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Abstract
In this paper, we investigate market- and time-consistent valuation of life-insurance 
liabilities, which are long-dated by nature. To obtain a market- and time-consist-
ent value, the “two-step market evaluation” introduced by Pelsser and Stadje (Math 
Finance 24:25–65, 2014) is used to evaluate a hybrid payoff with underlying hedge-
able financial and (partially) unhedgeable actuarial risks. The resulting time-con-
sistent and market-consistent (TCMC) price captures the dynamics of the risk driv-
ers over the lifetime of the contract. We show that the EIOPA standard-formula for 
the risk-margin is not time-consistent, and we construct a time-consistent version 
of the risk-margin that captures the extra uncertainties from the process dynamics. 
EIOPA’s standard-formula for the Risk-Margin is compared to the TCMC price for 
a simple unit-linked contract and we show that the effects of time-inconsistency are 
increasing with maturity and are significant for long-dated contracts.
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1 Introduction

Life-insurance companies and pension funds have very long-dated liabilities in 
their books. People start to save from age 25 and, with an average life expectancy 
of 85 years, a life-insurance or pension liability can consist contractual obliga-
tions that can last up to 95 years in the future. To provide a sense of the magni-
tude: approximately 20% of the NPV of the liabilities’ cash flows can be attrib-
uted to cash flows beyond 30 years. Most of these very long-dated contracts are 
not (actively) tradable in the market (non-market risks); therefore, no other con-
tracts can be used to hedge these risks. A life-insurance or pension contract is a 
“hybrid” financial and actuarial payoff with significant exposure to market risks, 
such as interest rates, equities, and inflation.

Actuarial pricing operators typically ignore the hedging mechanisms availa-
ble in financial markets, and evaluate the payoff in a “static” way through a one-
period valuation, ignoring the stochastic evolution at intermediate time-points. 
On the other hand, classical financial pricing accounts for the evolution of the 
risk until maturity in a “dynamic” manner but usually ignores the unhedgeable 
risks. This dynamic valuation is needed to capture a payoff’s “path-dependent” 
nature in a broad range of traded financial contracts. From a theoretical perspec-
tive, as the long-dated contract is exposed to hedgeable financial risks and non-
hedgeable actuarial risks, the market for such liabilities is incomplete. The stand-
ard risk-neutral pricing machinery breaks down in that case as it is no longer 
possible to construct a perfect replicating portfolio to hedge all risks. Therefore, 
a pricing framework that explicitly includes non-hedgeable (actuarial) risks and 
remains market-consistent is necessary, while the hedgeable financial prices are 
still consistent with risk-neutral pricing.

In a incomplete market setting, one seeks to extend arbitrage-free pricing opera-
tors to the larger space of (partially) unhedgeable contracts. Utility-indifference (and 
duality) methods, automatically induce market consistency. The paper by Hodges 
and Neuberger [26] is frequently cited as the root idea of the utility-indifference 
pricing literature. The big challenge in implementing utility-difference pricing meth-
ods is that it is very difficult to obtain explicit results. Musiela and Zariphopoulou 
[35] compute explicit results to for the indifference premium through an exponen-
tial utility function. A related branch of the literature extends arbitrage-free pricing 
operators using (local) risk-minimization techniques and the related notion of mini-
mal martingale measures; see Föllmer and Schweizer [23], Schweizer [42], Delbaen 
and Schachermayer [15], and Møller [34]. A rich duality theory has been developed 
that makes deep connections between utility maximization and risk minimization 
over the martingale measures; see Cvitanic and Karatzas [12] and Kramkov and 
Schachermayer [28].

To obtain a more explicit characterization of time-consistent and market-con-
sistent valuations, Pelsser and Stadje [37] introduce a method called Two-Step 
Evaluation. They prove that, under mild technical conditions, any market- and 
time-consistent pricing operator can be represented as a two-step market evalua-
tion. Intuitively, the two-step evaluation can be characterized as:
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• First step: Conditional on a financial risk driver, applies an actuarial pricing 
operator on the general (hybrid) payoff (position) and turns it into a function of 
only financial risk that, through the structure, is perfectly hedgeable;

• Second step: Applies conditional expectations under a unique equivalent martin-
gale measure ℚ that reflects a no-arbitrage argument for the hedgeable part of the 
general position.

Several researchers have investigated the construction of time-consistent risk 
measures. See Cheridito et al. [10], Rosazza Gianin [39], and Artzner et al. [2] for 
general ideas on dynamic risk measures, and Peng [38], Frittelli and Gianin [24], 
Maccheroni et al. [32], Bion-Nadal [7], and Barrieu and El Karoui [6] for time con-
sistency in continuous time. More specifically, Jobert and Rogers [27] showed that 
a time-consistent price could be constructed using a backward iteration that sticks 
the shorter one-period static price operators to each other over a more extended 
period. Although the real re-valuation of liabilities occurs forward, the compatible 
pricing method can reflect this property in a backward valuation manner, starting 
from maturity. Therefore, the contracts must be priced backward by re-valuating the 
payoff value in middle times and reach the price at t = 0 . In recent work, Salahne-
jhad and Pelsser [40] used the method of Jobert and Rogers [27] to find the continu-
ous-time limit of well-known actuarial premium principles under time-consistency. 
In addition, Pelsser and Stadje [37] proved that for finitely many stopping times 
� ∈ [0, T] of the underlying actuarial process, time-consistency, and market-con-
sistency imply that every evaluation (including actuarial premium principles) must 
admit a representation of the two-step market evaluation. The result is stable even 
when the insurance process follows a jump-diffusion process, and jumps occur only 
at finitely many predictable times. An applied framework for the two-step actuarial 
valuation for different alternative pricing methods, including time-consistent valua-
tion, and application on a toy example of participating pension contract is explained 
in Salahnejhad Ghalehjooghi and Pelsser [41].

In some recent developments on the market-consistent valuation Dhaene et  al. 
[19] defined a one-period framework of “fair valuation” as being both market-
consistent (mark-to-market for hedgeable claims) and actuarial (mark-to-model for 
unhedgeable part). Fair valuation then becomes a hedge-based method that, based 
on the traded assets in the market, provides the best hedge in the first step and gives 
the actuarial value of the remaining unhedged claim in the second step. They show 
that the fair hedge-based valuation is identical to the two-step actuarial valuation 
in Pelsser and Stadje [37]. Assa and Gospodinov [3] studied the market-consistent 
valuations in imperfect markets and showed that market-consistency of the type 
defined in this paper is only well-defined in a perfect market. They showed that mar-
ket-consistency is strongly connected to hedging and all market-consistent evalua-
tors are a kind of “best-estimate” that two-step valuations can represent. In a pair 
of papers Delong et  al. [16] and Delong et  al. [17] developed the one-period fair 
valuation into multi-period setting by backward iteration of the discrete-time one-
period operator and provided a continuous-time limit of the market-consistent actu-
arial price. Finally, Deelstra et al. [13] rearrange the market-consistent valuation in a 
three-step method by decomposing the contingent payoff into a financial hedgeable 
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part, a diversifiable actuarial part, and then eventually a non-hedgeable residual part. 
The interested readers may also consult Barigou and Dhaene [5], Barigou et al. [4] 
and Chen et al. [9].

