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Abstract
This paper studies the optimal insurance policy that maximizes the decision maker 
(DM)’s expected utility under distortion risk constraints. To alleviate the ex post 
moral hazard issues arising from the discontinuity of the indemnity functions in 
Huang (Geneva Risk Insur Rev 31(2):91–110, 2006) and Bernard and Tian (Geneva 
Risk Insur Rev 35(1):47–80, 2010) we re-visit their problems under the so called 
incentive compatibility condition, which requires that both the ceded and retained 
loss functions are non-decreasing. In addition, we generalize the value-at-risk (VaR) 
constraints used in the literature to the distortion-risk-measure-based constraints. 
We first implicitly characterize the optimal indemnity function when the risk con-
straints are defined in terms of the general distortion risk measure and then provide 
explicit solutions for the VaR and tail value-at-risk (TVaR) cases. The effect of the 
risk constraints on the optimal indemnity function are analyzed in great detail. Our 
results show that under the VaR risk constraints, the DM chooses to ignore the risk 
which does not contribute to its VaR value and only manages the risk that influences 
its VaR value. This problem is alleviated under the TVaR risk constraints.
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1  Introduction

Optimal insurance policies have been extensively studied in the literature. The 
commonly used optimality criteria are risk minimization, expected utility (EU) 
maximization, or some combination of them. Borch [10] pioneered the study of 
optimal insurance (reinsurance) design that minimizes risk. He proved that the 
excess-of-loss insurance policy can minimize the variance of the insured’s total 
loss. Other risk measures are considered more recently. For example, Cai et  al. 
[12] and Bernard and Tian [7] proposed to study the optimal insurance policy 
that minimizes the insured’s value-at-risk (VaR) or tail value-at-risk (TVaR). The 
results for optimal insurance policies that minimize the distortion risk measures 
can be found in, for example, Assa [5], Zhuang et al. [36], Lo [28], Cheung et al. 
[15] and the references therein.

Arrow [1] applied the EU theory in determining the optimal reinsurance con-
tract. His model was extended along many directions in the past few decades. To 
name a few, Raviv [30] derived the optimal policy that maximizes the insured’s 
EU under the participation constraint of the insurer. Recently, Bernard et al. [9] 
and Xu et  al. [33] considered an optimal insurance design problem for an indi-
vidual whose preference is dictated by the rank-dependent expected utility. Other 
results related to the optimal insurance design, such as those considering hetero-
geneous beliefs and higher-order risk attitudes, can be found in Ghossoub [22], 
Chi and Wei [18], Chi [16] and the references therein.

In practice, an EU-maximizing insured may be subject to risk constraints. To 
the authors’ best knowledge, the literature for optimal policy that maximizes EU 
under risk constraints are rather thin. We list some references below. Huang [25] 
studied the optimal reinsurance contract by maximizing the insured’s EU subject 
to its VaR constraint. Zhou and Wu [35] revisited the problem of Huang [25] 
by considering the counter-party’s VaR constraint. Bernard and Tian [8] studied 
the optimal contract from both the insured’s and insurer’s perspectives under the 
insurer’s VaR constraint. However, as shown in Huang [25] and Bernard and Tian 
[8], the optimal indemnity functions are usually discontinuous if there are no 
restrictions on their forms. This would give rise to ex post moral hazard issues. 
Particularly, an upward jump in indemnity function gives insured incentive to 
over-report losses, whereas a downward jump incentivizes insured to under-report 
losses.

The problem of ex post moral hazard in insurance policy design has attracted 
much attention in the economics literature. For example, Huberman et  al. [26] 
suggested “the search for an optimal indemnity schedule can be confined to those 
schedules under which the insured has no incentive to misrepresent the dam-
age”. In particular, it was pointed out that ex post moral hazard problem can be 
excluded if the both ceded and retained loss functions are non-decreasing. This 
condition is called incentive compatibility and has been widely adopted in opti-
mal insurance design. See, for example, See, for example, Bernard et  al. [9], 
Asimit and Boonen [4], Xu et al. [33], Chi and Zhuang [20], Tan et al. [31] and 
references therein. As pointed out in Tan et al. [31], the incentive compatibility 
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condition also rules out indemnity functions that have slope greater than one or 
less than zero, which could also lead to ex post moral hazard. We remark here 
that the incentive compatibility condition is also referred to as the no-sabotage 
condition as per Carlier and Dana [13].

In this paper, we study the optimal insurance policy that maximizes the EU of a 
DM (could be either the insured or the insurer) under the distortion-risk-measure-based 
risk constraints. Our model is different from those in the literature on the following 
aspects: first, we impose the incentive compatibility condition on admissible indemnity 
functions, which mitigates the ex post moral hazard problems; second, we adopt the 
general distortion-risk-measure-based risk constraints for both parties in the transac-
tion. Our main results are summarized in the following. First, we provide implicit char-
acterization of the optimal indemnity function when the risk constraints are defined 
through general distortion risk measures. Second, we derive explicit forms of the opti-
mal indemnity function when the risk constraints are defined through VaR and TVaR. 
Third, we demonstrate the effect of the incentive compatibility condition on optimal 
insurance policies in great detail. We find that with the VaR risk constraints, the DM 
chooses to ignore the potential large losses that do not contribute to its VaR value and 
only manages the risk that contributes to its VaR. This problem is alleviated under the 
TVaR risk constraints. Fourth, we explore the optimal policy when the risk constraints 
are defined in terms of other distortion risk measures, such as the proportional hazard 
(PH) transform introduced by Wang [32].

The remainder of this paper is structured as follows. Section 2 reviews some pre-
liminaries and sets up the problem. Section 3 provides a general solution to the main 
problem. Section 4 derives the closed-form optimal indemnity functions when the risk 
constraints are defined by specific risk measures. Section 5 provides numerical exam-
ples and demonstrates the implications of our results. Section 6 concludes.

2 � Model setup

Suppose that a risk-averse insured is endowed with initial wealth wd and an increasing 
and strictly concave utility function u. The insured faces a ground-up loss X whose sup-
port is [0, M] with M ≤ ∞ . The probability density function (PDF), cumulative distri-
bution function (CDF) and survival function of X are denoted by fX(⋅) , FX(⋅) and SX(⋅) 
respectively.

The insured is negotiating with an insurer, who is endowed with initial wealth wr 
and an increasing and strictly concave utility function v, for an insurance policy, which 
will pay the insured I(X) for a premium �(I) . To ensure that the indemnity functions 
satisfy the incentive compatibility condition of Huberman et al. [26], we follow the lit-
erature (e.g., Xu et al. [33] and Chi and Zhuang [20]) by assuming that the set of admis-
sible indemnity functions is given by 
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 For any function I ∈ C0 , the functions I(x) and R(x) = x − I(x) are nondecreasing 
and therefore the ceded loss I(X) and retained loss R(X) are comonotonic. Further, 
any function I ∈ C0 is 1-Lipschitz continuous and therefore differentiable almost 
everywhere [17]. As shown in Zhuang et  al. [36], the function I ∈ C0 admits the 
integral representation

where �(⋅) is called the marginal indemnity function (MIF) and belongs to the set

To simplify discussions, we assume that the insurance premium is determined by the 
expectation principle

where � ≥ 0 is the safety loading. However, from the analysis presented in the next 
section, it can be seen that our methodology applies when premium is determined 
by arbitrary actuarial premium principle �(I) = �(�[I(X)]) , where �(x) is a general 
strictly increasing function (as in Bernard and Tian [8]), or by general distortion 
principle (as in Escobar and Pflug [21]).

In the following, we study the optimal insurance policy under the distortion risk 
constraints from both the insured’s and insurer’s perspectives. Before introducing the 
main problem, we give a very brief introduction to distortion risk measures.

