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Abstract The significant cost of RSA computations affects
the efficiency and responsiveness of SSL/TLS servers, and
therefore software implementations of RSA are an important
target for optimization. To this end, we study here efficient
software implementations of modular exponentiation, which
are also protected against software side channel analyses.
We target superior performance for the ubiquitous ×86_64
architectures, used in most server platforms. The paper pro-
poses optimizations in several directions: the Montgomery
multiplications primitives, the w-ary modular exponentia-
tion flow, and reduced cost of side channel mitigation. For a
comparison baseline, we use the current OpenSSL version,
1.0.0e. Our implementation—called “RSAZ”—is more than
1.6 times faster than OpenSSL for both 1,024 and 2,048-bit
keys, on the previous generation 2010 Intel® Core™ pro-
cessors and on the 2nd generation Intel® Core™ processors.
The RSAZ code was contributed to OpenSSL as a patch, and
improvements proposed in an earlier version of this paper
have already been incorporated into the future OpenSSL
version.

Keywords Modular arithmetic · Modular exponentiation ·
Montgomery multiplication · RSA

1 Introduction

The need for end-to-end security in the Internet con-
stantly increases the worldwide number (and percentage) of
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SSL/TLS connections. As a result, the cryptographic algo-
rithms that support such secure communications become
a critical computational load for servers, and therefore an
important target for optimization (see [15]). The performance
of RSA is an important case, because RSA is a part of the
handshake of TSL/SSL sessions.

Practically, all RSA usages have 1,024-bit or 2,048-
bit keys, where, RSA1024 are currently the majority, and
are the main optimization focus. However, the fraction of
usages employing RSA2048 is sharply growing. Coupled
with NIST’s recommendation for key-lengths [4], RSA2048
becomes an important optimization target as well. The per-
formance of RSA1024 translates directly to the performance
of 512-bit modular exponentiations, and RSA2048 compu-
tations translate to 1,024-bit modular exponentiations. These
computations are our focus.

Our goal is to study efficient software implementations of
modular exponentiation, on general purpose ×86_64 archi-
tectures (x64 for short). Since today, cryptographic codes
are also required to be resistant to threats stemming from
different types of side channel analyses, we address this
requirement throughout the study. We start the investigation
by trying to optimize the relevant “primitives” of modular
exponentiations, namely modular multiplications (or equiv-
alents), and continue through optimizing the exponentiation
flow itself. At the same time, we also focus on making
sure that the implementation resists side channel analyses
in a broad way, while reducing the cost of the necessary
mitigations.

To assess our results, we compare the performance of our
implementation against the public implementations OpenS-
SL [18] and publications [7,27], as follows. The OpenSSL
library is a very widely used (open source) software imple-
mentation. The availability of its source code makes it easy
to study, tweak and measure, and it is therefore an important
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comparison baseline. Furthermore, optimizations that can be
integrated and adopted by the OpenSSL library have potential
benefit to many platforms worldwide. We relate to the cur-
rently latest OpenSSL version, 1.0.0e.

The second comparison baseline is the recent publica-
tion [7]. It proposes a new approach, resulting in what is
claimed thereof to be “the world’s fastest modular expo-
nentiation implementation on IA processors”, thus setting
a bar for performance. Shortly after [7] was published, the
related software implementation was publicly posted [27],
as an OpenSSL patch, in the form of an OpenSSL “engine”
called “RSAX”. This RSAX submission is a highly opti-
mized (assembler) code for modular exponentiation. It is
an updated version whose performance improves over the
reported results of [7]. RSAX is wrapped as an engine,
and not integrated into the main OpenSSL tree, because it
is based on an algorithm that requires different and addi-
tional pre-computed constants (from what OpenSSL uses).
Finally, RSAX implements only 512-bit modular exponenti-
ation, hence supports only RSA1024.

We note that a secure modular exponentiation implemen-
tation consists of many ingredients that can be optimized in
orthogonal directions. We provide here a step by step descrip-
tion of the various considerations in building the optimiza-
tion, and explain the contribution of the different ingredients.

The result is a software implementation of modular expo-
nentiation, which we call “RSAZ” (short for RSA ZARIZ—
Hebrew for “quick”). RSAZ is compatible with the OpenSSL
interface, and can be therefore integrated into its main path.
For RSA1024, it outperforms RSAX. Compared to OpenS-
SL 1.0.0e, RSAZ1024 and RSAZ2048 show, respectively, a
speedup factor of 1.72 and 1.61 on the previous generation
2010 Intel® Core™ processor, and a speedup factor of 1.62
and 1.64 on the 2nd generation Intel® Core™ processor. Per
request from the OpenSSL Team, RSAZ has been released
as a patch, and can be found in [8].

2 Preliminaries

We discuss RSA cryptosystem [16] with a 2n-bit modulus
size N = P ×Q, where P and Q are n-bit primes. We denote
the 2n-bit private exponent by d. Decryption of (2n-bit) C
requires 2n-bit modular exponentiation Cdmod N . To use
the Chinese Remainder Theorem, d1 = dmod(P − 1), d2 =
dmod(Q − 1), and Qinv = Q−1mod P are pre-computed.
Two n-bit modular exponentiations M1 = Cd1mod P and
M2 = Cd2mod Q, are computed (M1, M2, d1, d2 are n-bit
integers), and are recombined by Cd mod N = M2+(Qinv×
(M1 − M2)mod P)× Q. Thus, the computational cost of 2n-
bit RSA decryption is well approximate as the cost of two
n-bit modular exponentiations. In our context, we can assume
that by construction (of the RSA keys), 2n−1 < P, Q < 2n .

