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Abstract In this paper, we present a theoretical analysis of
the limits of the differential fault analysis (DFA) of AES by
developing an inter-relationship between conventional crypt-
analysis of AES and DFAs. We show that the existing attacks
have not reached these limits and present techniques to reach
these. More specifically, we propose optimal DFA on states
of AES-128 and AES-256. We also propose attacks on the
key schedule of the three versions of AES, and demonstrate
that these are some of the most efficient attacks on AES to
date. Our attack on AES-128 key schedule is optimal, and
the attacks on AES-192 and AES-256 key schedule are very
close to optimal. Detailed experimental results have been
provided for the developed attacks. The work has been com-
pared to other works and also the optimal limits of DFA of
AES.
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1 Introduction

Fault attacks were first proposed by Boneh et al. [7] where
the author showed that if a fault could be introduced into a
microprocessor whilst it is generating an RSA signature the
entire private key can be retrieved. In the same year, Biham
and Shamir [4] proposed a different form of the attack, where
they combined the concept of fault analysis and differential
cryptanalysis to propose theoretical attacks on DES, which
is typically referred to as differential fault analysis (DFA).

In 2001 NIST standardized Rijndael as the advanced
encryption standard (AES) [11] in three different ver-
sions: AES-128, AES-192 and AES-256 that have three
different key lengths of 128, 192, and 256 bits, respec-
tively.Subsequently, the block cipher drew a significant
amount of attention from the research community. That is,
Giraud [9] proposed an attack on AES-128 by inducing a
fault to the input of the ninth round. Giraud showed two
different ways of attacking AES. One method by inducing
fault in an intermediate states and the other by inducing fault
in the AES key schedule. However, Giraud used both the
techniques to break the 128-bit version of AES. The attack
required around 250 faulty ciphertexts to reveal the AES-
128 key. This attack was improved by Blömer and Seifert [5]
which required around 128–256 faulty ciphertexts. Dusart
et al. [10] proposed an attack by inducing faults anywhere
between the eighth round and ninth round MixColumns
operations, which required only 40 faulty ciphertexts.

Finally, Piret and Quisquater [23] proposed a fault attack
using only two faulty ciphertexts. Moradi et al. [20] pro-
posed a more generalized fault attack by considering two
different fault models. In the first, the authors consider
one out of four targeted bytes are corrupted and in the
second model the authors consider that all four targeted
bytes are corrupted. For the first fault model the attack
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required around four faulty ciphertexts whereas in the second
fault model the attack requires around 1,500 faulty cipher-
texts. Beside these DFA attacks there were some practical
results [1,2,13,25,26], where the authors have shown that
the required fault induction is indeed possible by inexpensive
devices.

There are two more versions of AES: AES-192 and AES-
256. Initially, it was assumed that attack proposed by Piret
et al. can be extended to these two versions of the AES with
little modification. However, this assumption has been shown
to be wrong. In 2009, Li et al. [18] proposed a complete
attack on AES-192 and AES-256. This attack required 16
or 3,000 faulty ciphertexts depending on the fault model.
Subsequently, many attacks were proposed on AES-192 and
AES-256 [14,16,27]. The most recent among these attacks
is an attack proposed by Kim [16], which only requires
two faulty ciphertexts to uniquely determine the AES-192
key and three faulty ciphertext to retrieve the 256-bit key
AES-256.

Recently, there has been a significant research on the AES
key schedule. Chen and Yen [8], improved Giraud’s attack [9]
and showed that the proposed attack can retrieve the AES-128
key by inducing faults in ninth round key and requires <30
faulty ciphertexts. Peacham and Thomas [22], considered a
different fault model where a fault is induced while the ninth
round key is being generated. Therefore, the induced fault
subsequently propagated to the tenth round key. Peacham’s
attack required only 12 faulty ciphertexts to retrieve the AES-
128 secret key. Takahashi et al. [28] proposed a generalized
attack that required only two faulty ciphertexts to reduce
the number of key hypotheses for a AES-128 secret key to
248. Other variants of this attack were presented that, using
four faulty ciphertexts, reduce the number of hypotheses to
216 or, using seven faulty ciphertexts, determine the secret
key. Kim and Quisquater [17] proposed an improved attack
on AES-128 key schedule which required only two faulty
ciphertexts to reduce the key space to 232. Recently, Kim pro-
posed a different attack on AES-128 key schedule by induc-
ing single-byte fault at the first column of eighth round key,
that requires two faulty ciphertexts to uniquely determine the
secret key [15].

Exploiting faults induced in the key schedule of AES-192
and AES-256 has received less attention in the literature.
Floissac et al. first proposed an attack on the AES-192 and
AES-256 key schedule [12]. They used a single-byte fault
model where a fault is induced in the 10th and 12th round
key for different instantiations of the block cipher. In both the
cases their attack required 16 faulty ciphertexts to retrieve
the secret key. This attack was improved upon by Kim [15],
who proposed an attack that required between four and six
faulty ciphertexts to uniquely determine a AES-192 secret
key and four faulty ciphertexts to uniquely determine a AES-
256 secret key.

The attacks described above show a gradual reduction in
the data complexity of differential fault analysis (DFA). How-
ever, there is no theoretical analysis which clearly shows the
limits of these attacks. There is one contribution by Gomi-
sawa et al. [19] that shows the limits of the attacks performed
on AES where faults are injected into intermediate states of
the block cipher but the analysis is based on existing attacks.
There is no clear explanation of the limits of attacks on the
AES key schedule so that one cannot be sure whether the
existing attacks on the AES key schedule have reached limits.

In this paper, we first theoretically analyze the limits of
DFA of AES. We then describe attacks based on faults in
the intermediate states of AES-128 and AES-256 and show
that these attacks have reached their limits. This implies that
these attacks cannot be optimized further. We then propose
three more attacks on the key schedule for the three different
versions of AES and show that the attack on AES-128 key
schedule reaches its theoretical limit. However, the proposed
attack on the AES-192 and AES-256 key schedule is the most
efficient attack to date but does not reach the theoretical limit.

2 Preliminaries

2.1 AES

The advanced encryption standard (AES) is a 128-bit sym-
metric key block cipher. It has three different versions
namely: AES-128, AES-192 and AES-256 that have three
different key lengths of 128, 192, and 256 bits, respectively.
The intermediate results are represented by 4×4 state matrix,
where each of its elements is an 8-bit value. The internal
operation of AES is divided into identical round functions,
where the number of iterations of a this round function
varies depending on the bit length of the secret key. That
is, AES-128 has 10, AES-192 has 12 rounds and AES-256
has 14 rounds. All the round functions consist of follow-
ing four transformations, except the last round that omits the
MixColumns operation:

– SubBytes A byte-wise substitution, where each ele-
ment of the state matrix is replaced by its inverse and
followed by an affine mapping. All the operations are
under F28 .

– ShiftRowsA cyclic shift of i th row by i bytes towards
left (we number the rows from zero to three).

– MixColumns A column-wise linear transformation of
the state matrix. Each column of the state matrix is con-
sidered as a polynomial of degree 3 with coefficients in
F28 and multiplied by the polynomial {03}x3 +{01}x2 +
{01}x + {02} mod x4 + 1.

– AddRoundKey In this transformation a 128-bit round
key is XORed with the 128-bit state.
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There is one additional AddRoundKey operation at the
beginning of the first round. The round keys are generated by
the AES key scheduling algorithm, as shown in Algorithm 1.
The round keys are generated from the master key K where
Nk, Nr and K r represent the key length in bytes, number of
rounds and the r th round key, respectively. For more details
one can refer to the AES specification [11].

2.2 Notations used

In the rest of the paper we refer to the SubBytes,
ShiftRows, and MixColumns operations as SB, S R and
MC , respectively, and their corresponding inverse functions
as SB−1, S R−1 and MC−1.

The AES is typically considered to operate on a 4 matrix
referred to as a state matrix. A given byte in a state matrix
will be indexed by its row i and column j. The notation used
in this paper takes the form:

Ci, j The {i, j} byte of the ciphertext C.

C∗
i, j The {i, j} byte of the faulty ciphertext C∗.

K r
i, j The {i, j} byte of the r th round key K r

where 0 ≤ i, j ≤ 3.

3 Fault model used

In this paper, we use a single-byte fault model where we
assume that an attacker has the ability to induce a single-byte
random fault in any chosen point during the computation of
the AES block cipher. In this paper we consider both attacks
that affect the AES state matrix and the attacks that affect the
AES key schedule. In each case we consider the attack on all
three versions of AES: AES-128, AES-192 and AES-256.

In the case of attacks that could be applied to AES-128
and AES-192, we assume that an attacker can induce single-
byte fault between the MixColumns operations in rounds
Nr −2 and Nr −3. In the case of AES-256 we assume that an

attacker can induce faults at two different locations: between
the MixColumns operation in rounds Nr − 2 and Nr − 3
and between the MixColumns operation in rounds Nr − 3
and Nr − 4.

While considering the attack on AES key schedule, we
assume a similar fault model. For AES-128 and AES-192
we assume that an attacker can induce a single-byte random
fault in the first column of K Nr −2. In AES-256 we assume
two different fault models: in the first one a fault is induced
in the first column of K Nr −2 and in the second one a fault
can be induced in the first column of K Nr −3.

4 Estimating the limits of DFA on AES with single-byte
faults

In this section, we analyze the limits of DFA on the AES
algorithm. The proofs are based on reduction techniques: we
reduce an adversary against AES using conventional crypt-
analysis to an adversary in the DFA setting. First, we reduce a
collision-based adversary, Advcol to a Advstate

DFA which targets
a fault in the state matrix of AES. Next, we show a reduc-
tion of a related key adversary of AES, AdvRKey to a DFA

adversary which exploits faults in the key schedule, Advkey
DFA.

The adversary Advcol is defined to be an attacking algorithm
which attacks AES by first varying the plaintext and finding a
pair which collides by having a state with a small difference
at a chosen point in the algorithm. On the other hand, the
adversary AdvRKey obtains a key pair which is related in the
sense that the key scheduling generates fixed difference at a
chosen round.

The attacker has the ability to obtain encryptions under
both the related keys and arbitrary chosen plaintexts. It is
assumed that such classical adversaries against AES are not
successful in reducing the worst case key space of AES. Fur-
ther, the adversaries have no other means of inducing such
collisions except exhaustive search. We establish the optimal
complexities of the DFA adversaries by arguing that if there
is a more efficient DFA adversary then the reduction proofs
lead to the definitions of classical adversaries which reduce
the key space of AES from the worst case complexities, which
is assumed to be not possible in this work.

4.1 Limits of DFA on AES states

Figure 1 shows the construction of the adversary Advcol using
the adversary Advstate

DFA as a subroutine. The figure essentially
depicts the reduction of the adversary Advcol to the adversary
Advstate

DFA. The reduction starts by Advcol searching for a pair
of plaintexts P and P ′ such that after a particular round r a tar-
get difference �S is obtained. If the probability of obtaining
such a pair is Pr(�S), the expected number of pairs required
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Fig. 1 Collision-based DFA

to obtain at least one pair with the required property is 1
Pr(�S)

.

