
J Cryptogr Eng (2012) 2:129–141
DOI 10.1007/s13389-012-0034-2

REGULAR PAPER

Protecting AES against side-channel analysis using wire-tap codes

Julien Bringer · Hervé Chabanne · Thanh Ha Le

Received: 7 October 2011 / Accepted: 30 May 2012 / Published online: 24 June 2012
© Springer-Verlag 2012

Abstract We introduce a general protection of data against
side channel analysis (SCA) based on wire-tap codes. We
focus in this paper on an application for the AES cipher.
We analyse the behaviour of our countermeasure against dif-
ferent kinds of SCA. Our results show that this protection
is an excellent alternative to classical masking methods as it
comes with the secrecy property of wire-tap coding, practical
resistance against first and second-order DPA. Moreover, we
point out that it brings two novel features: the possibility to
unmask without the knowledge of the mask and its capability
to detect some faults.

Keywords Side channel analysis ·Wire-tap codes ·
AES cipher

1 Introduction

Side-channel analysis (SCA) has been introduced to recover
secret data that are inputs of a cryptographic algorithm. SCA
exploits the physical characteristics of the physical token
where the algorithm is implemented. Namely, it exploits
its leakage (timing, power consumption, electromagnetic

This work has been partially funded by the JST/ANR SPACES
(Security evaluation of Physically Attacked Cryptoprocessors
in Embedded Systems) project.

J. Bringer · H. Chabanne · T. H. Le
Morpho, Issy-Les-Moulineaux, France
e-mail: julien.bringer@morpho.com

T. H. Le
e-mail: thanh-ha.le@morpho.com

H. Chabanne (B)
Télécom ParisTech, Paris, France
e-mail: chabanne@telecom-paristech.fr;
herve.chabanne@morpho.com

emanations) made during the execution of this algorithm.
Statistical treatments are then performed to extract secret
data from all the captures.

One-time pad is proven information-theoretically secure.
It simply consists in adding to a plaintext a random value.
This kind of encryption can be seen as a basis for masking
methods used in order to prevent SCA [3,6]. On one hand,
the simplicity of the needed operations is certainly an asset
for such a protection. Typically, for many block ciphers, this
corresponds to the so-called boolean masking which simply
consists in an exclusive-or performed between the input of
the cipher and a random value, here called mask. This led in
recent years to a lot of papers devoted to the implementations
as [1,20].

On the other hand, these masking methods leak informa-
tion when an adversary has access to several intermediate
leakage values obtained from the encryption of a message
under the same key. This gives birth to sophisticated attacks
as high-order side-channel analysis. For instance, differ-
ent high-order differential power analysis (DPA) methods
have been discussed in [3,8,12,19]. The mutual informa-
tion analysis (MIA) in high-order analysis is also formalized
in [5,18].

To enhance security against higher-order DPA, a few mas-
king techniques are suggested. In particular, it is possible to
use several random additive masks at the same time [20] to
ensure provable security against higher-order DPA (d masks
for security against (d− 1)th-order DPA). Affine masking is
another solution that was first discussed in [24] and recently
further studied in [4] that combines additive masking and
multiplicative masking (either as a linear multiplication by a
matrix or as a field multiplication). Compared with multiple
padding, [4] shows that the affine masking is provably secure
only at first order DPA but that it can achieve higher order
resistance against DPA in practice (i.e. an important number

123



130 J Cryptogr Eng (2012) 2:129–141

of consumption traces is needed). Affine masking is based
on a mapping x ∈ {0, 1}k �→ x .L ⊕m where m is a random
element in {0, 1}k and L is either a random linear bijection
in {0, 1}k [24] or a random element in G F(2k) [4].

Note that many other masking methods, not based directly
on additive or multiplicative masking, have been designed
for block ciphers implementations, in particular for the AES,
see for instance [1,2,9,14,17]. Nonetheless, improvements
or new methods are still requested to increase the resistance
against more and more advanced high-order attacks.

In this paper, we consider another secrecy system, namely
the wire-tap channel. [25] has shown a way to convey infor-
mation confidentially whenever a receiver enjoys a better
channel than its adversary does. Indeed, thanks to coding
theory, it is proved that when an adversary has access to less
than a certain amount of the transmitted data, he has no clue
on what the original information was (cf. Sect. 2). We here
show how this coding problem can be brought to SCA coun-
termeasures. One has to imagine the wire-tapping opponent
in this context as the eavesdropper making its leakage mea-
surements. Wire-tap security thus ensures a natural resistance
against different captures of the same computation.

We introduce a new masked version of the AES following
to this principle of wire-tap channel. Our masking method
is based on the mapping x ∈ {0, 1}k �→ x .L ⊕ c ∈ {0, 1}n
where c is a random codeword from a well-chosen code of
length n and L is a linear transformation from {0, 1}k into
a subspace of {0, 1}n . This method can be interpreted as an
improvement of the affine masking to the wire-tap channel
context. Our proposal has the property that the length of the
message is expanded during the protection. Due to wire-tap
secrecy this gives us a secure simple power analysis resistant
masking, and we show that it also achieves first and second-
order resistance in practice. As a side effect of the presence
of error correcting codewords, we can efficiently detect the
presence of some faults during an execution of the algorithm.

Our protection technique has the unique property that one
can unmask without the need to use the mask itself. In [23],
the authors show how to mount an High Order DPA attack
on the AES using at the same time both the masked value
and its mask. With respect to this result, we can stress the
importance of this asset of our proposal. To the best of our
knowledge, our countermeasure is the sole masking solution
with this feature.

Finally, we also confront our method of protection of AES
to different scenarios of side channel analysis.

2 Wire-tap codes

2.1 Wire-tap principle

The wire-tap channel problem was first introduced by Wyner
[25] in 1975 and later extended in [16]. The context is a

Fig. 1 Erasure wire-tap channel

transmission channel (noisy or not) between two parties Alice
and Bob where an eavesdropper Eve can only see a degraded
version of the transmitted messages. Assume that the channel
between Alice and Bob is noiseless, then it means that the
transmission channel from Alice to Eve (or from Bob to Eve)
is either with noise or with erasures. We consider here the
second case, i.e. the erasure wire-tap channel [16]. This is
illustrated by Fig. 1 where BEC(ε) stands for Binary Erasure
Channel with a probability of ε to have an erasure.

