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Abstract Template attacks are a very powerful form of
side-channel analysis. It is assumed an adversary has access
to a training device, identical to the device under attack,
to build a precise multivariate characterization of the side-
channel emissions. The training and test devices are assumed
to have identical, or at least very similar, electromagnetic
emissions. Often, when evaluating the effectiveness of a
template attack, training and test data are from the same-
device. The effectiveness of collecting training and test data
from different devices, or cross-device attacks, are evaluated
here using 40 PIC microcontroller devices. When the stan-
dard template attack methodology fails to produce adequate
results, each step is evaluated to identify device-dependent
variations. A simple pre-processing technique, normalizing
the trace means and variances from the training and test
devices, is evaluated for various test data set sizes. This step
improves the success key-byte extraction rate for same part
number cross-device template attacks from 65.1 to 100 %
and improves attacks against similar devices in the same-
device family. Additionally, it is demonstrated that due to
differences in device leakage, minimizing the number of dis-
tinguishing features reduces the effectiveness of cross-device
attacks.
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1 Introduction

Template attacks [1] are a form of two-stage profiling attack,
with the initial stage obtaining ‘a priori’ knowledge of the
side-channel leakage for a specific device. The profiling, or
training stage estimates the multivariate probability densities
of observable side-channels for the targeted key-dependent
internal state of the cryptographic implementation. The esti-
mated probability densities are used during the attack phase
to determine the device’s internal state. The key assumption
for a profiling attack is that a powerful attacker has access to
a training device, identical to the target device, over which he
has full control. The training device is used to create a pre-
cise multivariate model of the device’s side-channel leakage
for each key dependency. Implicit in using a training device
is that both devices produce similar side-channel emissions.
This assumption was originally introduced in [1] and has
since been repeatedly accepted without challenge [2–7].

It has recently been shown that in addition to operation-
and data-dependent components of electromagnetic (EM)
emissions, the emissions exhibit significant device-dependent
characteristics [8]. This is likely due to random process
variations introduced during fabrication and packaging [9].
Although the structural variations introduced in the manu-
facturing process are relatively small, and the devices pro-
duced meet the desired specifications, no two chips are
exactly alike. Therefore, the emissions produced by similar
devices are indeed similar to some degree but not identical.
These variations are significant enough to allow a specific
device to be uniquely identified based only on the devices
EM emissions [10]. The work here examines the differences
in cross-device emissions to determine if such differences
are sufficient enough to prevent template attacks from being
effective if similar devices are used for training and testing,
versus using the same device for training and testing.
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Template attack research has expanded the capabilities of
template attacks to use multiple test traces [5], multiple side-
channels [11], reduced the number of features required to
build templates using heuristics [12] and systematic meth-
ods [2,6], and employed templates to defeat countermea-
sures [5,7]. Template attacks have been adopted as an attack
methodology without evaluating the underlying assumption
that the power consumption and EM emissions from two
separate devices are sufficiently similar to make the attacks
practical. In each of the papers cited above, the same smart-
card or microprocessor was used to create both the training
and test data.

Research here focuses on the EM side-channel of a device
performing AES encryption operations. Unlike power con-
sumption methods, the EM side-channel can be collected
without physically modifying the device. This makes repeat-
ing the collection process more difficult. Instead of moni-
toring the voltage change across a single shunted resistor,
careful consideration must be given to placing the EM probe
in exactly the same position and configuration between col-
lections on a device. Even template attacks performed using
the same-device can fail if the probe is moved between the
collection of training and test traces. Recently, differences
in collection equipment, methodology, synchronization, and
target device age where shown to reduce the effectiveness of
template attacks even when attacking using templates created
with the same device [13]. This paper explores the differences
between devices.

The remainder of this paper is organized as follows: Back-
ground on the target cipher, the Advanced Encryption Stan-
dard (AES) [14], and template attacks are presented in Sect. 2.
Differences in side-channel emissions between devices and
development of the mean and variance normalization tech-
nique are explored in Sect. 3, followed by the experimental
methodology in Sect. 4. Results are presented in Sect. 5 fol-
lowed by the conclusion in Sect. 6.

2 Background

2.1 Advanced Encryption Standard (AES)

Devices running AES can be targeted using template attacks.
AES-128 uses a 128-bit key to encrypt a 128-bit plaintext.
Differential side-channel attacks, including template attacks,
attempt to determine the secret key by measuring and analyz-
ing the small statistical influence the computation of inter-
mediate values has on the power or EM side-channel [15].

The first round of AES-128 performs the following com-
putations:

1. Initialization: The 16-byte plaintext is loaded into the
4 × 4 byte state matrix.

2. AddRoundKey: The state matrix is XOR-ed with the orig-
inal 16-byte key.

3. SubBytes: Each byte of the state matrix is substituted
for another byte value based on the non-linear invertible
substitution table (s-box) defined in [14].