For each such guessed pair, the adversary Advcol obtains a
pair of ciphertexts, C = En(P), and C ′ = En(P ′) where E
is the AES round applied for n times. It then invokes Advstate

DFA
with the pair C and C ′.

It may be observed that if the pair P and P ′ leads to
the desired difference �S at the output of round r, then the
ciphertext pairs (C, C ′) are exactly same as in a DFA. This
is because in a DFA, the induced fault during the execution
of E will generate a difference �S at the round r, which will
lead to the same faulty ciphertext C ′. However, the adversary
Advcol has no way of determining that the desired fault has
occurred, and has to make expected 1

Pr(�S)
number of trials.

Thus if the Advstate
DFA reduces the search space of the key to

Kl , then the search space of AES with regard to Advcol is on
an average 1

Pr(�S)
· Kl . If we denote the security level of AES

as Ks, then Ks is at most 1
Pr(�S)

· Kl . Thus, Ks ≤ 1
Pr(�S)

· Kl ,

or Kl ≥ Ks ·Pr(�S). Hence, an optimal DFA on AES would
reduce the search space of AES key to Ks · Pr(�S).

We assume that AES is theoretically unbreakable, i.e.
there is no attack that would require less time complexity
than an exhaustive search.1 Then in the case of AES-128
Ks = 2128. In conducting DFA on AES-128, a single-byte
fault is induced in the input to the eighth round. Therefore,
�S is a single byte difference at the input to the eighth
round. The probability that the two plaintexts P and P ′ col-
lide at the beginning of a round in 15 bytes out of 16 is
2−120 ⇒ Kl = 2−120 × 2128 ⇒ Kl = 28. This implies that

1 This assumption is not entirely true since an attack on the full AES-
128 has recently been published [6]. However, this attack is marginal
and will not affect our reasoning with regard to collision attacks.

the state-of-art DFA using a single-byte fault cannot reduce
the search space of AES-128 to less than 28. If it does then
Ks < 2128 which means the security level of AES-128 is
<128 bits which contradicts our assumption. Therefore, the
lower limits of a DFA using single-byte fault is 28.

This hypotheses is also true for the other two version of
AES: AES-192 and AES-256. In case of AES-192, Ks =
2192. Therefore, Kl = 2192−120 = 272, i.e. a single-byte
fault induction can reduce the search space of AES-192 key
to 72-bit which is the minimum limit. Similarly, for AES-256,
Ks = 2256. Therefore, Kl = 2256−120 = 2136.

4.1.1 Note

In this paper, we only consider the single-byte fault model.
However, our analysis is also true for multi-byte DFA as
proposed in [24]. In case of the diagonal attack of [24], the
difference is considered across a diagonal of the AES state
matrix before the input of the eighth roundMixColums. The
diagonal fault attack uses the observation that the faults in the
diagonals adjusts to columns at the input of the ninth round.
The subsequent MixColumns produces similar relations as
the single-byte DFA on AES-128 state, which are exploited
to retrieve the key. However, the attacks proposed in [24]
are not optimal in the sense described in this paper. They
do not use the inter-relationships of the faults at the output
of the eighth round MixColumns and hence can be further
optimized depending on the number of bytes corrupted in the
diagonals. These optimized attacks are presented in [1], and
their optimality can be argued in a similar fashion.

According to our analysis, if the induced fault infects i
bytes in the required state matrix, then the optimal attack
result is given by Ks · P(�S), where �S is the required
difference which can be of i bytes. In the case of AES-128,
the optimal limit is given by 2128 × 1

2128−8×i = 28×i .

Therefore, for a diagonal attack, depending on the value
of i, the results may vary. For example, for single-byte fault,
the optimal limit is 28. Similarly, when the fault affects all
the four bytes of the diagonal, the optimal limit of the attack
is 232, as the difference is in four bytes.

The same analysis also true for two diagonal and three
diagonal attacks. The optimal attacks complexities are men-
tioned in Table 1, and it shows that the improvement in [1]
indeed achieves the optimal complexities of the diagonal
attacks published in [24].

4.2 Limits of DFA on AES key schedule

A similar analysis helps to compute the optimal complex-
ity of a DFA on the AES key schedule. For this purpose,
we reduce a related key adversary AdvRKey to an adversary

Advkey
DFA, which performs DFA on AES exploiting faults in
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Table 1 Optimal limits of
diagonal attacks on AES No. of faulty bytes 1-Diagonal DFA (M0) 2-Diagonal DFA (M1) 3-Diagonal (M3)

Optimal result Optimal result Optimal result

1 28 28 28

2 216 216 216

3 224 224 224

4 232 232 232

5 – 240 240

6 – 248 248

7 – 256 256

8 – 264 264

9 – – 272

10 – – 280

11 – – 288

12 – – 296

the key schedule of AES. The related key adversary has the
ability to obtain encryptions with related keys, the unknown
key and a related key to the unknown key (as introduced by
Biham [3]). The encryptions are performed through suitable
oracles for encrypting using related keys.

The relation in this case gives a key K ′ such that the key
schedule will generate a required difference �K in the r th
round key. It may be noted that �K is not a fixed value,
but shall be a byte-wise difference (as described in Sect. 7).
For example, for AES-128 �K is such that the first row of
the difference of the eighth round key is the bytes a, a, a, a,

where a is any byte.
The attacker AdvRKey also attempts that the Er (P, K ) ⊕

Er (P ′, K ′) = �K p where Er is the output of the r th round
after the addition of the r th round key. For this the attacker
starts to vary the plaintext P ′ and obtain the required dif-
ference in the state matrices. Note that the difference �K p

indicates that the difference is not necessarily the same dif-
ference as �K , but a similar difference. Thus in the example
of the attack on AES-128, the corresponding differential is
such that the first row difference is b, b, b, b, where b is any
byte, not necessarily the same as a. The probability of ran-
dom two plaintexts P and P ′ to create the above difference
is Pr(�K p). However, the adversary AdvRKey has no way
of determining that the required difference has occurred, and
hence has to make 1

Pr(�K p)
expected number of choices of P ′.

It thus creates an expected 1
Pr(�K p)

ciphertexts, C ′ and

invokes the adversary Advkey
DFA with the pairs C and C ′. It

may be noted that it is expected that there will be one pair
where the required difference in the state matrices is created.
Under this situation the view of Advkey

DFA is exactly the same
as in a DFA targeting the AES key scheduling. This is because
the keys K and K ′ are related such that after the r th round the

Fig. 2 Related key-based DFA

difference as required in the DFA exists and the plaintext pair
ensures that the difference in the state matrix is also identical
to the DFA. Thus if the Advkey

DFA reduces the key-space to
Kl , then the search space of the AES key w.r.t. AdvRKey is

1
Pr(�K p)

· Kl . Like before, if we denote the security margin of

AES as Ks, then Ks ≤ 1
Pr(�K p)

· Kl ⇒ Kl ≥ Ks ·Pr(�K p).

Thus an optimal DFA on the AES state is Ks · Pr(�K p)

(Fig. 2).
The recent attack on the AES-128 key schedule [17]

required a fault that affects three bytes in the first column
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b

c

a a a a

b b b
c c c

a a
b b

a a a a

(a) (b) (c)

Fig. 3 a Three-byte fault in K 9, b byte fault in K 10
1,0 and c byte fault

in K 12
1,0

of the ninth round key while the key is being generated.
A single-byte fault induction in the first column will make
a four-byte difference in the ninth round key. Therefore, a
three-byte fault injection will generate a 12-byte difference.
If we map this model to our analysis the related keys generate
12-byte differences (also the difference values are the same
in each of the three rows). Figure 3a shows the faults in the
ninth round key where a, b, and c are the fault values. The
probability of getting such difference using a pair of plain-

texts is given by (255)3

(28)12 × 1
(28)4 ≈ 1

2104 . Therefore, we can

write Kl = 2128−104 = 224. This implies that the lower limit
of this attack is 24 bit using a single faulty ciphertext.

In this paper, we consider the single-byte fault model.
Therefore, if we consider that a single-byte fault is induced
in the first column of K 9 the values of b and c becomes zero
in Fig. 3a. So, only the first row differences will remain. The
probability of getting the four-byte difference in a particular
row using a pair of plaintexts is given by (255)

232 × 1
296 ≈ 1

2120 .

The lower limit Kl = 2128−120 = 28. Therefore, in case of
single-byte fault, the attack should reduce the AES-128 key
space to 28.

Floissac et al. showed a single-byte fault analysis on AES-
192 and AES-256 key schedule where the fault is induced in
10th and 12th round key, respectively (Fig. 3b, c) [12]. It is
clear from Fig. 3c, that a single-byte fault induction in AES-
256 key schedule should reveal 120 bits of information on the
key. However, in the case of AES-192 the required difference
can be generated using a pair of plaintexts with probability
(255)2

(28)4 × 1
296 ≈ 1

2112 . Therefore, the lower bound of attack on

AES-192 key schedule is given by Kl = 2192−112 = 280.

From the above analysis we come to know the maxi-
mum information leakage from a DFA based on single-byte
fault induction. Using this information we can also get the
optimum attack results. Here the optimum results are based
on two scenarios. In one the attacker has the access to the
plaintext. Therefore, brute-force search on final key hypothe-
ses is possible. In this scenario the optimum result means
the minimum number of fault inductions required to reduce
the key space to a practical limit. In the second
scenario, the attacker does not have access to the plaintext.
Therefore, the key must be uniquely determined. In that case
the optimum result implies the minimum number of fault
inductions required to uniquely determine the key.

Table 2 shows the optimum results for the above two sce-
narios. The table also shows that in case of second scenario
the existing attack on AES-128, AES-192, AES-256 states
and AES-128 key schedule are optimal. In rest of the cases,
there is no reported DFA attack which reached the optimum
limits. Therefore, the table shows that there is a scope of work
in this area which is the motivation behind this paper.

In the next two sections, we present DFA against the AES
state matrix and key schedule, respectively. We show that
our attack on the AES state matrix has reached its theoretical
limits. However, in the case of DFA on the AES key schedule
the limit has not yet been reached. Only, the DFA on AES-
128 key schedule has reached its limits. The proposed DFA
on AES-192 and AES-256 key schedule are very close to
their limits.

We start with the DFA on the states of three versions of
AES.

5 Basic principle of DFA on AES

We have already mentioned that DFA on AES is divided
into two categories. One in which the fault is induced in the
AES states. In the other the fault is induced at the round
keys. In both the categories the objective of the attacker is to
induce certain difference at a particular state of the encryption
and then following the differential characteristic she deduces
some equations which relate the input–output difference of
the S-boxes.