The principle to encode a secret message in the context
of an erasure wire-tap channel is the following. To transmit
k-bit messages, a binary linear code C of length n is chosen
and each message is associated to a coset of C in such a
way that it is not possible for Eve to gain information on the
transmitted message when observing at most μ < n bits of
the encoded message. More precisely, let

– G be a generator matrix of size (n − k) × n of C , with
rows (g1, . . . , gn−k),

– L = (l1, . . . , lk) be a family of k linearly independent
vectors from {0, 1}n , not in C ,

– m = (m1, . . . , mn−k) be a uniformly random vector of
(n − k) bits,

then a message x = (x1, . . . , xk) in {0, 1}k is encoded as

z = x .L ⊕ mG (1)

where x .L = x1l1⊕ · · · ⊕ xklk ∈ {0, 1}n and c = mG is the
random codeword related to m (c = m1g1⊕· · ·⊕mn−k gn−k).
Here L and G are in fact chosen such that (g1, . . . , gn−k,

l1, . . . , lk) span the entire space vector {0, 1}n .

Let H be the parity matrix of C , i.e. the k×n matrix such
that for all c ∈ C , HcT = 0.

2.2 Wire-tap secrecy

In this construction, the information rate of the channel is
R = k/n (1 minus the information rate of C). Tolerating an
information rate below 1 enables to resist to the leakage of
some bits to an eavesdropper.

Indeed, consider the received message z̃ by Eve. Eve has
to search which coset of C corresponds to z̃. A coset will
correspond to z̃ if it contains at least one vector that is equal
to z̃ ∈ {0, 1}n in the unerased positions. The maximum value

123



J Cryptogr Eng (2012) 2:129–141 131

for the total number of cosets of C that correspond to z̃ is 2k in
this construction. When this is reached for any input message,
this means that the conditional entropy H(X |Z̃ = z̃) is equal
to the entropy of X , i.e. k. This leads to perfect secrecy. A
way to ensure this condition is given by the following result.

Lemma 1 [15,22] Let C be a linear code with a parity
matrix H = (h1 · · · hn) of size k × n where hi is the
i-th column of H. Consider an eavesdropper’s observa-
tion z̃ ∈ {0, 1, ?}n with n − μ erased positions given by
{i s.t. zi = ?} = {i1, i2, . . . , in−μ}. Then the original mes-
sage x remains perfectly secret if and only if the sub-matrix
H̃ = (hi1 · · · hin−μ) is of rank k.

Therefore, to achieve perfect secrecy in the above con-
struction against eavesdropping of any μ bits of the trans-
mitted message, it is necessary and sufficient that the parity
matrix H of the code C satisfies that all of its k × (n − μ)

sub-matrices have rank k. It is known [10] that this is equiv-
alent to having a minimum distance equal to μ + 1 for the
code generated by H , i.e. for the dual code of C. This implies
that μ ≤ n − k and the optimal choice for given parameters
n, k is to take for C the dual code of an [n, k, d] binary linear
code with the greatest possible minimum distance d.

Various constructions for efficient wire-tap channels are
studied under the constraints of high information rate, encod-
ing/decoding performances and approaching secrecy capac-
ity (see for instance [22]). In our case, we will consider small
values for n and k so we will rely on more classical code con-
structions.

3 Protecting AES with wire-tap codes

In the following, we explain—based on the application to
AES—how to protect a block cipher algorithm against side-
channel analysis by embedding wire-tap codes.

3.1 Brief description of AES

AES [13] takes as input a 16-byte block and consists mainly
in the iteration of a round. The 16-byte block is represented
as a 4×4 square called a state and is subject to the following
operations:

– AddRoundKey: this operation adds a round key to the
state by a bitwise XOR operation;

– SubBytes: the non-linear byte substitution operates
independently on each byte (each byte is replaced with
another according to a lookup table);

– ShiftRows: it is a permutation on the 16 bytes where
each row of the state is shifted cyclically a certain number
of times;

– MixColumns: this operation treats each column of the
state as a 4-byte vector and multiplies it by a matrix.

The high-level description of the AES-128 algorithm is given
below:

1. Key Expansion: round keys K0, . . . , K10 are derived
from the cipher key using Rijndael’s key schedule,

2. AddRoundKey(K0)
3. for i from 1 to 9:

(a) SubBytes;
(b) ShiftRows;
(c) MixColumns;
(d) AddRoundKey(Ki ).

4. SubBytes;
5. ShiftRows;
6. AddRoundKey(K10).

3.2 Our proposal

3.2.1 Notations

Let k be the number of bits in the secret data handled in
a cryptographic algorithm. The objective is to encode the k
data bits into n > k bits, such that an adversary who observes
a bit subset of size μ < n can gain no information on the
secret data. We choose a code C with a generator matrix G
and a parity matrix H , a set L = (l1, . . . , lk) of k linearly
independent vectors from {0, 1}n\C and we encode a vector
x = (x1, . . . , xk) ∈ {0, 1}k as explained in Sect. 2:

z = x .L ⊕ c (2)

where x .L = ∑k
i=1 xi li (sum modulo 2) and c = m.G is a

random codeword.
The code C is constructed in advance by selecting its

parity matrix H as the generator matrix of an [n, k, μ + 1]
binary linear code and L can be computed later. The k lin-
early independent n-bit vectors l1, . . . , lk can be fixed for
each target component. For example for smart cards, the set
L = (l1, . . . , lk) can be separately computed for each card
during the personalization step.

Remark 1 In the following, we will consider k = 8, i.e. that
the wire-tap masking is applied at the byte level (fitting to
input’s size for AES S-boxes).

When transforming the encryption algorithm to operate on
masked data, the main overhead comes from the definition of
new S-boxes compatible with such wire-tap representation.
As for classical additive masking, for efficiency reasons we
may prefer to use the same mask for all bytes (and all rounds).
We consider this option in the following description of the
masked algorithm.

Nevertheless, if memory size is not a concern we can eas-
ily use different codewords for each byte and each round
(cf. Sect. 3.2.4).

123



132 J Cryptogr Eng (2012) 2:129–141

3.2.2 Generation of L

We give below a short description of an algorithm to ran-
domly generate L .