In Europe, the European Insurance and Occupational Pension Authority (EIOPA), 
in connection with the Solvency II framework, requires market-consistent valuation 
for life-insurance liabilities, that includes market information related to the liability 
as well as an explicit loading for non-market risks. The market-consistent actuarial 
valuation integrates the financial and actuarial pricing methods and considers both 
hedgeable and unhedgeable risks, including their interactions and dynamic pricing 
of a combined payoff.

This paper makes the following contributions. First, we provide an applied imple-
mentation of the market-consistent actuarial price using the two-step valuation 
method. We note that the EIOPA standard-formula for computing the risk-margin 
is not time-consistent. We therefore implement in our calculations a time-consist-
ent extension of the risk margin to quantify the cost of “time-inconsistency” of the 
EIOPA standard-formula. To illustrate our approach, we price a simple unit-linked 
contract without guarantee. We show that the gap between the best-estimate and the 
time-consistent EIOPA price is significant for long-dated contracts. Finally, whereas 
most studies assume independence between financial and actuarial risks, we also 
investigate the impact a non-zero correlation on the pricing of contracts.

2  Time‑consistent and market‑consistent valuation

This section briefly recaps the general framework for time-consistent and market-
consistent valuation of insurance products and pension liabilities. We consider a 
class of contracts whose payoffs are contingent on the evolution of hedgeable finan-
cial risk(s) combined with unhedgeable (or partially hedgeable) actuarial risk(s). 
First, we introduce the appropriate valuation operators in a one-period setting and 
extend the framework to a multi-period setting in which we construct a pricing oper-
ator that is time-consistent. Then, we show that the EIOPA standard-formula for the 
risk-margin is not time-consistent, and we construct a time-consistent version of the 
risk-margin that captures the extra uncertainties from the process dynamics.

2.1  Setup and assumption

As a general setting, we start with (Ω,F,ℙ) as the underlying probability space 
with the filtered �-algebra Ft defined on the time index t varying on the finite inter-
val [0,  T]. Given the hybrid nature of the payoff, we model the information flow 
using two separate �-algebras consisting of (FS

t
)t≥0 for the financial information and 

(GA

t
)t≥0 for the actuarial information that the insurance company or the pension fund 

has available at time t. Essentially, we aim to achieve an actuarial value conditional 
on the actuarial information represented by GA , which is generated through the actu-
arial risk process(es) but not its financial value. We only use financial information 
to capture information on the traded financial risks in pursuit of market-consistency. 
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Hence, we price the contract with respect to GA and call the possible price/valuation 
operator “ GA-conditional.”

We denote the information flow of both risk categories at time t by 
Gt = �(GA

t
∪F

S

t
) , where G ⊂ F  . However, later, given the required form of the val-

uation operator, we might need to use other versions of G  where GA and FS have a 
different time-index representing the information flow in different points of time.

Suppose we have two stochastic processes xt as hedgeable pure financial risk 
and yt as non-traded (partial or) unhedgeable insurance risk. The general payoff 
G(xT , yT ) ∈ L2(F) is a mixed derivative of the financial and insurance risks in an 
incomplete market, whereas GS(xT ) ∈ L2(G) is a pure financial claim for which L2 
exhibits the space of the bounded random variables on the probability space. Let 
ΠG ∶ L2(F) → L2(G) be the G -conditional pricing operator.

We assume that the financial market is complete and arbitrage-free, which means 
that all risks conditional on actuarial information GA , only depend on financial risks 
and can be hedged by trading in continuous time. As a numéraire asset, we select 
the money-market account B(t) = e∫

t

0
rs ds , where the risk-free interest rate process rt 

can be stochastic and is adapted to the financial filtration Ft . Hence, using the Fun-
damental Theorems of Asset Pricing (see, e.g., Delbaen and Schachermayer [14]), 
there exists a unique martingale measure ℚG  for the financial risk process that is 
equivalent to ℙG  , such that the relative prices of all assets divided by the money-
market account B(t) are martingales. For the remainder of this paper, we denote all 
payoff and price-variables in “discounted” terms, i.e.  expressed in values relative 
to the numéraire asset B(t). Hence, we can express the (discounted) price of a pure 
financial claim GS as

In contrast, as actuarial risk is not (entirely) hedgeable, we cannot use a replicat-
ing portfolio argument for insurance derivatives. Of course, many actuarial premium 
principles have been proposed in the context of pure actuarial risks. Most actuarial 
premium principles are a non-linear function of discounted loss and impose an extra 
risk premium (also called “Risk Loading”) on the “Best-Estimate” of future insur-
ance losses. In itself, a risk loading is a risk measure that plays the role of a buffer 
to cover the possible deviation of future losses from what is expected from the best-
estimate of the losses. Both best estimate and risk loading are calculated under the 
real-world measure ℙ . This postulates that actuarial pricing is an economic decision 
under uncertainty, whereas financial pricing is normally based on the risk-neutral 
valuation built using an equivalent martingale measure that utilizes a conditional 
expected value under a risk-adjusted underlying process. Goovaerts and Laeven 
[25] discussed the no-arbitrage argument for the actuarial pricing operators for pure 
insurance risks and the securitized version of the insurance products.

As a reasonable pricing method, if we add a pure financial claim to a given gen-
eral payoff G(xT , yT ) , we expect that the pure financial part of the portfolio should 
be priced consistently with arbitrage-free pricing. Note that, although we assume 
that the market containing only financial payoffs GS is complete, the market given 
by general F-measurable payoffs G is incomplete. Moreover, the payoffs replicable 

(1)ΠG

[
GS

]
= 𝔼

ℚG

[
GS

]
.
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by perfectly liquid assets do not carry risks more than the market risk. We formalize 
this concept in the following definition.

Definition 2.1 An actuarial pricing operator Π
G
A conditional on the actuarial infor-

mation GA is market-consistent if, for any financial derivative GS(xT ) and any general 
claim G(xT , yT ) , we have

The market-consistency definition postulates that, given the actuarial informa-
tion, the actuarial price of a general payoff plus a pure financial payoff equals the 
actuarial price of the general payoff plus the arbitrage-free price of the pure financial 
payoff. This definition establishes a generalized notion of “translation invariance” 
for the G -conditional valuation operator with respect to the pure financial risk. This 
implies that if any hedgeable risk exists (even in the payoff G), it must be hedged 
through a market-consistent valuation. Hence, a market-consistent valuation cannot 
be improved through hedging. A similar representation of the market-consistency 
can be found in Kupper et al. [29] or Malamud et al. [33].