2.1 � Distortion risk measures

Distortion risk measures have been extensively studied and widely applied in actuarial 
and risk management literature. The distortion risk measure of a non-negative random 
variable X is defined by

where g ∶ [0, 1] → [0, 1] is called the distortion function, which is non-decreasing 
and satisfies g(0) = 0 and g(1) = 1.

It is well known that VaR and TVaR are special cases of distortion risk measures.

Definition 2.1  The VaR of a random variable X at confidence level � ∈ (0, 1) is 
given by

(2.1)I(x) = ∫
x

0

�(t)dt,

C̃0 ∶=
{
𝜂 ∶ [0,M] → [0, 1]

||| 0 ≤ 𝜂(x) ≤ 1
}
.

�(I) = (1 + �)�[I(X)]

�(X) = ∫
M

0

g
(
SX(x)

)
dx,



533

1 3

The effect of risk constraints on the optimal insurance policy﻿	

The distortion function for VaR is given by

where 1S(x) is the indicator function which equals to 1 if x ∈ S and 0 otherwise.

Definition 2.2  The TVaR of a random variable X at confidence level � ∈ (0, 1) is 
given by

The distortion function for TVaR is

As proved rigorously in Zhuang et al. [36] and Cheung and Lo [14], the distortion 
risk measure of I(X) admits the following representation

Now we are ready to present this paper’s main problems.

2.2 � Main problems

First, with an insurance policy characterized by the indemnity function I(x), the 
insured’s utility is given by

and the insurer’s utility is

The insured’s goal is to determine the optimal indemnity function that maximizes its 
expected utility subject to the risk constraints that are defined through distortion risk 
measures �d and �r respectively for the insured and insurer. The distortion functions 
corresponding to �d and �r are gd and gr respectively. For some predetermined risk 
tolerance levels Ad and Ar , the insured’s decision problem is given by

Problem 1  (The insured’s decision problem)

VaR�(X) = inf
{
x ∶ FX(x) ≥ �

}
.

(2.2)gV (x) = 1[1−�,1](x).

TVaR�(X) =
1

1 − � ∫
1

�

VaRs(X)ds.

(2.3)gT (x) =
x

1 − �
⋅ 1[0,1−�)(x) + 1[1−�,1](x).

�(I(X)) = ∫
M

0

g
(
SX(t)

)
dI(t) = ∫

M

0

g
(
SX(t)

)
�(t)dt.

J1(I) = u
(
wd − X + I(X) − �(I)

)
.

J2(I) = v
(
wr − I(X) + �(I)

)
.
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where �0 is the insured’s maximal budget.

From the insurer’s perspective, the decision problem is

Problem 2  (The insurer’s decision problem)

3 � The optimal indemnity function

In this section, we solve both the insured’s and insurer’s decision problems 
analytically.

3.1 � The insured’s decision problem

To solve Problem  1, we adopt a two-step procedure. We first fix the premium at 
some level B ∈ (0,�0] and solve

Problem 1a  (Problem 1 with fixed premium)

where B ∈ [0,�0].

max
I∈C0

�
[
J1(I)

]
,

s.t. �d(X − I(X) + �(I)) ≤ Ad,

�r(I(X) − �(I)) ≤ Ar,

�(I) ≤ �0,

max
I∈C0

�
[
J2(I)

]

s.t. �
d
(X − I(X) + �(I)) ≤ A

d
,

�
r
(I(X) − �(I)) ≤ A

r
,

�(I) ≤ �0.

(3.1)max
I∈C0

�
[
J1(I)

]
,

(3.2)s.t. �d(X − I(X) + �(I)) ≤ Ad,

(3.3)�r(I(X) − �(I)) ≤ Ar,

(3.4)�(I) = B,
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Then we search for the optimal premium level B∗ numerically within [0,�0] . Such a 
two-step procedure is widely applied in the literature [3, 17].

Let

To ensure that the set of admissible indemnity functions is non-empty, we assume 
that C1 ∩ C2 ≠ � for at least some B in the remaining parts of this paper.

In practice, some necessary conditions for the compatibility of these constraints 
could be easily checked. For example, in order for C1 ∩ C2 ≠ � , we must have

which means that the sum of risks borne by the two parties must be smaller than the 
total tolerance level. Otherwise, the problem has no solution.

Problem  1a generalizes the models in Huang [25] and Bernard and Tian [8]. 
Without the incentive compatibility condition, Problem 1a could be solved using a 
number of different approaches, such as the calculus of variations, point-wise opti-
mization, stochastic ordering, etc. These methods have been frequently used in the 
optimal (re)insurance literature. For example, the use of calculus of variations can 
be found in Golubin [23], Golubin [24], Lo [28], Chi and Zhuang [20]. The point-
wise maximization approach were applied in, for example, Bernard and Ludkovski 
[6], Ghossoub [22], Zhang et al. [34] and Jiang et al. [27]. Examples of using sto-
chastic ordering approach can be found in Cai and Wei [11], Lu et al. [29], Chi and 
Wei [18].

With the incentive compatibility condition, the previously mentioned methods 
have to be modified accordingly. In this paper, similar to the methodology applied 
by Chi and Wei [19] and Chi and Zhuang [20] in different contexts, we apply the 
calculus of variations with some modification. To this end, suppose that I∗ is the 
solution to Problem 1a. Then, for I ∈ C1 ∩ C2 and � ∈ [0, 1] , the convex combination 
�I∗ + (1 − �)I belongs to C1 ∩ C2.

Define

It is easy to verify that H��(𝜖) < 0 due to the strict concavity of u(⋅) . Therefore, a suf-
ficient and necessary condition for I∗ to be the optimal solution of Problem 1a is that

In other words, the optimal indemnity function I∗ solves

where the objective function can be rewritten as (see also equation (3.2) of Chi and 
Zhuang [20])

C1 ∶=
{
I ∶ I ∈ C0, �(I) = B, and �d(X − I(X) + B) ≤ Ad

}
,

C2 ∶=
{
I ∶ I ∈ C0, �(I) = B, and �r(I(X) − B) ≤ Ar

}
.

�d(X − I(X)) + �r(I(X)) ≤ Ad + Ar,

H(�) = �[J1(�I
∗(X) + (1 − �)I(X))].

H
�(�)||�=1 = �[u�(w − X + I

∗(X) − B)(I∗(X) − I(X))] ≥ 0

⟹ �[u�(w − X + I
∗(X) − B)I∗(X)] ≥ �[u�(w − X + I

∗(X) − B)I(X)].

max
I∈C1∩C2

�[u�(w − X + I∗(X) − B)I(X)],
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where the second equation is due to the Fubini’s Theorem.
Applying the comonotonic additivity and translation invariance properties of 

distortion risk measures, the risk constraints (3.2) and (3.3) boil down to

where Cd = �d(X) + B − Ad , and

where Cr = Ar + B.
The budget constraint (3.4) becomes

To sum up, solving Problem 1a is equivalent to solving Problem 1b (Another form 
of Problem 1a)

By adopting the Lagrangian dual approach [36], along with the point-wise maximi-
zation, we obtain the following result. Its proof is given in the appendix.

Theorem 3.1  Assume that the set of admissible indemnity functions for Problem 1b 
is non-empty. Let

�[u�(w − X + I∗(X) − B)I(X)]

= ∫
M

0

u�(w − x + I∗(x) − B)

{
∫

x

0

�(t)dt

}
dFX(x)

= ∫
M

0

{
∫

M

t

u�(w − x + I∗(x) − B)dFX(x)

}
�(t)dt,

�d(I(X)) = �
M

0

gd
(
SX(t)

)
�(t)dt ≥ Cd,

�r(I(X)) = �
M

0

gr
(
SX(t)

)
�(t)dt ≤ Cr,

∫
M

0

SX(t)�(t)dt =
B

1 + �
.

max
𝜂∈C̃0 �

M

0

{
�

M

t

u�(w − x + I∗(x) − B)dFX(x)

}
𝜂(t)dt

s.t. �
M

0

gd
(
SX(t)

)
𝜂(t)dt ≥ Cd,

�
M

0

gr
(
SX(t)

)
𝜂(t)dt ≤ Cr,

�
M

0

SX(t)𝜂(t)dt =
B

1 + 𝜃
.