In order to compute the set L = (l1, . . . , lk) of k linearly
independent n-bit vectors which are not in C , we can proceed
as follows:

– Take randomly an n-bit vector ltest then verify if the vec-
tor is in the code C by applying the parity matrix H (e.g.
by computing the product HlT

test).

– If the product HlT
test is zero, which means that the

vector ltest is in the linear code C , then restart by
taking another random vector.

– If the product HlT
test is different from zero, define l1 =

ltest and continue to generate l2 until lk .

– After each iteration, a Gaussian elimination algorithm can
be used to determine if the generated vectors are indepen-
dent. For instance, when constructing li , if l1, . . . , li−1,

ltest are correlated then iterate again with another ltest to
find li .

For our setting, this generic algorithm is efficient enough as
n and k remain quite small.

The set L can also be regenerated from time to time after
some number of utilizations.

3.2.3 Pre-configuration

In the context of the wire-tap code masking, we first
define new operations AddRoundKey′, ShiftRows′ and
MixColumns′ from the original linear operations

AddRoundKey, ShiftRows and MixColumns
such that they are compatible with the wire-tap representation
x .L ⊕ c.
AddRoundKey′ has to expand the key by wire-tap encod-

ing before the exclusive-OR operation. ShiftRows′ and
MixColumns′ are modified such that they operate linearly
on a larger state. More details are given in Sect. 3.2.5.

3.2.4 Preliminary step

The preliminary step below is computed before encryption.
Let c, c′ be two random codewords from the code C , then we
define a new S-box SubBytes′ as:

SubBytes′(x .L ⊕ c) = SubBytes(x).L ⊕ c′

The look-up table associated to SubBytes′ is then
defined over {0, 1}n . This leads in general to a size of 2n × n
bits. Here, as only 2k entries are possible, we can manage
to store it on 2k × n × 2 by representing it as a list of 2k

couples of n-bits input/output vectors; the factor of expan-
sion becomes 2n/k. For efficiency reasons, we use the same
codewords, i.e. the same SubBytes′, for all rounds of the
algorithm.

Nevertheless, independent choices could be envisaged if
the memory size is sufficient. This requires at most 2k × n×
320 bits. Using a different codeword for each byte and each
round ensures in principle higher security as wire-tapping by
an adversary would need in that case to success in a shorter
time frame. As for classical masking, the trade-off between
using one transformed S-box and at most 160 different trans-
formed S-boxes has to be tuned depending on the context.

By default, new codewords are drawn before each encryp-
tion. Note however that due to the secrecy property of the
wire-tap codes, you could use several times the same code-
words if you can ensure that the overall number of leaked
bits remains lower than the security bound μ.

Remark 2 For instance, with n = 12 (respectively n = 16),
the required memory for one transformed S-box is 768 bytes
(resp. 1,024 bytes); this corresponds to an expansion factor
of 3 (resp. 4).

3.2.5 Transformation of the encryption algorithm

We explain below the new version of the algorithm when pro-
tected by wire-tap encoding. This corresponds to the oper-
ations that are executed at each encryption. Let x the input
message to be encrypted.

We have the following steps (to simplify the description
of the masking we consider only one byte for x , whereas of
course the whole state is to be masked):

– Take c and c′ at random and define SubBytes′ as above.
– Draw another random codeword c1 and let c2 ← c⊕ c1.

– Compute z← x .L ⊕ c1

– Compute z← AddRoundKey′(K0)(z)⊕ c2

(i.e. z = AddRoundKey′(K0)(x .L⊕ c1)⊕ c2 = (K0⊕
x).L ⊕ c)

– for i from 1 to 9

– z← SubBytes′(z)
(this gives z = SubBytes(K0 ⊕ x).L ⊕ c’)

– z← ShiftRows′(z)
(it leads to z = ShiftRows ◦ SubBytes(K0 ⊕
x).L ⊕ ShiftRows′(c′))

– z← MixColumns′(z)
(z = MixColumns ◦ ShiftRows ◦ SubBytes
(K0 ⊕ x).L ⊕ MixColumns′ ◦ ShiftRows′(c′))

– z← AddRoundKey′(Ki )(z)⊕ c2 = z⊕ Ki .L ⊕ c2

– z← z ⊕ c1 ⊕ MixColumns′ ◦ ShiftRows′(c′)
i.e. z = (Ki⊕
MixColumns ◦ ShiftRows ◦ SubBytes
(K0 ⊕ x)).L ⊕ c

123



J Cryptogr Eng (2012) 2:129–141 133

– SubBytes′
– ShiftRows′
– AddRoundKey′(K10) ⊕ c3 ⊕ ShiftRows′(c′) with

some random codeword c3

(this leads to y.L ⊕ c3 where y is the output value of the
encryption via a non-masked AES implementation)

– Apply the parity matrix H and invert H(y.L)T to obtain
the final result y (see Sect. 5 for an efficient solution)

Note that, above, the input message, the intermediate mes-
sages and the round keys as well are always masked by some
codewords when manipulated.

AddRoundKey′, ShiftRows′ and MixColumns′
are defined in the following way to be compatible with the
wire-tap representation (cf. Sect. 3.2.3):

– AddRoundKey′(Ki )(x .L) =(
AddRoundKey(Ki )(x)

)
.L = (x ⊕ Ki ).L , for all x ∈

{0, 1}8, for all i ∈ {0, . . . , 10};
– ShiftRows′(x4.L4) = ShiftRows(x4).L4 for all

x4 = (x (1), x (2), x (3), x (4)) ∈ {0, 1}4×8;
– MixColumns′(x4.L4) = MixColumns(x4).L4, for

all x4 ∈ {0, 1}4×8.

where AddRoundKey′(Ki ) is basically the XOR between
its input and Ki .L and ShiftRows′, MixColumns′
are defined to be linear operations over 4 n-bit words
(ShiftRows operates row per row of the AES state and
MixColumns column per column of the AES state, the
state being a 4×4 bytes array). This representation increases
at most the size by a factor n/k as the expansion is linear.
Above, L4 = (L(1), L(2), L(3), L(4)) corresponds to the con-
catenation of four vectors of k = 8 linearly independent n-bit
vectors (either four different or four times the same L) and
x4.L4 is x (1).L(1) + x (2).L(2) + x (3).L(3) + x (4).L(4).