4. ShiftRows: The last three rows of the state matrix are
cyclically shifted column-wise using different offsets.

5. Mixed Columns: The state matrix is mixed column by
column using a linear operation.

Outputs of the AddRoundKey and SubBytes operations
are common targets for side-channel attacks. Since these are
byte-wise computations, each byte can be considered sepa-
rately. Let Pi,n denote the nth byte of the i th input plaintext
(which corresponds to the i th trace) and let Kn denote the nth
byte of the secret key. Let Ii,n represent the value of the inter-
mediate value after the XOR operation, Ii,n = Pi,n ⊕ Kn .
Assuming Pi,n is known and Kn is unknown, a differential
attack tries to determine the most likely candidate Kn byte
value based on the collected side-channel observation Ii,n .
The input to SubBytes Ii,n is the targeted intermediate value
in this attack. This intermediate value is chosen because it
allows for the highest same-device key extraction success
rate in testing.

2.2 Template attack methodology

A profiling stage can be used to build multivariate statisti-
cal models of the device’s side-channel leakage [1]. Incor-
porating a profiling stage allows the template attack to use
all information present in a side-channel trace for classifica-
tion, making them a strong attack even when only a single
or few traces from the attacked device are available. Rather
than try to eliminate or reduce noise, the noise present in the
side-channel emission is assumed to be key dependent and
precisely modeled. The profiling stage creates mean vectors
and covariance matrices for each of the possible sub-keys.
Agrawl et al. [16] expanded template attacks to differential
power analysis and incorporated data to allow multiple traces
from multiple side-channels. Oswald and Mangard [5] incor-
porated Bayes’ theorem to allow multiple traces to be used
during the classification phase.

Templates based on hypothesized intermediate values cal-
culate each possible intermediate value using a hypothesized
key-byte value and a known plaintext or ciphertext. The col-
lected emissions used to create templates are referred to as
training traces. During the attack phase of a template attack,
the posterior probabilities, or the probability an observed
trace or collection of traces comes from a specific class,
is calculated using a classifier. The maximum likelihood
(ML) decision rule is based on the notion that choosing the
key guess with the highest posteriori probability will mini-
mize the probability that an incorrect class is selected [17].
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Traces observed during the attack phase are referred to as
test traces. In this article, template attacks performed with
training and test data from the same-device are referred to
as same-device attacks. Attacks performed with training and
test data from different devices are referred to as cross-device
attacks.

Since the introduction of template attacks in [1], a number
of variations and improvements have been proposed. How-
ever, all template attacks fundamentally contain the following
steps:

– Identify classes. The goal of a template attack is to cor-
rectly determine to which category or class an observed
trace (or set of traces) from a target device belongs. The
number and definition of the classes is determined by the
attack scenario and the type of information leaked from
target device. When attacking a microprocessor running
AES, classes are commonly based on byte value (256
classes) [1,12], byte Hamming weight (9 classes) or bit
value (2 classes) [7].

– Data collection. The training device and test device must
both be observed performing encryption operations. It is
assumed the attacker has complete control of the train-
ing device, can change the key and plaintext at will, and
can associate a collected trace with the plaintext and key
used to produce it. While the key on the target device is
always unknown, some attack scenarios assume a pow-
erful attacker is able to match observed test traces with
corresponding plaintext or ciphertext.

– Feature generation. Preprocessing techniques may be
applied to the traces or the extracted samples before
they are used for training or classification. Examples of
preprocessing techniques include Principle Component
Analysis, Fourier transforms of the collected traces, or
trace normalization.

– Feature extraction. The samples in the collected or pre-
processed traces that distinguish between classes are
identified and extracted from each trace.

– Classifier Training. Using the known plaintexts and keys
from the training phase, the attacker can estimate the
class from which the observed training trace belongs.
One template is created for each class using the extracted
distinguishing features from the training traces belonging
to that class (Ref. to Sect.2.4).

– Classification Using distinguishing features generated
from one or more test traces, the classifier estimates the
class to which the test traces most likely belong. If the
plaintexts or ciphertexts are known, hypothetical inter-
mediate values may be used in this process.

The remainder of this section provides additional infor-
mation for the more complicated template attack steps.

2.3 Class identification

To evaluate the effectiveness of cross-device attacks, a sim-
ple DPA template attack is performed on an unprotected
implementation of AES-128 running on ND = 40 dif-
ferent PIC microcontroller devices. The attacker has com-
plete control over a training device, is able to collect EM
emissions from the target device, and has knowledge of the
plaintexts associated with each collected trace. This allows
hypothetical intermediate values to be calculated based on
key-byte guesses. Let s designate the key-byte class where
s ∈ {0, 1, . . . , K − 1} where K is the total number of classes.
The attack considered here use K = 256 classes, one for each
key-byte guess. Different templates are constructed for each
intermediate value byte being attacked.

Although distinguishing features are generated and selected
before constructing templates in an actual attack, it is more
insightful to discuss the rationale for feature selection after
explaining the mechanics of template attacks. Methods for
selecting distinguishing features are discussed in Sect. 2.7.