Table 2 Optimal limits of DFA
on AES AES version and attack type Optimal result Optimal result for unique key

Number of faults Remaining keys Number of faults

AES-128 state 1 28 2 (published in [23])

AES-192 state 2 1 (published in [16]) 2 (published in [16])

AES-256 state 2 216 3 (published in [16])

AES-128 key schedule 1 28 2 (published in [15])

AES-192 key schedule 2 1 2

AES-256 key schedule 2 216 3
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Fig. 4 Difference across S-box

In case of the AES, the input to the S-box in each round
is the XOR of previous round output and the round key.
Figure 4 shows one such example. Here in is the previous
round output byte and K is the round key byte. Due to the
fault induction, a difference β is generated in X following
which there is an output difference α at the S-box output
out. Now if we replace the value of in ⊕ K by X, we get
following differential equation;

α = S(X ⊕ β) ⊕ S(X) (1)

According to the properties of AES S-box for a particular
value of α and β the above equation can have 0, 2, or 4
solutions of X [21]. For a fixed value of β, in 126 out of 256
choices of α the equation gives 2 solutions of X, and in only
one choice of α the equation gives 4 solutions and the rest of
the choices of α will not give any solution for X. This implies
that only 127 out of 256 choices of α produce solutions for
X. For more details one can refer [21]. Therefore, if we know
the values of α, β and in we can get the values of K from
the above equation.

Equation (1) is the basis to almost all the DFA attacks
on SPN and Feistel ciphers. The attacker induces fault in
such a way so that she can deduce equations like (1), which
relates the round key bytes with the input–output difference.
Then solving these equations she retrieves the round keys.
Depending on the key schedule of the cipher she needs to
retrieve sufficient number of round keys to get the master
key.

In AES, retrieving the last two round keys is sufficient
to get the master key. Therefore, the attacker first tries to
get the final round key by inducing certain number of faults.
Once the final round key is retrieved, she performs last round
decryption and applies the same technique to get the penul-
timate round key. Therefore, the attack can be divided into
two phases. In the first phase, the attacker retrieves the final
round key and in the second phase she retrieves the penulti-
mate round key. In order to explain the basic principle of the
two-phase attack, we consider a r round AES with K r and
K r−1 as the final and penultimate round keys.

5.1 First phase of DFA on AES

In AES, if one-byte difference is induced at the input of a
round function, due to MixColumns operation the differ-
ence spread to four bytes at the round output. Figure 5 shows
one such scenario.

A single byte difference is generated before the (r − 1)th
round MixColumns by the induced fault. The value of this
difference is f and the corresponding four-byte output dif-
ference is (2 f, f, f, 3 f ), where 2,1, and 3 are the elements
of the first row of the M DS matrix used in MixColumns
operation. The four-byte difference is again changed to
( f0, f1, f2, f3) by the r th round S-box. The ShiftRows
operation will shift the differences to four different locations.
The attacker knows the value of fault-free and faulty cipher-
texts which differ in four bytes. Therefore, she can represent
the four-byte difference (2 f, f, f, 3 f ) in terms of K r by fol-
lowing equations:

2 f = S−1(C0,0 ⊕ K r
0,0) ⊕ S−1(C∗

0,0 ⊕ K r
0,0)

f = S−1(C1,3 ⊕ K r
1,3) ⊕ S−1(C∗

1,3 ⊕ K r
1,3)

f = S−1(C2,2 ⊕ K r
2,2) ⊕ S−1(C∗

2,2 ⊕ K r
2,2)

3 f = S−1(C3,1 ⊕ K r
3,1) ⊕ S−1(C∗

3,1 ⊕ K r
3,1)

(2)

Here C and C∗ are the fault-free and faulty ciphertexts. AES
S-box is bijective, therefore each of the above four equations

f

S1

Fig. 5 Differences across the last two rounds
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can be represented as Eq. (1). Again, Eq. 1 can be represented
as: A = B ⊕ C where A, B, and C are bytes in F28 , having 28

possible values each. A random value of (A, B, C) satisfies
this equation with probability 1

28.
Therefore, 216 out of 224

choices of (A, B, C) will satisfy the equation.
If we have M such equations which contain N variables,

the reduced search space is given by ( 1
28 )M × (28)N =

(28)N−M . In the above set of four equations we have five
unknown variables: f, K r

0,0, K r
1,3, K r

2,2, and K r
3,2. There-

fore, the four equations reduce the search space to (28)5−4 =
28. This implies that only 28 candidates of the quartet of key
bytes will satisfy the above four equations. By inducing two
such faults one can uniquely determine the key quartet. In
the same way one can also get the rest of the three quartets of
K r . It may also be observed that if the location of the induced
difference is changed then only the indices of the variables
and the order of the equations will change. The basic form
of the equations will remain the same.

Once K r is determined, the attacker applies the second
phase of the attack to determine K r−1.

5.2 Second phase of DFA on AES

In the second phase, the attacker induces faults in such a way
so that a single byte difference is generated at the input of
(r − 2)th roundMixColumnsoperation. The fault propaga-
tion pattern remains the same as in the first phase of the attack.
Therefore, if the input difference is f ′, then the four-byte out-
put difference of (r −2)th round is (2 f ′, f ′, f ′, 3 f ′). These
differences can also be represented by (r − 1)th round fault-
free and faulty outputs. However, due to the (r − 1)th round
MixColumns operation, the equations will change (the last
round does not have MixColumns). For example, 2 f ′ can
be represented by following equation:

2 f ′ = S−1(14(Cr−1
0,0 ⊕ K r−1

0,0 ) ⊕ 11(Cr−1
1,0 ⊕ K r−1

1,0 )

⊕ 13(Cr−1
2,0 ⊕ K r−1

2,0 ) ⊕ 9(Cr−1
3,0 ⊕ K r−1

3,0 ))

⊕ S−1(14(C∗(r−1)
0,0 ⊕ K r−1

0,0 ) ⊕ 11(C∗(r−1)
1,0 ⊕ K r−1

1,0 )

⊕ 13(C∗(r−1)
2,0 ⊕ K r−1

2,0 ) ⊕ 9(C∗(r−1)
3,0 ⊕ K r−1

3,0 )) (3)

Here Cr−1 and C∗(r−1) are the fault-free and faulty output of
(r − 1)th round. Therefore, if the attacker has already deter-
mined the final round key she can get the values of Cr−1 and
C∗(r−1) by decrypting the last round. She can also deduce
three more such equations from the rest of the three differ-
ences. Solving these equations the attacker can reduce the
search space of K r−1.

5.3 Similarity and differences between the attacks

In the previous two sections, we explain the basic principle of
a DFA on AES. It uses simple divide and conquer approach.

However, when we apply this technique to different versions
of AES, the complexity of the attack changes drastically. For
DFA on AES states, the first phase of the attack is same for
all the three versions. It only retrieves the final round key.
However, solving the second phase equations (Eq. 3) is a
real challenge. As we can see each equation consists of four
key bytes and these key bytes are not same across all the four
equations generated from the four-byte difference. If we con-
sider all the 4 equations we have total 17 unknown variables:
16 bytes of K r−1 and f. Therefore, it is evident that the
required exhaustive search on these variables is not practi-
cal. Therefore, the attacker must find some relation between
these key bytes.

In order to do that the attacker takes the help of AES
key schedule. As the key schedule is different for different
versions of AES, therefore the attack strategy will also be
different. Further, attacking AES key schedule is much more
difficult than attacking AES state. In the first case the number
of variables in the first phase and the second phase equations
are more due to the diffusion of the differences in the key
schedule.

6 DFA on AES state

In this section, we propose optimal DFA attacks on the AES
state. The present section presents differential fault attacks
on AES-128 and AES-256, and shows how an optimal fault
attack can be performed. As proved in Sect. 4, a single-byte
fault can reveal 120 bits of information of the AES key.
Hence, an optimal DFA on AES-128 would require a single
fault (as the remaining uncertainty of 8 bits can be obtained
using a practical exhaustive search). However, for AES-256,
an optimal DFA should need two faults, as then the remaining
uncertainty is of (256 − 2 × 120) = 16 bits, which also can
be easily computed through a brute force analysis. In the fol-
lowing description, we present the attack steps which reach
these optimal limits. It may be pointed out that for AES-
192, the attack proposed in [16] already reaches the optimal
limit.

6.1 DFA on AES-128 State

In this section, we propose a two-phase attack on the AES-
128 state matrix by inducing a single-byte fault in between
the seventh and eighth round MixColumns operations. In
the first phase of the attack we reduce the search space of the
final round key K 10 to 232 hypotheses using the differential
equations at the output of the ninth round MixColumns
operation. In the second phase of the attack we further
reduce the search space of the final round key by taking into
consideration the differential equations at the output of the
MixColumns operation in the eighth round.
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6.1.1 First phase of the attack on AES-128 state

A single-byte random fault is induced in between the seventh
and eighth round MixColumns operations. Figure 6 shows
the flow of such a fault. The induced fault is propagated from
the output of the eighth roundMixColumns operation to the
first column of S2 and subsequently to all the volumes of the
state matrix after the ninth round MixColumns operation.
This actually serves the objective of inducing four faults at
four different columns of the state matrix input to the ninth
round MixColumns which is described in Sect. 5.1.

Therefore, the difference between columns of state matri-
ces in the fault-free and faulty ciphertexts can be expressed
in terms of these ciphertexts and the tenth round key K 10.

The first column of S4 will produce four equations simi-
lar to Eq. (2). In this case r will be replaced by 10 and
the four-byte difference (2 f, f, f, 3 f ) will be replaced by
(2, p0, p0, p0, 3p0). We call this equations as ninth round
differential equations.

These equations will reduce the search space of key quartet
(K 10

0,0, K 10
1,3, K 10

2,2, K 10
3,2) to an expected value of 28.

Similarly, we can deduce three sets of equations from the
rest of the three columns of the state matrix S4. These three
sets of equations will reduce the corresponding quartet of key
byte’s search space to 28 hypotheses. If we combine all the
four key quartets, we get (28)4 = 232 hypotheses of K 10.

So, in the first phase of the attack we have 232 hypotheses
for K 10. In the second phase of the attack we further reduce
the search space of K 10.