3 Protecting software implementations against software
side channels analysis

Software side channels analysis is a class of techniques that
can be used for attacking cryptographic applications that run
in a multi-tasking environment. Recent publications showed
that when an unprivileged process (“Spy”) runs in parallel to
another (“Crypto”) process, and some processor resources
are shared (explicitly or implicitly), then Spy can extract
information about the execution flow of Crypto. Two exam-
ples are the memory access patterns [20] and taken branches
during executions [1,2,6]). Depending on the way that the
crypto code operates, this side channel information can com-
promise the secrets (keys) of Crypto.

In our context of modular exponentiation, both the mod-
ulus and the exponent are secret. When the w-ary exponen-
tiation [16] and variants of Montgomery multiplications are
used (details in the subsequent sections), the knowledge of
the following information may compromise the secrets:

1. Which of the Montgomery multiplications, computed
during the exponentiation, require an “end reduction”
step (for example, see [3,6,22,25]).

2. Which of the 2w entries of the computed table are
accessed during the exponentiation (for example, see
[20]).

As a general concept, we say that a piece of code is
“inherently protected against software side channel analysis”
(“inherently protected” hereafter) in a given environment, if
for any chosen input, volunteering the full details of the fol-
lowing items does not leak any sensitive information: (a) the
addresses (at the granularity of a cache line) that were acces-
ses (read/write); (b) the resolutions (taken/not taken) of the
executed branches; (c) the executed instructions. We make
our modular exponentiation implementation inherently pro-
tected.

4 Montgomery multiplications and almost Montgomery
multiplications

Modular multiplication (or an equivalent) is a critical build-
ing block for modular exponentiations. This section explains
the selection of our preferred algorithm.

4.1 Montgomery multiplications basics

The Montgomery multiplication [17] (MM hereafter) is a
well-known efficient technique for computing modular expo-
nentiation. Being already a classical algorithm, we explain it
only briefly (more details can be found, e.g., in [5,13,14,16].
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Fig. 1 A Montgomery
reduction lemma. Computing
Montgomery multiplications

Definition 1 Let m be a positive odd integer (modulus), a,
b be two integers such that 0 ≤ a, b < m, and t be a positive
integer (hereafter, all the variables are non-negative integers).
The Montgomery multiplication of a by b, modulo m, with
respect to t , is defined by MM(a, b) = a × b × 2−t modm.
We say that 2t is the Montgomery parameter.

The use of MMs for modular exponentiation is based on
two observations: (1) for any two integers 0 ≤ a, b < m,
we have 0 ≤ MM (a, b) < m; (2) if 0 ≤ a, b < m,

c2 = 22t modm, a′ = MM(a, c2)b′ = MM(b, c2), u′ =
MM(a′, b′) and u =MM (u′, 1), then u = a × bmodm.
Observation 1 (“stability”) allows for using the output of one
MM as an input to a subsequent MM. Note that modular
exponentiation algorithms consist of sequences of modular
multiplications, and that for a given modulus, the constant
c2 = 22t modm can be pre-computed. Therefore, ax modm
(for 0 ≤ a < m and some integer x) can be computed
by: (a) mapping the base (a) to the Montgomery domain,
a′ = MM(a, c2); (b) using an exponentiation algorithm
while replacing modular multiplications with MMs; (c) map-
ping the result back to the residues domain, u = MM(u′, 1).

MM’s computations can use two steps: (1) T = a × b(<

m2); (2) a “Montgomery Reduction” to obtain T ×2−t modm.
This can leverage the fact that computing a square is faster
than general multiplication, and speed up MMs with a = b,
a case that occurs often in our context. We call such compu-
tations “Montgomery Squaring” (MSQR).

4.2 A Montgomery reduction lemma

We will use the following lemma to discuss several variants of
Montgomery multiplications and equivalent constructions.

Lemma 1 Consider positive integers s, n, r ≥ 0, and (odd)
m < 2n. Assume that T < 2n+r+s . Define

F = F(T, m, s)

= T + m × (((T mod 2s) × ((−m−1) mod 2s)) mod 2s)

2s

(1)

Then, Fmodm = T × 2−smodm, and F < 2n+r + m. If,
in addition T < m × 2r+s , then F < m × 2r + m < 2n+r +

m. It is convenient to view Lemma 1 as an algorithm as in
Fig. 1.

Proof By taking Eq. 1 modulo 2s , and modulo m, we get
Fmodm = T ×2−smodm, and F < T/2s +m. The inequal-
ities follow immediately.

Figure 2 shows the word-by-word Montgomery multipli-
cation (WW-MM) algorithm.

Proof of correctness (WW-MM) Start with T = a × b <

m2 < m×2n . Apply Lemma 1, k times, using r = (n−i ×s)
in iteration i , for i = 1, 2, . . ., k, and the updated value of T .
After k iterations we get T <2m. Step 7 reduces T modulo m.

Computational efficiency (WW-MM) Step 1 requires an
n-bit multiplication. Step 3 requires the low half of an s-
bit multiplication. Step 4 requires n-bit by s-bit multiplica-
tion. In iteration i , Step 5 adds an (n + s)-bit number to an
(2n−(i −1)s)-bit number. Step 7 requires (conditional) sub-
traction of an n-bit integer from an (n + 1)-bit integer. For
side channel protection, the subtraction (of either m or 0) is
always performed.