2.4 Classifier training

The classifier is trained by constructing templates for each
class. A fundamental assumption is that side-channel leak-
age for a particular operation follows a multivariate Gaussian
distribution. This assumption has been shown to provide ade-
quate performance in previous template attack research [1,
2,5,7,17]. Let vector x be the list of γ distinguishing fea-
tures. The probability density function of a γ -dimensional
multivariate normal distribution is

p (x) =
exp

(
− 1

2

(
x − μ̂k j

)T
�̂

−1
k j

(
x − μ̂k j

))

(2π)γ/2
∣∣∣�̂k j

∣∣∣1/2 , (1)

where empirical mean vector μ̂k j
and empirical noise covari-

ance matrix, �̂k j , form the template of class k j . One template
is constructed for each of the K = 256 possible byte val-
ues, k j ∈ {0, . . . , 255}. The estimates are constructed using
Nk j distinguishing feature vectors that belong to class k j .
Each distinguishing feature vector is represented as xi where
i ∈ {

1, . . . , Nk j

}
.

The empirical mean vector, μ̂k , and the γ × γ empirical
noise covariance matrix, �̂k , are

μ̂k j
= 1

Nk j

Nk j∑
i=1

xk j,i , and (2)

�̂k j = 1

Nk j − 1
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(
xk j,i − μ̂k j

) (
xk j,i − μ̂k j

)T
, (3)

respectively.
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2.5 Classifying observed traces

The template attack is performed for each of the 16 key-
byte values in AES-128. There are K = 256 possible round
key values, k j ∈ {0, . . . , 255}. For matrix X, which contains
the distinguishing features from one trace in each row, the
probability that a key-byte guess is correct is [17]

p
(

k j
∣∣ X

) =
(∏Nt

i=1 p
(

xT
i

∣∣ k j
) · (

k j
))

∑K−1
l=0

((∏Nt
i=1 p

(
xT

i

∣∣ kl
)) · (kl)

) , (4)

where i is the index of the Nt test traces.
Since AES key-bytes are uniformly distributed, it is ini-

tially assumed that p
(

kl = T r+1
b

)
= 1/256. The Bayesian

classification process produces the probabilities p
(

k j
∣∣ X

)
for all j ∈ {0, . . . , 255}.

2.6 Class selection

After p
(

k j
∣∣ X

)
is calculated for each possible round key

value, the most likely key-byte value is

k̂ j = arg max
k j

p
(

k j
∣∣ X

)
. (5)

2.7 Distinguishing feature selection

Device EM traces are typically collected at a very high sam-
pling rate resulting in a large number of samples (Ns > 104).
Building templates based on every sample is not feasible due
to storage requirements of the covariance matrix and com-
plexity of matrix inversion to calculate the observation prob-
ability [12].

The processing time and complexity of constructing the
templates can be reduced by identifying n out of N points that
provide the most information to the template attack. Since
these samples must allow classes to be distinguished from
each other, they are referred to as distinguishing features
herein. They are also referred to as points of interest in related
literature.

Previous research has focused on improving how distin-
guishing features are generated and selected. A number of
heuristic approaches have been proposed, including selecting
samples with the largest difference between mean traces [1],
or the point at which the largest variance between the mean
traces (for each class) occurs. Benefits of pre-processing
using a Fast Fourier Transform before selecting the samples,
with the highest cumulative difference between pairs of mean
traces, were evaluated in [12]. Requiring a minimum num-
ber of samples between successive selected time samples has
also been proposed as a way to reduce the number of distin-
guishing features by reducing redundant information [12].

Principal Component Analysis (PCA). While heuristic
methods for selecting distinguishing features have been
effective, more systematic approaches have been developed.
PCA can reduce the dimensionality of trace data using a linear
transform that maximizes the inter-class variance between
empirical mean traces

{
μ̂s

}K
s=1 for each class in the sub-

space [2]. To find this transform, PCA identifies the principal

directions {wi }Np
i=1 such that Np ≤ Ns , which forms an ortho-

normal basis capturing the maximal variance of
{
μ̂s

}K
s=1 in

an Np-dimensional subspace. The principal directions are
the eigenvectors U of the empirical covariance matrix

S̄ = 1

K

∑K

s=1

(
μ̂s − μ̄

) (
μ̂s − μ̄

)T
, S̄ = U�UT.

where μ̄ = 1
K

∑K
s=1 μ̂s is the average of the mean traces.

The principal directions {wi }Np
i=1 are the columns of U that

correspond to the Np largest eigenvalues of �. The Np-
largest eigenvalues are denoted by the diagonal matrix � ∈
R

Np×Np and the corresponding matrix of principal directions
is denoted W ∈ R

Ns×Np . To perform an attack in the princi-
pal subspace, a Gaussian model after projection is assumed.
The projected means {νs}K

s=1 and projected covariance matri-
ces {�s}K

s=1 are given by

νk = WTμ̂k and, (6)

�k = WT�̂W . (7)

A collection of traces from the test device, X, is classified
by

k̂ j = arg max
k j

p
(

k j
∣∣ WTX

)
(8)

While PCA reduces the number of distinguishing features
required for an attack, it may not improve the attack’s classi-
fication performance. Therefore, PCA is implemented here
and compared with a heuristic approach based on correlation
analysis. The process used to identify distinguishing features
using correlation analysis is outlined in Sect. 4.2. A compar-
ison of PCA and correlation selected distinguishing features
for each of the training devices is presented in Sect. 5.1.