6.1.2 Second phase of the attack on AES-128 state

In order to further reduce the search space of the final round
key we consider the relationship between the faulty bytes at
the first column of S2 (see Fig. 6). In order to do that we
need K 9 and the ninth round fault-free and faulty outputs
(C9, C∗9). However, as the AES-128 key schedule is invert-
ible, therefore, we can avoid making hypotheses directly on
K 9 by performing inverse key schedule operation as:
⎛
⎜⎜⎜⎜⎝

(K 10
0,0 ⊕ S[K 10

1,3 ⊕ K 10
1,2] K 10

0,1 ⊕ K 10
0,0 K 10

0,2 ⊕ K 10
0,1 K 10

0,3 ⊕ K 10
0,2

⊕h10)

(K 10
1,0 ⊕ S[K 10

2,3 ⊕ K 10
2,2]) K 10

1,1 ⊕ K 10
1,0 K 10

1,2 ⊕ K 10
1,1 K 10

1,3 ⊕ K 10
1,2

(K 10
2,0 ⊕ S[K 10

3,3 ⊕ K 10
3,2]) K 10

2,1 ⊕ K 10
2,0 K 10

2,2 ⊕ K 10
2,1 K 10

2,3 ⊕ K 10
2,2

(K 10
3,0 ⊕ S[K 10

0,3 ⊕ K 10
0,2]) K 10

3,1 ⊕ K 10
3,0 K 10

3,2 ⊕ K 10
3,1 K 10

3,3 ⊕ K 10
3,2

⎞
⎟⎟⎟⎟⎠

In order to get (C9, C∗9), we do one round decryption oper-
ation on (C, C∗) using the hypotheses for K 10.

The four-byte fault value (2 p, p, p, 3 p) at the first col-
umn of S2 can be represented in terms of (C9, C∗9) and K 9

which in turn produces four equations similar to Eq. (3).
In that case the value of r will be replaced by 9 and
(2 f ′, f ′, f ′, 3 f ′) will be replaced by (2 p, p, p, 3 p). We
call these equations as eighth round differential equations.
In these four differential equations, we have 232 hypotheses

Fig. 6 Flow of fault in the last three rounds of AES-128

for (K 9, C9, C∗9) and 28 possible values for p. Therefore,

the four equations reduce the search space to (232×28)

(28)4 = 28,

i.e. from the 232 hypotheses for K 10 only 28 will satisfy
the set of four equations. This result shows that our pro-
posed DFA on AES-128 reaches the limit as describe in
Sect. 4.

However, the time complexity of the attack is still 232,

as each of the 232 choices of K 10are tested by set of four
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equations. In the next section, we propose an acceleration
technique by which the attack time complexity reduces to
230 from 232.

6.1.3 Reducing the time complexity of the attack

In order to reduce the time complexity of the attack, we
observe the basic properties of the differential equations as
explained in Sect. 5.

If we consider the ninth round differential equations in the
first phase of the attack, each of which can be represented as
Eq. (1); in that case p0 corresponds to α. Therefore, if a value
p0 contributes to the solutions of (K 10

0,0, K 10
1,3, K 10

2,2, K 10
3,1),

then there will be a total of 24 solutions of the quartet for
one such choice of p0 as each of the key bytes will have
two solutions.2 For example if (a0, b0, c0, d0) is one solution
of the quartet then there is another solution (a1, b0, c0, d0)

where K 10
0,0 has the second solution a1, whereas the rest of

the three key bytes have the same values. This implies that if
we only want the unique choices of the last three key bytes
among all possible solutions of (K 10

0,0, K 10
1,3, K 10

2,2, K 10
3,1), we

get 28

2 = 27 choices.
Now in the eighth round differential, each byte of C9 or

C∗9 consists of one byte of tenth round key. For example C9
0,0

consists of key byte K 10
0,0. However, in case of ninth round key

byte, if the key byte is in the first column of K 9, it requires
three bytes of K 10 whereas for the other key bytes of K 9

requires two bytes of K 10. Therefore, if we consider these
equations in pairs, all the pairs of equations does not con-
sists of same number of key bytes of K 10. The pair of equa-
tions which consists of second and third equations require
least number of key bytes 14 (except the key bytes K 10

0,0 and

K 10
0,1).
Therefore, in order to reduce the time complexity of the

attack, in the second phase we test the second and third
equation first by the unique choices of 14 key bytes of K 10

(excluding key bytes K 10
0,0 and K 10

0,1 ). There are total 232

choices of K 10 out of which the number unique choices of
required 14 key bytes is given by 232

22 = 230. Therefore, out of

these choices only 230

28 = 222 will satisfy the two equations.
Rest will be discarded. Those which satisfy are combined
with the 22 choices of the rest of the two key bytes and further
tested by the other two eighth round differential equations.

As we need to test only 230 times in the second phase
of the attack, therefore, the time complexity of the attack
reduces to 230 from 232. The summary of the proposed attack
is presented in Algorithm 2.

2 For the sake of simplicity we do not consider the four solutions cases.

6.2 DFA on AES-192 states

A DFA on AES-192 has been proposed by Kim [16] which
exploits all the available information. According to our analy-
sis a single-byte fault should reveal 120-bit of the secret key.
AES-192 has a 192-bit key, and therefore one would expect
the most efficient attack would need two single-byte faults.
Kim’s attack required two faults and uniquely determines the
key.

6.3 DFA on AES-256 states

In this section, we propose a two-phase DFA on AES-256
states and show that our attack reaches its limit as per the
analysis in Sect. 4. The analysis says that using a single-byte
fault induction one can reveal maximum of 120 bits of the
secret key. AES-256 has a 256-bit key. Therefore, two fault
induction should be able to reveal (120 × 2) = 240 bits of
the key.

According to the AES-256 key schedule, retrieving one
round key is not enough to get the master key. Algorithm 1
shows that the penultimate round key is not directly related to
the final round key. Therefore, the attack on AES-128 cannot
be directly applicable to AES-256.

We propose an attack which requires two faulty cipher-
texts C∗

1 and C∗
2 and a fault-free ciphertext C. The first faulty

ciphertext C∗
1 is generated by inducing a single-byte fault

between the MixColumns operations in the 11th and 12th
round, whereas C∗

2 is generated by inducing a singe-byte fault
in between theMixColumns operations in the 10th and 11th
round. Figure 7a shows the flow of faults corresponding to
C∗

1 whereas Fig. 7b shows the flow of faults corresponding
to C∗

2 .

The proposed attack works in two phases. In the first phase
of the attack we reduce the possible choices of final round
key to 216 hypotheses and in the second phase of the attack
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(a) (b)

Fig. 7 Flow of faults

we deduce 216 hypotheses for the penultimate round key leav-
ing 216 hypotheses for the master key.

6.3.1 First phase of the attack on AES-256 states

In order to get the final round key, we directly apply the first
phase of the DFA on AES-128, described in Sect. 6.1.1, to
the faulty ciphertext C∗

1 (Fig. 7a). Therefore, using the rela-
tion between the faulty bytes in state matrix S4 we reduce the
possible values of the final round key K 14 to 232 hypotheses.
Next we consider the second faulty ciphertext C∗

2 (Fig. 7b),
where in state matrix S3 we have a relationship between
the faulty bytes that is similar to the state matrix S4 of
C1 (Fig. 7a). We define X as the output of the 13th round
SubBytes operation in the computation that produced the
fault-free ciphertext. We also define ρ and ε as the differ-

ences at the output of 13th round SubBytes operation cor-
responding to two faulty ciphertexts C∗

1 and C∗
2 , respectively.

These two differences can be expressed as:

ρ = S R−1(MC−1(S R−1(SB−1(C ⊕ K 14))

⊕ S R−1(SB−1(C∗
1 ⊕ K 14))))

ε = S R−1(MC−1(S R−1(SB−1(C ⊕ K 14))

⊕ S R−1(SB−1(C∗
2 ⊕ K 14))))

Therefore, the fault values in the first column of S3

(Fig. 7b) can be represented in terms of X and ε by four
equations similar to Eq. (1). In that case ε0,0, ε1,0, ε2,0, and
ε3,0 are the values corresponding β and 2p′

0, p′
0, p′

0, and
3p′

0 are the values corresponding to α in the four equations,
respectively.

Similarly, from the first column of state matrix S2 of
Fig. 7a, we get four more differential equations which cor-
respond to the first column of X and ρ. Therefore, corre-
sponding to first column of X, we get two sets of differential
equations. Again each byte of ε and ρ corresponds to one
quartet of K 14. For example ρ0,0 can be expressed as:

ρ0,0 = (14(SB−1(C0,0 ⊕ K 14
0,0) ⊕ SB−1(C∗

1(0,0) ⊕ K 14
0,0))

⊕ 11(SB−1(C1,3 ⊕ K 14
1,3) ⊕ SB−1(C∗

1(1,3) ⊕ K 14
1,3))

⊕ 13(SB−1(C2,2 ⊕ K 14
2,2) ⊕ SB−1(C∗

1(2,2) ⊕ K 14
2,2))

⊕ 9(SB−1(C3,1 ⊕ K 14
3,1) ⊕ SB−1(C∗

1(3,1) ⊕ K 14
3,1)))

(4)

We already know that each of the quartets are independently
calculated and produces 28 hypotheses. Therefore, the four
pairs (ε0,0, ρ0,0), (ε1,0, ρ1,0), (ε2,0, ρ2,0), and (ε3,0, ρ3,0)

correspond to four quartets of K 14 and each having 28 values.
In order to solve two sets of differential equations of first

column of X, with minimum time complexity, we consider
them in pairs. First we choose two equations, for example
from the second set we choose equations corresponding to
X0,0 and X1,0. We guess the values of p corresponding to
each choice of (ρ0,0, ρ1,0) and derive the possible values of
X0,0, X1,0, ε0,0, and ε1,0. We test these values by the corre-
sponding equations in the first set. If they satisfy the relation-
ships they are accepted, otherwise they are rejected. It may
be observed that the mapping between a byte of ρ and the
corresponding byte of ε is one-to-one, as both the bytes are
derived from same key quartet.

Therefore, in the two equations of the second set we guess
28 × 28 × 28 = 224 hypotheses for (ρ0,0, ρ1,0, p) which is
reduced to 216 hypotheses by corresponding two equations
of the first set. Each of these 216 hypotheses are combined
with 28 hypotheses for ρ2,0 in the third equation of the sec-
ond set and tested by the corresponding equation in the first
set. Again, the possible hypotheses reduce to 216. Then these
values are combined with 28 hypotheses for ρ3,0 in the fourth
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equation of the second set and verified using the correspond-
ing equation in the first set, which will again reduce the num-
ber of possible hypotheses to 216. Therefore, finally we will
have 216 hypotheses for K 14 each corresponding to one value
for (X0,0, X1,0, X2,0, X3,0). Throughout the process the time
consuming part of the calculation is where 224 hypotheses are
made and the rest is negligible. We, therefore, consider the
time complexity of this process to be 224.

It can also be explained in a straightforward way. There are
eight equations, in which p, p′

0, (X0,0, X1,0, X2,0, X3,0) and
K 14 are unknown. The total search space of these variables
would be 280. Therefore, the reduced search space produced
by these eight equations is 280

(28)8 = 216.

In the second phase of the attack we deduce the values
of penultimate round key K 13 corresponding to 216 choices
of K 14.