Remark 1 The WW-MM algorithm is well suited for archi-
tectures with an s-bit multiplier and adder (i.e., an s-bit
ALU). Specifically, s = 64 is a natural choice for the 64-bit
architectures (x86-64) that we study.

Remark 2 In the WW-MM algorithm (by Lemma 1), the
value of T after k iterations (Steps 2–6) is (a × b + m ×
(−m−1 ×a ×b mod 2s))/2 s . Thus, T only satisfies the con-
dition T < 2m, which means that it is not necessarily reduced
modulo m (there are examples where T > m). The condi-
tional subtraction in Step 7 reduces T modulo m, and is called
the end reduction (ER) step. This step is known to be prob-
lematic from the side channel perspective (see details below).

4.3 Almost Montgomery multiplications

For our implementation, we use almost Montgomery multi-
plication (AMM), which is a variant of MM (this variant is
mentioned in [26] as “incomplete” MM).

Definition 2 Let m be a positive odd integer, and let a, b,
t be positive integers such that 0 ≤ a, b < B for some B.
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Fig. 2 Left panel
word-by-word Montgomery
multiplication (WW-MM). Right
panel word-by-word almost
Montgomery multiplication
(WW-AMM). The concept of
AMM is explained in Sect. 4.3,
below. Boldface notations (right
panel) indicate the differences
between MMs and AMMs

The almost Montgomery multiplication (AMM) of a by b,
with respect to m and t , is an integer U satisfying the fol-
lowing conditions: (1) Umodm = a × b × 2−t modm; (2)
U < B. Almost Montgomery square (AMSQR) is AMM
where a = b.

Figure 4 (right panel) shows the WW-AMM algorithm
(with B = 2n). We prove the correctness of the algorithm
below. The proof also shows that AMMs have a “stability”
property (like MMs), and can therefore be used in a similar
way, for modular exponentiation.

Proof of correctness (WW-AMM) we use B = 2n here.
Start with T = a × b < 22n . Apply Lemma 1, k times, for
i = 1, 2, . . ., k, using r = (n − i × s) and the updated value
of T in iteration i . After k iterations, T < 2n + m. Step 7
guarantees X < 2n .

Remark 3 AMM and MM are almost identical, where the
only difference is in the ER step (Step 7 in Fig. 2, both panels).
For MM, the condition (whether the result is T or X = T −m)

can be determined only by knowing the sign of X = T − m.
Thus, X needs to be computed first (at least up to a point
where its sign is evident). By contrast, AMM enjoys a sim-
pler condition check, based just on the carry-out bit of the
last addition in step 6, with the further advantage that the
value of this carry bit already determines whether the output
is T or T − m. This can simplify the computations, although
side channel resistance requires that the subtraction is always
performed. We point out that in an environment where side
channel resistance is not required, AMM has the performance
advantage of allowing to skip the subtraction when appropri-
ate.

Remark 4 If we assume 2n−1 < m < 2n , then the output (X)

of AMM can be fully reduced modulo m by a single (condi-
tional) subtraction of m (because 2n − m < m). Obviously,
such subtraction should be done once, after the exponentia-
tion flow. From the proof of Lemma 1, we see that the com-
putation h = AMM(h, 1) (Step 9 of Algorithm 6 in Fig. 4)

outputs a value which is smaller than m + 1. Since in our
context the modulus m is a prime, and we assume that the
exponentiation base is nonzero, it follows that the result (h)

is already reduced modulo m. So, in fact, the final subtraction
step (Step 10) can be ignored.

4.4 The two-step folding AMM (from [7])

Reference [7] describes an algorithm for computing a 512-bit
AMM1, extending the Montgomery–Svoboda method [5]. In
the particular parameters setting of [7] the algorithm reduces
the 1,024-bit integer T = a × b to a 768 bits (“folding”),
then to 640 bits (second folding), and follows with an almost
Montgomery reduction to 512 bits. Proper corrections com-
pensate for “carry” bits (overflows) chopped away during the
reductions. Figure 3 generalizes the algorithm of [7] to a gen-
eral parameters setting, followed by a proof of correctness
(missing from [7]).

Proof of correctness (TSF-AMM) Steps 3–5 reduce X from
8 s bits to 6 s, possibly modifying it modulo m (by 26smodm),
and accumulate cf1 to correct the final result, modulo m.
Similarly, Steps 6–8 reduce X from 6 s bits to 5 s, possibly
modifying it modulo m (by 25smodm), and accumulate cf2
to correct the final result modulo m. For Steps 9–13 we apply
Lemma 1 with r = 0 and T < 25s = 2n+s remaining with
a number bounded by 2n + m. Step 14 compensates for
chopping off carry bits in Steps 5.2, 8.2, and 12.2, to obtain
a number which is congruent, modulo m, to a × b × 2−s ,
and bounded by X < 2n + 2m. Steps 15 and 16 (assuming
2n−1 < m < 2n) assure that the output is smaller than 2n ,
satisfying the required post conditions.

