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Abstract
The 2008–2009 Global Financial Crisis (GFC) has swayed regulators to set forth 
the Solvency II agreement for determining Solvency Capital Requirement (SCR) 
for insurance companies. In this paper, we apply novel internal models to investi-
gate whether the latest version of the Solvency II standard model demands sufficient 
capital charges, both in normal and stressed times, for the different risk categories 
included in bond and stock portfolios. Because the GFC has shown that extreme 
events on the tail of probability distributions can occur quite often, our empirical 
findings indicate that the magnitude of the equity risk using the GJR–EVT–Copula 
method requires insurers to keep more SCR for stock portfolios than the Solvency 
II standard model. In the case of a bond portfolio, we conclude that the Solvency II 
standard model requires approximately the same SCR as our internal model for the 
higher quality and longer maturity bonds, whereas the standard model overestimates 
SCR for the lower quality and shorter maturity bonds. At the same time, the stand-
ard model underestimates interest-rate risk and overestimates spread risk. Overall, 
the discrepancies in the estimated SCRs between the Solvency II standard technique 
and our internal models increase as the level of the risks rise for both stock and bond 
markets. Our empirical results are in line with other competing internal modeling 
techniques regarding stock market investment and bond portfolios with the higher 
quality and longer maturity bonds, while for the lower quality and shorter matu-
rity bonds, the results contradict other modeling procedures. The obtained empirical 
results are interesting in terms of theory and practical applications and have impor-
tant implication for compliance with the Solvency II capital requirements. Likewise, 
it can be of interest to insurance regulators, policymakers, actuaries, and researchers 
within the field of insurance and risk management.
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1  Introduction

The 2008–2009 Global Financial Crisis (GFC) is largely considered as a banking 
crisis, and hence the solvency of the insurance sector as a whole appeared not to 
be threatened, at least as the initial events of bankruptcies in the financial sector 
started to unfold. Nonetheless, the GFC had a major impact on the insurance indus-
try as well, primarily through their investment’s portfolios, as the crisis spread and 
financial markets entered a pronounced decline [40]. In order to ensure the financial 
stability of insurance companies and to protect policyholders, insurance undertak-
ings are required to hold a certain amount of additional assets as a buffer capital 
against unforeseen market events. This cushion capital is called the Solvency Capital 
Requirement (hereafter, SCR).

The Solvency II three-pillar approach, as the latest insurance industry directive, 
is supposed to provide the supervisory authorities with appropriate qualitative and 
quantitative tools to assess the overall solvency of an insurance undertaking (Fig. 1) 
[19]. As such, Pillar 1 is grounded on a risk-based approach and involves two regu-
latory capital requirements: (1) A Solvency Capital Requirement (SCR), reflecting 
the economic capital of an insurance undertaking that would need to operate with 
a low probability of failure, and indicate the total risk exposure the entity has in its 
different investment portfolios; (2) A Minimum Capital Requirement (MCR) or a 
safety net that should be established to constitute a basic trigger level for the ulti-
mate supervisory action [38]. The computations of the SCR buffer capital for stock 
and bond portfolios, using both the Solvency II standard and robust internal models, 
are the key objectives of this paper.

Fig. 1   Solvency II three-pillar approach
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To calculate the SCR, Solvency II offers a standard model and an alternative 
option of using a full internal model that requires the approval of regulatory supervi-
sors before its implementation. The standard approach is divided into six different 
risk modules for determining the SCR as shown in Fig. 2, including life, non-life, 
health, market, and default risk as well as intangibles.

Since the Solvency II capital requirements had a significant impact on the Euro-
pean insurance industry, a large number of papers have already been published on 
this topic. For example, Eling et al. [16] provide an overview and critical analysis of 
the Solvency II, while Doff [14] recommends a more balanced framework between 
Pillar I, II and III. Filipović [21] compares Solvency II standard model and a genu-
ine bottom-up approach to risk aggregation, and Holzmüller [25] discloses that the 
European Union (EU) Solvency II framework and the Swiss Solvency Test (SST) 
score are significantly better than the U.S. Risk-Based Capital (RBC) formula. 
Christiansen et al. [10] examine the calibration of the square-root aggregation for-
mula used to derive the life underwriting risk in the Solvency II standard model. 
Santomil et al. [39] establish various backtesting simulations and show their appli-
cations to equity risk in Solvency II.