2.2  Two‑step actuarial valuation in a one‑period setting

Pelsser and Stadje [37] proposed that the market-consistent value of a contingent 
payoff can be constructed using a two-step market evaluation method. Under this 
method, the price is developed by splitting the no-arbitrage financial price opera-
tor, 𝔼ℚ (which prices a hedgeable pure financial payoff), and an actuarial valuation 
operator, Πℙ (which prices a general (partially) unhedgeable payoff). We call this 
operator a “two-step actuarial operator”, or simply a “two-step operator” or “two-
step valuation”.

In a one-period setting, to value the mixed position G(yT , xT ) at time t < T  , a con-
ceptual representation of the two-step actuarial operator is defined as follows1:

Definition 2.2 A GA-conditional actuarial operator Π
G
A ∶ L2(F) → L2(GA) is a two-

step market evaluation if for a G -conditional pricing operator ΠG ∶ L2(F) → L2(G)

where G = �(GA ∪F
S) contains both financial and actuarial information.

The equation shows the functional form of the two-step valuation. In the inner 
step, the �

(
G
A

t
,FS

T

)
-conditional actuarial operator Πℙ is computed, whereas the 

financial process xT is a FS

T
-measurable variable. Hence, the only randomness 

comes from the actuarial risk factor (insurance process) at time T, yT , conditional 

(2)Π
G
A

(
G + GS

)
= Π

G
A[G] + 𝔼

ℚ
GA
[
GS

]
.

(3)Π
G
A
t

[
G(yT , xT )

]
= 𝔼

ℚ

[
Πℙ

[
G
(
yT , xT

) || �(GA

t
,FS

T
)
] ||| �

(
G
A

t
,FS

t

)]
.

1 See example (3.4) in Pelsser and Stadje [37] for examples of two-step actuarial operators under the 
previously described representation.
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on GA

t
 , and xT stays constant. Let yt and xt be stochastic processes with a Markov 

property. They reflect exclusively all information available at GA

t
 and FS

t
 , respec-

tively, and are used instead for conditioning. Applying the inner operator, turns 
the term Πℙ

[
G
(
yT , xT

) || �
(
G
A

t
,FS

T

)]
 into the function GS

(
t, T , yt, xT

)
 which is 

therefore a random variable measurable with respect to �
(
G
A

t
,FS

T

)
 . Now, applying 

the outer conditional expectation 𝔼ℚ with respect to �
(
G
A

t
,FS

t

)
 , the only source 

of randomness in GS is xT . This shows that the structure of the two-step actuarial 
evaluation in (3) is well defined.

A simple description of the two-step actuarial valuation in a one-period setting 
over [t, T] is as follows:

• In the first (inner) step, we assume that we know all financial information up 
to and including time T, whereas our knowledge of actuarial information is up 
to time t < T  (i.e., we know yt ). We calculate the actuarial value of the payoff 
G(yT , xT ) under the real-world measure ℙ given (yT , xt) . 

 The result of this step turns the general payoff G(yT , xT ) into a function exhibited 
by GS(yt, xT ).

• Because looking from time, t, GS(yt, xT ) is random only on the financial risk 
xT , it can be perfectly hedged given the completeness of the financial market 
and the no-arbitrage argument. Hence, the second (outer) step can be per-
formed through the conditional expectation under the risk-adjusted measure 
ℚ , when we condition on xt . 

 Note that the second step is still implemented given the actuarial information 
provided by yt.

Hence, in the two-step actuarial valuation, we use both sources of information 
that we have in hand from xT and yT.

A simplified form of the two-step market valuation for the actuarial operator Π 
can be defined as follows:

Definition 2.3 Let yt and xt be Markov processes with respect to GA

t
 and FS

t
 . A GA

-conditional actuarial operator  Π
G
A is a two-step operator if

In the inner step, under the actuarial operator Π and conditional on yt and xT , 
the only randomness is through the actuarial risk process at time T, yT . Then, 
applying the outer conditional expectation 𝔼ℚ conditional on xt , the only source 
of randomness is xT . We emphasize that, at each time step or sub-interval, two 
valuation operators need to be applied.

Πℙ

[
G(yT , xT )

||| (yt, xT )
]

𝔼
ℚ

[
GS(yt, xT )

||| (yt, xt)
]

(4)Π
G
A
t

[
G(yT , xT )

]
= 𝔼

ℚ

[
Πℙ

[
G(yT , xT )

||| (yt, xT )
] ||| (yt, xt)

]
.
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2.2.1  Two‑step operator in a binomial tree

An intuitive exhibition of the two-step method via a binomial discretization of the 
two-state variables x and y is as follows: At a typical time step (t, t + Δt) , every state 
(xt, yt) of the payoff at time t will develop to four different states of the world at time 
t + Δt , as follows

We pretend that, first, xt evolves and ends in two different states at t + Δt . Only 
then, given each state of xt+Δt , does the process yt move. The following pattern will 
be concluded: 

where qℚ is the risk-adjusted2 probability of “up” state for financial risk, and p 
is the probability of the “up” state for actuarial risk. In a two-step valuation, given 
each state of xt+Δt (i.e., we know whether it is x+ or x− ) in the inner step (actuarial 
valuation step), we perform the actuarial valuation for nodes y+

t+Δt
 and y−

t+Δt
 . Then, 

in the outer step (financial valuation step), we have two states of the world that only 
depend on xt+Δt , where we compute the price under binomial risk-neutral probabili-
ties ( qℚ).

2 Also called the “risk-neutral” probability.
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2.3  Time‑consistency in a multi‑period setting

Given the regulatory requirements or reporting purposes, insurance companies and 
pension funds need to revaluate their liabilities at regular intervals. Suppose we are 
at time zero and want to value a contingent payoff at time T. At time 0 < s < T  , 
an economic shock, a non-economic decision, or any other new information may 
change the state and trend of the financial and actuarial risk drivers. This can signifi-
cantly affect the value of liabilities and must be considered in the valuation at time 
zero (present time). We achieve this requirement by constructing a time-consistent 
and market-consistent pricing operator to price long-term liabilities. This problem 
becomes highly important in the price/valuation operators, such as the Cost-of-Capi-
tal operator, which includes risk measures (VaR) on a one-year scale.

In the sub-sections that follow, we first present the EIOPA risk-margin standard-
formula, and show that this is not a time-consistent operator. We then extend the 
standard-formula to a time-consistent pricing operator.