Computational efficiency (TSF-AMM) Step 1 requires a
single multiplication of n-bit integers. Step 4 requires the

1 Ref. [7] mistakenly claims that the algorithm computes a 512-bit MM
(a × b × 2−128modm), but, as shown here, it actually computes 512-bit
AMM.
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Fig. 3 Two-step folding almost
Montgomery multiplication
(TSFAMM)

multiplication of 4s-bit by 2s-bit integer and an addition of
two 6s-bit integers. Step 7 requires the multiplication of 4s-
bit by s-bit integer and an addition of two 5s-bit integers.
Step 10 requires the low half of the product of two s-bit inte-
gers. Step 11 requires multiplication of 4s-bit by s-bit integer
and an addition of two 5s-bit integers. Step 14 requires the
addition of two 4s-bit numbers. Steps 15, 16 require the (con-
ditional) subtraction of two 4s-bit integers.

Remark 5 Reference [7] asserts that the TSF-AMM com-
putes a × b × 2−128modm(n = 512, s = 128), but this
is incorrect. One counterexample is m = 2511 + 111, a =
2511 + 110, b = 2510 + 53, where the output exceeds m.
Figure 3, gives the correct bound.

Remark 6 TSF-AMM implicitly assumes 2n−1 < m < 2n

(Steps 15–16). In this case, a single conditional subtraction of
m suffices to reduce the output modulo m. Reference [7] uses
two successive conditional subtractions after the exponenti-
ation sequence, but the second one is redundant. By Remark
4, the first subtraction is also redundant.

4.5 Comparing the WW-AMM and the TSF-AMM
algorithms

Our first step in optimizing modular exponentiation is deter-
mining the preferred alternative between TSF-AMM and
WW-AMM (or WW-MM). We start with a few general obser-
vations.

Remark 7 The “Almost” MM algorithm assumes a lower
bound on the modulus (in our case, 2n−1 < m < 2n). The
classical MM algorithm does not require such assumption.

Remark 8 Both TSF-AMM and WW-AMM are almost
MMs, but their outputs are not equal (because they use a
different Montgomery parameter).

Remark 9 By construction, the TSF-AMM algorithm is
inherently an AMM. On the other hand, WW-AMM can be
easily turned into WW-MM (and vice versa).

Remark 10 The step (a × b) is common to both algorithms.

Remark 11 WW-AMM and TSF-AMM require a different
number of pre-computed values (to be resident in the cache
for a real implementation). For n-bit operands, WW-AMM
requires only one n-bit and one s-bit (s = 64 in our context)
pre-computed values. The TSF-AMM algorithm requires a
table (table in Fig. 3) with eight n-bit pre-computed values,
two n-bit constants M1, M2, and an (n/4)-bit value k1.

Remark 12 If code size and simplicity is a consideration,
then WW-AMM is obviously preferable over TSF-AMM.
Furthermore, note that WW-AMM can be modified to use
s = n and k = 1 (i.e., one big “word” and then only one iter-
ation). In this case, an implementation can use only one func-
tion, for computing an n-bit multiplication, which would be
called three times. We found that such implementation yields
a simple code, but is slower than our optimized WW-AMM.

Since we are interested in performance on ×64 archi-
tectures, it is convenient to view the operands as “multi-
precision” numbers with 64-bit digits and count single
precision operations (additions and multiplications). Table 1
lists the steps for both algorithms, for 512-bit operands (for
WW-AMM, we averaged the count for addition of variable
length operands).
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Table 1 WW-AMM and
TFS-AMM algorithms: a direct
breakdown of the computations

For 512-bit operands

TSF-AMM WW-AMM

1 × 512-bit by 512-bit multiplication 1 × 512-bit by 512-bit multiplication

1 × 256-bit by 512-bit multiply-add 8 × 64-bit multiplication mod 264

2 × 128-bit by 512-bit multiply-add 8 × 64-bit by 512-bit multiply-add

1 × 128-bit multiplication mod2128 1 × 512-bit subtraction

1 × 512-bit addition

2 × 512-bit subtraction

The straightforward count shows that TSF-AMM involves
131 single precision multiplications, whereas WW-AMM
has 136. TSF-AMM involves about 417 single precision
additions while WW-AMM involves around 392 (we approx-
imate 3 single precision additions operations per 1 single-
precision multiplication).

However, this naïve count does not necessarily (at least
not directly) reflect on the resulting performance (for exam-
ple, because fetching constants from the table (table in Fig.
3) in an inherently protected way is an additional overhead
associated with TSF-AMM). In practice, the performance
depends heavily on the code’s efficiency and optimization,
and also on the architecture that it runs on. For example,
software optimization can fuse the multiplication and the
reduction steps into an efficient sequence of multiply-add
operations, thus reducing the overall number of addition
operations (for both algorithms). Therefore, true compari-
son should be based on measuring the performance of fully
optimized codes, on a given architecture. These results are
reported in Sect. 8, and indicate that the WW-AMM is the
faster alternative. Therefore, we selected the WW-AMM as
the preferred algorithm.

5 Protecting AMMs and MMs against software side
channel analyses

To make an implementation of WW-MM (or WW-AMM)
inherently protected, we focus on the end reduction (ER)
step (Step 7 in Fig. 2) of the algorithm. There are three
considerations to guarantee. The obvious one is making
the execution time independent of the ER step, and this
implies that the subtraction (X = T − m) must always
take place. The second consideration is making the imple-
mentation branch-free. Finally, it is also required to guaran-
tee that the memory access patterns of the implementation
leak no information about the ER step. We show here that
achieving inherent protection can be subtle, by explaining
why OpenSSL’s WW-MM implementation is not inherently
protected.