6.3.2 Second phase of the attack on AES-256 states

In order to get the penultimate round key, we consider
the last three columns of S3 in Fig. 7b. For one choice
of K 14, the differential equations from the last three
columns of S4 will reduce the number of hypotheses for
(X0,1, X1,1, X2,1, X3,1), (X0,2, X1,2, X2,2, X3,2),and (X0,3,

X1,3, X2,3, X3,3) to 28 for each set. Then we get the last three
columns of K 12 from K 14 as K 12

i, j = K 14
i, j ⊕ K 14

i, j−1, where
0 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

Now from the first column of S2 we get four differential
equations similar to Eq. (3). In this case r is replaced by 13.
The 12 round fault-free output can be expressed as C12 =
S−1(X). Similarly, the faulty outputs corresponding to two
faulty ciphertexts can be expressed as C∗12

1 = S−1(X ⊕ ρ)

and C∗12
2 = S−1(X ⊕ ε).

Therefore, each of the four equations requires one col-
umn of X and one column of K 12. The last three equations
can be directly solved as we already know the values of the
last three columns of X and K 12. In order to reduce the
time complexity, we conduct a pairwise analysis. We first
choose the second and third equations which correspond
to (X0,3, X1,3, X2,3, X3,3) and (X0,2, X1,2, X2,2, X3,2). We
have 28 hypotheses for both (X0,3, X1,3, X2,3, X3,3) and
(X0,2, X1,2, X2,2, X3,2). Each of these hypotheses can be
evaluated using these two equations that will reduce the value
to 28 choices. Those which satisfy these equations are com-
bined with the 28 choices for (X0,1, X1,1, X2,1, X3,1) and
further tested by fourth equation which will again reduce
the combined hypotheses of the last three columns of X to
28 possibilities. The values of (X0,0, X1,0, X2,0, X3,0) are
already reduced to one possibility for a particular value of
K 14 in the first phase of the attack. Therefore, this results in
28 hypotheses for X. For each of these hypotheses we get the
first column of K 12 and test using the first equation. This will

further reduce the hypotheses for X to 1. The time complexity
here is around 216 as we consider two columns of X at a time.

Therefore, one hypothesis for K 14 will produce one value
for X which in turn produces one value for K 13 by the
following: K 13 = MC(S R(X)) ⊕ C13, where C13 is the
output from the 13th round, which is known to the attacker
from the ciphertext C and K 14 previously ascertained. Hence
one hypothesis for K 14 will produce one hypothesis for
K 13. Therefore, the 216 hypotheses of K 14 will produce 216

hypotheses for K 13. In which case the total time complexity
will be 216 × 216 = 232. So, finally we have 216 hypotheses
for (K 13, K 14) which corresponds to 216 hypotheses for the
256-bit master key. According the analysis in Sect. 4, two
faulty ciphertexts should reveal 240-bit of the AES-256 key.
Therefore, we can say that the proposed attack on AES-256
has reached its limit. The summary of the attack is presented
in Algorithm 3.

7 Attacks on AES key schedule

In the previous section, we explained how a single byte differ-
ence induced at the state of a particular round can be exploited
to reveal the secret key. Therefore, in order to protect AES
from such attacks a designer has to use some countermea-
sures which will not allow the attacker to induce fault in
AES round operations. The DFA on AES key schedule is
such kind of attack which works even if the rounds of the
AES are protected against faults. In this case the fault is
induced at the round key. Therefore, the normal countermea-
sures which only protect the round operations, will not be
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able to distinguish between a fault-free round key and a faulty
round key. Hence, it will fail.

Until recently DFA on AES key schedule was considered
more difficult than the DFA on AES states. Due to diffu-
sion in the key schedule, a single byte difference spreads to
more number of round key bytes of same round key as well
as subsequent round key because of which the differential
equations are more complex than the DFA on AES states.

In this section, we present DFA on the AES Key Schedule
for all the three versions of AES. The current section devel-
ops the attacks published in literature requiring 2 faults for
AES-128, 16 faults for AES-192 and AES-256. The attacks
proposed in this section requires one fault for AES-128, two
faults for AES-192 and three faults for AES-256. Thus com-
pared to the optimal attacks as shown in Sect. 4, we reach the
limits for AES-128. However, for AES-192 and AES-256 the
present attack is much closer to the optimal results than that
in the literature.

7.1 Attack on AES-128 key schedule

In this section, we propose a two-phase attack which will
reduce the AES-128 key space to 28 hypotheses using only
one faulty ciphertext. The required faulty ciphertext is gen-
erated by inducing a single-byte fault in the first column of
the eighth round key while it is being generated. Therefore,
the induced byte fault is then propagated to subsequent round
keys. Figure 8 shows the flow of this fault as per the AES-128
key schedule. These faulty round keys subsequently corrupt
the AES state matrix during the encryption process. The flow
of faults in the AES states is shown in Fig. 9.

In the first phase of the attack we reduce the search space
of the final round key to 240 hypotheses. In the second phase
we further reduce this search space to 28 hypotheses.

7.1.1 First phase of the attack on AES-128 key schedule

The faulty eighth round key corrupts the AES state matrix
during the AddRoundKey operation. Figure 9 shows that
the faults in K 8 corrupts the first row of the state matrix
at the input of ninth round. Subsequently, the faults are
propagated to all 16 bytes in the MixColumns opera-
tion. The faulty bytes in state matrix S2 can be repre-
sented by the fault-free and faulty ciphertexts C and C∗.
The first column S2 will produce a set of four differential
equations similar to Eq. (2) which corresponds to the key
quartet (K 10

0,0, K 10
1,3, K 10

2,2, K 10
3,1). Similarly, from other three

columns we get three more sets of equations corresponding
to key quartets (K 10

0,1, K 10
1,0, K 10

2,3, K 10
3,2), (K 10

0,2, K 10
1,1, K 10

2,0,

K 10
3,3), (K 10

0,3, K 10
1,2, K 10

2,1, K 10
3,0). We refer to these four key

quartets as Kq0, Kq1, Kq2, and Kq3, respectively.

Fig. 8 Flow of faults in AES-128 key schedule

It may be observed that unlike the proposed DFA on AES-
128, here the number of unknown variable are more. We have
p, q, and r as extra unknown variables. Therefore, exist-
ing solving techniques will not be applicable to these equa-
tions. It may be noted that these three unknown variables are
derived from key schedule operation and related by following
equations:

q = S[K 8
0,3] ⊕ S[K 8

0,3 ⊕ p]
= S[K 9

0,3 ⊕ K 9
0,2] ⊕ S[K 9

0,3 ⊕ K 9
0,2 ⊕ p]

= S[K 10
0,3 ⊕ K 10

0,1] ⊕ S[K 10
0,3 ⊕ K 10

0,1 ⊕ p] (5)

r = S[K 9
3,3] ⊕ S[K 9

3,3 ⊕ q]
= S[K 10

3,3 ⊕ K 10
3,2] ⊕ S[K 10

3,3 ⊕ K 10
3,2 ⊕ q] (6)

In the first three sets of equations there are eight unknown
variables (p, q, r, pi ) and the corresponding quartet of key
bytes Kqi ; where i corresponds to the i th quartet. We observe
that the fourth set of equations does not contain p. In order
to get the quartets Kq0, Kq1, Kq2 from the first three sets
of equations, we need to test all possible 232 values for
(p, q, r, pi ). For each of these hypotheses we get one hypoth-
esis for Kq0, Kq1, and Kq2 each. Therefore, for all possible
232 choices we get 232 hypotheses of each of the quartets.
In the last set of equations we have only q, r, and p3.

123



86 J Cryptogr Eng (2013) 3:73–97

Fig. 9 Flow of faults in the last three rounds of AES-128

Therefore, in the last set of equations we get 224 possible
hypotheses for Kq3. Hence, all the possible choices of K 10

are given by (232)3 × 224 = 2120 which is not practical.
In order to solve the individual set of equations in practical

time we apply a divide-and-conquer technique. We observe
that the key bytes K 10

0,3, K 10
0,1, K 10

3,2, K 10
3,3, and (p, q) are also

contained in (5) and (6). Therefore, we can combine these
equations with the last three sets of equation corresponding
to Kq1, Kq2, and Kq3. This will reduce the possible choices
for the corresponding 12 key bytes.

In the first step, we test the possible values of (p, q). For
each of these values we guess the 28 values of p1 in the
second set of equations. For each (p, q, p1) we get the val-
ues of three key bytes K 10

0,1, K 10
1,0, and K 10

3,2 from the cor-
responding equations. Therefore, for one value of (p, q)

we get 28 hypotheses for (K 10
0,1, K 10

1,0, K 10
3,2). Similarly, we

guess p3 in fourth set of equations and get 28 hypotheses for
(K 10

0,3, K 10
1,2, K 10

3,0). Therefore, for one hypothesis for (p, q)

we get a total of 28 × 28 = 216 hypotheses for six key bytes
(K 10

0,1, K 10
1,0, K 10

3,2, K 10
0,3, K 10

1,2, K 10
3,0). These values are tested

by using (5), which will reduce the possible values of these
six key bytes to 216

28 = 28 hypotheses.
In the second step, for each hypothesis for the six key

bytes, we guess the values of p2 and get the three key bytes
(K 10

0,2, K 10
1,1, K 10

3,3) from the third set of equations. Therefore,
we have a total of 28 × 28 = 216 hypotheses for nine key
bytes (K 10

0,1, K 10
1,0, K 10

3,2, K 10
0,3, K 10

1,2, K 10
3,0, K 10

0,2,K
10
1,1,K

10
3,3).

We use these and get the corresponding values of r from (6).
Therefore, now using the values of r we can deduce the other
three key bytes (K 10

2,3, K 10
2,0, K 10

2,1) from the corresponding
equations in the last three sets of equations. So, in the second
step we deduce 216 hypotheses for 12 key bytes from the last
three sets of equations.

In the third step, we test the 28 values for p0 and get the cor-
responding choices of the four key bytes {K 10

0,0, K 10
1,3, K 10

2,2,

K 10
3,1} from the first set of equations. Therefore, in the third

step we deduce a total of 216 × 28 =224 hypotheses for the 16
key bytes of K 10 corresponding to one hypothesis for (p, q).

Therefore, for all possible 216 hypotheses for (p, q), we will
get 224 × 216 = 240 hypotheses for K 40.

However, the complexity of this attack is still quite high.
In our experiments we found out that for a desktop with an
Intel CoreT M 2 Duo processor clocked at 3 GHz speed takes
around two and half days to perform brute-force search of
240 possible keys.

7.1.2 Second phase of the attack on AES-128 key schedule

In this phase of the attack we deduce differential equations
from the differences in the state matrix S1 (Fig. 9). In the
first row of the state matrix we have four-byte differences
(p, p, p, p). The faulty byte p at the first column of the state
matrix can be represented as Eq. (3). In that case r will be
replaced by 10 and p corresponds to 2 f ′. Similarly, we get
three more equations from rest of the three faulty bytes of S1.