3 Cross-device EM leakage

The EM side-channel can be divided into various components
as was done for the power consumption side-channel in [17].
Each sample in the EM side-channel trace is made up of
various components: a operation-dependent component Sop,
a data-dependent component Sdata, electronic noise Sel. noise,
and a constant component Sconst. A sample in the total EM
side-channel trace is a sum of these components, or

Stotal = Sop + Sdata + Sel. noise + Sconst. (9)
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The distribution of Sel. noise in a microprocessor has been
shown to be Sel. noise ∼ N (

0, σ 2
el.noise

)
. The contribution of

Sdata is proportional to the Hamming weight of the data being
processed and its distribution can be approximated with the
normal distribution when the data are uniformly distributed,
or Sdata ∼ N (0, σdata). Note that σel.noise and σdata are device
specific.

For a differential side-channel attack where only the
data are changing between traces, it can be assumed that
V ar (Sconst) = V ar

(
Sop

) = 0, and E
(
Sop

) = E (Sdata) =
E (Sel.noise) = 0. Therefore, E (Stotal) = E (Sconst) =
μconst, where μconst is a constant contribution for the opera-
tion being performed at a specific time on a specific device.

Assuming Sdata and Sel.noise are statistically indepen-
dent, Sdata + Sel.noise ∼ N (

0, σ 2
data + σ 2

el. noise
)

and
Stotal ∼ N (

μconst, σ
2
data + σ 2

el. noise

)
. For a cross-device tem-

plate attack to be successful, μconst and σ 2
data +σ 2

el. noise must
be consistent across devices at samples identified as distin-
guishing features.

Figure 1 uses a violin plot [21] to show the distributions of
5000 observations of sample (#972) for ND = 40 different
training devices. These 40 devices are from the same fam-
ily of PIC microcontrollers, with devices within groups of
10 (denoted A, B, C and D) having identical part numbers.
More information on the devices can be found in Sect. 4.1. It
is shown in Sect. 5.2 that if the differences in means and vari-
ance between device groups are not compensated for some
template attacks will fail.

3.1 Compensating for device differences

To compensate for the device-to-device differences in μconst

and σ 2
data + σ 2

el. noise, a transformation of variables is
performed. The transformation ensures the test data have
approximately the same distribution as the training data.

Using collected training and test data at a specific time
sample collected across multiple traces, the mean and vari-
ance of that sample can be estimated for each data set. Let
variable X train represent the value of EM traces at a specific
sample in the training data and let variable X test represent the
value of the test data at the same sample.

Let μ̂train and σ̂ 2
train be the estimated mean and variance of

X train, and let μ̂test and σ̂ 2
test represent the estimated distrib-

ution of the test data. X test is used to calculate transformed
X ′

test having the same mean and variance as the training data
using

X ′
test =

(
X test − μ̂test

)
σ̂test

σ̂train + μ̂train. (10)

Test data transformation is performed for each sample
selected as a distinguishing feature for the template attack.
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Fig. 1 Violin plots showing the distribution of 5,000 observations of
sample #972 on an AES encryption operations with random plaintext
and keys for ND = 40 similar microcontroller devices

Alternatively, both X test and X train can be transformed to
the standard normal via

X ′
test =

(
X test − μ̂test

)
σ̂test

, and (11)

X ′
train =

(
X train − μ̂train

)
σ̂train

. (12)

In order to reduce attack time and eliminate the need to
retain the training data, the classifier can be trained using (2)
and (3) before collecting the test traces. Transforming both
X test and X train eliminates the need to retain the training data
or store μ̂train and σ̂train for each distinguishing feature.

The remaining steps of the template attack are performed
as usual using transformed test data. This process is referred
to as the zero mean, unit variance normalization (MVN) tech-
nique herein. Although this technique was developed inde-
pendently for this research, it was first published in [13] as a
way to compensate for differences in the collected trace sets
from the same device before and after device modifications
and aging.

4 Experimental methodology

The experimental setup used to collect the data and the spe-
cific analysis methodology is described below.

Targeted devices. The following methodology was used to
perform a template attack on 40 unprotected 16-bit PIC24F
microcontrollers [18]. The devices include ten unique chips
with four different part numbers, shown in Table 1. These
devices were selected because they have similar device archi-
tectures. The ten chips from each part number were all man-
ufactured in the same lot and are representative of low cost
microcontrollers used in various embedded applications.

Although all devices have the same basic architecture,
Part A devices have several on-board peripherals that are
not included in the other three. Parts B, C and D devices
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Table 1 Tested PIC micro-controller device classes

Part class Device numbers PIC part number

A A1–A10 PIC24FJ64GA102 I/SP

B B1–B10 PIC24FJ64GA002 I/SP

C C1–C10 PIC24FJ48GA002 I/SP

D D1–D10 PIC24FJ32GA002 I/SP

all have identical architectures with the exception of the
amount of on-board flash RAM which is 32, 48, and 64
KB of RAM, respectively. Part A devices have 64 KB of
RAM. Individual devices are referenced by an alphanumer-
ical device number that includes part type and chip number,
i.e., A1, A2, . . . , D9, D10, as shown in Table 1.