5.1 OpenSSL’s WW-MM implementation is not inherently
protected

OpenSSL uses the WW-MM algorithm, where the relevant
function is bn_mul_mont (in crypto/bn/asm/x86_64-mont.pl).
The side channel-protected implementation variant is selected,
by default, via the “BN_FLG_CONSTTIME” flag. We
review only the ER step. The following code snippet from
bn_mul_mont shows how the borrow bit from the subtraction
(X = T − m) is used for delivering the appropriate output
of the algorithm.

In the “.Lcopy” loop (lines 8–13 above), the borrow bit
is used for loading either a Qword (T [i]) of T or a Qword
(X [i]) of X into register rax (line 9). Then, the content of rax
is written into the location of X [i], and zero is written into
the location of T [i] (lines10-11). This either refreshes X and
zeros T , or copies T onto X and zeros T .

This flow computes X and T unconditionally, and is
branch free. However, this implementation is not inherently
protected because knowledge of the read access pattern (i.e.,
the code reads either from T or from X) exactly reveals the
information that needs to be concealed.

We clarify that this observation does not imply that there is
a practical vulnerability, or that the implementation is unpro-
tected. Observe that the code writes, unconditionally, both
X and T (it zeros T ) inside the loop. Therefore, it can be
argued that in order to exploit the borrow-dependent reads,
the Spy needs to instrument itself with resolution less than
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the “.Lcopy” loop turnaround, and the latency of RDTSC is
too high for that [21]. However, the advantage of an inher-
ently protected implementation is that such argumentation
is not even needed. We therefore show here an inherently
protected and efficient implementation of WW-MM/WW-
AMM.

5.2 An inherently protected implementation of MM

For the ER step, we determine if the output is T or X = T −m,
according to the sign of X . We hold the value (fixed in our
context) of (−m) in a memory location L1. When the addi-
tions (Step 6; Fig. 2, left panel) finish, we store T in memory
location L2, while also adding (unconditionally) T to that
memory location L1. This places T in L2, X = T − m in
L1, while the carry-out bit of the last addition indicates which
location hold the desired output. We then load Qwords from
L1 and L2, into registers reg1 and reg2, and use the con-
ditional move instruction CMOVE reg1, reg2 to place the
desired result in memory location L1. This is repeated for all
the Qwords in locations L1 and L2. The following code snip-
pet shows the proposed implementation (for 512-bit oper-
ands).

5.3 An inherently protected implementation of AMM

We use the following property of AMM: the carry out bit from
the last addition operation of Step 6 determines whether the
output should be T or T − m. We first set register reg0 to

Fig. 4 The w-ary
exponentiation algorithm. Left
panel using MMs. Right panel
using AMMs. Boldface
notations (right panel) indicate
the differences between MMs
and AMMs

123



38 J Cryptogr Eng (2012) 2:31–43

Fig. 5 Improved w-ary
exponentiation algorithm using
AMMs

the value “264 minus carry out bit”. Then, load a Qword of
T into register reg1, and a Qword of m into register reg2,
write [reg2 AND reg0] into reg2, subtract reg2 from reg1,
and move reg1 to the memory location where we want the
result. This subtracts, correctly, either a Qword of m or a
zero, from T . No branches are used, and the memory access
pattern is independent of the carry out bit, thus achieving an
inherently protected implementation. The following snippet
demonstrates the implementation.

6 The w-ary modular exponentiation using MMs
and AMMs

We use the w-ary exponentiation algorithm (see e.g., [16]).
The advantage of this algorithm (e.g., compared to a sliding

window exponentiation) is that the flow is branch free,
and is independent of the secret exponent bits (although,
as we discuss below, other security considerations are
required).

6.1 OpenSSL’s w-ary modular exponentiation

Figure 4 (left panel) shows the w-ary modular exponentia-
tion using MMs, as it is implemented by OpenSSL (1.0.0e).
The right panel shows a flow that uses AMMs.

The computational cost of w-ary exponentiation with win-
dow size w, is

≈ (k + 1) × w × Cost(MSQR) + (k + 1 + 2w)

×Cost(MM) + Cost(Store/Retrieve) (2)

where the relation between n, k, and w, is the following:

if w divides n, then k = n/w − 1; else, k = f loor(n/w)

(3)

We use a “Store/Retrieve” notation to describe the cost of
accessing the table (A in Fig. 4), and relate to this cost below.
Special Store and Retrieve are required, at additional cost, in
order to make the implementation inherently protected.

For n = 512, the choice w = 5 is considered opti-
mal. It requires a table of 32,512-bit values, 515 MSQRs
and 135 MMs. For comparison, w = 6 requires a table
of 64512-bit values, 516 MSQRs and 150 MMs, and w =
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4, requires a table of 16,512-bit values, 512 MSQRs and
144 MMs.

6.2 Introducing shortcuts to the w-ary exponentiation

We describe a variation of the w-ary exponentiation, with
optimizations that reduce the number of AMM’s AMSQRs.

1. For the table generation, note that m[0] = 2nmodm =
2n − m because it is assumed that 2n−1 < m < 2n . This
saves one AMM. We comment that even if m is smaller
(and therefore 2n − m is not fully reduced modulo m),
the exponentiation would give the correct results when
using AMMs (and all MMs), as long as the appropriate
value of k is used.

2. Entries with an even index can be obtained by AMSQR
instead of AMM. Thus, the table generation can use one
subtraction, 2w−1 AMMs and 2w−1 − 1 AMSQRs.