These calculations are easy to perform because the oper-
ations are linear and done only once after the generation of
L (that is set for once or renewed after some number of uses;
and thus inexpensive in performance with respect to execu-
tion of an encryption). They can be done by both software
and hardware implementations.

4 Properties and extensions

4.1 Simple power analysis

The consumption of the new S-boxes SubBytes′ now
depends on inputs/outputs encoded via the wire-tap codes.
Thus by definition, if an adversary recovers less than μ bits
through one or several observations of the encryption through

the same choices of codewords c and c′, then by Lemma 1
he cannot gain information on the original inputs/outputs of
SubBytes. Moreover, as the length n (and consequently μ)
can be chosen large at the time of the set-up of the implemen-
tation, it is theoretically possible—assuming1 that the num-
ber of bits that can be read out by an adversary is bounded by
a constant independent of n—to thwart side-channel analysis
with large number of leaked bits.

4.2 First order DPA

Similarly to classical additive masking, the resistance against
Differential Power Analysis at the first order is achieved
thanks to the masking of the values x .L . The mask is (or
derived from) a random codeword which is not a random
vector from {0, 1}n . But as illustrated by our experiments in
Sect. 6, this difference affects the security only when the size
n− k of the code C (thus the number of possible codewords)
is too small. When n − k increases, the difficulty increases
as well and this enables to obtain parameters which achieve
resistance against first order DPA that is almost the same
as the resistance obtained with classical additive masking
technique.

4.3 Higher order DPA

In our construction, the length of the encoded bytes can
be increased. This is an important difference with classical
masking technique and this is an interesting feature when
studying second-order DPA. The results in Sect. 6 confirm
that the efficiency of the second-order side-channel attack
decreases when the size n increases.

Moreover, we illustrate in Sect. 6.4 another way to achieve
implementations that are resistant to second order DPA in
practice by keeping the vector L unknown. This is somehow
close to affine masking techniques from [4,24]: we show in
Sect. 6.4 that the specific structure of wire-tap codes—while
enabling new properties that are discussed further below—
still enables us to achieve in practice second-order resistance.

4.4 Unmasking without masks

An additional feature that comes with our technique is the
possibility to unmask without the knowledge of the final
codeword used. This is due to the parity matrix H that can-
cels out all codewords. It avoids to manipulate the mask at
the last step of the algorithm that is usually a phase where an

1 This assumption may seem unusual at first glance. However, note
that for side-channel analysis we usually measure consumption traces
that depend on the Hamming weight of the variables. This is in fact
equivalent to the knowledge of one bit.

123



134 J Cryptogr Eng (2012) 2:129–141

adversary could try to capture the mask when retrieved from
the memory.

A usual scenario for a DPA attack is when the adversary
knows the ciphertexts and wants to attack the last rounds.
For instance, one can imagine a classical masking scheme.
In this case, [23] considers two relevant points in time which
occur during a small period of time and which are dependent
on the masked value and its mask:

– The adversary measures the effect of the masked opera-
tions during the last rounds of the encryption.

– At the end of the AES encryption, the adversary measures
the consumption when the random mask is retrieved to
unmask the result.

To mount its HO-DPA attack, the adversary has to combine
the elements coming from these two points in time.

In this context, the possibility to unmask without the use
of the mask is clearly an asset.

To increase the difficulty, we can moreover choose to pre-
compute the masking version of the final round key (K10.L⊕
c3 ⊕ ShiftRows′(c′)) at some random place during the
encryption.

For specific choices of C and L , this possibility can be
generalized to all unmasking steps by using the parity matrix
H1 (respectively H2) of the code

MixColumns′(ShiftRows′(C))

(resp. ShiftRows′(C)), and choosing L not in these codes
either. See Sect. 5 for an explanation on the way to unmask
directly with a parity matrix.

5 Practical construction

To achieve efficient encoding/decoding phases, we can cho-

ose H in a systematic form, i.e. H =
(

Ik |M
)

where Ik is the

identity matrix of size k×k and M a matrix of size k×(n−k).

This implies that the generator matrix G can be written as

G =
(
− MT |In−k

)
. Now define for i ∈ {1, . . . , k}, li the

vector with all zeros but a 1 at position i , then an encoded
message of x is z = (x1, . . . , xk, 0, . . . , 0) ⊕ c for some
random codeword c. To recover x , one then simply applies
H to obtain:

H zT = H(x1, . . . , xk, 0, . . . , 0)T ⊕ HcT

= Ik .(x1, . . . , xk)
T ⊕ M.(0, . . . , 0)T ⊕ 0

= (x1, . . . , xk)
T

This can be seen as additive masking with some additional
algorithmic noise to enable syndrome decoding through the
parity check matrix. This is one option studied in our eval-

uations in Sect. 6. We also analyse the situation where L is
chosen more randomly in order to mix the bits of x and thus
to hide its Hamming weight.

In practice, the possible values for the choice of M are
directly related to the existing [n, k = 8, μ + 1] binary lin-
ear codes as discussed in Sect. 2. For instance, the highest
possible μ for n = 16 is μ = 4 as the highest minimum
distance is obtained for a [16, 8, 5] code (cf. [7]). This can

lead to H =
(

I8|M
)

with:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

10001011
11000101
11100010
01110001
10111000
01011100
00101110
00010111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For higher value of μ, the length n can be increased: for
instance we can use an [25, 8, 9] code to tolerate up to μ = 8
leaked bits.

5.1 Unmasking

This is a good construction to illustrate how to unmask (or to
transform a masked value into another masked one) directly
at an intermediate step without using the original mask thanks
to the parity matrix properties. Assume that you have

z = x ⊕ MixColumns′(ShiftRows′(c′))
and that you want to obtain x ⊕ c without making use of the
mask c′. In this setting, you can proceed as follows:

1. z← z ⊕ (c1, . . . , ck, 0, . . . , 0)

2. Compute z← H1zT to obtain z = x ⊕ (c1, . . . , ck)

3. Output (z1, . . . , zk, ck+1, . . . , cn)

This doing a given mask can be manipulated only to mask,
and not at the unmasking step: this reduces at the minimum
the risk of an adversary eavesdropping the mask.