However, due to faulty key, the right-hand side of each
equations will have p, q, and r. In the first phase of the attack
we have already reduced p, q, r, and K 10 to 240 choices.
Using these values we can get the ninth round fault-free
and faulty outputs. As per the attack on the AES-128 key
scheduling algorithm (Fig. 8), we can directly deduce the
ninth round key from the tenth round key. Therefore, for
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each value of K 10 we get the corresponding values of K 9

and can test it using the four equations. There are four equa-
tions and the total search space is 240. Therefore, the four
equations reduce the search space to 240

(28)4 = 28. Hence, in

the second phase of the attack we have only 28 hypotheses
for K 10. These can then be used to drive 28 hypotheses for
the master key.

Though the final search space is 28, the time complexity
of the attack is still 240 since the second phase of the attack
still needs to test each of the 240 keys generated from the first
phase of the attack.

7.1.3 Time complexity reduction

In the first phase of the attack we have four sets of equa-
tions corresponding to four key quartets Kq0, Kq1, Kq2, and
Kq3. These four sets of equations produce 240 values of 16-
byte key K 10. Each of these keys are tested by four equa-
tions in the second phase of the attack. However, none of
these equations require all 16 bytes of the key. For example,
the first equation required K 10

0,0, K 10
1,3, K 10

2,2, K 10
3,1 and nine

more key bytes corresponding to four ninth round key bytes
K 9

0,0, K 9
1,0, K 9

2,0, K 9
3,0. Therefore, in the first equation we

need 13 bytes of K 13. Similarly, in the rest of the three equa-
tions, each requires ten bytes of K 10. In the first phase of
the attack we use (5) and (6) since their dependencies are
between the key bytes K 10

0,3, K 10
0,1, and K 10

3,3, K 10
3,2.

Therefore, in order to reduce the time complexity of the
attack, in the second phase we only test one equation at a time.
We start with the third equation, as it only requires 11 bytes of
K 10 [ten key bytes plus one for K 10

0,3 since it depends on K 10
0,1

in (5)]. Those which satisfy this equation are accepted and
combined with the other five key bytes, and are subsequently
tested using rest of the three equations. Those which do not
satisfy these equations are simply discarded.

It is clear from the analysis in Sect. 6.1.3 that the number
of unique choices of the 11 key bytes required by the third
equation is 240

25 = 235. Therefore, we need only to test 235

hypotheses out of the 240 possibilities for the 16-byte key.
Those which satisfy the test are combined with 25 possible
hypotheses for the remaining five key bytes and subsequently
tested using rest of the three equations. The first test will

reduce the possible hypotheses for 11 key bytes to 235

28 = 227.

Therefore, the rest of the three equations are tested using the
227 × 25 = 232 hypotheses for the 16-byte key, which will
reduce the number of hypotheses to 232

(28)3 = 28.

So, finally we get 28 hypotheses for K 10, and we test
a maximum of 235 hypotheses for the key. Therefore, the
time complexity of the attack is reduced to 235 from 240.

This result also supports the analysis in Sect. 4, which states
that single fault should be able to reduce the number of key

hypotheses for a AES-128 to 28. Therefore, we can claim
that the proposed attack is also optimal for a fault attack that
analyzes the AES-128 key schedule. The proposed attack
summary is presented in Algorithm 4.

7.2 Proposed attack on AES-192 key schedule

In this section, we propose an attack on AES-192 using only
two faulty ciphertexts. The most recent attack to date requires
around four to six faulty ciphertexts [15]. Due to the different
key scheduling algorithm the attack described above for the
AES-128 cannot be directly applied to AES-192, since the
knowledge of last round key is not sufficient to get the master
key. From Algorithm 1 we know that the first two columns
of the 11th round key K 11 can easily be retrieved from the
first three columns of the 12th round key K 12 by following
simple XOR operations since: K 11

i, j = K 12
i, j ⊕ K 12

i, j−1 where

0 ≤ i ≤ 4 and 0 ≤ j ≤ 1. The last two columns of K 11

cannot be directly recovered from K 12. Therefore, unlike the
attack on AES-128, an extra eight bytes need to be derived
to get the master key.

We propose a two-phase attack which requires two faulty
ciphertexts C∗

1 and C∗
2 . These two faulty ciphertexts are

generated by inducing a single-byte fault at two differ-
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Fig. 10 Flow of faults in AES-192 key schedule when fault is induced
at K 10

0,0

Fig. 11 Flow of faults in AES-192 key schedule when fault is induced
at K 10

1,0

ent locations of the first column of the tenth round key.
Figures 10 and 11 show how these faults propagate in the
key schedule.

The propagation of these fault in the AES-192 state matrix
in the last three rounds is shown in Fig. 12a and b. At the
input to the 11th round, state matrix S1, there is a difference
in only four bytes. However, unlike the AES-128, the fault

is not propagated to all the bytes at the output of penulti-
mate round. In Fig. 12a the fault is propagated to only 14
bytes whereas in Fig. 12b the fault affects 13 bytes in the
penultimate round output.

In order to get the last two round keys of AES-192, we
again follow a two-phase attack strategy. In the first phase
of the attack we reduce the final round key to 28 choices
and in the second phase we first uniquely determine the final
round key and then reduce the penultimate round key to 210

possible choices.

7.2.1 First phase of the attack on AES-192 key schedule

In the first phase of the attack we consider the relationship
between the fault values at state matrix S3 (Fig. 12a, b). In
Fig. 12a, which corresponds to first faulty ciphertext C∗

1 ,

the first column of state matrix S2 consists of two faulty
bytes p0 and q0. These two faulty bytes will produce a rela-
tion 〈(2p0 ⊕ q0), (p0 ⊕ q0), (p0 ⊕ 3q0), (3p0 ⊕ 2q0)〉 at
the output of MixColumns (in S3). Therefore, this rela-
tion will produce four equations similar to Eq. (2). In the
same way, from the rest of the three columns of S3 we get
〈2p1, p1, p1, 3p1〉, 〈0, 0, 0, 0〉, and 〈q1, q1, 3q1, 2q1〉.Using
second and fourth relations we get two more sets of equa-
tions. However, from the third relation which does not have
any difference, we get a set of two equations corresponding
to fault value p and q in K 11. It may be observed that the
third byte of this relation is zero. Therefore, from this value
we can get r = C2,0 ⊕ C∗

1(2,0).

Similarly, from the four columns of S3 of Fig. 12b, we get
relations 〈3p′

0, 2p′
0, p′

0, p′
0〉, 〈0, 0, 0, 0〉, 〈2q0, q0, q0, 3q0〉,

and 〈(2q1 ⊕3p1), (q1 ⊕2p1), (q1 ⊕ p1), (3q1 ⊕ p1)〉. These
four relations will produce four more sets of equations. Each
of these sets of equations corresponds to one key quartet of
12th round key K 12. Like the previous attack we also name
these quartets Kq0, Kq1, Kq2, and Kq3, respectively.

Therefore, each faulty ciphertext produces four sets of
equations. These sets of equations are not mutually indepen-
dent, and are related by two variables. For the faulty cipher-
text C∗

1 , the variables are (q, r) whereas for faulty ciphertext
C∗

2 , the variables are (q ′, r ′). As with the propagation of
faults in the AES-192 key schedule, the variables r and r ′
can be deduced from q and q ′, respectively (Figs. 10, 11).
They are related by following equation:

r = S(K 11
3,3) ⊕ S(K 11

3,3 ⊕ q) (7a)

r ′ = S(K 11
0,3) ⊕ S(K 11

0,3 ⊕ q ′) (7b)

Similarly, q and q ′ are related to p and p′ by following equa-
tions:

q = S(K 11
1,3 ⊕ K 11

1,2) ⊕ S(K 11
1,3 ⊕ K 11

1,2 ⊕ p) (8a)

q ′ = S(K 11
0,3 ⊕ K 11

0,2) ⊕ S(K 11
0,3 ⊕ K 11

0,2 ⊕ p′) (8b)
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Fig. 12 Flow of faults in the
last three rounds of AES-192

(a) (b)

Then r and r ′ can directly be calculated from the cipher-
texts C∗

1 and C∗
2 as r = C2,0⊕C∗

1(2,0) and r ′ = C2,0⊕C∗
2(2,0).

Now to solve the eight sets of equations we guess the val-

ues of (q, q ′). We start with two sets of equations corre-
sponding to quartet Kq0. In the second set of equations,
for one hypothesis for (q, q ′) we get 28 hypotheses for the
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quartet Kq0 corresponding to 28 hypotheses for p′
1. There-

fore, for all possible values of (q, q ′) we get 224 hypotheses
for Kq0. Each of these hypotheses are tested using the first
set of equations.

There are eight equations in the two sets corresponding
to quartet Kq0, that contain nine unknown variables: namely
q, q ′, p0, p3, p′

1 and the quartet Kq0. Therefore, the reduced

search space is given by (28)
9−8 = 28. This implies that out

of 224 choices of q, q ′, Kq0, only 28 choices satisfy both the
sets of equations.

Next we derive the second quartet Kq1 from its corre-
sponding two sets of equations. We can directly deduce the
values of K 12

0,1 corresponding to the values of q ′ in second
set of equations. These values can be used in the first set
of equations to get the corresponding values of 2 p1 and
p1. Using these values we can derive the three key bytes
K 12

1,0, K 12
2,3, K 12

3,2 from the remaining three equations of the
first set.

This gives an expected 28 hypotheses for (q, q ′) from
the previous step. Each of these hypotheses will give one
expected hypothesis for K 12

0,1, which in turn give one

expected hypothesis for the three key bytes K 12
1,0, K 12

2,3, K 12
3,2.

Therefore, the 28 hypotheses for (q, q ′, Kq0) will produce
28 hypotheses for the quartet Kq1, giving 28 hypotheses for
(q, q ′, Kq0, Kq1).

For the third quartet Kq2 we can apply the same approach
and one hypotheses for K 12

3,3 corresponding to one hypothe-
ses for q from its first set of equations. This value will
in turn allow a hypothesis for K 12

0,2 and K 12
2,0 from the

first and third equations of the second set. However, p′
is unknown. Therefore, we have to consider all possible
28 hypotheses for p′ which in turn produces 28 hypothe-
ses for K 12

1,1. This implies that for one hypothesis for q

we get 28 hypotheses for the third quartet Kq2. From the
previous steps we have 28 hypotheses for q. Therefore,
in this step, we get 216 hypotheses for (q, q ′, Kq0, Kq1,

Kq2).

In the next step, we consider fourth quartet Kq3. The two
sets of equations are similar to the two sets of equations
corresponding to quartet Kq0. Therefore, for one hypoth-
esis for q we get 28 hypotheses for the quartet Kq3 from
the first set of equations. Each of these are tested using the
second set of equations. We have nine variables in the two
sets of differential equations in which we choose the val-
ues of q and q ′ from the 5-tuple (q, q ′, Kq0, Kq1, Kq2).

Therefore, the total number for resulting hypotheses is
(28)7 × 216 = (28)9. We have eight equations in two sets,
which will reduce the hypotheses to (28)9−8 = 28 for the
6-tuple (q, q ′, Kq0, Kq1, Kq2), Kq2). Therefore, in the first
phase of the attack we have 28 choices of the final round
key K 12.