The chips were fabricated using an unspecified 180 nm
process. Since all ten chips for each part number were pro-
duced in the same lot, they contain identical architectural
features. Uncontrolled manufacturing variations in the die
fabrication and packaging process are believed to be the
only physical differences between devices with the same part
number.

4.1 Data collection

The collection process was designed to make measurements
as repeatable as possible. Each microcontroller was mounted
to a single evaluation board and programmed to respond to
commands over a RS-232 serial interface. The C++ code
used to implement the AES-128 algorithm on each device
is identical, but the compiled versions vary slightly due to
differences in part specific header files. To improve trace
alignment, a trigger signal was programmed to go high imme-
diately before the encryption operation started and to go low
immediately after completion.

To find the best probe position, an X–Y scan is performed
with the near-field probe as close to a reference device as pos-
sible without touching the packaging of the microcontroller.
The point above the device yielding highest spectral inten-
sity is chosen for collections. Lateral movement of the circuit
board is minimized between signal collections using a cus-
tom made jig that fixed microprocessor position relative to
the probe. A DC power supply (Agilent E3631A) minimizes
variation in the supply voltage.

Training data for each of the 40 devices is generated
by commanding 5000 AES-128 encryption operations using
randomly chosen plaintexts and keys. EM emissions are cap-
tured using a Riscure probe [19] and a Lecroy 104-Xi-A dig-
ital oscilloscope. Similarly, test traces for each device are
collected from 500 encryption operations using a fixed key
and random plaintexts.

Traces are time aligned by shifting them based on the
location of highest cross-correlation of a trace segment with

a segment from the reference trace [19]. Traces are collected
at a sampling rate of 2.5 GSa/s with a 1 GHz low-pass anti-
aliasing filter inserted between the probe and the oscillo-
scope. The target device operates at 29.48 MHz so traces
were decimated to 250 MSa/s. This was done by first filter-
ing the traces with an eighth-order low-pass Chebyshev Type
I filter having a cut-off frequency of 100 MHz and then prop-
erly decimating the filtered trace by 10 (every 10th sample
retained and all others discarded).

4.2 Template attack methodology

This section explains the methodology used to implement
template attacks for the target microcontroller. The initial
step develops two highly effective same-device template
attacks using both a heuristic method and PCA to select dis-
tinguishing features. If an attacker only has access to one
training device, it is assumed that he would follow a sim-
ilar process. For cross-device attacks, each device is used
as a training device and used to attack all 40 devices. In all
attacks, feature selection is performed using a single training
device.

Class selection In the classification stage of the template
attack, the classifier attempts to determine which class an
observed side-channel emission most likely belongs to. The
training traces are separated into K = 256 classes and tem-
plates are created for each class.

Correlation-based feature selection. Distinguishing fea-
tures are identified using correlation analysis. Since both
the plaintext, t = (

t1, t2, . . . tnt

)T , and sub-keys, k =(
k1, k2, . . . knt

)T , are known for each of the nt collected
traces in the training data, the correct intermediate value
vi = f(ti ,ki ) can be calculated as well. The leakage model
hi based on the Hamming Weight of vi is also easily calcu-
lated. A vector of the modeled leakage across all traces is
h = (

h1, h2, . . . , hnt

)T . For side-channel traces containing
ns samples, the collection of side-channel nt traces is

S =
⎛
⎜⎝

s1,1 · · · s1,ns
...

. . .
...

snt ,1 · · · snt ,ns

⎞
⎟⎠ = (

s1 s2 . . . sns

)
,

where sj is a column vector containing the j th sample from
each of the nt traces.

The modeled EM leakage h is compared with observed
leakage using the normalized correlation coefficient given
by [20]

r j =
∑nt

i=1

(
hi − h̄

) · (
si, j − s̄ j

)
√∑nt

d=1

(
hi − h̄

)2 · ∑nt
d=1

(
si, j − s̄ j

)2
. (13)

The correlation coefficient r j is an indication of the linear
relationship between the observed side-channel and modeled
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leakage. High r j indicates observed time samples are highly
correlated with the modeled leakage.

Selecting distinguishing features based on correlation
analysis with a Hamming weight model for the targeted
intermediate value byte produces adequate results. However,
classification is improved by performing correlation analysis
separately for each bit of the intermediate value byte. This
approach produces a vector of correlation coefficients for
each of the 8 bits in the targeted byte. Samples with the high-
est correlation coefficient for each bit are added to the list of
distinguishing features for the byte. If a sample has already
been added because it was highly correlated with another bit,
the sample with the next highest correlation coefficient for
that bit is added. Only samples which have correlation coef-
ficients significantly greater (5 dB) than the average correla-
tion coefficient are added to the list of distinguishing features.
It was determined empirically through experimentation that
including up to ten points of interest for each bit produced
very good results.