5.2 Fault detection

Finally it is possible to use the wire-tap encoding of a message
to add a kind of fault detection step by exploiting the fact that
an encoded message x has a special format (z = x .L ⊕ c):
Apply H to zT to obtain H(x .L)T , invert the result to recover
x , compute z′ = x .L ⊕ c and check whether z = z′.

For H chosen in a systematic form and

x .L = (x1, . . . , xk, 0, . . . , 0)

123



J Cryptogr Eng (2012) 2:129–141 135

as explained above, some specific faults can be detected: if
there are some bit flips in the n − k last positions of z, i.e.
z = (x1, . . . , xk, y1, . . . , yn−k) ⊕ c for some vector y =
(y1, . . . , yn−k). The operation H zT will lead to xT ⊕ MyT

for which the check will fail if MyT is a non-zero vector.
Note that although the use of coding techniques and fault

detection is not new, see for instance [11], the main idea
here is to be able to combine masking and some detection
capability on the same method.

6 Evaluation results

6.1 Power consumption models

Let VK = {VK ,i }i=1..N denote the predictions of an interme-
diate value corresponding to messages mi and a key hypoth-
esis K ; W = {Wi }i=1..N denote the values of N side-channel
signals at the instant t where the intermediate value is manip-
ulated. We define ϕ(VK ) a selection function. In this analysis
ϕ(VK ) represents the Hamming weight of VK , i.e. the selec-
tion function ϕ is the Hamming weight of the intermediate
values.

In our evaluations, we observe the output of an AES Sbox.
We also consider that the relation between the power con-
sumption and the Hamming weight of the Sbox output is
linear. The observations Wi corresponding to messages mi

are then simulated as: Wi = ϕ(VK0,i ) + B where K0 is the
correct key and B is a Gaussian noise whose variance is σ 2.

Masking is a common solution to protect the device
against first-order analysis. The idea behind this technique
is to mask intermediate values by random masks. Let con-
sider the intermediate value VK0,i corresponding to message
mi . With the masking technique, the device manipulates the
masked data VK0,i ⊕ Mi instead of the direct value VK0,i .

Let t1 and t2 denote the instants when the mask Mi and the
masked data VK0,i ⊕ Mi are manipulated. The power con-
sumption W1 at t1 and W2 at t2 are simulated as follows:

W1,i = ϕ(Mi )+ B1

W2,i = ϕ(VK0,i ⊕ Mi )+ B2

where B1 and B2 are Gaussian noises whose variances are
σ 2

1 = σ 2
2 = σ 2.

The second-order analysis aims at studying the depen-
dency between three components: the observations W1 at t1
and W2 at t2 and the prediction ϕ(VK ). In [12], Messerges
focused on one bit and proposed to compute the correlation
factor between the value of this bit and the absolute difference
of two observations W1 and W2 (the abs-diff-DPA method).
Chari et al. [3] suggested to calculate the correlation fac-
tor between ϕ(VK ) and the product of two observations W1

and W2 (the product-DPA method). In [19], it was shown

that by replacing the product W1W2 by the centered prod-
uct (W1− E(W1))(W2− E(W2)), the product-DPA attack is
significantly improved (the centered-product-DPA method).

Here, we have followed the strategies that are described
above in the case of additive masking but by adapting them
to the wire-tap code: we simulate the intermediate values as
n-bit variables and we add additional Gaussian noise. We
consider two instant t1 and t2 corresponding to the following
leakages:

W1,i = ϕ(ci )+ B1

W2,i = ϕ(xK0,i .L ⊕ ci )+ B2

where xK0,i is the Sbox output corresponding to the correct
key and the message mi ; codewords ci is generated by the
generator matrix G.

In our evaluation of the scheme, we use the Correlation
Power Analysis (CPA) and Mutual Information Analysis
(MIA) methods to evaluate the resistance of the proposed
solution in first-order and second order analysis. In first-
order analysis, only W2,i is considered while in second-order
analysis both W1,i and W2,i are combined. For the second-
order CPA, the centered-product method is used to optimize
the analysis as shown in [19].

6.2 Evaluation index

In order to evaluate our results, we use the success rate of
order 1 (or simply success rate) defined in [21] as the security
metric. The success rate represents the probability that the
correct key is sorted first by an adversary. In our evaluation,
1,000 repeated experiments were computed to calculate the
success rate.

6.3 Matrix L is known

In this section, we suppose that the matrix L is known, it
means that the attacker can compute the value of xK ,i .L
where xK ,i is the prediction of the Sbox output correspond-
ing to the key hypothesis K and the message mi . The random
codewords ci are generated by the generator matrix G and
unknown for attacker.

Two types of matrix L are considered. The first one has a
simple form by choosing Lsimple = (l1, . . . , lk) (k = 8) as
follows:

l1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0]
l2 = [0, 1, 0, 0, 0, 0, 0, 0, 0, . . . , 0]
l3 = [0, 0, 1, 0, 0, 0, 0, 0, 0, . . . , 0]
l4 = [0, 0, 0, 1, 0, 0, 0, 0, 0, . . . , 0]
l5 = [0, 0, 0, 0, 1, 0, 0, 0, 0, . . . , 0]
l6 = [0, 0, 0, 0, 0, 1, 0, 0, 0, . . . , 0]

123



136 J Cryptogr Eng (2012) 2:129–141

l7 = [0, 0, 0, 0, 0, 0, 1, 0, 0, . . . , 0]
l8 = [0, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0]

The second type has a specific form which generates mix-
tures of the bits of x . As explained previously, the k linearly
independent n-bit vectors L = (l1, . . . , lk) can be different
from a card to another and randomly generated. According
to our analysis, we observe that when L is known the resis-
tance of the wire-tap based masking against first-order and
second-order analysis does not really depend on the choice
of the form of L . We obtain similar results with a simple-
form matrix L and a specific-form matrix L . Therefore, in
this section, we present only the results related to matrices L
in the simple form. The evaluation results corresponding to
specific-form matrices L are given in Appendix A.