7.2.2 Second phase of the attack on AES-192 key schedule

In the second phase of the attack we define differential equa-
tions based on the relationship between the faulty bytes in
state matrix S1. The fault values (p, q) and (p′, q ′) in S1

of (Fig. 12a, b) will give eight differential equations sim-
ilar to Eq. (3), where r is replaced by 12. Each of these
equations corresponds to one column of K 11. Using AES-
192 key scheduling algorithm we can directly define the first
two columns K 11 from K 12 as K 11

i, j = K 12
i, j ⊕ K 12

i, j−1 for
0 ≤ i ≤ 3 and 0 ≤ j ≤ 1.

The values of p can be deduced from K 12 using equation
p = S−1(K 12

0,2 ⊕ C0,2) ⊕ S−1(K 12
0,2 ⊕ C∗

1(0,2)). Therefore,

p, Kq0, Kq1, K 11
i,0, and K 11

i,1 can be directly derived from K 12

where 0 ≤ i ≤ 3. There is an expected 28 hypotheses for
K 12 from the first phase of the attack. We consider the two
equations corresponding to two values of p in S1. In these
two equations the search space is 28, which can be reduced to
28

216 = 1
28 . One would expect that only one value will satisfy

both the equations leaving one hypotheses for K 12.

An attacker can then deduce the fourth column K 11
i,3. The

two bytes K 11
0,3 and K 11

3,3 of the fourth column can directly
be calculated using (7a) and (7b). For one hypothesis for
(q, r, q ′, r ′), we get four hypotheses for (K 11

0,3, K 11
3,3). The

other two key bytes, K 11
1,3 and K 11

2,3, can be derived from
three more differential equations from S1. The faulty byte q
in the fourth column of S1 (Fig. 12a), p′ in the first column
and q ′ in the fourth column of S1 (Fig. 12b, will produce
equations which correspond to K 11

i,3. In these equations only

K 11
1,3 and K 11

2,3 are unknown, and the possible values for key

bytes K 11
0,3, K 11

3,3 had already been reduced to an expected
four hypotheses. One would expect that these will allow one
hypothesis for K 11

i,3 to be determined (two hypotheses will

remain with probability 218

(28)3 = 1
26 ).

For the third column of K 11, we can get the values of
two key bytes K 11

0,2 and K 11
1,2 from (8a) and (8b). However,

for one value for K 11
0,3, K 11

1,3, q, q ′ we get two hypotheses for

K 11
0,2 from (8a) and two hypotheses for K 11

1,2 from (8b) giving

a total of four hypotheses. For key bytes K 11
2,2 and K 11

3,2 we
can only determine one equation, i.e. from q ′ at the third col-
umn of S1 (Fig. 12b). This gives an expected four hypotheses
for (K 11

2,2, K 11
3,2) and 216 hypotheses for (K 11

2,2, K 11
2,3). There-

fore, the resulting number of expected hypotheses is 216×4
28 =

210. So, finally we get an expected 210 hypotheses for
K 12

i,2, implying the expected hypotheses for K 11 is reduced

to 210.

Therefore, the two-phase attack on AES-192 using two
faulty ciphertexts can reduce a 192-bit key to 210 hypotheses.
However, as per our analysis in Sect. 4 on AES-192 key
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schedule should be sufficient to determine the key. The attack
described above reduces the key to 210 hypotheses and is
therefore not optimal but it is the most efficient attack on
the AES-192 key schedule to date. The attack summary is
presented in Algorithm 5.

7.3 Proposed attack on AES-256 key schedule

In this section, we present a two-phase attack on AES-256 to
uniquely determine the secret key. The attack requires three
faulty ciphertexts, that we will refer to as C1, C2, and C3.

The first two faulty ciphertexts C1 and C2 are generated by
inducing a single-byte fault in the first column of 12th round
key (Fig. 13). The third faulty ciphertext C3 is generated
by inducing fault in the first column of the 11th round key
(Fig. 14). Figure 15a and b shows how the propagation of the
fault in the AES state matrix.

In the first phase of the attack we uniquely determine the
14th round key K 14 using C1 and C2. In the second phase of
the attack we uniquely determine the penultimate round key
K 13 using C3.

7.3.1 First phase of the attack of AES-256 key schedule

In the first phase of the attack we deduce the differential
equations from the relationship between the faulty bytes in
state matrix S3 (Fig. 15a). From the first column of S3 we get
relation 〈2p0, p0, p0, 3p0〉, which corresponds to C1. Simi-
larly, from C2 we get 〈2p′

0, p′
0, p′

0, 3p′
0〉. These two relations

will give two sets of equations. Therefore, together we get

Fig. 13 Flow of faults in AES-256 key schedule when the fault is
induced at K 12

0,0

Fig. 14 Flow of faults in AES-256 key schedule when the fault is
induced at K 11

0,0

eight sets of equations, each set corresponds to the one quar-
tet of key bytes. As with the previously described attacks,
we refer to these quartets as Kq0, Kq1, Kq2, Kq3. There are
two sets of equations each corresponding to a quartet. In
order to use these sets of equations we need to guess the
values of p, q, r, pi and p′, q ′, r ′, p′

i where i corresponds
to the i th quartet. In which case the total possible hypothe-
ses is (28)8 = 264 which would make an exhaustive search
impossible. We apply a divide-and-conquer strategy to these
equations.

The second and third equations of each set of equations
contain only two unknown variables except the key bytes.
Therefore we can directly solve these equations by guessing
the values of pi and p′

i . For example we guess p0 in the
first set of equations of Kq0 and derive 28 hypotheses for
(K 14

1,3, K 14
2,2). Each of these hypotheses are tested using cor-

responding equations in the second set of equations of Kq0.

Those which satisfy these equations are accepted and rest
are discarded. There are four equations and four unknowns
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Fig. 15 Flow of faults in the
AES-256 rounds

(a) (b)
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(K 14
1,3, K 14

2,2, p0, p′
0), so one would expect one hypothesis to

remain.
Similarly, we can uniquely determine the values of

(K 14
1,0, K 14

2,3), (K 14
1,1, K 14

2,0), and (K 14
1,2, K 14

2,1), and the corre-
sponding values of p1, p2, p3, p′

1, p′
2, p′

3 from the second
and third equations of two sets of equations of Kq1, Kq2, Kq3.

Next, we guess the values of r and r ′. For each hypothesis we
get one hypothesis for K 14

3,1 using fourth equation of two sets

of equations of Kq0. Similarly, we get the values K 14
3,2, K 14

3,3,

and K 14
3,0 corresponding to other three key quartets. There

are eight equations and six unknown variables (namely r, r ′,
and four key bytes) so an attacker should be able to determine
these bytes.

An attacker would then only need to solve the first equation
of each of the eight sets of equations. In these equations we
have eight unknown variable (q, p, q ′, p′), and the four key
bytes. As per Fig. 13, q and q ′ can be derived from p and p′
using the following:

q = S(K 13
0,3 ⊕ K 13

0,2) ⊕ S(K 13
0,3 ⊕ K 13

0,2 ⊕ p) (9)

q ′ = S(K 13
0,3 ⊕ K 13

0,2) ⊕ S(K 13
0,3 ⊕ K 13

0,2 ⊕ p′) (10)

Similarly, r, r ′ can be deduced from q, q ′ using the following:

r = S(K 14
3,3 ⊕ K 14

3,2) ⊕ S(K 14
3,3 ⊕ K 14

3,2 ⊕ q) (11)

r ′ = S(K 14
3,3 ⊕ K 14

3,2) ⊕ S(K 14
3,3 ⊕ K 14

3,2 ⊕ q ′) (12)

The values of r, r ′, K 14
3,3, and K 14

3,2 are already known from
the previous steps. Therefore, we get the values of q, and
q ′ from (11) and (12). Therefore, an attacker would only
need to guess the values of p and p′ to get the values of
K 14

0,0, K 14
0,1, K 14

0,2, and K 14
0,3 from the corresponding sets of

equations. There are eight equations and six unknown vari-
ables, which implies that an attacker would be able to deter-
mine p, p′ and K 14

0,0 K 14
0,1, K 14

0,2, K 14
0,3.

Therefore, finally we have one choice of p, p′, q, q ′, r, r ′
and K 14 using two faulty ciphertexts C∗

1 and C∗
2 .

7.3.2 Second phase of the attack of AES-256 key schedule

In the second phase of the attack we use a third faulty cipher-
text produced by a one-byte fault in the first column of the
11th round key, as shown in Fig. 14. The propagation of the
fault in the last three rounds is shown in Fig. 15b. In order
to reduce the number of hypotheses for K 13 we use the rela-
tionship between the faulty byte in the 13th round. As we
have the 14th round key, we can decrypt one round and get
the output of the 13th round for a fault-free and faulty out-
puts. We define the output of the 13th round of C, C∗

1 , and
C∗

2 as C13, C13∗
1 , and C13∗

2 , respectively. In case of the third
faulty ciphertext C∗

3 we cannot compute the output of the
13th round as the values of q ′′ and s′′ in the final round key
are not known.

Therefore, we follow the technique proposed in Sect. 6.3.1.
Let X be the fault-free output of the 13th round SubBytes
operation and ε be the corresponding fault value. Therefore,
ε can be written as

ε = S R−1(MC−1(S R−1(SB−1(C ⊕ K 14))

⊕ S R−1(SB−1(C∗
3 ⊕ K 14∗)) ⊕ (K 13 ⊕ K 13∗)))

where K 14∗ and K 13∗ are the 14th and 13th round faulty keys
used to generate faulty ciphertext C3.K 14 is already known
to us. Therefore, in order to get K 14∗ and (K 13 ⊕ K 13∗) we
need to know the values of p′′, q ′′, r ′′, and s′′. However, as
per Fig. 14, r ′′ can be directly deduced from K 14 and q ′′ by
the following equation:

r ′′ = S(K 12
3,3) ⊕ S(K 12

3,3 ⊕ q ′′)
= S(K 14

3,3 ⊕ K 14
3,2) ⊕ S(K 14

3,3 ⊕ K 14
3,2 ⊕ q ′′) (13)

Therefore, now we need to guess p′′, q ′′, and s′′ to get the
possible hypotheses for ε.

The possible fault values in the first column of S2

(Fig. 15b) can be represented in terms of first column of
X and ε which will produce four differential equations. Sim-
ilarly, from the rest of the three columns of S2 we get three
more sets of equations. The values for X0,0, X0,1, X0,2, X0,3

can also be represented by the faulty ciphertexts C∗
1 and C∗

2 .

In Fig. 15a, the first row of S1 can be expressed in terms
of (X0,0, X0,1, X0,2, X0,3), (p0, p1, p2, p3), which will pro-
duce a set of four differential equations. Similar equations can
also be generated from C∗

2 .