PCA-based feature selection. PCA is also used to generate
and select distinguishing features in the principal subspace.
Based on the samples selected using correlation analysis,
only the first NPCA = 3500 samples are used for each trace.
For byte-wise analysis with K = 256 classes same-device
PCA-based template attacks are not always successful unless
approximately 80 components in the principal subspace are
used as distinguishing features. This may be due to the rela-
tively low number of traces (∼19 on average) from each class
used to construct the mean traces. Like the correlation-based
feature selection process, the probability of correctly identi-
fying the key-byte improves by performing bit-wise analysis.

PCA is performed for each bit of the target byte, with
K = 2 classes for each bit. A PCA transformation matrix
Wi ∈ RNPCA×1 is constructed for each bit i ∈ {1, . . . , 8}
retaining a single principal component. Rather than perform
eight bit-wise template attacks, these eight transformation
matrices are combined column-wise,

W = [W1 · · · W8 ] (14)

where W ∈ RNPCA×8. The new transformation matrix is used
to perform byte-wise template attacks using (7) and (8).

4.3 Distinguishing feature data normalization

Motivation for the MVN technique can be seen in Fig. 1,
which provided violin plots [21] for the distributions of the
5000 observations of sample #972 for each device. Sample
#972 is one of the 16 samples chosen as a distinguishing fea-
ture for all 40 devices. The violin plots show that observation
mean and variance changes from device to device.

For each sample selected as a distinguishing feature, the
distributions of training and test data at that sample are nor-
malized using (11) and (12), respectively. Normalization is

performed independently on training and test data because
the mean and variance at corresponding samples may not be
the same for different devices. For simplicity when utilizing
PCA the distribution for training and test, data are normalized
for each sample across all traces before PCA transformation
into the primary component subspace. The test data set must
contain enough traces to estimate the distribution of each
sample accurately.

5 Results

5.1 Selected features

The correlation-based feature selection methodology in
Sect. 4.2 is repeated for each of the 40 devices. Each byte of
the input to the SubBytes operation in round 1 of AES-128 is
targeted separately with 256 templates constructed for each
byte. The process is repeated to identify distinguishing fea-
tures to build templates for each training device. Figure 2 is
a graphical representation of the samples selected for each
device for byte 1. Since only these samples are used as dis-
tinguishing features, and there are large gaps between them,
the time axis is segmented multiple times to compress the
plot.

Recall that part A devices have different peripherals than
devices in groups B–D. There is some intra-device type vari-
ation in the samples for parts B–D devices but 19 of the
samples are the same across the three part types. It is impor-
tant to note that a number of samples which are consistently
selected for devices in group A are not identified as distin-
guishing features for any of the devices in group B, C, and
D. Likewise, some samples commonly selected in groups B,
C, and D are not selected for group A.

When performing a PCA-based template attack, the trans-
form matrix W that maps the trace samples into the principal
subspace is generated separately for each set of training data.
Plotting the eigenvectors is one way of visualizing contribu-
tions of the original samples in the principal subspace [6].
Since the magnitude of the eigenvector elements determine
the weight of a sample’s contribution in a component, a plot of
samples which contribute most to one or more of the retained
components can be generated by averaging the magnitude of
the eigenvector elements for the retained components. Fig-
ure 3 shows the maximum value of the eigenvector element
magnitude for each of the eight retained components found
using bit-wise PCA. Since a majority of the samples con-
tribute to one or more of the retained primary components the
plot is not segmented as in Fig. 2. Note that different samples
are weighted more heavily based on the training device. As is
the case for the correlation-based feature selection, devices
in groups B, C, and D are more similar to each other than
they are to group A.
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Fig. 2 Samples selected as distinguishing features for each of the
40 devices using the correlation-based feature selection process when
attacking byte 1 of the input to the SubBytes operation. All B, C and
D devices share 19 common features while only 6 of those features are
identified for all of the type A parts

5.2 Baseline standard template attack

A standard template attack assumes a multivariate Gaussian
distribution for each sample and assumes the distributions for
corresponding training data samples and test data samples
are identical [1]. Figure 4 shows the percent of key-bytes
correctly extracted for 1600 template attacks, one for each
device used as training device and as a test device. Each attack
is repeated using 100 randomly chosen sets of 30 test traces
from the 500 available test traces for each test device. The
same 100 trace sets for each test device are used in the attack
performed in Sects. 5.3 and 5.4. When the same-device is
used to generate both the training and test data, the template
attacks identify each of the 16 key-bytes correctly in all trials.
Same-device attacks are found on the diagonal of the chart.
The overall percent of successful key-byte extractions using
one device from groups A–D to attack another device from
groups A–D is shown in Table 2. The cross-device success
rates do not include same-device attacks.

