attack for both the Trojan and
Trojan-free is the same

Fig. 10 Figure 1 shows the result of a MIA attack with a 1024-bin
histogram method and an 8-bit HW distinguisher for the Trojan design.
The correct key, highlighted in black, never reaches the maximum for
any time period and, therefore, the attack is unsuccessful. On the right

the results of a 1-bit CPA on the first bit of the SBox output of the Trojan
design is shown. Again the correct key, highlighted in black, can not be
distinguished from false keys at any time instance

weight (HW) model is feasible as can be seen in Fig. 9.
However, the simulations are noise free, meaning there is
no algorithmic noise from other SBoxes and other parts of
the AES algorithm such as MixedColumns. Furthermore, no
measurement noise nor thermal noise is present as well as no
filtering effects due to sense resistors and capacitances of the
global power supply as in a real measurement. In a real-world
scenario the measured correlation would, therefore, be much
smaller and the attack not trivial. For all other time instances
outside the shown 14.8 ns to 16 ns window the 8-bit CPA was
unsuccessful.

But the insertion of the Trojan does not have any
impact on the attack as can be seen in Fig. 9. The cor-
relation during the point of attack does not increase but
stays the same. For all other time instances the correct
key cannot be recovered using the 8-Bit CPA and, there-
fore, the Trojan does not decrease the security against this
attack.

1-bit CPA attacks on the output of the Trojan design were
unsuccessful for all 8 bits. As an example, Fig. 10 shows the
result of the 1-bit CPA attack using the least significant SBox

bit. For no point in time does the correct key reach a maxi-
mum. Interestingly, Mutual Information Analysis (MIA) [5]
was unsuccessful even at the time instance where the CPA
was successful for both the Trojan as well as the Trojan-free
design. A 1024-bin histogram method with an 8-bit HW dis-
tinguisher was used for the first MIA on the Trojan design.
The result of this attack can be seen in Fig. 9. The cor-
rect key cannot be distinguished from false keys since the
correct key never reaches a maximum mutual information
value. We assume that—likely by happenstance of the rout-
ing algorithm—the leakage during precharge must behave
very close to the hamming weight power model and, there-
fore, the CPA is more successful than MIA. Before using an
area-optimized Canright AES SBox we tested our iMDPL
design flow using a table look-up based AES SBox which
resulted in a much larger design. For this design, MIA actu-
ally performed better than CPA in the 8-bit HW model which
suggests that it depends on the design and routing algorithm
if MIA attacks have better results than CPA attacks. We also
tried to increase the bin size to 20,000, but the MIA remained
unsuccessful.
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Further, MIA attacks with a distinguisher based on 4 or
6 bits of the SBox output were performed. These attacks
were unsuccessful for both the Trojan as well as Trojan-free
design. It is important to note that the Trojan was placed in
a well-chosen location so that the Trojan power model does
not have a direct relation to the SBox output. This explains
why the Trojan was not detected by MIA attacks since the
output of the SBox is used as an input to the distinguisher
function. The well-chosen position of the Trojan is also the
main reason why the 1- and 8-bit CPA attack did not reveal the
Trojan. We specifically chose the Trojan to not be triggered
by these power models.

Since the Trojan did not reduce the resistance to 8-Bit HW
CPA attacks compared with the Trojan-free implementations
and all other attacks were unsuccessful on the Trojan design,
the introduced Trojan does not reduce the side-channel resis-
tance against the considered side-channel attacks. Therefore,
to an evaluator testing these side-channel attacks, the Tro-
jan design appears to be side-channel resistant. The owner
of the Trojan, on the other hand, can use the secret Tro-
jan power model to successfully attack the design. But we
would like to note that this does not mean that the Trojan
is undetectable using other side-channel attacks. However,
the analysis shows that if the attacker knows the methods
the design will be tested again (e.g., because it is listed in a
standard) he can specifically design the Trojan so that these
attacks are unsuccessful.

The side-channel analysis showed that we have success-
fully established a hidden side-channel that can leak out
secret keys very reliably while not decreasing the side-
channel resistance against the most common side-channel
attacks. Hence, the newly introduced Trojan side-channel
can only be used by the owner of the Trojan who knows
the secret Trojan power model. Since we did not change the
logic behavior of any gate, functional testing cannot detect
the Trojan. As discussed in Sect. 2, detecting this Trojan using
optical inspection is very challenging since we only modi-
fied the dopant masks. Without being able to detect the Tro-
jan using functional testing or optical inspection, an attacker
cannot distinguish a Trojan chip from a Trojan-free chip.
Hence, an evaluator cannot verify a golden chip and, there-
fore, methods that rely on a golden chip have only limited use
in detecting the Trojan. This shows that detecting a dopant-
based side-channel Trojan would be challenging in practice
using known methods.

5 Conclusions

In this paper we introduced a new type of sub-transistor level
hardware Trojan that only requires modification of the dopant
masks. No additional transistors or gates are added and no
other layout mask needs to be modified. Since only changes to

the metal, polysilicion or active area can be reliably detected
with current optical inspection techniques, our dopant Tro-
jans are immune to optical inspection, one of the most impor-
tant Trojan detection mechanism. Also, without the ability to
use optical inspection to distinguish Trojan-free from Trojan
designs, it is very difficult to find a chip that can serve as
a golden chip, which is needed by most post-manufacturing
Trojan detection mechanisms.

To demonstrate the feasibility of these Trojans in a real-
world scenario and to show that they can also defeat func-
tional testing, we presented two case studies. The first case
study targeted a design based on Intel’s secure RNG design.
The Trojan enabled the owner of the Trojan to break any key
generated by this RNG. Nevertheless, the Trojan passes the
functional testing procedure recommended by Intel [9,24]
for its RNG design as well as the NIST random number
test suite. This shows that the dopant Trojan can be used
to compromise the security of a meaningful real-world tar-
get while avoiding detection by functional testing as well as
Trojan detection mechanisms. To demonstrate the versatility
of dopant Trojans, we also showed how they can be used to
establish a hidden side-channel in an otherwise side-channel
resistant design. The introduced Trojan does not change the
logic value of any gate, but instead changes only the power
profile of two gates. An evaluator who is not aware of the
Trojan cannot attack the Trojan design using common side-
channel attacks. The owner of the Trojan, however, can use
his knowledge of the Trojan power model to establish a hid-
den side-channel that reliably leaks out secret keys.

Detecting this new type of Trojans is a great challenge.
They set a new lower bar on how much overhead can be
expected from a hardware Trojan in practice (i.e. zero!).
Future work should include developing new methods to
detect these sub-transistor level hardware Trojans.
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