2.3.1  Risk‑margin via the EIOPA standard‑formula

EC Delegated Regulation 2015/35 [20] provides the Solvency II standard formula to 
value the technical provision for insurance liabilities as the sum of the best-estimate 
and the risk-margin under the cost-of-capital approach. The risk-margin component 
is an adjustment to cover the uncertainty arising from the unhedgeable part of liabil-
ities and is measured using a one-year �aR of the unexpected loss with a probability 
threshold q (in Solvency II, equal to 0.995). A small probability 1 − q always exists 
that a risk loading (capital buffer) is needed to compensate for the actual unexpected 
loss (unhedgeable risk). This “buffer capital” can be provided by external stakehold-
ers, such as company shareholders. In return, capital providers ask for cost-of-cap-
ital � to compensate for their investment in a risky position. Therefore, the insurer 
includes this cost-of-capital as risk loading in price to be paid by the policyholder.3 
The Solvency II framework advises to set the confidence level of the �aR to 99.5% 
and the cost-of-capital to 6% . Suppose we only have the actuarial risk yt with payoff 
f (yT ) for t < T  . The EIOPA risk-margin price at time t for a contract with payoff 
at time T > t , based on the Solvency II framework consists of the summation of 
the best-estimate discounted payoff and the summation of the discounted future Sol-
vency Capital Requirement (SCR) for that payoff. The price ( ΠE

t
 ) is formulated as 

follows,

3 The EIOPA Technical Specification [21] and in specific articles https:// www. asf. com. pt/ NR/ rdonl 
yres/ 359F7 9DF- 586C- 42D0- 8064- 97811 541C2 3F/0/ A__ Techn ical_ Speci ficat ion_ for_ the_ Prepa ratory_ 
Phase__ Part_ I_. pdf released by the European Insurance and Occupational Pension Authority (EIOPA) 
provides advice and formulations on the calculation of the risk-margin on top of the best-estimate for 
long-term liabilities in a multi-period setting.

https://www.asf.com.pt/NR/rdonlyres/359F79DF-586C-42D0-8064-97811541C23F/0/A__Technical_Specification_for_the_Preparatory_Phase__Part_I_.pdf
https://www.asf.com.pt/NR/rdonlyres/359F79DF-586C-42D0-8064-97811541C23F/0/A__Technical_Specification_for_the_Preparatory_Phase__Part_I_.pdf
https://www.asf.com.pt/NR/rdonlyres/359F79DF-586C-42D0-8064-97811541C23F/0/A__Technical_Specification_for_the_Preparatory_Phase__Part_I_.pdf
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where h(yt+k) is the discounted best-estimate of the final payoff given the informa-
tion available at time t + k for annual times k = 0, 1, 2, ..., T − t.4 Therefore, the �aR 
of the difference between shocked and the best-estimate scenarios

represents the future SCRs for each time step (t + k − 1, t + k) given the best-esti-
mate path of y at t + k − 1 . ΠE

t
 is the conditional Cost-of-Capital operator with avail-

able information at time t < T .5
The base value of the price is still the one-period discounted best-estimate of the 

payoff at time T, h(yt) . The summation term over annual time-steps from t + 1 until 
maturity T can be interpreted as follows. For each time-step, we consider the one-
year �aR along the best-estimate path of y. Hence, the �aR-operator is conditioned 
on ��(yt+k−1) . Using this projected value of yt+k−1 at each time step as a starting 
point, we then consider the impact of a 99.5% worst-case shock in non-market risks 
yt+k on the best-estimate of the payoff at time t + k , represented by h(yt+k) . This is 
the projected buffer-capital for time t + k . Over this buffer-capital, we must pay the 
cost-of-capital � to capital providers. The sum of all these discounted cost-of-capital 
payments is the “EIOPA Risk-margin”. Equivalently, this formulates the risk meas-
urement as follows: over the valuation period [t, T] for each point in time t + k ≤ T  , 
we take the best-estimate value of the underlying risk driver in one year earlier, 
t + k − 1 , as the available information. Based on that, we calculate the �aR of the 
difference between the one-year shocked and best-estimate payoff reference to the 
best estimate underlying risk as the SCR in that one year.

2.3.2  Time‑inconsistency of the EIOPA standard‑formula

Although the EIOPA risk-margin formula is calculated in a multi-period setting, it is 
not a time-consistent pricing operator. It considers the uncertainty arising from non-
market risks yT on the best-estimate price. However, there exists a “second-order” 
effect, that is, the uncertainty arising from the non-market risks yT on future buffer 
capital. Therefore, EIOPA’s Risk-margin pricing operator ignores the “capital-on-
capital” effect that a time-consistent operator does take into account.

To illustrate this point, we consider the example from Pelsser [36]. Suppose there 
is a two-year product with a payoff ebWy(2) where Wy(t) is the standard Brownian 

(5)

ΠE
t

[
f (yT )

]
= h(yt) + �

T−t∑
k=1

�aRq

[(
e− ∫ t+k

t+k−1
rsds

)
h(yt+k) − h(yt+k−1)

||| ��(yt+k−1)
]
,

h(yt+k) = �

[(
e− ∫ T

t+k
rsds

)
f (yT )

||| yt+k
]

�aRq

[
h(yt+k) − h(yt+k−1)

]

4 A one-year discount should be applied to the pay-off h(yt+k) under �aR operator.
5 Note that all yt values may also be represented by the “discounted” quantities relative to the money-
market account process B(t) defined in Sect. 3.1 with which the discount factors can be taken off from the 
formula.
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motion at time t. The best-estimate path is given by �t[e
bWy(2)|Wy(t) = 0] = e 1

2
b2(2−t) 

for t = 0, 1, 2 . A one-year 99.5% worst-case shock on Wy(t) is given by an increase in 
value to Wy(t) + 2.58 . Hence, the Value-at-Risk in year t is approximated by apply-
ing the one-year shock to the best-estimate path as e 1

2
b2(2−t)(e2.58b − 1) . Finally, the 

EIOPA standard-formula for the price for this two-year product would be calculated 
as

where we have set interest rates equal to zero, for ease of exposition. For b = 50% 
and � = 6% , we obtain a price of 1.62.

A disadvantage of the “best-estimate path method” is that the dynamics of the 
risk driver y(t) are entirely ignored for the �aR calculation. If we move one year 
ahead in time, then the risk driver will be at the value y(1), which will differ from 
the best estimate value �[y(1)] . Hence, the EIOPA standard-formula for the product’s 
price at time t = 1 is based on a different best-estimate path than the calculation at 
t = 0 . Therefore, the standard-formula prescribed by EIOPA is not time-consistent.