(3.5)

L(t;I∗, �1, �2, �3) = ∫
M

t

u�(w − x + I∗(x) − B)dFX(x) + �1gd
(
SX(t)

)
− �2gr

(
SX(t)

)
+ �3SX(t),
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where �1, �2 ∈ �
+ and �3 ∈ �. Then a function �∗(t) solves the Problem 1b if and 

only if

where

1A(t) is an indicator function and �(t) ∈ [0, 1] is any function such that 𝜂∗ ∈ C̃0 . The 
parameters �1 , �2 , and �3 are determined by the slackness conditions

and

Note that the indemnity function characterized by Theorem 3.1 is implicit since 
the sets D and E both contain I∗ . Nevertheless, it sheds light on the form of the 
optimal indemnity function. For example, if the insured’s risk constraint is binding, 
then 𝜆1 > 0 , which increases the value of function L defined in (3.5). This leads to a 
larger set D and consequently more insurance coverage ( �∗(t) = 1 ) than that without 
the risk constraint. On the other hand, if the insurer’s risk constraint is binding, then 
𝜆2 > 0 , which decreases the value of function L and leads to less insurance cover-
age. We will study in detail this observation in the next section where the risk meas-
ures are VaR and TVaR.

Remark 3.1  For the uniqueness of solution to Problem 1a (or 1b), we refer the inter-
ested readers to Chi and Zhuang [20] (Lemma 2.1) for rigorous and detailed discus-
sions of a similar problem.

3.2 � The insurer’s decision problem

We now solve Problem 2. The methodology is rather close to that in the last section, 
so we only provide an outline.

Similar to Sect.  3.1, we first fix the premium level, i.e. �(I) = B , and rewrite 
Problem 2 as

(3.6)�∗(t) = 1D(t) + �(t) ⋅ 1E(t),

D =
{
t ∶ L(t;I∗, 𝜆1, 𝜆2, 𝜆3) > 0

}
,

E =
{
t ∶ L(t;I∗, 𝜆1, 𝜆2, 𝜆3) = 0

}
,

�1

(
∫

M

0

gd
(
SX(t)

)
�∗(t)dt − Cd

)
= 0,

�2

(
∫

M

0

gr
(
SX(t)

)
�∗(t)dt − Cr

)
= 0,

�3

(
∫

M

0

SX(t)�
∗(t)dt −

B

1 + �

)
= 0.
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Problem 2a (Problem 2 with fixed premium)

Further, for �1, �2 ∈ �
+ and �3 ∈ � , define

and

Then we have

Corollary 3.1  The solution to Problem 2a can be obtained through Theorem 3.1 by 
replacing sets D with D̃ and E with Ẽ.

Remark 3.2  We observe that when the insurer’s EU is to be maximized, a binding 
risk constraint on the insurer’s side leads to a larger value of function L̃ and thus less 
insurance coverage. A binding risk constraint on the insured’s side leads to a smaller 
value of function L̃ and thus more insurance coverage.

4 � Specific cases

As VaR and TVaR are commonly used to determine regulatory capital require-
ment, in this section, we first focus on these two risk measures and derive explicit 
formulas for the optimal indemnity functions. We also provide a closed-form opti-
mal indemnity function for the insured’s decision problem where the insured’s 
risk constraint is defined by the PH transform and binding.

For the VaR/TVaR case, the following assumption is made.

min
𝜂∈C̃0 �

M

0

{
�

M

t

v�(wr + B − I∗(x))dFX(x)

}
𝜂(t)dt

s.t. �
M

0

gd
(
SX(t)

)
𝜂(t)dt ≥ Cd,

�
M

0

gr
(
SX(t)

)
𝜂(t)dt ≤ Cr,

�
M

0

SX(t)𝜂(t)dt =
B

1 + 𝜃
.

(3.7)

L̃(t;I∗, 𝜆1, 𝜆2, 𝜆3) =∫
M

t

u�(wr − I∗(x) + B)dFX(x) − 𝜆1gd
(
SX(t)

)

+ 𝜆2gr
(
SX(t)

)
+ 𝜆3SX(t),

D̃ =
{
t ∶ L̃(t;I∗, 𝜆1, 𝜆2, 𝜆3) < 0

}
,

Ẽ =
{
t ∶ L̃(t;I∗, 𝜆1, 𝜆2, 𝜆3) = 0

}
.
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Assumption 1 

	 (i)	 The probability levels adopted by the insured and insurer are � and � respec-
tively where 0 < 𝛼 < 𝛽 < 1.

	 (ii)	 Ad < 𝜌d(X) < Ad + Ar.

The quantities Ad and Ar can be regarded as the capital available to the insured 
and insurer respectively. Then Assumption 1(ii) states that Ad is not enough to cover 
the risk X, however Ad + Ar can.

The following notations are used in the remainder of this paper: x ∧ y = min{x, y} 
and (x)+ = max(x, 0).

4.1 � Optimal insurance policy that maximizes the insured’s EU under the VaR 
constraints

Let a = VaR�(X) and b = VaR�(X) so that 0 ≤ a < b < M . Then, applying the dis-
tortion function in (2.2) to (3.5), noting that

and

the function L in (3.5) becomes

∫
M

t

u�(w − x + I∗(x) − B)dFX(x) = �
[
u�(w − X + I∗(X) − B)1[t,M)(X)

]

SX(t) = �[1[t,M)(X)],

(4.1)

L
V
(t;I∗, 𝜆

1
, 𝜆

2
, 𝜆

3
)

=

⎧⎪⎨⎪⎩

�
��
u
�(w − X + I

∗(X) − B) + 𝜆
3

�
1[t,M)(X)

�
+ 𝜆

1
− 𝜆

2
, t ≤ a,

�
��
u
�(w − X + I

∗(X) − B) + 𝜆
3

�
1[t,M)(X)

�
− 𝜆

2
, a < t ≤ b,

�
��
u
�(w − X + I

∗(X) − B) + 𝜆
3

�
1[t,M)(X)

�
, t > b.

Fig. 1   (Left) An example of L
V
(t;I∗, �

1
, �

1
, �

3
) ; (Right) The corresponding optimal indemnity function
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In general, for 𝜆1, 𝜆2 > 0 , the function t ↦ LV (t;I
∗, �1, �2, �3) has a downward jump 

at a, an upward jump at b, and is continuous on [0, a) ∪ (a, b) ∪ (b,M) . Its shape is 
illustrated in Fig. 1 left panel. As indicated by Theorem 3.1, the marginal indemnity 
function is equal to one on 

{
t ∶ LV > 0

}
 and zero on 

{
t ∶ LV < 0

}
 . This is shown on 

the right panel of Fig. 1.
To gain more insights, we next provide more illustrating results for specific 

cases where neither of the constraints is binding, where only one constraint is 
binding and where both constraints are binding. This facilitates the comparison of 
our results with those in the literature.

Proposition 4.1  Under the VaR risk constraints and Assumption 1, the solution to 
Problem 1a is given by the following. 

(1)	 If neither of the risk constraints is binding, then the optimal indemnity function 
is given by I∗

d,V1
(x) = (x − t0)+ for some 0 ≤ t0 ≤ M , where t0 is determined by 

B = (1 + �)�[I∗
d,V1

(x)] .
(2)	 If only the insured’s risk constraint is binding, then the optimal indemnity 

function is given by I∗
d,V2

(x) = (x ∧ a − t0)+ + (x − t1)+ for some t0, t1 such that 
t0 ≤ a ≤ t1 , t0 = Ad − B , and B = (1 + �)�[I∗

d,V2
(X)].