In the following subsections, we evaluate the influence of
the code C on the resistance of the wire-tap based mask-
ing. We distinguish two types of code: optimal codes that are
defined as the dual of a code [n, k, μ + 1] that achieves the
highest minimum distance at given length n and dimension
k (i.e. codes optimal with respect to wire-tap security), and
non-optimal codes for wire-tap security. In the sequel, the
optimal codes used are the dual code of the best codes con-
structed thanks [7] of dimension k = 8 from length n = 8 to
n = 17 ([9, 8, 2], [10, 8, 2], [11, 8, 2], [12, 8, 3], [13, 8, 4],
[14, 8, 4], [15, 8, 4], [16, 8, 5], [17, 8, 6]).

All evaluations in this section are performed with three
noise level: σ = 0 (noise-free condition), σ = 1 (weak-
noise condition) and σ = 3 (middle-noise condition). The
number of messages is fixed at 1,000 messages.

6.3.1 Optimal code

First-order analysis: Figure 2 represents the variation of
the success rate of first-order analysis in function of n when
considering simple-form matrices L and optimal codes. Two
methods which are the CPA based on correlation factor and
the MIA based on mutual information are evaluated. The
results show that when n ≤ 12, the success rate of CPA is
low while the one of MIA is much higher. In fact, when n is
close to k, the number of the codewords c, which is (2n−k),
becomes too small. The linear dependence between the side-
channel signals and the Hamming weight of intermediate
values is broken using optimal codes. However there still
exists other dependences which can be revealed by mutual
information analysis. This result shows the advantage of MIA
compared to CPA when exploiting non-linear dependences
between two variables.

When n > 12, the success rate of both CPA and MIA is
close to zero and these methods do not allow to find out the
correct key.

In order to verify the previous result, we compute the
variation of the correlation factor and the mutual informa-

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

First order analysis

CPA, σ=0
CPA, σ=1
CPA, σ=3
MIA, σ=0
MIA, σ=1
MIA, σ=3

Fig. 2 First-order analysis with Lsimple and optimal codes: variation
of the success rate in function of n

9 10 11 12 13 14 15 16 17
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

di
st

in
gu

is
he

r
CPA, σ=0
CPA, σ=1
CPA, σ=3
MIA, σ=0
MIA, σ=1
MIA, σ=3

Fig. 3 First-order analysis with Lsimple and optimal codes: variation
of the mutual information and correlation factor in function of n

tion between the Hamming weight of the prediction and
side-channel signals which is given in Fig. 3. This figure
shows a high mutual information between two variables when
n < 12, which is due to a small number of codewords. It also
confirms the success rate variation given in Fig. 2.

Second-order analysis: Figure 4 represents the success
rate of second-order analysis. We use the center-product
method for CPA and we compute the mutual information of
the triplet {W1, W2, ϕ(VK ,i )} for MIA. The obtained result
shows that the center-product CPA is better than MIA in
second-order analysis. When the noise level is weak, the
secret key can be revealed (for all values of n) with only
1,000 messages. When the noise level is more significant,
the attack becomes more difficult with n > 12.

123



J Cryptogr Eng (2012) 2:129–141 137

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

Second order analysis

CPA, σ=0

CPA, σ=1

CPA, σ=3

MIA, σ=0

MIA, σ=1

MIA, σ=3

Fig. 4 Second-order analysis with Lsimple and optimal codes: variation
of the success rate in function of n

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

First order analysis

CPA, σ=0
CPA, σ=1
CPA, σ=3
MIA, σ=0
MIA, σ=1
MIA, σ=3

Fig. 5 First-order analysis with Lsimple and a non-optimal code: vari-
ation of the success rate in function of n

6.3.2 Non-optimal code

In this paragraph, we evaluate the resistance of wire-tap based
masking when non-optimal codes are used. The simulation
conditions (the noise level, the number of messages) are iden-
tical to the case of optimal codes.

First-order analysis: In order to observe the difference
between wire-tap maskings using optimal and non-optimal
codes, let us compare Fig. 5 and Fig. 2. The interesting remark
is the different behaviors of CPA between the two cases. In
Fig. 2 (optimal code), the success rate of CPA is always very
low for every value of n while in Fig. 5 (non-optimal code), it
is higher, particularly when there is no noise and n is small. It
means that using a non-optimal code, the linear dependence

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

Second order analysis

CPA, σ=0

CPA, σ=1

CPA, σ=3

MIA, σ=0

MIA, σ=1

MIA, σ=3

Fig. 6 Second-order analysis with Lsimple and a non-optimal code:
variation of the success rate in function of n

8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

n

su
cc

es
s 

ra
te

first−order analysis
second−order analysis

Fig. 7 Evaluation with Lsimple and random mask r : variation of the
success rate in function of n

between the Hamming weight of the prediction and side-
channel signals is not totally broken and it is still exploitable
by CPA when n < 16.

Second-order analysis: The second-order analysis are
also performed in the same condition as in the optimal code
case and the results are given in Fig. 6. When comparing this
figure to Fig. 4, we see that they are quite similar. The second
order analysis is still possible and centered-product CPA is
better than MIA.

6.3.3 Random masking

We here analyze the differences between wire-tap encod-
ing and the situation where we replace the codeword c by a
random mask r of n bits, i.e. somehow affine masking with
projection in a larger space. This way, the k effective bits will
be spread and masked in n bits as follows: z = x .L⊕r. Note
that if the random mask is used, the unmasking without mask
is not possible.

123



138 J Cryptogr Eng (2012) 2:129–141

Figure 7 represents the variation of the success rate in
function of n for both first-order and second-order analysis.
When n = k = 8, we obtain a kind of affine masking
(and if L is of simple form, this leads to simple additive
masking).

For the first-order analysis, the success rate is always close
to 0, it means that the attack in the first order is impossible.
This result confirms once again the previous observation: for
wire-tap based masking, the first-order attack works when n
is small because of a small number of codewords c.

For the second-order analysis, the success rate decreases
when n increases: the projection of intermediate values in a
larger space improves the resistance against the second-order
analysis.

6.4 Matrix L is unknown

Using wire-tap based masking, the masked values depend
on both L and c. In Sect. 6.3, we suppose that the matrix
L is known by the attacker. In this section, we want to
observe the behavior of the wire-tap based masking in the
case where L is unknown for an adversary. It can be the
case when L is randomly generated and kept unknown for
each device. Thus, both L and c can not be guessed by an
adversary.