To obtain a time-consistent version of the EIOPA pricing operator, we use a 
backward-induction method. Given the payoff at T = 2 , we can calculate the price at 
time 1 conditional on the value of Wy(1) as

This expression can be simplified to

Given the price at time 1, which is now an explicit function of Wy(1) , we can calcu-
late the time-consistent price at t = 0 . This leads to the formula

If we take again b = 50% and � = 6% , we obtain a price of 1.72.
When we compare the price (6) of the EIOPA standard-formula with the time-

consistent price (7), then we immediately see the effect of the best-estimate path 
approximation. In (6) one adds the terms �(e2.58b − 1) and �e 1

2
b2(e2.58b − 1) to the 

price e 1
2
b22 . Whereas the time-consistent method explicitly takes the “capital-on-

capital” effect into account by multiplying the price e 1
2
b22 twice with the factor (

1 + �(e2.58b − 1)
)
.

2.3.3  Time‑consistent valuation

Under a time-consistent price operator, if position A is riskier than position B at 
some point of time, it is guaranteed to be riskier at any point of time prior to that 
point. Therefore, if �t denotes the price of A and B at time t, under time-consistency 
for T > 0 , 𝜌T (A) > 𝜌T (B) , and then ∀t < T  , 𝜌t(A) > 𝜌t(B) . As a result, the value of 
the time-T liability at time zero should equal the price obtained as if we value the 

(6)e
1
2
b22 + �(e

1
2
b2 + 1)(e2.58b − 1),

ebWy(1)+
1
2
b2 + �(eb(Wy(1)+2.58)+

1
2
b2 − ebWy(1)+

1
2
b2).

ebWy(1)+
1
2
b2
(
1 + �(e2.58b − 1)

)
.

(7)e
1
2
b22

(
1 + �(e2.58b − 1)

)2
.
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liability at a middle time 0 < s < T  , and then value the time-s value of the liability 
at time zero. This property can be translated as the following:

Definition 2.4 A conditional valuation operator (Πt) is time-consistent if and only if, 
for all 0 ≤ t < s ≤ T  and any measurable non-negative payoff f(y(T)),

This “recursive” form of the time-consistency definition constructs the time-
consistent actuarial operator in a multi-period setting. Time-consistency is a gener-
alization of the “no-arbitrage” arguments widely discussed in the financial pricing 
literature and is constructed by the “tower property” of the conditional expectation 
operator,6 which can now be extended to non-linear operators. A formal definition of 
the time-consistency can be found in Follmer and Penner [22], Cheridito and Stadje 
[11], and Acciaio and Penner [1].

We apply the time-consistency property to the two-step actuarial valuation to 
expand market-consistency, at least in a finite number of points, over the entire 
period [0, T] in a dynamic setting. We are interested in preserving the market-con-
sistency for all possible middle points in the valuation period. This can be achieved 
by applying the “Backward Iteration” method proposed by Jobert and Rogers [27] 
to the two-step operator. Suppose the valuation period [0, T] is divided into a set 
of sub-intervals. In that case, backward iteration constructs a time-consistent valua-
tion by connecting and re-valuating the one-period valuation (in our case, the two-
step actuarial valuation) over the sub-intervals in a backward manner, starting from 
T. See Salahnejhad and Pelsser [40] for an overview of how time-consistency can 
be obtained for well-known actuarial premium principles via the backward itera-
tion method. For the two-step actuarial valuation, the idea is generally described as 
follows.

Suppose we would like to value a time-T payoff at time zero. The representation 
in Eq. (4) does not necessarily imply that the two-step actuarial valuation must be 
applied in a one-period valuation setting over (0,  T). We divide the time interval 
[0, T] using a discrete set of points {0,Δt, 2Δt, ..., T − Δt, T} into a number n =

T

Δt
 

of sub-intervals of the form (t, t + Δt) . The backward iteration procedure starts from 
time T over the last sub-interval (T − Δt, T) to value the payoff G(T , xT , yT ) at time 
T − Δt . Using the backward iteration method, we calculate the price process of a 
contract at time 0 ≤ t < T  , where the price at t + Δt for any t is considered as a new 
payoff. Let the one-period G -conditional actuarial price at time T − Δt , be denoted 
by �(T − Δt, x, y) and for simplicity take Δt = 1.

We are now in a position to construct a time-consistent valuation operator for the 
EIOPA risk-margin valuation ΠE

t
 in (5). The resulting time-consistent and market-

consistent pricing operator for a general payoff G(yT , xT ) has the following form:

(8)Πt

[
T , f (y(T))

]
= Πt

(
s, Πs[ T , f (y(T)) ]

)
.

6 Note that the conditional expectation is time-consistent.
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with the inner step operator

where for the annual time-points k = 0, 1, 2, ..., T − t,

is the best-estimate final payoff conditioned on the actuarial information at time 
t + k.7

In the inner step, we first calculate the best-estimate value of the payoff given the 
discounted value of the financial risk xT and actuarial risk yt . Then, for each year 
k, we add the summation of the one-year �aR values of the difference between the 
shocked and best-estimate payoff h(yt+k, xT ) , conditional on the known discounted 
financial state variable xT and the best-estimate value of the underlying actuar-
ial process one year earlier, i.e. ��(yt+k−1) . In fact, at each point in time t + k , we 
look forward to the final payoff and consider its best-estimate given the actuarial 
information at t + k . Each �aR value is basically calculated using a 99.5% shock 
on the underlying actuarial risk for one year, given its best-estimate one year ear-
lier, t + k − 1 . The output of the inner step is again, by construction, a payoff that 
depends only on xT as the source of randomness and is valuated by the conditional 
expectation under the risk-adjusted measure ℚ , given xt.

For every time step Δt = 1 , we implement a backward iteration of the valuations 
in Eqs. (9) and (10) for all sub-intervals (t, t + 1) , to obtain the time-consistent mar-
ket-consistent price at time zero under the EIOPA formula.

2.3.4  Time‑consistency risk premium

Different operators may offer different prices for the same contingent payoff. Sup-
pose we exhibit the one-period actuarial value of the risk at time t by Πt , and the 
time-consistent actuarial valuation driven by the backward iteration by ΠTC

t
 . Both 

operators are constructed using the same valuation operators, and all other parame-
ters are equal. The possible fundamental difference between these two prices is only 
the result of enforcing the time-consistency property mentioned in Definition 2.4. 
We call this price difference the “Time-Consistency Risk Premium” (TCRP) and 
show it as

(9)Πt

[
G(yT , xT )

]
= 𝔼

ℚ

[
ΠE

t

[
G(yT , xT )

|| (yt, xT )
] ||| (yt, xt)

]

(10)

ΠE
t

[
G
(
yT , xT

) |||
(
yt, xT

)]
= h(yt, xT )

+ �

T−t∑
k=1

𝕍aRℙ

q

[
h(yt+k, xT ) − h(yt+k−1, xT )

|||
(
𝔹𝔼(yt+k−1), xT

)]

h(yt+k, xT ) = 𝔼
ℙ

[
G(yT , xT )

||| (yt+k, xT )
]

7 The discount factor is omitted due to use of xt as the discounted financial risk driver. Further explana-
tion is in Sect. 3.1
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In case there exists an analytical solution for the time-consistent actuarial value (by 
the continuous-time limit of the time-consistent operator when Δt → 0 ), kTC can 
also be obtained analytically. In applications, practitioners use an approximations of 
the time-consistent price (e.g., they work with Δt = one year ) that gives an approxi-
mated TCRP: k̂TC(t,T) = ̂ΠTC

t − Πt.