(3)	 If only the insurer’s risk constraint is binding, then the optimal indemnity 
function is given by I∗

d,V3
(x) = (x ∧ t1 − t0)+ + (x − b)+ for some t0, t1 such that 

t0 ≤ t1 ≤ b , t1 = Ar + B + t0 , and B = (1 + �)�[I∗
d,V3

(X)].
(4)	 If both the insured and insurer’s risk constraints are binding, then the optimal 

indemnity function is given by I∗
d,V4

(x) = (x ∧ a − t0)+ + (x ∧ t2 − t1)+ + (x − b)+ 
for some t0, t1 and t2 such that 0 ≤ t0 ≤ a ≤ t1 ≤ t2 ≤ b , t0 = Ad − B , 
t2 = Ar + Ad − a + t1 and B = (1 + �)�[I∗

d,V4
(X)].

In practical application, one may follow the steps (1)→(2)→(4) or (1)→(3)→
(4) of Proposition 4.1 to search for the solution to Problem 1a under the VaR con-
straints. For example, one starts with I∗

d,V1
 . If both risk constraints are satisfied, 

then it is the optimal solution; if however it violates the insured’s risk constraint, 
then one tries I∗

d,V2
 . If I∗

d,V2
 cannot be found because the equations in step (2) con-

flict with each other, then the risk constraints are not compatible with each other 
( C1 ∩ C2 = � ) and the problem has no solution. If I∗

d,V2
 was found, then one needs 

to further examine whether the insurer’s risk constraint is satisfied. If yes, then 
I∗
d,V2

 is the optimal solution; If I∗
d,V2

 violates the insurer’s risk constraint, then one 
needs to try step (4). If a solution can be found, then it is optimal; otherwise the 
risk constraints are not compatible and the problem has no solution.

Remark 4.1  Equation (4.1) tells that LV (t;I∗, �1, �2, �3) has a downward jump of 
size �1 at point a and an upward jump of size �2 at point b. Figure  1 shows that 
the Lagrangian coefficients �1, �2 and �3 directly affect the points t0, t1 and t2 , which 
are the parameters of our optimal indemnity function in Proposition 4.1. Intuitively, 
optimizing �1, �2 and �3 leads to the optimal t0, t1 and t2 . This implies that we can 
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optimize t0, t1 and t2 directly instead of calculating them through the optimal �1, �2 
and �3 . This reasoning also applies to the TVaR case.

Remark 4.2  To determine the global optimal indemnity function that solves Prob-
lem 1, we apply Proposition 4.1 to all possible premium levels in [0,�0] and select an 
optimal premium level B∗ so that the insured’s EU reaches maximum. The explicit 
solution for B∗ is difficult to obtain. However, the numerical search is easy to imple-
ment and this will be illustrated in Sect. 5.

Remark 4.3  When neither of the risk constraints is binding, then �1 = �2 = 0 and the 
function LV has no jump. In this case, Problem 1a reduces to that in Arrow [2], for 
which the excess-of-loss indemnity function is optimal.

Remark 4.4  The case when only the insured’s risk constraint is binding has been stud-
ied in Huang [25], where the indemnity function I(x) is assumed to satisfy 0 ≤ I(x) ≤ x . 
In their results, the optimal indemnity function has a downward jump at a.

In our model, indemnity function with jumps are not permissible. Consequently, 
if the function LV jumps downward below zero at a, the optimal indemnity function 
becomes flat starting from a.

A comparison of our result and that of Huang [25] is shown in Fig. 2. Note that the 
exact shape of the indemnity function depends on other model parameters, e.g. the 
premium level B and utility function. Figure 2 only provides a representative situation.

Note that when the insured’s risk constraint is binding, both ours results and 
Huang [25] suggest that the decision maker (insured in this case) substitutes cov-
erage above a with coverage below a. This is because the losses above a do not 
contribute to the insured’s VaR level.

Fig. 2   A comparison of Arrow’s 
solution, our solution and that 
of Huang [25] when only the 
insured’s risk constraint is 
binding
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Remark 4.5  The case where only the insurer’s risk constraint is binding has been 
studied in Bernard and Tian [8], where the indemnity function I(x) is assumed to be 
non-decreasing and satisfy 0 ≤ I(x) ≤ x.

Bernard and Tian [8] concluded that the optimal indemnity function has an 
upward jump at b. This is essentially because losses above b do not contribute to 
the insurer’s VaR. In our result, because of the continuity of the indemnity function, 
when the insurer’s risk constraint is binding, the indemnity function does not jump 
at b; instead, its slope changes from zero to one, indicating that losses above b is 
provided.

A comparison of our result and that in Bernard and Tian [8] is shown in Fig. 3.

Remark 4.6  We have assumed that a < b to simplify the presentation. However, the 
results can be easily modified for the case a ≥ b . In addition, our approach applies to 
the case when the two parties employ different distortion risk measures. For exam-
ple, if the insured applies VaR and the insurer applies TVaR, then the shape of the 
function L changes accordingly and the optimal indemnity function could be deter-
mined in a similar way.

We summarize the consequences of imposing VaR-type risk constraints. From 
the insured’s point of view, without the risk constraint, it prefers an excess-of-
loss coverage (Arrow’s model). However, if the excess-of-loss policy violates its 
own VaR constraint, it will substitute the coverage for losses above level a with 
the coverage for losses below level a. On the other hand, if the insurer’s VaR risk 
constraint is violated, it will keep the coverage for losses above level b and reduce 
the coverage for losses below level b.

Fig. 3   A comparison of Arrow’s 
solution, our solution and that 
of Bernard and Tian [8] when 
only the insurer’s risk constraint 
is binding
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4.2 � Optimal insurance policy that maximizes the insurer’s EU under the VaR 
constraints

When the insuer’s EU is to be maximized, as discussed in Sect. 3.2, the optimal 
indemnity function depends on the Lagrangian augmented function L̃ defined in 
(3.7), which under VaR becomes

It can be seen that L̃V has an upward jump at a and a downward jump at b if 
𝜆1, 𝜆2 > 0 . Other than the directions of the jumps, the shape of function L̃V is similar 
to LV because both I∗(x) and x − I∗(x) are nondecreasing and u and v are strictly con-
cave utility functions.

Recalling that in this case, coverage is provided for the interval when L̃V is 
negative, we have the following result. As the result is analogous to Proposition 
4.1, its proof is omitted.

Proposition 4.2  Under the VaR risk constraints and Assumption 1, the solution to 
Problem 2a is given by the following. 

(1)	 If neither of the risk constraints is binding, then the optimal indemnity 
function is given by I∗

r,V1
(x) = x ∧ t0 for some t0 such that 0 ≤ t0 ≤ M and 

B = (1 + �)�[I∗
r,V1

(X)].
(2)	 If only the insured’s risk constraint is binding, then the optimal indemnity func-

tion is given by I∗
r,V2

(x) = (x ∧ t0) + (x ∧ a − t1)+ for some t0 and t1 such that 
0 ≤ t0 ≤ t1 , I∗r,V2

(a) = a + B − Ad and B = (1 + �)�[I∗
r,V2

(X)].

L̃V (t;I
∗, 𝜆1, 𝜆3) =

⎧⎪⎨⎪⎩

�
��
v�
�
wr − I∗(X) + B

�
+ 𝜆3

�
1[t,M)(X)

�
− 𝜆1 + 𝜆2, t ≤ a,

�
��
v�
�
wr − I∗(X) + B

�
+ 𝜆3

�
1[t,M)(X)

�
+ 𝜆2, a < t ≤ b,

�
��
v�
�
wr − I∗(X) + B

�
+ 𝜆3

�
1[t,M)(X)

�
, t > b.