The reduced number of correct key-bytes when training
using devices from group A to attack devices from groups B,
C, or D can be explained in part by the difference in the dis-
tinguishing features used to build templates. More surprising

Fig. 3 Plot of the maximum magnitude of the eigenvector elements
for the eight retained components found using bit-wise PCA. Darker
points have higher maximum eigenvector element magnitude, indicat-
ing they contribute more to one or more of the retained components in
the principal subspace
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Fig. 4 Standard attack results using same- and cross-device templates
without the MVN technique. The percentage of correctly extracted key-
bytes in 100 trials is indicated by the color of the block. Percentages
≥90 and <100 % are highlighted with a box
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Table 2 Standard template attack cross-device key-byte extraction suc-
cess rate using correlation-based selection of distinguishing features
(without the MVN technique)

Test device Training device

A (%) B (%) C (%) D (%)

A 59.7 4.3 5.2 5.1

B 13.1 63.0 68.3 70.2

C 11.6 67.9 63.7 69.5

D 14.7 69.8 69.2 70.3

is the poor results for intra-group attacks which construct
templates using many of the same samples as distinguishing
features. The poor results are due to location and spread dif-
ferences in the distributions for collected side-channel emis-
sions at the points used as distinguishing features for training
and test data. For example, Fig. 1 shows the distribution of
sample #972 for 5,000 observations in each set of training
traces. Since the test data collected for each device is consis-
tent with the distribution of the training data from that device,
it is not shown separately.

5.3 MVN technique results

The template attack results can be improved by transforming
the test data to match the distribution of the training data or
by mapping both the training and test data to the standard
normal. This transformation is performed separately for the
data from each distinguishing feature before templates are
built. These template attacks are performed with 5,000 train-
ing traces and 30 test traces. Unlike the attacks in [13] which
normalized the data using 50,000 measurements, only the 30
test traces in each trial are used to estimate the distribution
of the test data. Since the main benefit of template attacks
is the low number of test traces required, limiting the num-
ber of traces used for normalization is more realistic. Using
this simple pre-processing step, the successful byte extrac-
tion rate is improved for cross-device attacks for both the
same part number and similar devices.

The correlation-based template attack is repeated after
pre-processing the training data and each of the 100 test trace
sets for each device. The results are shown in Fig. 5 and
Table 3. With the MVN technique, any device from groups
B, C, or D can be used to successfully attack any test device in
groups B, C, or D. Any device in group A can be used to attack
any device within that group. The worst same-part-number
performance was using A9 to attack A5 where the correct
key-byte was returned in only 94.4 % of the attacks. Device
D3 has the “poorest” results as a training device when attack-
ing similar devices with only 98.7 % of bytes-correct for
devices in groups B–D; however, in practice such an attack
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Fig. 5 Results from same- and cross-device template attacks using
MVN technique with correlation-based distinguishing features. The
percentage of correctly extracted key-bytes is indicated by the color
of the block. Percentages ≥90 and <100 % are highlighted with a box

Table 3 MVN-enhanced cross-device key-byte extraction success rate
for matched distribution correlation-based template attack

Test device Training device

A (%) B (%) C (%) D (%)

A 99.9 70.0 70.3 67.8

B 58.8 100.0 100.0 99.9

C 64.8 100.0 100.0 99.9

D 61.5 100.0 100.0 99.9

would likely be successful. The MVN technique also dramat-
ically improves the percentage of bytes correctly identified
when attacking between groups B–D and group A.

A same-device attack can be performed successfully for all
40 devices using 1–4 training traces. For same-device attacks,
normalizing the training and test data reduces the posteriori
probability of the correct key-byte guess found during the
classification step for an equivalent number of traces, but the
correct key-byte is still chosen based on the ML decision rule.
The additional traces required for cross-device attacks allow
the distribution of the test data to be estimated accurately. It
is important to note that plaintexts only need be known for
traces used in the classification process and not for all traces
used to estimate the distribution. In this case, 30 traces were
used for both distribution estimation and classification.
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Fig. 6 Results from same+ and cross-device template attacks using
MVN technique with bit-wise PCA performed on the distinguishing
points vectors found using correlation analysis. The percentage of
correctly extracted key-bytes is indicated by the color of the block.
Percentages ≥90 and <100 % are highlighted with a box

5.4 PCA-based attack

The PCA-based attack incorporates the MVN processing
step. Normalizing the mean and variance is a common PCA
pre-processing step when data are collected using various
scales for different dimensions. It is not clear if this step is
performed in [2,6], as testing showed it is not necessary for
same-device template attacks.

The PCA-based attack uses eight distinguishing features
generated by transforming the training data and test data
using W found using (14) and performing a byte-level tem-
plate attack. The PCA-based template attack is repeated 100
times for each training and test pair and the success rate is
shown in Fig. 6. Cross-device byte extraction success rate is
shown in Table 4. Although all same-device attacks are suc-
cessful, a small number of the attacks within a group only cor-
rectly recover 15 of 16 bytes. The number of bytes correctly
extracted when training using devices in group A to attack
devices in group B–D is significantly lower than for attacks
using the same test traces with the correlation-based distin-
guishing feature selection process. The PCA-based attack
can be improved by increasing the number of principal com-
ponents retained for each byte (or bit) or by performing
PCA only on the points identified using the correlation-based
selection process.