3  Application to a unit‑linked contract

We provide some insights into the time-consistent and market-consistent EIOPA risk-
margin price for a simple unit-linked contract where equity and mortality are the under-
lying financial and actuarial risk drivers, respectively. Each policyholder of the cohort 
age x participates in the contract by buying a unit at start time t = 0 . We assume that 
the contract has no guarantee. The payoff is the product of the financial and actuarial 
risks

where T is the maturity date, ST is the discounted value of the investment asset, and 
Nx(T) is the number of survivors of the original cohort who reach age x + T  . We 
assume that Nx is known at the start of the contract. At maturity, the market value of 
the investment asset will be paid to survivors. If Nx(T) = 1Tx≥T

 , the contract is spe-
cialized for an individual of age x, with the remaining lifetime random variable Tx . 
Typically, in unit-linked contracts, T is the retirement age minus current age.

3.1  Risk drivers

Suppose in the payoff function in (12), S̃T is a financial risky asset in the market follow-
ing geometric Brownian motion (GBM)

where � is the excess expected return on the asset, �S is the constant volatility, and 
W̃t is a standard Brownian motion defined on filtration FS

t
 on the time interval [0, T] 

under the real-world measure ℙ . Furthermore, rt represents the risk-free instantane-
ous interest rate in the market and is a stochastic process adapted to FS

t
 . Based on rt , 

the money-market account given as Bt = exp
(
∫ t

0
rsds

)
 . Let St =

S̃t

Bt

 be the dis-
counted asset price process,

(11)Time-Consistency Risk Premium: kTC(t, T) = ΠTC
t

− Πt

(12)G(ST , Tx) = ST × Nx(T)

(13)dS̃t =
(
𝛼 + rt

)
S̃t dt + 𝜎S S̃t dW̃t.

(14)dSt = d

(
S̃t

Bt

)
= 𝛼 Stdt + 𝜎S StdW̃t
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In the complete market assumption, under the unique equivalent martingale measure 
ℚ , the relative price process St is a martingale dSt = �S St dWt , where Wt denotes a ℚ
-Brownian motion.

For the actuarial risk, we denote the survival and death probability of (x) using 
 and  , respectively. The deterministic force-of-mortal-

ity of an individual aged x at time t is defined as .8
To study the evolution of the survival probability  as a stochastic process 

at time t, we use the model introduced by Lee and Carter [30]. In the Lee–Carter 
model, for age x and calendar year t, the stochastic force-of-mortality, �x(t) , is

where �t is the general level of mortality, �x is the average age-specific mortality, 
and �x is the age-specific sensitivity of the mortality to a change in �t . �t is a latent 
process to model the longevity trend,

with the solution �t = �0 + �� t + ��W
�
t
 , �0 = 0 and W� a standard Brownian motion 

under measure ℙ . The best-estimate for �t process at time zero is �(�t) = �0 + �� t.
The Lee–Carter model based on the realized mortality rates of the past calendar 

years calibrates the parameters �x and �x.9 Then the future force-of-mortality can be 
projected for individual (x). In that sense, t > 0 is the notation for future time.

Conditional on �t , the remaining lifetime the policyholders are assumed to be 
independent. Moreover, the force-of-mortality of an individual of age x + t at future 
time t is given by

Note that the parameters �, � ∶ ℝ+ → ℝ are piecewise constant on the intervals 
[t, t + 1) . This means that for all u ∈ [0, 1) , �x+u(t + u) = �x(t) . As we valuate the 
price of the product for a group of participants, let Nx(t) denote the cohort of policy-
holders of age x + t at time t. We assume that the death events of the group members 
are independent. Then, conditional on �t and Nx(t) , Nx(t + 1) has a binomial distribu-
tion with parameters Nx(t) and success probability

Note that �t is the underlying process of the remaining lifetime random vari-
able Tx . Moreover, for the Lee–carter model, we define actuarial filtration as 
G
A

t
= �

(
{Tx ≤ s}, �s, s ≤ t

)
 , where �s is part of the information set. We only focus 

on systemic risk, where the idiosyncratic mortality risk should be a second-order 

(15)ln�x(t) = �x + �x�t

(16)d�t = ��dt + ��dW
�
t
,

(17)�x(t) = exp
(
�(x + t) + �(x + t) �t

)
.

exp
(
−�x(t)

)
= exp

(
− exp(�(x + t) + �(x + t)(�t))

)
.

8 Considering the stochastic evolution of mortality risk through time, a more precise concept is “the 
remaining lifetime at the beginning of the calendar year t” for which the notation is Tx(t).
9 In the notation, if we assume the present t = 0 , the notation t is representative of the past “calendar 
times” {t0, t0 + 1,… , 0} in the model.
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effect compared with the effect of a longevity trend. This assumption could be moti-
vated by observing the realized mortality tables.

In the following two subsections, we implement the market-consistent price of the 
payoff in (12) using the EIOPA standard-formula and time-consistent pricing operators.

3.2  Numerical implementation

We provide the numerical method of the market-consistent and time-consistent valua-
tion for the simple unit-linked contract under the EIOPA risk-margin method. We adopt 
customized versions of the least square Monte Carlo (LSMC) method and calculate the 
conditional operators during the valuation period.

To illustrate the challenges for computing a time-consistent price, we make the fol-
lowing considerations. Suppose we to compute the value for a 30-year product with 
annual time-steps. When we implement a trinomial tree, we start the simulation at 
time zero with only three scenarios for each underlying process �t and St . For a non-
recombining tree after 30 steps, there are 330 ≈ 2 × 1014 scenarios for each risk driver 
at maturity. If ST and �T are dependent, we have to make (330)2 ≈ 4 × 1028 calculations 
in the first step. The same calculation has to repeat in the backward iteration. For the 
EIOPA price, as we move only on the best-estimate scenario of the underlying risk 
driver, the previously noted number decreases. However, we still must repeat the pro-
jections and calculations for different time steps.

Another technique for this type of valuation is constructing a recombining trino-
mial tree. ST and �T are discretized into a finite number of states at maturity, both in 
their particular boundary region. Suppose each underlying process is divided into 1000 
states (i.e., scenarios) at time T and each time-t state is connected to the next state at 
time t + 1 with three nodes. In the two-step valuation at each first time and risk driver 
(one in the inner step and another in the outer step), there are 1000 trinomial computa-
tions. By moving backward over 30 years, 106 computations for each time step will be 
repeated, which accumulates to 3 × 107 . In a low dimension (e.g., two-factor model), 
the finite difference method can achieve the result in a reasonable time. However, the 
calculation is not feasible in a higher dimension with a portfolio of assets and liabilities.