Fig. 4   A comparison of Arrow’s 
solution, our solution and that 
of Bernard and Tian [8] when 
maximizing the insurer’s EU 
and only the insurer’s risk con-
straint is binding
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(3)	 If only the insurer’s risk constraint is binding, then the optimal indemnity func-
tion is given by I∗

r,V3
(x) = (x ∧ t0) + (x ∧ t1 − b)+ for some t0 and, t1 such that 

0 ≤ t0 ≤ b ≤ t1 , t0 = Ar + B and B = (1 + �)�[I∗
r,V3

(X)].
(4)	 If both the insured and insurer’s risk constraints are binding, then the optimal 

indemnity function is given by I∗
r,V3

 for some t0 and t1 such that a < t0 ≤ b ≤ t1 , 
t0 = B + Ar and B = (1 + �)�[I∗

r,V3
(X)] = Ad.

Remark 4.7  The case where only the insurer’s risk constraint is binding was stud-
ied by Bernard and Tian [8], where the derived optimal indemnity function has an 
upward jump at b.

In our result, when only the insurer’s risk constraint is binding, the slope of 
indemnity function changes from zero to one at b, resulting the coverage for the 
layer [b, t1] . Meanwhile, the coverage for the layer [0, b] is reduced as the premium 
is fixed (Fig. 4). This result is intuitive because losses above level b does not con-
tribute to the insurer’s VaR.

4.3 � Optimal insurance policy that maximizes the insured’s EU under the TVaR 
constraints

When TVaR is used as the risk measure, the distortion function gT in (2.3) is 
applied to (3.5). Then the function L in 3.5 becomes

LT (t;I
∗
, 𝜆1, 𝜆2, 𝜆3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
��
u
�
�
w − X + I

∗(X) − B
�
+ 𝜆3

�
1[t,M)(X)

�
+ 𝜆1 − 𝜆2, t ≤ a,

�

��
u
�
�
w − X + I

∗(X) − B
�
+ 𝜆3 +

𝜆1

1 − 𝛼

�
1[t,M)(X)

�
− 𝜆2, a < t ≤ b,

�

��
u
�
�
w − X + I

∗(X) − B
�
+ 𝜆3 +

𝜆1

1 − 𝛼
−

𝜆2

1 − 𝛽

�
1[t,M)(X)

�
, t > b.

Fig. 5   (Left) An example of L
T
(t;I∗, �

1
, �

1
, �

3
) ; (Right) An example of the optimal indemnity function
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which is in fact continuous on [0, M]. With 𝜆1, 𝜆2 > 0 , the slope of LT jumps at a 
and b. Fig. 5 gives an illustration.

The following proposition gives the solution to Problem  1a under the TVaR 
risk constraints. We again focus on specific cases where neither of the constraints 
are binding, where only one constraint is binding and where both constraints are 
binding. Its proof is provided in the appendix.

Proposition 4.3  Under the TVaR risk constraints, the solution to Problem  1a is 
given by the following. 

(1)	 If neither of the risk constraints is binding, then the optimal indemnity func-
tion is given by I∗

d,T1
(x) = (x − t0)+ for some t0 such that 0 ≤ t0 ≤ M and 

B = (1 + �)�[I∗
d,T1

(X)].
(2)	 If only the insured’s risk constraint is binding, then the optimal indem-

nity function is still given by I∗
d,T1

 with the additional requirement that 
TVaR�(I

∗
d,T1

(X)) = TVaR�(X) + B − Ad.
(3)	 If only the insurer’s risk constraint is binding, then the optimal indemnity function is 

given by I∗
d,T2

(x) = (x ∧ t1 − t0)+ + (x − t2)+ for some t0, t1, t2 such that 
0 ≤ t0 ≤ t1 ≤ b ≤ t2 ≤ M , TVaR�(I

∗
d,T2

(X)) = Ar + B and B = (1 + �)�[I∗
d,T2

(X)].
(4)	 If both the insured and insurer’s risk constraints are binding, then the optimal 

indemnity function is given by I∗
d,T2

 for some t0, t1, t2 such that 
TVaR�(I

∗
d,T2

(X)) = TVaR�(X) + B − Ad  ,  TVaR�(I
∗
d,T2

(X)) = Ar + B  a n d 
B = (1 + �)�[I∗

d,T2
(X)].

Remark 4.8  With premium level B, the TVaR of the insured is minimized with the 
excess-of-loss indemnity function I∗

d,T1
 . Consequently, Problem  1a has no solu-

tion (in other words, the compatibility requirement is violated) if I∗
d,T1

 violates the 
insured’s risk constraint. On the other hand, if I∗

d,T1
 violates the insurer’s risk con-

straint, the insurer could substitute the coverage for the layer [t1, t2] ( t2 > b ) with 
that for the lower layer to reduce its TVaR level. A comparison of our result with 
Arrow’s classical one is illustrated in Fig. 6.

Fig. 6   A comparison of Arrow’s 
solution and ours in Sect. 4.3 
when the insurer’s TVaR risk 
constraint is binding
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4.4 � Optimal insurance policy that maximizes the insurer’s EU under the TVaR 
constraints

When the insuer’s EU is to be maximized, similarly as the previous section we check 
the function

Coverage is provided when L̃T (t;I∗, 𝜆1, 𝜆2, 𝜆3) < 0.
The corresponding optimal indemnity function is provided in the following 

proposition.

Proposition 4.4  Under the TVaR risk constraints, the solution to Problem  2a is 
given by the following. 

(1)	 If neither of the risk constraints is binding, then the optimal indemnity function 
is given by I∗

r,T1
(x) = x ∧ t0 for some t0 such that 0 ≤ t0 ≤ M  and 

B = (1 + �)�[I∗
r,T1

(X)] .
(2)	 If only the insured’s risk constraint is binding, then the optimal indemnity func-

tion is given by I∗
r,T2

(x) = (x ∧ t0) + (x ∧ t2 − t1)+ for some t0, t1, t2 such that 
0 ≤ t0 ≤ t1 ≤ a ≤ t2 ≤ M , TVaR�(I

∗
r,T

2

(X)) = TVaR�(X) + B − A
d
 and B = (1 + �)�[I∗

r,T2
(X)].

(3)	 If only the insurer’s risk constraint is binding, then the optimal indemnity func-
tion is given by I∗

r,T1
 for some t0 such that 0 ≤ t0 ≤ M , TVaR�(I

∗
r,T1

(X)) = Ar + B 
and B = (1 + �)�[I∗

r,T1
(X)].

(4)	 If both the insured and insurer’s risk constraints are binding, then the optimal 
indemnity function is given by I∗

r,T2
 for some t0, t1, t2 such that 0 ≤ t

0
≤ t

1
≤ a ≤ t

2
≤ M , 

TVaR�(I
∗
r,T2

(X)) = TVaR�(X) + B − A
d
 , TVaR� (I

∗
r,T2

(X)) = A
r
+ B and B = (1 + �)�[I∗

r,T2
(X)].

4.5 � Proportional hazard transform

The above four sections discuss the optimal indemnity function from either the 
insured’s or insurer’s perspective under either the VaR or TVaR risk constraints, of 
which the distortion function is simple and piece-wise linear. As shown in the above 
sections, the optimal indemnity functions for these cases are of layered forms, i.e. 
with slope zero or one for different layers of loss. In this section, we explore the 

L̃T (t;I
∗
, 𝜆1, 𝜆2, 𝜆3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
��
v
�
�
wr − I

∗(X) + B
�
+ 𝜆3

�
1[t,M)(X)

�
− 𝜆1 + 𝜆2, t ≤ a,

�

��
v
�
�
wr − I

∗(X) + B
�
+ 𝜆3 −

𝜆1

1 − 𝛼

�
1[t,M)(X)

�
+ 𝜆2, a < t ≤ b,

�

��
v
�
�
wr − I

∗(X) + B
�
+ 𝜆3 −

𝜆1

1 − 𝛼
+

𝜆2

1 − 𝛽

�
1[t,M)(X)

�
, t > b.
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optimal indemnity function when the risk constraints are based on the distortion 
function that is not piece-wise linear.