In these eight equations only X0,0, X0,1, X0,2, X0,3 are
unknown; the rest of the variables have been determined in
the first phase of the attack. Therefore, using these equations
we can uniquely determine the values of X0,0, X0,1, X0,2,

X0,3. It may be noted that these four bytes of X correspond
to the first equations of the four sets of equations generated
from S2 (Fig. 15b). We use the four bytes of X , and get the
corresponding values of 2p′′

0 , 2p′′
1 , 2p′′

2 , 2p′′
3 . If we multiply

these values with the inverse of 2 we get the corresponding
values of p′′

0 , p′′
1 , p′′

2 , and p′′
3 .

We have 224 choices of ε corresponding to the all possible
values of p′′, q ′′, and s′′. For each possible value of ε we
will get one hypothesis for the quartet of X from each of the
four sets of equations. Therefore, from all the four sets of
equations we get one hypothesis for X corresponding to one
hypothesis for ε. Therefore, we expect to have 224 hypotheses
for X corresponding to 224 hypotheses for ε.

In the next step, we deduce four differential equations
corresponding to four faulty bytes p′′, p′′, p′′, p′′, in S1

(Fig. 15b) as described in Sect. 6.3.2. Each of these four
equations requires one column of the 12th round key K 12.

The last three columns of K 12 can be computed from K 14

as K 12
i, j = K 14

i, j ⊕ K 14
i, j−1 where 0 ≤ i ≤ 4 and 1 ≤ j ≤ 3.

Therefore, we can test each value of X using the last three of
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the four equations which corresponds to last three columns of
K 12. The value of p′′ is already known while considering ε.

There are 224 values of X in the three equations that will
be expected to be reduced to one hypothesis, since 224

(28)3 = 1.

In some cases there could be more than one remaining
hypothesis for X satisfying the last three equations. In which
case the false hypotheses can be eliminated since K 13 =
(MC(S R(X)) ⊕ C13). Using the value of K 13 and K 14 we
verify these hypotheses using the key schedule.

The described attack would determine K 13 and K 14

allowing the 256-bit master key of AES-256 using three
faulty ciphertexts. The summary of the attack is given in
Algorithm 6.

8 Experimental results

In this section, we present experimental results used to vali-
date our attacks. We have simulated all the attacks. The attack

codes were written in the C programming language and com-
piled with gcc-4.4.3. We used Intel Core2 Duo processor with
3 GHz and 2 GB RAM. The simulated attacks were per-
formed on different randomly generated keys and the results
are detailed in this section.

Table 3 shows the simulated attack results on the AES-
128 state matrix, the simulated attack takes around 5 min
to reveal 28 possible keys. The second column shows the
total possible choices of all four quartets of key bytes gener-
ated in the first phase of the attack. In the second phase we
used four threads running in parallel, each taking 230 pos-
sible keys from the first phase of the attack as describe in
Sect. 4.1.

Table 4 shows the simulated attack results on the AES-256
state matrix. The two-phase attack reduces the search space
of 256-bit key to approximately 216 hypotheses. However, the
attack takes around 45 min which is caused by the relatively
high time complexity of 232.

In case of attacks based on faults in the AES key sched-
ule we get different results. Table 5 shows the attack results
on AES-128 key schedule. Like the attack on the AES-128
state matrix, here also the final search space is reduced to
approximately 28 hypotheses. However, the execution time
is little higher. The third column of the table shows that the
proposed attack takes around 35 min.

Table 6 presents the simulated attack results on AES-192
key schedule. The attack takes around 5 s to reveal all the
possible 210 hypotheses for 192-bit keys.

In case of AES-256 we performed the simulated attack
on several random keys. In all the cases the attack uniquely
determined the 256-bit key and the attack takes less than 1 s
to compute.

9 Comparison with the previous works

In this section, we compare our attacks with some of the
previous attacks defined in the literature. In Table 7 we com-
pare our attack on AES-128 state with some of the existing
attacks. For example, the attack proposed by Fukunaga and
Takahashi [13] reduces the key hypotheses for a AES-128
key to 232 whereas our attack reduces the key hypotheses
to 28.

In case of attacks on the AES-256 state matrix, the most
recent attack [19] (Table 8) reduces the key hypotheses to
216 with a time complexity of 248 which at the upper limit
of what is practical. The time complexity of our attack is 232

that means the attack can be conducted in approximately 1 h.
The existing attacks on the AES-128 key schedule require

at least two faulty ciphertexts [15] (Table 9), whereas our
attack requires only one faulty ciphertext and reduces the
key hypotheses to 28. Similar improvements can also be seen
in the attacks on the AES-192 and AES-256 key schedules
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Table 3 Attack results of AES-128 state

Random 128-bit AES key Number of keys in first phase Number of keys in second phase Running time (min)

a43663d288b6cffd 3,538,944,000 ≈ 231.72 240 ≈ 27.9 5.727
8e8d3dbec9dff34d

261043d7ddd03357 3,774,873,600 ≈ 231.813 227 ≈ 27.82 4.616
b05ceb45c12899f8

5ff94723b3ab5e2f 8,304,721,920 ≈ 232.951 262 ≈ 28.03 5.342
48171a2af88e0ec6

74a33cf4114b271b 3,317,760,000 ≈ 231.627 240 ≈ 27.9 5.64
f06a985303785c61

ff85f16a9aa247d8 8,304,721,920 ≈ 232.951 266 ≈ 28.05 5.231
c3d5bf355c27df7b

Table 4 Attack results of
AES-256 state Random 256-bit AES key Number of keys Running time (min)

0b169d18964b23cffedced73674e2bf1 56,931 ≈ 215.795 45.2
8a2f68ca11ebfacb7aa5f6694d045169

e2b151958b9e86480e2b4ae624ccaa2c 54,252 ≈ 215.727 44
b86f5e72c6b1ac7f114a12e4601303c4

3a1bda7d59a233de3901aee30d60ef8f 34,262 ≈ 215.06 45.4
46dee1bd66c837cdfbbd20a642496ca6

3a4f6f8682e7138d02ae4b7b162c2d9f 53,846 ≈ 215.716 45.4
c839c9cda1b464f54143c2f934b1c2af

3991e777a5947416a102642ed314f811 43,256 ≈ 215.4 42.9
899ab00ae736dd226fa9273f00a69872

Table 5 Attack results of AES-128 key schedule

Random 128-bit AES key Number of keys in first phase Number of keys in second phase Running time (min)

7f6a28b073e9b4f4 23,631,628,492 ≈ 234.46 248 ≈ 27.954 33.472
d9d55414fe5bab4f

6f116394d00fcd82 30,966,733,299 ≈ 234.85 258 ≈ 28.01 34.643
737799d7aa661e13

7937fd3f2a25172f 27,334,426,474 ≈ 234.67 262 ≈ 28.03 35.93
9084da2e274f2a87

eaa618c81145622f 31,977,681,408 ≈ 234.89 240 ≈ 27.9 35.467
b409c89c0a5ec485

79f13f05486d3e24 24,637,624,453 ≈ 234.52 264 ≈ 28.04 36.016
cbcdeb3ac7c174cf

Table 6 Attack results of
AES-192 key schedule Random 192-bit AES key Number of keys Running time (s)

4277a31082c1ca12410ad654edd60d21 1,024 ≈ 210 5
20878c69302553cb

531e1665195a75e4859088faaa9cb334 1,024 ≈ 210 5
30c979c8ebb9cd3b

a4fddcc4a8604705cee71f3230923d9c 1,024 ≈ 210 5
c62f8b411aedb627

5fc4ed8ec84f2f8acaf0711ed42d5fac 1,024 ≈ 210 5
19dcd7723f08d8b2

5a16a80e4199945e1d929619186feba7 1,024 ≈ 210 5
95f655e1d420bd8b
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Table 7 Comparison with existing attack on AES-128 states

Reference Fault model Number of faults Exhaustive search

[23] Single-byte fault 2 1

[13] Single-byte fault 1 232

Our Attack single-byte fault 1 28

Table 8 Comparison with existing single byte attack on AES-256

Reference Number of faults Exhaustive search Time complexity

[16] 3 1 224

[19] 2 216 248

Our attack 2 216 232

Table 9 Comparison with existing attack on AES-128 key schedule

Reference Fault model Number of faults Exhaustive search

[8] Single-byte fault 22–44 1

[22] Multi-byte fault 12 1

[28] Multi-byte fault 2 248

[17] Multi-byte fault 2 232

[15] Single-byte fault 2 1

Our attack Single-byte fault 1 28

Table 10 Comparison with existing attack on AES-192 key schedule

Reference Fault model Number of faults Exhaustive search

[12] Single-byte fault 16 1

[15] Single-byte fault 4–6 1

Our attack Single-byte fault 2 210

(Tables 10, 11). The most recent attack on the AES-192 key
schedule required between four and six faulty ciphertexts
[15], whereas our attack requires only two faultyciphertexts

Table 11 Comparison with existing attack on AES-256 key schedule

Reference Fault model Number of faults Exhaustive search

[12] Single-byte fault 16 1

[15] Single-byte fault 4 1

Our attack Single-byte fault 3 1

and reduces the key hypotheses to 210. Our attack on the
AES-256 key schedule only requires three faulty ciphertexts,
whereas the attack proposed by Kim [15] requires four faulty
ciphertexts to uniquely determine the key.

From the tables we can see that the attacks proposed in this
paper present an improvement over the attacks in the litera-
ture. Table 12 shows that we have obtained the optimal lim-
its for DFA on AES-128, AES-256 states and AES-128 key
schedule in the first scenario. It also shows that the proposed
DFA on AES-256 key schedules for the second scenario has
also reached its limit. However, for the first scenario, it is still
a open problem to find a DFA on AES-192 and AES-256 with
optimal results.

10 Conclusion

In this paper, we analyze the limits of DFA on AES, using
reduction methods based on the security assumption of AES.
We then extend the results present in the literature, target-
ing faults in either the state matrix or key schedule of the
block cipher. More specifically, we develop fault attacks
on the data path of AES-128 and 256, and reach the opti-
mal limits. For the analysis of fault in the key schedule,
we present new attacks and show that under such sce-
narios AES-128, 192, and 256 can be attacked with one,
two, and three faults, respectively. Our theoretical analysis
shows that the fault attack on the key schedule reaches the
optimal limit for AES-128, there is still scope for improve-
ment for the other two variants of AES. The results devel-
oped in the paper are validated through detailed experimental
results.

Table 12 Status of the present
attacks AES version and attack type Optimal result Optimal result for unique key

Number of faults Remaining keys Number of faults

AES-128 state 1 28 (obtained) 2 (published in [23])

AES-192 state 2 1 (published in [16]) 2 (published in [16])

AES-256 state 2 216 (obtained) 3 (published in [16])

AES-128 key schedule 1 28 (obtained) 2 (published in [15])

AES-192 key schedule 2 1 2

AES-256 key schedule 2 216 3 obtained
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