A useful method to decrease the calculation volume in the backward iteration is 
the Least-Square Monte-Carlo (LSMC), which was proposed and used by Carriere 
[8] and Longstaff and Schwartz [31] to price different types of American options. 
The method is widely used in the dynamic valuation of the contingent claims and 
payoffs using path-dependent risk drivers. LSMC postulates that the conditional 
expectation of the payoffs can be calculated using the cross-sectional information of 
the underlying risk drivers (i.e., state variables).

Using LSMC, the conditional expectation of any general payoff G(T , ST , �T ) can 
be obtained through a series of basis functions of ST and �T as

(18)�

[
G
(
T , ST , �T

) | �t, St
]
= f (ST , �T ) =

∞∑
m=0

am em
(
�t, St

)
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 where em(x) denotes different types of basis functions, such as Polynomials 
( 1, x, x2, ... ) or Fourier bases ( 1, cos(x), cos(2x), ... ). The target function f (ST , �T ) at 
(18) represents the expected value as the summation of the series of the basis func-
tions e. The function f can be approximated through the summation of a finite num-
ber of terms (K) in the series, that in fact, turns it into a regression line with basis 
functions as regressors (or independent variables):

 The fitted value estimates the conditional expectation and can be used to estimate 
conditional expectations for different forms of G.

3.2.1  Computing the conditional VaR

We turn to the calculation of the EIOPA risk-margin price. Recalling (10), the EIOPA 
price contains a series of one-year conditional �aR ’s given information one year ear-
lier. Under each �aR operator, there is also a conditional expectation of the payoff, 
f
(
ST ,Nx(t + k)

)
= 𝔼ℙ

[
ST × Nx(T)

||| ST ,Nx(t + k)
]
 , given the risk at time t < T . Since 

the survival probability distribution (and, accordingly, Nx(t) , distribution) is unknown, 
the quantile’s theoretical value is not known either. In order to numerically calculate the 
conditional �aR , a simple solution would be to re-simulate the underlying risk driver 
from each given state. This means that in (10), we should renew the simulation of �t+k 
and the number of survivors for every ��(�t+k−1) , and then calculate the appropriate 
quantile. Doing so imposes a high simulation process load that affects the efficiency of 
the numerical scheme. The same fact holds for the conditional expectation f

(
ST ,Nx(k)

)
.

A more efficient calculation of these conditional operators is using the LSMC. 
To estimate h in (10), we stand at time t and use N scenarios of the pair (St, �t) over 
the finite number of points t + 1, t + 2, ..., t + k, T . At time T, we calculate the pay-
off ST × Nx(T) (alternatively, ST × 1Tx>T

 for an individual policy). Note that in the 
Lee–Carter model, Nx(T) is not only a function of �T but also a function of all previ-
ous values of �t for t ≤ T . Therefore, at each point in time t, conditioning on Nx(t − 1) 
(which contains information on all � values up to and including t − 1 ) as an under-
lying risk driver is more accurate than conditioning on �t−1 . Therefore, for every 
k = {1, 2, ..., T − t} , we obtain an estimation of the conditional expected payoff f by 
using Nx(t + k) in the basis function instead of �t+k , as follows 

where, given N scenario sequences of the underlying risk drivers, the coefficient 
vector â{k} is estimated under the least square argument as follows

(19)f (ST , �T ) ≈ fm(ST , �T ) =

M−1∑
m=0

am em
(
�t, St

)
.

(20a)

f̂
(
ST ,Nx(t + k)

)
= �̂�

ℙ

[
ST × Nx(T)

||| ST , �1, �2, ..., �k
]
=

M−1∑
m=0

âm
{k}

em(ST , Nx(t + k)
)
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 where Gi , ST (i) , and N(i)
x
(t + k) , respectively, are the ith realizations of payoff G and 

state variables ST and Nx(t + k).
To calculate the conditional �aR , we suppose that for short periods (a one-year 

horizon), the expected number of survivors is approximately normally distributed. 
Hence, the conditional q-quantile can be approximated by its mean and standard 
deviation. Regarding each k, the q-quantile must be conditioned on the best estimate 
of �k−1 . We should calculate the standard deviation of 

(
Nx(k)

|||��(Nx(t + k − 1))
)
 . 

We compute the LSMC estimators of the conditional mean and second moment of 
Nx(t + k) as follows 

 which gives Std-Dev
�
Nx(t + k)

��� ��(Nx(t + k − 1))
�
=
√
E2 − (E1)2 . Finally, 

based on the value in (10), the estimation of the conditional 99.5%-quantile is

Note that in Eq. (12), the random payoff G is a non-decreasing real-valued func-
tion of the underlying random variables ST and Nx(t) . Since (the estimation of) the 
expected value of the non-decreasing G, is also non-decreasing, the left or right-
continuous function f and �aR operator are interchangeable based on Theorem 1 in 
Dhaene et al. [18].10

This formula measures the difference between the conditional expected payoff at 
time t + k given a 99.5% shock to Nx(t + k) and the same value without a shock. 
The shock references the best-estimate of the actuarial driver one year earlier, at 
t + k − 1 ; ��(Nx(t + k − 1)) . This value estimates the conditional value-at-risk for 
the future SCR in year t + k . We use (10) to calculate the summation of these values 
for each t + k over the valuation period as the total risk margin. Finally, for each year 

(20b)

â
{k}

= arg min
a
{k}

N�
i=1

⎡
⎢⎢⎣

�
Gi

�
ST ,Nx(T)

�
−

K−1�
m=0

a{k}
m

em

�
ST (i) , N

(i)
x
(t + k)

��2⎤
⎥⎥⎦

(21a)E1 ∶ �̂�
ℙ
[
Nx(t + k) | Nx(t + k − 1)

]
=

M−1∑
m=0

b̂m
{1,k}

em
(
Nx(t + k − 1)

)

(21b)E2 ∶ �̂�
ℙ
[
Nx(t + k)2 | Nx(t + k − 1)

]
=

M−1∑
m=0

b̂m
{2,k}

em
(
Nx(t + k − 1)

)

(22)

𝕍aR
ℙ

99.5%

[
f
(
ST ,Nx(t + k)

)
− f

(
ST ,Nx(t + k − 1)

) ||| ST ,𝔹𝔼(Nx(t + k − 1))
]

= f̂
(
ST , 𝔹𝔼(Nx(t + k)) + Φ−1(99.5%) × Std-Dev

(
Nx(t + k)

||| 𝔹𝔼
(
Nx(t + k − 1)

)))

− f̂
(
ST ,𝔹𝔼

(
Nx(t + k − 1)

))

10 In case the function f is non-increasing, then any probability p under �aR function will be turned into 
1 − p.
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t + k , we take the average over the ST values conditional on S0 and obtain the finan-
cial mean under the ℚ measure, which is counted as the outer step in the two-step 
valuation.