We focus on the PH transform proposed in Wang [32], with the distortion func-
tion gPH(x) = x� for some � ∈ (0,∞) . This transform is rather flexible because gPH is 
convex if 𝛾 > 1 and is concave if 𝛾 < 1 . Thus, when applied to the survival function 
of loss, the former represents risk-seeking behavior, whereas the latter represents 
risk-aversion.

In particular, we consider the insured’s decision problem (Problem 1), where the 
insured’s risk constraint is defined in terms of PH transform, i.e. gPH(x) = x� with 
� ∈ (0, 1) . For simplicity, we assume that only the insured’s risk constraint is bind-
ing (i.e., 𝜆1 > 0 and �2 = 0).

Under this setting, the function L(t;I∗, �1, �2, �3) in Theorem 3.1 becomes

where �1 ∈ �
+ and �3 ∈ � . The first-order derivative of L(t;I∗, �1, �2) is given by

where K(t;I∗, �1, �3) = u�(w − t + I∗(t) − B) + �1�SX(t)
�−1 + �3.

Because u��(⋅) < 0 , I∗�(t) ∈ [0, 1] , and � ∈ (0, 1) , we have

With the monotonicity of K(t;I∗, �1, �3) , we are able to derive the following two 
properties of L.

•	 First, L(t;I∗, �1, �3) = 0 cannot hold on any sub-intervals of [0, M]. This could be 
proved through contradiction. If there exists a sub-interval, e.g. [a, b] ⊆ [0,M] , 
such that L(t;I∗, �1, �3) = 0 for t ∈ [a, b] . Then L�(t;I∗, �1, �3) = 0 for t ∈ [a, b] , 
and this further implies that K(t;I∗, �1, �3) = 0 for t ∈ [a, b] . Then for any 
t ∈ [a, b] , 

 which contradicts with the incentive compatibility condition.
•	 Second, there does not exist a point t∗ such that 

(4.2)

L(t;I∗, �1, �3) = ∫
M

t

u�(w − x + I∗(x) − B)dFX(x) + �1gPH(SX(t)) + �2SX(t)

= ∫
M

t

u�(w − x + I∗(x) − B)dFX(x) + �1SX(t)
� + �3SX(t),

(4.3)L�(t;I∗, �1, �3) = −K�(t;I∗, �1, �3)fX(t),

(4.4)
K�(t;I∗, 𝜆1, 𝜆3) = u��(w − t + I∗(t) − B)(I∗

�
(t) − 1) − 𝜆1𝛾(𝛾 − 1)SX(t)

𝛾−2fX(t) > 0.

K�(t;I∗, 𝜆1, 𝜆3) = 0

⟹ u��(w − t + I∗(t) − B)(I∗
�
(t) − 1) − 𝜆1𝛾(𝛾 − 1)SX(t)

𝛾−2fX(t) = 0

⟹ I∗
�
(t) = 1 +

𝜆1𝛾(𝛾 − 1)SX(t)
𝛾−2fX(t)

u��(w − t + I∗(t) − B)
> 1,

L(t∗;I∗, 𝜆1, 𝜆3) < 0, L�(t∗;I∗, 𝜆1, 𝜆3) ≤ 0.
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 This implies that L cannot down-cross the t axis. We next prove it by con-
tradiction. If such t∗ exists, then from the second inequality we have 
K(t∗;I∗, �1, �3) ≥ 0 . Based on (4.4), we get K(t;I∗, �1, �3) ≥ 0 for any t ∈ [t∗,M] , 
which further implies that L�(t;I∗, �1, �3) ≤ 0 for any t ∈ [t∗,M] . This leads to 

 which contradicts with L(t∗;I∗, 𝜆1, 𝜆3) < 0.
With the above two properties, we can define

with the convention d = M if S̃ = � . Then L(t;I∗, 𝜆1, 𝜆3) < 0 for t ∈ [0, d) and 
L(t;I∗, �1, �3) ≥ 0 for t ∈ [d,M] . Based on Theorem  3.1, the optimal indemnity 
function is of the excess-of-loss type.

We summarize the above finding in the following corollary.

Corollary 4.1  For the insured’s decision problem with its risk constraint defined in 
terms of the PH transform gPH(x) = x� with � ∈ (0, 1) , if only the insured’s risk con-
straint is binding, then the optimal indemnity function is given by I∗(x) = (x − d)+ 
for some d ∈ [0,M].

Remark 4.9  Suppose that the insurer’s risk constraint is defined in terms of the PH 
transform and binding for the insured’s decision problem (Problem 1a), the form of 
the optimal indemnity function is more complicated. In this situation, it is possible 
that L(t;I∗, �1, �2, �3) = 0 holds on some sub-intervals of [0, M], which may yield 
coinsurance (i.e., I∗� ∈ (0, 1) ) on those intervals. Since this current paper mainly 
focuses on the problem with the VaR or TVaR risk constraints, we will not discuss 
this issue further herein.

5 � Numerical analysis

In Sects. 3 and 4, we derived the optimal parametric form of the indemnity func-
tion by analyzing the Lagrangian augmented function (3.5) or (3.7). These results 
are used in this section to study the sensitivity of the indemnity function with 
respect to the risk constraints. To save space, we focus on Problem 1a, where the 
objective is to maximize the insured’s EU under risk constraints.

We assume the following throughout the analysis.

•	 The insured’s preference is captured by a quadratic utility function: 

L(t∗;I∗, �1, �3) = �
M

t∗
−L�(x;I∗, �1, �3)dx ≥ 0,

S̃ ∶=
{
t ∈ [0,M] ∶ L(t;I∗, 𝜆1, 𝜆3) ≥ 0

}
and d = inf S̃

u(x) = −
1

2
�x2 + x, x ≤ 1

�
,
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 where 1
�
 is called the saturation point representing the maximum wealth of the 

insured. We set 1
�
= 10,000.

•	 The insured’s initial capital w is 2000.
•	 The ground-up loss follows an exponential distribution FX(x) = 1 − exp(−

x

�
) 

with � = 1000.
•	 The budget level �0 is set to be 1000, which is half of the insured’s initial capital.
•	 The risk loading � in determining the premium is 0.2.
•	 For the VaR and TVaR calculation, the insured and insurer apply probabil-

ity level � = 0.95 and � = 0.99 respectively. Thus, a = VaR�(X) = 2996 and 
b = VaR�(X) = 4605.

5.1 � Maximize the insured’s EU under the VaR constraints

Under Arrow’s model, i.e. maximizing the insured’s expected utility with no risk 
constraints, the optimal insurance policy is given by B∗

Arrow
= 78.3 and I∗

Arrow
(x) =

(x − 2730)+ . With this policy, the VaR of the insured is VaR�(X − I
∗
Arrow

(X)+

B
∗
Arrow

) = 2808 and the VaR of the insurer is VaR�(I
∗
Arrow

(X) − B∗
Arrow

) = 1797.

5.1.1 � The insured’s VaR constraint is violated

We first examine the case where Ad = 2500 and only the insured’ VaR constraint is 
violated if I∗

Arrow
 is applied. Then applying Proposition 4.1 (2), the optimal indem-

nity function is give by

where t0 = 2409 and t1 = 3326 . The optimal premium level is found numerically to 
be B∗ = 91.

With the insurance policy (I∗
d,V2

,B∗) as shown above, the VaR of the insured and 
insurer are 2500 and 1775 respectively. We observe that, comparing with I∗

Arrow
 , the 

insured retains the risk above a and purchases more coverage for losses below a, 
which actually contributes to its VaR.

If Ar > 1775 , then I∗
d,V2

 is the solution to Problem 1. If however Ar ≤ 1775 , e.g. 
Ar = 1700 , we need to apply Proposition  4.1 (4). In this situation, the optimal 
indemnity function is given by

where t0 = 2410 , t1 = 3325 and t2 = 4529 . The optimal premium level is B∗ = 90 . 
As seen in Fig. 7, the insurer sells less coverage below b such that its VaR is reduced 
to meet the risk constraint.