3. The loop over the exponent windows can start from
(k − 1), saving the amount of w AMSQRs.

In total, the modified algorithm saves w AMSQRs, 2 AMMs
and replaces 2w−1 AMMs by the faster AMSQRs. Obviously,
the same optimizations can be applied to a w-ary exponenti-
ation based on MMs. Figure 5 shows the revised algorithm.

7 Inherently protected w-ary exponentiation
with reduced cost

Cache based side channel attacks are a recent threat to soft-
ware implementations of cryptographic algorithms. Due to
such vulnerabilities (e.g., [20]), modular exponentiation code
need to be written in a way that its memory access patterns
(at the granularity of a cache line) do not leak secret infor-
mation. This requires a special method for storing (in cache)
and retrieving values from Table A (see Fig. 4).

For n = 512 and w = 5, the table holds 2w = 32
values, each one of 512-bit. OpenSSL tackles the problem
by scattering the bytes of each value at addresses spaced
by 2w bytes. Gathering a 512-bit value from the scattered
table involves 64-move operations (but since all cache lines
are accessed, implicit dependency on the exponent bits is
avoided). For platforms where the cache lines consist of 64
bytes (the more common case), this implementation supports
window sizes of up to w = 6 (if the cache lines consist of
32 bytes, the implementation supports window size of up to
w = 5).

Reference [7] proposes a useful optimization that is tai-
lored to platforms with cache lines of 64 bytes and the
choice w = 5. The 32 values of the table are split into 16-
bit “words”, which are stored at addresses spaced by 2w+1

words (i.e., 2 × 2w bytes). This way, each 512-bit value of
the table has one word in each of the cache lines spanned
by the table. Retrieving a value from the table involves
only 32-move operations—half the number required by the
OpenSSL implementation [albeit with (acceptable) loss of
generality].

Based on measuring the high cost of the side channel
store/retrieve protection, we optimized this method further.
We choose a window size of w = 4, obtaining a table of only
2w = 16, 512-bit values. This allows for scattering the 16
values in 32-bit “dwords” with spacing of 2w dwords (i.e.,
4 × 2w bytes). The choice w = 4 requires 144 AMMs (9
more than with w = 5). On the other hand, retrieving a value
from the table requires only 16-move operations, which is
half the number of moves involved with the method of [7]
and a quarter of the number of moves use by the OpenS-
SL implementation. In addition, the reduced table size with
w = 4 saves 1,024 bytes (16 cache lines) in the first level
cache, compared to w = 5. The description (code snip-
pet) of our proposed Store/Retrieve method is illustrated in
Fig. 6.

8 Results

This section provides the performance results of our study.

8.1 Cycles count: measurements methodology

The experiments were carried out on two processors: the
previous generation 2010 Intel® Core™ processors (specif-
ically, Intel Core® i5-750) and the latest 2nd generation
Intel® Core™ processor (specifically, Intel Core® i5-2500).

Runs were carried out on a system where the Intel® Turbo
Boost Technology, the Intel® Hyper-Threading Technology,
and the Enhanced Intel Speedstep® Technology were dis-
abled. Each measured function was isolated, run 25,000 times
(warm-up), followed by 100,000 iterations that were clocked
(using the RDTSC instruction) and averaged. To minimize
the effect of background tasks running on the system, each
such experiment was repeated five times, and the mini-
mum result was recorded. All reported cycles count perfor-
mance numbers were obtained with the same measurement
methodology.

8.2 Cycles count for 512-bit AMM/AMSQR and 512-bit
modular exponentiation

AMM and AMSQRs For the performance of WW-AMM/
AMSQR we measured our new optimized implementa-
tion. For the performance of TSF-AMM we isolated the
mont_mul_a3b and sqr_reduce functions from [27]. For com-
parison to OpenSSL we isolated its WW-MM implemen-
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Fig. 6 Inherently protected
Store/Retrieve (for 512-bit
modular exponentiation) at a
granularity of a “dword”,
facilitated by choosing a
window size w = 4, where the
table consists of 16,512-bit
values

Table 2 The performance of 512-bit MM/AMM algorithms, and 512-bit modular exponentiation, in CPU cycles, measured on different processors

Processor OpenSSL 1.0.0e (WW-MM) TSF-AMM [27] WW-AMM (this paper)

CPU cycles: 512-bit AMM

Westmerea 924 710 637

Sandy Bridgeb 594 453 428

CPU cycles: 512-bit AMSQR

Westmerea N/A 588 550

Sandy Bridgeb N/A 401 342

CPU cycles: 512-bit modular exponentiation

Westmerea 675,000 399,668 358,499

Sandy Bridgeb 435,400 258,133 230,959

a Previous generation Intel® Core™ i7 CPU X 980 @ 3.33 GHz (a.k.a. “Westmere”)
b 2nd generation Intel® Core™ i7-2600 K CPU @ 3.40 GHz (a.k.a. “Sandy Bridge”)

Table 3 OpenSSL’s 512-bit modular exponentiation with different optimizations for inherently protected Store/Retrieve

Processor OpenSSL 1.0.0e Constant time 512-bit modular exponentiation

OpenSSLc Optimization of [7]d This paperf

CPU cycles: 512-bit modular exponentiation

Westmerea 675,000 (625,000)d 648,715 642,481

Sandy Bridgeb 435,400 (413,600)d 421,422 411,270

a Previous generation Intel® Core™ i7 CPU X 980 @ 3.33 GHz (a.k.a. “Westmere”)
b 2nd generation Intel® Core™ i7-2600 K CPU @ 3.40 GHz (a.k.a. “Sandy Bridge”)
c OpenSSL uses w = 5 and a table scattered at the granularity of a byte
d Numbers in parentheses are for OpenSSL un-mitigated (non constant-time) implementation
e [7] uses w = 5 and a table scattered at the granularity of a (16-bit) word
f Our optimization uses w = 5 and a table scattered at the granularity of a (32-bit) dword

tation in the BN_mod_mul_montgomery function. The per-
formance of these primitives was measured, separately, for
AMM and AMSQR (when possible; OpenSSLs BN_mod
_mul_montgomery interleaves the computations and does not
optimize for MSQR).