3.3  Numerical results

We compute the EIOPA standard-formula price and compare it with the time-
consistent price to measure the extra time-consistency risk-premium (TCRP). The 
discounted expected value (by the tower property) is always time- and market-
consistent. Thus for practitioners, another interesting comparison is between the 
best-estimate and the time-consistent price to obtain the risk loading in the time-
consistent setting. The parameters are as follows: initial asset price S0 = 100 , vola-
tility �S = 15% , initial age x = 50 , initial cohort Nx = 1000 , and Lee-Carter model 
parameters as �0 = −24.5637 , �� = −0.8089 , and �� = 1.473.11 The discount curve 
is based on 30-year annual zero rates released by the European Central Bank (ECB) 
in January 2, 2006. The rates are calculated from the prices of the AAA-rated euro 
area central government bonds.12

Figure 1 presents the result of the market-consistent price for a cohort of age 
x = 50 , displaying the best-estimate, EIOPA standard-formula, and time-consist-
ent EIOPA price over different maturities T ∈ {1, 2, ..., 30} . A n = 100 simula-
tions each with N = 1000 scenario are performed. The discounted asset and mor-
tality risks are assumed to be independent. All prices decrease when maturity 
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Fig. 1  Comparison of the market-consistent actuarial valuation for the best-estimate, EIOPA risk-margin 
and time-consistent prices over different maturities ( T = 1, 2, ..., 30 ) for a cohort of age x = 50

11 These parameters are estimated on the basis of mortality data aggregated for “men and women” of the 
Netherlands during the calendar years 1960–2006 (47 years).
12 Accessible via ECB web-page, https:// www. ecb. europa. eu/ stats/ money/ yc/ html/ index. en. html.

https://www.ecb.europa.eu/stats/money/yc/html/index.en.html.
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increases, while the difference between these market-consistent prices is negli-
gible for short-term liabilities, whereas, for the longer term (15 years and longer 
maturities), the gap widens. Both EIOPA standard-formula and time-consistent 
prices measure the unhedgeable uncertainty related to the projected mortality on 
top of the best-estimate value. The longer the maturity, the bigger the gap (the 
risk loading), reflecting the more uncertain estimation. Moreover, the time-con-
sistent price dominates the EIOPA price, where the difference is the capital-on-
capital effect and increases for long-dated contracts. If we divide the best-esti-
mate price by S0 = 100 , the result shows the expected survivors for the cohort of 
age x = 50 under the Lee-Carter model, from 997.2 for T = 1 to 681.1 for T = 30 . 
This means that the 30-year survival probability for a 50-years old individual is 
approximately 31.89%.

The gap between the best-estimate and the time-consistent price or EIOPA risk-
margin price is the actuarial risk-loading and cannot be hedged under the market-
consistent valuation. Figure  2 illustrates the market-consistent risk-loading for 
EIOPA risk-margin and Time-consistent price as a percentage of the best-estimate 
price. The risk-loading will vary for different parameters, especially the actuarial 
risk drivers. With the chosen set of parameters, the risk-loading for maturities ear-
lier than 15 years remains negligible. For the longer maturities, it starts to increase 
sharply, and in 30-years maturity, it reaches around 8.74% for the EIOPA risk-mar-
gin and more than 17.03% for the Time-consistent price.

We also study the effect of the dependence between mortality/longevity and 
equity risks on the market-consistent contract price for the different maturi-
ties. We choose four different levels of the correlation between �t and St as 
� = {0, 0.50, 0.75, 1} , where � = 0 shows independence and � = 1 shows perfect 
hedging for actuarial risk attributable to the dynamics of financial risk in the com-
plete market. In Fig. 3, for each correlation level (in graphs (a) − (d) ), we provide 
the values of the three different prices previously discussed for the cohort of age 
x = 50 along different maturities.
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In general, all prices illustrate that a larger correlation results in a higher market-
consistent price. This relationship reflects the extra price attributable to the covari-
ance in the price dynamics. Moving from the independent risks ( � = 0 ) to a perfectly 
hedgeable position ( � = 1.00 ), the market-consistent prices for a 30-year unit-linked 
contract increase by 40.64, 30.50, and 19.98% , respectively, for the best-estimate, 
EIOPA, and time-consistent values. The price increase is the result of three different 
effects. The first price-increasing effect is due to a change in the drift of financial 
risk in the ℚ measure. The second effect is the covariance effect that also increases 
the price. The third effect is eliminating uncertainty as measured by the 99.5%-quan-
tile (risk-margin) that reduces the price. While the (absolute value of the) correla-
tion increases, the drift adjustment and covariance effect (the first two effects) move 
against the uncertainty elimination effect (the third effect) and eventually wins out to 
increase the overall market-consistent actuarial price.

Figure  3 shows that both EIOPA standard-formula and time-consistent prices 
converge to the best estimate price when the correlation increases. This fact can be 
seen by observing the gap for the 30-year maturity in the sequence of graphs (a) to 
(d) in Fig. 3. Especially in a perfect hedge situation, when � = 1 , both prices cor-
respond precisely to the best-estimate price for all maturities (Graph (d)) because 
no unhedgeable risk remains in the payoff. This adjusted best-estimate price has a 
different drift and dynamics relative to the original best-estimate price with � = 0 . 

Fig. 3  The effect of the dependence/correlation between the mortality/longevity and equity risks on the 
market-consistent actuarial value when the best-estimate, EIOPA risk-margin and time-consistent prices 
are compared over different maturities ( T = 1, 2, ..., 30 ) for a cohort of age x = 50 . The correlation levels 
are � = {0, 0.50, 0.75, 1}
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Therefore, we could show that for two different price operators (EIOPA and time-
consistent prices), when financial and actuarial risks are perfectly correlated, the 
market-consistent price perfectly hedges actuarial risk based on the information for 
financial risk in the complete market.

4  Summary and conclusion

In this paper, we provide an applied implementation of the market-consistent actu-
arial price using the two-step valuation method. We show that the EIOPA standard-
formula for computing the risk-margin is not time-consistent, and we implement in 
our calculations a time-consistent extension of the risk margin to quantify the cost 
of “time-inconsistency” of the EIOPA standard-formula. To illustrate our approach, 
we price a simple unit-linked contract without guarantee. Both the EIOPA standard 
formula and time-consistent pricing operator measure the unhedgeable uncertainty 
related to the projected mortality on top of the best-estimate value. Our calculations 
show that the gap between the standard-formula and the time-consistent EIOPA price 
increases with maturity and is significant for long-dated contracts.
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