I∗
d,V2

(x) = (x ∧ a − t0)+ + (x − t1)+,

(5.1)I∗
d,V4

(x) = (x ∧ a − t0)+ + (x ∧ t2 − t1)+ + (x − b)+,
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5.1.2 � The insurer’s VaR constraint is violated

We first examine the case where Ar = 1700 and only the insurer’ VaR constraint is 
violated if I∗

Arrow
 is applied. Then applying Proposition 4.1 (3), the optimal indemnity 

function is give by

where t0 = 2715 and t1 = 4493 . The optimal premium level is found numerically to 
be B∗ = 78.

I∗
d,V3

(x) = (x ∧ t1 − t0)+ + (x − b)+,

Fig. 7   The optimal indemnity functions with different risk constraints for Sect. 5.1.1

Fig. 8   The optimal indemnity functions with different risk constraints for Sect. 5.1.2
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With insurance policy (I∗
d,V3

,B∗) as shown above, the VaR of the insured and insurer 
are 2793 and 1700 respectively. We observe that, comparing with I∗

Arrow
 , the insurer 

will reduce its coverage for the losses below b so as to reduce its VaR level (Fig. 8).
If Ad > 2793 , then I∗

d,V3
 is the solution to Problem 1. If however Ad ≤ 2793 , e.g. 

Ad = 2500 , we need to apply Proposition 4.1 (4), which yields the optimal indemnity 
function I∗

d,V4
 given by (5.1).

5.2 � Maximize the insured’s EU under the TVaR constraints

Note that with I∗
Arrow

 and B∗
Arrow

 , the TVaR of the insured and insurer are 2808 and 2797 
respectively.

5.2.1 � The insured’s TVaR constraint is violated

First suppose that Ad = 1600 and only the insured’s TVaR constraint is violated. Then 
according to Proposition 4.3 (2), the optimal indemnity function still takes the excess-
of-loss form. To make the insured’s TVaR constraint binding, the retention point d 
needs to satisfy

A numerical search gives d∗ = 1259 , which is the only root for the equation above. 
In other words, the optimal indemnity function is given by I∗

d,T1
= (x − 1259)+ and 

the corresponding premium is B∗ = 341 . With this policy, the TVaR of the insured 
and insurer are 1600 and 4005 respectively (Fig. 9).

TVaR�((X − d)+) = TVaR�(X) + (1 + �)�[(X − d)+] − Ad

⟹ ∫
∞

d

{
gT (SX(t)) − (1 + �)SX(t)

}
dt = TVaR�(X) − Ad.

Fig. 9   The optimal indemnity functions with different risk constraints for Sect. 5.2.1
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If Ar > 4005 , then I∗
d,T1

 is the solution to Problem 1. If however Ar ≤ 4005 , e.g. 
Ar = 2700 , then we apply Proposition 4.3 (4) and obtain that the optimal indem-
nity function is given by

where t0 = 454 , t1 = 3891 and t2 = 12211 , for which the premium is B∗ = 738.

5.2.2 � The insurer’s TVaR constraint is violated

Now suppose that Ar = 2700 and only the insurer’s TVaR constraint is violated. 
Then according to Proposition 4.3 (3), the optimal indemnity is given by

where t0 = 986 , t1 = 4020 and t2 = 6976 . With this indemnity function and the cor-
responding premium B∗ = 427 , the TVaR of the insured and insurer are 1754 and 
2700 respectively (Fig. 10).

If Ad > 1754 , then I∗
d,T2

 is the solution to Problem 1. If however Ad ≤ 1754 , e.g. 
Ad = 1600 , then we apply Proposition 4.3 (4) and obtain the optimal indemnity 
function as given by (5.2).

(5.2)I∗
d,T2

(x) = (x ∧ t1 − t0)+ + (x − t2)+,

I∗
d,T2

(x) = (x ∧ t1 − t0)+ + (x − t2)+,

Fig. 10   The optimal indemnity functions with different risk constraints for Sect. 5.2.2
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6 � Concluding remarks and future research

In this paper, we study the optimal insurance policy which maximizes the DM’s 
expected utility under the risk constraints of both parties. Different from the exist-
ing literature, we impose the no-sabotage condition on the indemnity function to 
mitigate the potential ex post moral hazard. Moreover, we define the risk constraints 
using general distortion risk measures, which generalizes the VaR constraints used 
in the literature. We show that the optimal indemnity function has a layered form. 
Closed-form indemnity functions are obtained when the risk constraints are defined 
through VaR and TVaR. The impacts of the incentive compatibility condition and 
the risk constraints on the optimal indemnity function are discussed in great detail.

This paper focuses on the unilateral problem, where the objective is maximiz-
ing only one party’s EU. In the future, it would be interesting to extend the model 
to a bilateral or multi-player one. In those cases, the technical complexity would 
be enhanced drastically and the results would allow for more interesting economic 
interpretations.

Appendix

Proof of Theorem 3.1  To prove the “if” part, we first write our the Lagrangian aug-
mented problem for Problem 3.1:

The integral is maximized if its integrand function is maximized point-wisely, this 
leads to

where �(t) ∈ [0, 1] is arbitrary as long as it makes 𝜂∗ ∈ C̃0.
To prove the “if only” part, similar to the proof of Theorem  3.1 of Chi and 

Zhuang [20], for the marginal indemnity function �∗ satisfying (3.6) and �1, �2, �3 
satisfying the slackness conditions, we have

max
𝜂∈C̃0 ∫

M

0

{
∫

M

t

u�(w − x + I(x) − B)dFX(x)

}
𝜂(t)dt

+ 𝜆1

(
∫

M

0

gd
(
SX(t)

)
𝜂(t)dt − Cd

)

− 𝜆2

(
∫

M

0

gr(SX(t))𝜂(t)dt − Cr

)
+ 𝜆3

(
∫

M

0

SX(t)𝜂(t)dt −
B

1 + 𝜃

)

⟶ max
𝜂∈C̃0 ∫

M

0

L(t;I, 𝜆1, 𝜆2, 𝜆3)𝜂(t)dt.

𝜂∗(t) =

⎧⎪⎨⎪⎩

1, L(t;I, 𝜆1, 𝜆2, 𝜆3) > 0,

𝜉(t), L(t;I, 𝜆1, 𝜆2, 𝜆3) = 0,

0, L(t;I, 𝜆1, 𝜆2, 𝜆3) < 0,
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where � is an arbitrary function belonging to the set C̃0.
At last, if there exists a solution to Problem  3.1, we show the existence of 

�1, �2, �3 that make the optimal marginal indemnity function satisfy all the con-
straints. Let

If a solution to Problem 3.1 exists, then the following constraints (see Problem 3.1) 
must hold

For given �2, �3 , if �1 → +∞ , then L(t;I∗, �1, �2, �3) → +∞ for t ∈ Sd , which 
leads to �∗(t) = 1 for t ∈ Sd . Similarly, for given �1, �3 , if �2 → +∞ , then 
L(t;I∗, �1, �2, �3) → −∞ for t ∈ Sr , which yields �∗(t) = 0 for t ∈ Sr . For given 
�1, �2 , �∗(t) = 0 for t ∈ [0,M) if �3 → −∞ and �∗(t) = 1 for t ∈ [0,M) if �3 → +∞ . 
By applying Lebesgue dominated convergence theorem (see Ghossoub [22]), one 
can conclude the existence of �1, �2 ∈ �

+ and �3 ∈ � such that the marginal indem-
nity function �∗ defined by (3.6) satisfies all the constraints. 	�  ◻

Proof of Proposition 4.1  Differentiating t ↦ LV (t;I
∗, �1, �2, �3) gives

Since t − I(t) is non-decreasing for any I ∈ C0 , u�(w − t + I∗(t) − B) is 
non-decreasing.