According to the previous analysis, in this section we con-
sider only optimal codes. Two families of matrices L (the
simple ones and the specific ones) are evaluated.

Intuitively, simple-form matrices imply a strong depen-
dence between the Hamming weight of x and the one of
x .L . On the contrary, more complex specific-form matrices,
which are kept unknown, generate mixtures of the bits of
x and the dependence between the Hamming weight of x
and the Hamming weight of x .L does not hold. The adver-
sary will not be able to estimate the values of x .L without
knowing L .

We consider the following methods corresponding to three
ways to compute z:

– Classical masking: z = x ⊕ r
– Wire-tap masking with Lsimple: z = x .Lsimple ⊕ c
– Wire-tap masking with Lspecific: z = x .Lspecific ⊕ c

For instance, for the choice of the parity matrix H obtained
as the generator matrix of an [16, 8, 5] code (cf. Sect. 5), we
can have a family Lspecific = (l1, . . . , l8) as follows:

l1 = [0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]
l2 = [1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1]
l3 = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1]
l4 = [0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1]

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of messages

su
cc

es
s 

ra
te

Second order analysis

CPA, n=8
CPA, L

simple
, n=12

CPA, L
simple

, n=13

CPA, L
simple

, n=16

MIA, n=8
MIA, L

simple
, n=12

MIA, L
simple

, n=13

MIA, L
simple

, n=16

Fig. 8 Second-order analysis: variation of success rate in function of
the number of messages N

l5 = [0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0]
l6 = [1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1]
l7 = [1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
l8 = [0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1]

First-order analysis: Even with a large number of mes-
sages, the success rate is always close to 0 for the three meth-
ods, it means that all of them are resistant against first-order
analysis.

Second-order analysis: The results of our simulation
experiments show that with specific-form matrices (the third
method), the second-order analysis does not allow to find out
the secret key even with a large number of messages (eval-
uated with more than 20,000 messages). The success rate is
always close to zero. Therefore, in Fig. 8, we show only the
variation of the success rate in the second-order analysis for
classical masking method and the wire-tap based masking
method with Lsimple.

To simplify the figure, we select only several values of
n to show in Fig. 8. The figure represents the variation of
the success rate in function of number of messages varying
from 200 to 2,000. The noise level is σ = 1. According to
Fig. 8, the additive masking and the wire-tap masking using
simple-form matrices L are not resistant against second-order
analysis.

The results confirm once again the following important
point: when the set L is more complex (generating mixtures
of the bits of x) and unknown, the proposed solution achieves
practical resistance against second-order analysis, that is not
the case for classical additive masking or the masking using
a simple or a known L , thus proving practical resistance of
higher order.

123



J Cryptogr Eng (2012) 2:129–141 139

6.5 Evaluation synthesis

This paragraph aims at giving a synthesis of evaluation results
and proposing a parameter choice strategy when using wire-
tap masking.

Our first advice is to use optimal codes which give not
only a better performance in term of coding but also a higher
resistance against side-channel analysis.

In the case where the matrix L is known or common for
different devices, the value n should be higher than 12 to have
a good resistance against first-order analysis. Moreover, as
shown in Sect. 6.3, when L is known, second-order analy-
sis are still possible if the noise level is weak. Therefore,
an implementation using wire-tap masking should consider
other means to reduce the efficiency of second-order analy-
sis, for example by minimizing the signal-to-noise ratio or by
adding random jitter or clock to make synchronization more
difficult.

In the case where the matrix L is unknown and personal-
ized for each device, according to Sect. 6.4, analysis in the
first order or higher orders are not possible if L has a complex
form and generates mixtures of x . In this case, the generation
of L (if L is generated on card), the storage of L , the transfer
of this matrix from a memory to another or to CPU and the
manipulation of L during the operation x .L should be care-
fully considered to keep its confidentiality. Finally, using the
parameters n = 12 or n = 13 with unknown randomly gen-
erated matrix L seems to offer a good trade-off performance
overhead versus security as it ensures a minimum wire-tap
security level (μ = 2 or μ = 3).

7 Conclusion

In this paper we have introduced a new kind of protection
against SCA based on the wire-tap coding.

From wire-tap coding security, it leads to provable secu-
rity with respect to Simple Power Analysis. Our analysis and
experiments in correlation and mutual information analysis
show that it also brings in practice sound countermeasures
against first and second order SCA. This first step would
be advantageously completed by a hardware implementa-
tion to assess its strength with other protection methods.
Moreover, it offers new extra properties such as the possi-
bility to unmask the data at the end of the algorithm without
the need to use the mask again and a natural fault detection
capacity.

Acknowledgments The authors would like to thank the reviewers for
their remarks as well as the Editor-in-Chief Cetin K. Koc.

Appendix A: Evaluation results when L is known
and has a specific form

A.1 Optimal code

See Figs. 9, 10.

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

First order analysis

CPA, σ=0
CPA, σ=1
CPA, σ=3
MIA, σ=0
MIA, σ=1
MIA, σ=2

Fig. 9 First-order analysis with specific matrices L and an optimal
code: variation of the success rate in function of n

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

Second order analysis

CPA, σ=0

CPA, σ=1

CPA, σ=3

MIA, σ=0

MIA, σ=1

MIA, σ=3

Fig. 10 Second-order analysis with specific matrices L and an optimal
code: variation of the success rate in function of n

A.2 Non-optimal code

See Figs. 11, 12.