512-bit modular exponentiation We report the perfor-
mance of 512-bit modular exponentiation, comparing four
implementations. For OpenSSL, we measured the BN_mod_
exp_mont function, with and without the “constant time”

mitigation (with constant time flag the function calls the
function
OpenSSL BN_mod_exp_mont_consttime). In both cases,
OpenSSL uses a WW-MM based w-ary exponentiation with
the (default) window size w = 5. We also measured the
mod_exp_512 function of [27], which is a hand crafted
optimized implementation using TSF-AMS and a w-ary
exponentiation with w = 5. For our implementation, we
report our optimized implementations of the WW-AMM
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algorithm, using the w-ary exponentiation with w = 4. Table
2 summarizes the results for 512-bit operands. It demon-
strates that our AMM/AMSQR implementation is consis-
tently the fastest alternative. For example, on the previous
generation 2010 Intel® Core™ processor it is 1.45 times
faster than the OpenSSL implementation, and 1.11 times
faster than the TSF-AMM of [27]. Obviously, AMSQRs are
faster than AMMs. On the 2nd generation Intel® Core™
processor, all three implementations improve by more than
30 %.

The effect of the Store/Retrieve optimization The results
in Table 3 demonstrate the benefit of our Store/Retrieve
optimization. To isolate its effect, we compared the per-
formance of 512-bit modular exponentiation with OpenS-
SL 1.0.0e, and with two variants obtained by applying
the simple changes needed to modify the Store/Retrieve
implementation (changes were made in the file bn_exp.c).
Our optimization achieves the fastest results. The results
of the un-protected modular exponentiation show the cost
of the mitigations (∼5–7 % degradation). Note that a
change in the Store/Retrieve operations, introduced straight-
forwardly into OpenSSL, achieves noticeable performance
gain.

8.3 Cycles count for 1,024-bit MM/AMM and 1,024-bit
modular exponentiation

Table 4 summarizes the results for 1, 024-bit operands. Since
a 1, 024-bit TSF-AMM implementation is not publicly avail-
able, we compare our implementation only to that of OpenS-
SL 1.0.0e. As for the case of 512-bit operands, our imple-
mentation is significantly faster on both processors.

OpenSSL distribution has a built-in test utility, which
includes speed tests for various functions. This speed test
performs RSA signing (=RSA decryption) operation for 10
seconds and report the average number of “RSA signs per

second”. Unlike the cycles count results, reported above,
these performance numbers also depend on the proces-
sor’s frequency. These are practically “bottom line results”
because they account for the two exponentiations, the CRT
recombination, base blinding, and other overheads. They
represent the number of new SSL/TLS connections per
second that a server can accept. To measure the results,
we integrated our RSAZ implementation into OpenSSL,
obtained the faster version, and measured the performance
using the “openssl speed rsa1024” and “openssl speed
rsa2048”.

The results are shown in Table 5. They demonstrate a sig-
nificant speedup factor achieved by our implementation, and
also illustrate the relative speedup across the processor gen-
erations.

Another result, which worth mentioning, is the follow-
ing. We prepared and measured a version of RSAZ that uses
the standard MM/MSQR instead of AMM/AMSQR, and the
performances difference is less than 1 %.

In addition, we generated a version of OpenSSL that
integrated only the AMM/AMSQR functions (called from
OpenSSL’s mont_mul() function), changed the windows size
parameter to w = 4, and added optimized gather/scatter
functions. These partial optimizations were sufficient to
achieve a significant portion of the overall speedup. For
example, for RSA1024, we obtained a speedup factor of 1.46,
compared to OpenSSL 1.0.0e (counting 5,320 signs/s).

9 Discussion and analysis of the results

Explaining the performance differences between the dif-
ferent processors The reported results demonstrate that
RSA computations are faster on the 2nd generation Intel®

Core™ processor, than on the Previous generation Intel®

Core™. This speedup is mainly due to the improved per-

Table 4 The performance of 1,024-bit MM/AMM algorithms, and 1,024-bit modular exponentiation, in CPU cycles, measured on different
processors

Processor OpenSSL 1.0.0e (WW-MM) WW-AMM (this paper)

CPU cycles: 1,024-bit AMM

Westmerea 3,220 2,483

Sandy Bridgea 2,184 1,889

CPU cycles: 1,024-bit AMSQR

Westmerea N/A 2,074

Sandy Bridgeb N/A 1,389

CPU cycles: 1,024-bit modular exponentiation

Westmerea 4,413,906 2,624,316

Sandy Bridgeb 2,833,200 1,823,342

a Previous generation Intel® Core™ Intel® Core™ i7 CPU X 980 @ 3.33 GHz (a.k.a. architecture codename “Westmere”)
b Second generation Intel® Core™ Intel® Core ™ i7-2600 K CPU @ 3.40 GHz (a.k.a. architecture codename “Sandy Bridge”)
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Table 5 The performance of RSA1024 and RSA2048, measured using the “openssl speed” utility