Table 4 Cross-device key-byte extraction success rate for MVN PCA-
based template attack

Test device Training device

A (%) B (%) C (%) D (%)

A 99.6 30.4 29.9 30.0

B 16.7 100.0 100.0 99.7

C 17.3 100.0 100.0 99.7

D 19.5 100.0 100.0 99.7

These numbers do not include the same-device attacks

5.5 Comparison of attacks

This section examines how the MVN technique affects the
probability of successful key-byte extraction for a single
training and test device pair. The correlation-based and PCA-
based template attacks are performed using A1 as the training
device and A5 as the test device. This pair is chosen because
the MVN technique improves the results for both the corre-
lation and PCA-based attacks for 30 traces. The attacks in
Figs. 4, 5 and 6 are performed using sets of 30 traces from
the 500 collected test traces for each device. The number of
traces required to perform each type of attack is evaluated
below.

When using a Bayesian classifier, the order in which traces
are processed theoretically does not matter. In practice, traces
may be ignored if they cause the denominator of (9) to be
zero. This occurs frequently for cross-device attacks without
the MVN technique when the test data samples have different
distributions than the training data.

To randomize the order traces are added to the template
attacks, 500 permutations of the 500 test trace indices are
generated to specify trace order. The percent of bytes correct
in Figs. 7 and 8 are the percentage of bytes correct across all
16 key-bytes using the template attack for the 500 randomly
generated trace orders. The same 500 trace orders are used
for each template attack methodology.

Same-device template attacks are very effective using only
a small number of traces. All results in Fig. 7 are performed
using only the indicated number of test traces for both nor-
malization and classification. As expected, for a low number
of traces, i.e., less than 15, where the distribution of each
sample cannot be accurately estimated, using MVN for same-
device attacks dramatically reduces the effectiveness of the
attack. However, for a same-device attack the standard tem-
plate attack methodology can be used.

For A1–A5 cross-device correlation-based attacks, a rel-
atively poor successful byte extract rate of approximately
28 % is achieved after 15 traces without the MVN tech-
nique. The PCA-based template attack gradually improves to
51.3 % for 30 traces. The A1-A5 cross-device attacks, how-
ever, are greatly enhanced by the MVN technique with 99.6 %
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Fig. 8 Using additional traces to estimate the distributions improves
the results for MVN technique-based attacks. When 500 traces are used
for the MNV process (denoted 500), with the indicated number of plain-
texts, the results for both the correlation-based (CORR) and PCA-based
MVN attacks improve

successful byte extraction by 15 traces for the correlation-
based attack and 99.1 % successful byte extraction by 30
traces for the PCA-based attack.

Figure 8 shows the benefit of using more traces to esti-
mate the distributions before normalization. By performing
the MVN technique on all 500 traces before using the traces
for classification, fewer traces are needed to achieve the same
percentage of correct bytes for both correlation- and PCA-
based cross-device template attacks. Using 500 traces for

the MVN processing technique, the correlation-based attack
reaches 90 % successful extraction in six traces. It takes nine
traces to reach the same byte extraction rate when only traces
with plaintexts are used to estimate the distribution. Using
500 traces for MVN, the PCA-based attack reaches 90 %
at nine traces. When only using the traces with plaintexts,
13 traces are required before the 90 % extraction rate is
reached.

6 Conclusion

This research explores whether similar devices can be used
as effective training devices for a template attack. It was
shown that while template attacks based on mean and covari-
ance matrices work well for attacking the same device on
which the training traces are collected, the slight differences
in emissions from similar devices may be sufficient to cause
a template attack to fail. However, if the zero mean, unit vari-
ance normalization (MVN) technique is used to pre-process
both the test and training data before building templates,
the effectiveness of cross-device template attacks is signifi-
cantly improved. These results are consistent with the ben-
efit of the MVN technique utilized in [13] for differences in
measurement conditions and device age for training and test
data.

Additionally, the distinguishing features selected may be
different from device to device, even for devices with the
same part number produced in the same lot. If enough dis-
tinguishing features are different between two devices, the
template attack will fail. To improve the effectiveness of a
template attack the attack should try to get an identical device.
Even small changes such as internal peripherals are suffi-
cient to degrade the byte extraction success rate. While the
goal for a same-device attack is to reduce the number of dis-
tinguishing features to make the templates easier to create,
increasing the number of distinguishing features improves
the cross-device attack success rate.

Ultimately, the original assumption that training and tar-
get devices have sufficiently similar side-channel emissions
in [1] is validated with an added caveat that device-dependent
differences in sample means and variances must be compen-
sated for before performing the template attack.

One limitation of the MVN technique is that sufficient
traces from the target device must be available to estimate
sample distributions accurately. This is a drawback of the
MVN technique, but nevertheless it allows for successful
attacks that would fail otherwise. Furthermore, even if a rel-
atively large number of traces are required to estimate the
distribution, only a small number of plaintext or ciphertext
must be known for the classification process.
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