123



140 J Cryptogr Eng (2012) 2:129–141

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

First order analysis

CPA;σ=0
CPA;σ=1
CPA;σ=3
MIA; σ=0
MIA; σ=1
MIA; σ=2

Fig. 11 First-order analysis with specific matrices L and a non-optimal
code: variation of the success rate in function of n

9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

su
cc

es
s 

ra
te

Second order analysis
CPA, σ=0

CPA, σ=1

CPA, σ=3

MIA, σ=0

MIA, σ=1

MIA, σ=3

Fig. 12 Second-order analysis with specific matrices L and a non-
optimal code: variation of the success rate in function of n

References

1. Akkar, M.L., Giraud, C.: An implementation of DES and AES,
secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar,
C. (eds.) CHES, Lecture Notes in Computer Science, vol. 2162,
pp. 309–318. Springer, Berlin (2001)

2. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking
of aes. In: Handschuh, H., Hasan, M.A. (eds.) Selected Areas
in Cryptography, Lecture Notes in Computer Science, vol. 3357,
pp. 69–83. Springer, Berlin (2004)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound
approaches to counteract power-analysis attacks. In: Wiener, M.J.
(ed.) CRYPTO, Lecture Notes in Computer Science, vol. 1666,
pp. 398–412. Springer, Berlin (1999)

4. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking
against higher-order side channel analysis. In: Biryukov, A., Gong,
G., Stinson, D.R. (eds.) Selected Areas in Cryptography. Lecture

Notes in Computer Science, vol. 6544, pp. 262–280. Springer,
Berlin (2010)

5. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisit-
ing higher-order dpa attacks:. In: Pieprzyk, J. (ed.) CT-RSA, Lec-
ture Notes in Computer Science, vol. 5985, pp. 221–234. Springer,
Berlin (2010)

6. Goubin, L., Patarin, J.: DES and differential power analysis (the
“duplication” method). In: Koç, Ç.K., Paar, C. (eds.) CHES, Lec-
ture Notes in Computer Science, vol. 1717, pp. 158–172. Springer
(1999)

7. Grassl, M.: Code tables: bounds on the parameters of various types
of codes. http://www.codetables.de/, visited in 2010

8. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differ-
ential power analysis. In: Rao, J.R., Sunar, B. (eds.) CHES, Lec-
ture Notes in Computer Science, vol. 3659, pp. 293–308. Springer,
Berlin (2005)

9. Li, Y., Sakiyama, K., Kawamura, S., Komano, Y., Ohta, K.: Security
evaluation of a dpa-resistant s-box based on the fourier transform.
In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS, Lecture Notes
in Computer Science, vol. 5927, pp. 3–16. Springer, Berlin (2009)

10. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting
codes. North-Holland, Amsterdam (1977)

11. Medwed, M., Schmidt, J.M.: Coding schemes for arithmetic and
logic operations—how robust are they? In: Youm, H.Y., Yung,
M. (eds.) WISA, Lecture Notes in Computer Science, vol. 5932,
pp. 51–65. Springer, Berlin (2009)

12. Messerges, T.S.: Using second-order power analysis to attack dpa
resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES, Lecture
Notes in Computer Science, vol. 1965, pp. 238–251. Springer,
Berlin (2000)

13. National Institute of Standards and Technology: Advanced Encryp-
tion Standard (FIPS PUB 197) (2001). http://www.csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

14. Oswald, E., Mangard, S., Pramstaller, N.: Secure and efficient
masking of aes—a mission impossible? Cryptology ePrint Archive,
Report 2004/134 (2004). http://eprint.iacr.org/

15. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. Bell Syst. Tech.
J. 63(10), 2135–2157 (1984)

16. Ozarow, L.H., Wyner, A.D.: Wire-tap channel ii. In: EUROCRYPT,
pp. 33–50 (1984)

17. Prouff, E., Giraud, C., Aumônier, S.: Provably secure s-box imple-
mentation based on fourier transform. In: Goubin, L., Matsui, M.
(eds.) CHES, Lecture Notes in Computer Science, vol. 4249,
pp. 216–230. Springer, Berlin (2006)

18. Prouff, E., Rivain, M.: Theoretical and practical aspects of
mutual information based side channel analysis. In: Abdalla, M.,
Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.) ACNS, Lec-
ture Notes in Computer Science, vol. 5536, pp. 499–518. Springer,
Berlin (2009)

19. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second
order differential power analysis. IEEE Trans. Comput. 58(6), 799–
811 (2009)

20. Schramm, K., Paar, C.: Higher order masking of the AES. In:
Pointcheval, D. (ed.) CT-RSA, Lecture Notes in Computer Sci-
ence, vol. 3860, pp. 208–225. Springer, Berlin (2006)

21. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the
analysis of side-channel key recovery attacks. In: Joux, A. (ed.)
EUROCRYPT, Lecture Notes in Computer Science, vol. 5479,
pp. 443–461. Springer, Berlin (2009)

22. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin,
S.W., Merolla, J.M.: Capacity achieving codes for the wire tap
channel with applications to quantum key distribution. CoRR
cs.IT/0411003 (2004)

23. Tillich, S., Herbst, C.: Attacking state-of-the-art software
countermeasures-a case study for aes. In: Oswald E., Rohatgi P.

123

http://www.codetables.de/
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/


J Cryptogr Eng (2012) 2:129–141 141

(eds.) CHES, Lecture Notes in Computer Science, vol. 5154,
pp. 228–243. Springer, Berlin (2008)

24. von Willich, M.: A technique with an information-theoretic
basis for protecting secret data from differential power attacks.

In: Honary B. (ed.) IMA International Conference on Lecture Notes
in Computer Science, vol. 2260, pp. 44–62. Springer, Berlin (2001)

25. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–
1387 (1975)

123


	Protecting AES against side-channel analysis using wire-tap codes
	Abstract
	1 Introduction
	2 Wire-tap codes
	2.1 Wire-tap principle
	2.2 Wire-tap secrecy

	3 Protecting AES with wire-tap codes
	3.1 Brief description of AES
	3.2 Our proposal
	3.2.1 Notations
	3.2.2 Generation of L
	3.2.3 Pre-configuration
	3.2.4 Preliminary step
	3.2.5 Transformation of the encryption algorithm


	4 Properties and extensions
	4.1 Simple power analysis
	4.2 First order DPA
	4.3 Higher order DPA
	4.4 Unmasking without masks

	5 Practical construction
	5.1 Unmasking
	5.2 Fault detection

	6 Evaluation results
	6.1 Power consumption models
	6.2 Evaluation index
	6.3 Matrix L is known
	6.3.1 Optimal code
	6.3.2 Non-optimal code
	6.3.3 Random masking

	6.4 Matrix L is unknown
	6.5 Evaluation synthesis

	7 Conclusion
	Acknowledgments
	Appendix A: Evaluation results when L is known and has a specific form
	A.1 Optimal code
	A.2 Non-optimal code

	References