Processor OpenSSL 1.0.0e RSAZ (this paper) RSAX (engine)

RSA1024 sign/s
Westmere (speedup factor: 1.72)a 2,297 3,957 3,670
Sandy Bridge (speedup factor: 1.62)b 3,646 5,908 5,462

RSA2048 sign/s
Westmere (speedup factor: 1.61)a 368 592 N/A
Sandy Bridge (speedup factor: 1.64)b 519 853 N/A

The performance is measured in RSA signs per second. Speedup is measured as the ratio (RSAZ sign per second)/(OpenSSL sign per second)
a Previous generation Intel® Core™ Intel® Core™ i7 CPU X 980 @ 3.33 GHz (a.k.a. architecture codename “Westmere”)
b 2nd generation Intel® Core™ Intel® Core™ i7-2600 K CPU @ 3.40 GHz (a.k.a. architecture codename “Sandy Bridge”)

formance of the 64-bit multiplication (MUL) and add-with-
carry (ADC) instructions, as follows: the latency of MUL,
in the 2nd generation Intel® Core™ processor, is reduced
from 9 cycles (on the Previous generation processor) to
4 cycles, and the latency of ADC (with immediate = 0)
is reduced from 2 cycles to 1 cycle, while its throughput
doubled.

In addition, the 2nd generation Intel® Core™ processor
has a new feature, called the “Decoded Instruction Cache”
(see [12]), which allows it to cache decoded instructions and
execute them faster when they are re-invoked. An algorithm
can be optimized by making its code stay resident in this
cache.

Explaining why OpenSSL has a slower implementation
The reported results show that OpenSSL (1.0.0e) is signifi-
cantly slower than the optimized RSAZ, although both imple-
mentations use, basically, similar primitives (WW-MM and
WW-AMM). To explain these performance differences, we
suggest the following main reasons: (a) OpenSSL has no opti-
mization for squaring, because its WW-MM function inter-
leaves the multiplication and the reduction steps. This leads
to a less efficient WW-MM implementation; (b) the gather-
ing/scattering strategy (for the “constant time” w-ary expo-
nentiation) is not efficient (perhaps because it is designed
to capture a general window size and modulus size, and not
optimized for n = 512); (c) the big-number “multiply-add”
implementation, and the w-ary exponentiation flow are more
efficient in RSAZ (see details on big-number squaring in
[9]); (d) the RSAZ implementation optimized for two spe-
cific (important) key sizes, namely n = 512 and n = 1,024,
while OpenSSL’s code is more general. In addition, we
also point out that OpenSSL’s implementation optimizes
not only performance, but also code simplicity, readabil-
ity, maintainability, portability, and generality. These incur
some overheads, which an optimized implementation can
avoid.

The future OpenSSL version We mention here that OpenS-
SL has already a “development branch” [19]. This version
has integrated several improvements from RSAZ (based on
an earlier version of this paper [10], and personal discus-

Fig. 7 The performance of OpenSSL’s development branch [19], ver-
sus OpenSSL 1.0.0e and RSAZ. The performance was measured using
the ‘openssl speed’ utility on a 3.4 GHz Intel® Core™ i7-2600 K CPU
and reported in sign/sec

sions with their developments team [21]), while adhering
to the generality requirements, constraints, and the coding
style of this library. This version will soon become official.
This implementation gives up some portion of the obtainable
speedup of RSAZ for the sake of generality and maintain-
ability, as shown in Fig. 7.

Finally, we point out that under some conditions the ER
step in Montgomery multiplications can be simply skipped
(see [11,23,25] for details). To use this property, the modulus
needs to be shortened by two bits. In our context, this requires
a change in the RSA primes generation (which OpenSSL
generates), to satisfy 2n−1 < P, Q < 2n . With such shorter
primes, removing the ER step makes the 512-bit modular
exponentiation ∼ 4 % faster.

10 Conclusion

This paper studied efficient software implementations mod-
ular exponentiation, on general purpose ×64 architectures,
focusing on 512/1,024-bit operands. It explained the algo-
rithmic, software, and micro-architectural characteristics of
the proposed optimizations, demonstrating their incremental
contributions to the total speedup.
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At the level of the “primitives”, we identified the WW-
AMM (and also WW-MM) method as the preferred algorithm
for modular multiplication. At the exponentiation level, we
reduced the cost of the associated side channel protection,
and proposed a few improvements to the w-ary exponen-
tiation. The combination of these, and an optimized code
led to the new RSAZ implementation, offering a speedup
factor of more than 1.6x over the current OpenSSL version
(1.0.0e).

The RSAZ implementation can be seamlessly integrated
into the OpenSSL library, as demonstrated in [8]. As per
a request from the OpenSSL Development Team, the RSAZ
code was contributed as a patch [8], for integration as a whole
or in parts, for the benefit of the open source community.
Some of the improvements, proposed in an earlier version
of this paper, have already been incorporated into the next
version of OpenSSL [19], achieving a gain factor of 1.54 ×
/1.49× for RSA1024/RSA2048, respectively, on the Previ-
ous generation Intel Core Processors, and 1.28 × /1.47× on
the Second generation Intel Core Processors.
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