From now on, for brevity, we write LV (t) as the short form for LV (t;I∗, �1, �2, �3) . 
Suppose that LV (t) = 0 in some interval on [0, M], then L�

V
(t) = 0 is also true on the 

interval. By (6.1), it is seen that L�
V
(t) = 0 on an interval implies that I∗(t) − t is con-

stant on the interval. Therefore, I∗�(t) = 1 on the interval. Considering Theorem 3.1, 
we conclude that I∗�(t) = 1 if LV (t) ≥ 0 and I∗�(t) = 0 if LV (t) < 0 . Therefore, the 
optimal policy is of layered form.

Define SV ∶=
{
t ∶ u�(w − t + I∗(t) − B) + �3 ≥ 0

}
 and

�
M

0

{
�

M

t

u�(w − x + I(x) − B)dFX(x)

}
(�∗(t) − �(t))dt

≥ �
M

0

L(t;I∗, �1, �2, �2)(�
∗(t) − �(t))dt ≥ 0,

Sd =
{
t ∶ gd(SX(t)) > 0

}
and Sr =

{
t ∶ gr(SX(t)) > 0

}
.

Cd ≤ �
M

0

gd(SX(t))�(t)dt = �
Sd

gd(SX(t))�(t)dt ≤ �
Sd

gd(SX(t))dt,

Cr ≥ �
M

0

gr(SX(t))�(t)dt ≥ 0.

(6.1)L�
V
(t;I∗, �1, �2, �3) = −

(
u�(w − t + I∗(t) − B) + �3

)
fX(t).
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Then we have L�
V
(t) > 0 for t ∈ [0, dV ) and L�

V
(t) ≤ 0 for t ∈ [dV ,M] . Moreover, for 

t ∈ [dV ,M] we have �
[{
u�(w − X + I∗(X) − B) + �3

}
1[t,M](X)

] ≥ 0.
To determine the shape of I∗(t) , we need the relative position of dV to the points a 

and b, where LV (t) may jump. In the following We discuss the case of a < b < dV in 
great detail. Derivations for other cases, such as when a < dV ≤ b and dV ≤ a < b , 
are similar and hence omitted.

When a < b < dV , we have

Suppose that the risk constraints are not binding and thus LV has no jumps, then we 
obtain Proposition 4.1 (1), which is the Arrow’s solution.

Suppose that LV has only one jump at t = a . Because LV is strictly increasing on 
[0, dV ] other than the downward jump at t = a , it has at most one root, denoted by t0 , 
on [0, a] and at most one root, denoted by t1 , on (a, dV ] . Furthermore, we follow the 
convention and let t0 = 0 if LV (0) > 0 and t0 = a if LV (a) < 0 ; similarly, t1 = a if 
LV (a) > 0 and t1 = dV if LV (dV ) < 0 . Recalling that LV ≥ 0 on (dV ,M] , we have

This leads to I∗(x) = (x ∧ a − t0)+ + (x − t1)+ , which is given by Proposition 4.1 (2).
Suppose that the insurer’s risk constraint binds and thus LV has only one jump at 

t = b , then LV has at most one root, denoted by t0 , on [0, b] and no root on (b, M]. 
Then similar to the above case, we have I∗(x) = (x − t0)+ , which is a special case of 
I∗
d,V3

 given by Proposition 4.1 (3). Note that t0 must be on [0, b] because otherwise 
the insurer’s VaR is VaR𝛽(I

∗(X) − B) = −B < Ar , which contradicts with our 
assumption in this paragraph that the insurer’s risk constraint binds.

Suppose that LV has jumps at both t = a and t = b , then again LV has at most one 
root, denoted by t0 , on [0, a] and at most one root, denote by t1 , on (a, dV ] . However, 
under Assumption 1, VaR𝛼(X) < Ad + Ar and therefore t1 should be in (a, b]. This 
leads to I∗(x) = (x ∧ a − t0)+ + (x − t1)+ , which is a special case of I∗

d,V4
 given by 

Proposition 4.1 (4).
Other situations, such as when a < dV ≤ b and dV ≤ a < b , could be examined in 

the same way. This ends the proof. 	� ◻

(6.2)dV =

{
infSV , SV ≠ �,

M, SV = �.

L�
V
(t) =

{
> 0, t ∈ [0, a) ∪ (a, b) ∪ (b, dV ),

≤ 0, t ∈ [dV ,M].

LV

⎧
⎪⎪⎨⎪⎪⎩

< 0, t ∈ [0, t0),

> 0, t ∈ (t0, a],

< 0, t ∈ (a, t1),

≥ 0, t ∈ (t1,M],
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Proof of Proposition  4.3  We only prove Proposition  4.3 (4), which is for the case 
where L�

T
(t) has two jumps. Other statements could be proved similarly. Analogous 

to the proof for Proposition 4.1, to locate the roots of LT (t;I∗, �1, �2, �3) we calculate 
its derivative first

Since u�(w − t + I(t) − B) is non-decreasing, we can define the sets

and let

and

Similar to the VaR case, we write LT instead of LT (t;I, �1, �2, �3) for brevity. Appar-
ently, LT is strictly increasing on [0, dT1) , (a, dT2) and (b, dT3) and non-increasing on 
[dT1 , a] , [dT2 , b] and [dT3 ,M] . Furthermore, it is not difficult to find that dT2 = a if 
dT1 < a and dT1 = a if dT2 > a.

Suppose that dT1 < a = dT2 < b < dT3 . We have

As such, we define

L�
T
(t;I∗, 𝜆1, 𝜆2, 𝜆3) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−
�
u�(w − t + I∗(t) − B) + 𝜆3

�
fX(t), t ≤ a,

−

�
u�(w − t + I∗(t) − B) + 𝜆3 +

𝜆1

1 − 𝛼

�
fX(t), a < t ≤ b,

−

�
u�(w − t + I∗(t) − B) + 𝜆3 +

𝜆1

1 − 𝛼
−

𝜆2

1 − 𝛽

�
fX(t), t > b.

ST1
∶=

{
t ∶ u�(w − t + I(t) − B) + 𝜆3 ≥ 0

}
∩ {t ∶ t ≤ a},

ST2
∶= {t ∶ u�(w − t + I(t) − B) +

𝜆1

1 − 𝛼
+ 𝜆3 ≥ 0} ∩ {t ∶ a < t ≤ b},

ST3
∶= {t ∶ u�(w − t + I(t) − B) +

𝜆1

1 − 𝛼
−

𝜆2

1 − 𝛽
+ 𝜆3 ≥ 0} ∩ {t ∶ t ≥ b},

dT1 =

{
infST1

, ST1
≠ �,

a, ST1
= �,

dT2 =

{
infST2

, ST2
≠ �,

b, ST2
= �,

dT3 =

{
infST3

, ST3
≠ �,

M, ST3
= �.

L�
T

⎧
⎪⎪⎨⎪⎪⎩

> 0, t ∈ [0, dT1),

≤ 0, t ∈ [dT1 , b],

> 0, t ∈ (b, dT3),

≤ 0, t ∈ [dT3 ,M].
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and let conventionally t0 = dT1 if LT (dT1) < 0 , t1 = b if LT (b) ≥ 0 and t2 = dT3 if 
LT (dT3) < 0 . Then,

Furthermore, if LT (t) = 0 on some interval of [0, M], then L�
T
(t) = 0 , which implies 

that I∗�(t) = 1 on that interval. This leads to I∗(x) = (x ∧ t1 − t0)+ + (x − t2)+ , which 
is exactly the parametric form of the solution given by Proposition 4.3 item (4).

The proof for other cases, such as when dT1 < a = dT2 < b = dT3 and 
dT1 = a < dT2 < b < dT3 , are similar and therefore omitted. This ends the proof. 	�  ◻
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