As a measure of market risk, Value-at-Risk (VaR) technique is chosen as the rel-
evant risk measure by the EU to calculate the SCR. Thus, the SCR is defined as 
“the Value-at-Risk of the basic own funds subject to a confidence level of 99.5% 
over a 1-year period” (see, European Parliament and of the Council [20] Article 101, 
no. 3). In fact, VaR is a risk measure strongly dependent on the tail of a probabil-
ity distribution, and hence accurate modeling of the tail of probability distribution 
is essential in the estimation of VaR. Indeed, empirical studies (see, for instance, 
[3, 4, 7, 13, 15]) have shown that the normality assumption for returns in financial 

Fig. 2   Overall structure of the SCR (Source: QIS5 (Fifth Quantitative Impact Studies document [19]))
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markets is inaccurate and misleading for the assessment of market risk. This claim 
is supported by the fact that the time-series of financial returns are characterized by 
extreme events with negative skewness and high kurtosis.

Next, determining the true structure of dependence between financial assets is 
an important yet a challenging task for calculating VaR of multiple-asset portfolios. 
Many researchers (see for example, [3, 7, 27, 34]) have identified extreme asym-
metric dependence between financial variables returns, such as, that the stock mar-
kets crash together, however they do not boom at the same time. As such, copula 
functions as a technique to investigate the dependence of multivariate assets have 
received a large interest in the last few years. Embrechts et al. [17] show the first 
application of copula functions in finance, while Cherubini et  al. [9] address the 
mathematics of copula functions with several concrete applications to finance.

In a similar vein, Hotta et al. [26] use a mixed model consisting of conditional 
copula and multivariate GARCH to estimate the VaR of a portfolio composed of 
NASDAQ and S&P 500 indices, while Rockinger and Jondeau [37] apply the Nor-
mal GARCH-based copula for the estimation of VaR for a portfolio composed of 
international equity indices. On the other hand, Lourme and Maurer [33] introduce 
a semi-parametric framework for selecting either a Gaussian or a Student’s t-copula 
in a d-dimensional setting; and demonstrate that VaR results confirm that the t-based 
copula model is a better alternative to the Gaussian approach. Other authors (e.g., 
[1–3, 5, 7, 15, 43]) have investigated the construction and implementation of differ-
ent types of copulas (such as, pair copula, dynamic conditional correlation (DCC) 
t-copula and vine copula) for the setting of nonlinear optimization algorithms and 
for the measurement of dependence structure with direct applications to the financial 
and insurance sectors.

With respect to bonds that are rating-sensitive assets, the risk-neutral probabili-
ties of future rating migrations as well as the default probabilities are required in 
order to consider spread risk and counterparty default risk. To deal with this prob-
lem, a risk adjustment is needed to obtain the risk-neutral probabilities from his-
torical rating transition matrices published by rating agencies. Fons [22] develops 
a reduced form model to derive credit spreads using historical default rates and a 
recovery rate. As such, Fons [22] provides a link between the rating of a company 
and the observed credit spreads in bond markets. The model developed by Fons [22] 
concentrates on default event, time to default, and loss given default and does not 
consider any changes to the credit quality. As an extension, Jarrow et al. [28], [Jar-
row–Lando–Turnbull, (JLT) model, henceforth], model default and transition prob-
abilities by using a discrete time-homogeneous Markov chain on a finite state space. 
A key issue with the JLT model is the assumption of complete markets with no arbi-
trage opportunities.

In this backdrop, none of the above empirical studies examined the assessments 
of risk for stock and bond markets, using both the standard and internal models as 
outlined by the Solvency II framework. Nevertheless, the paper by Gatzert and Mar-
tin [23] is the most related study to our paper as it uses the standard and internal 
models to quantify inherent risks in stock and bond portfolios. However, in quantify-
ing equity risk, Gatzert and Martin [23] assume in their internal model that stocks 
follow a geometric Brownian motion process. With respect to credit risk, Gatzert 
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and Martin [23] use the reduced-form model by Jarrow et al. [28], which is based 
on the credit transition method. On the other hand, the JLT model [28] has some 
disadvantages (see, Uhring-Homburg [42], for further details). One critical point 
refers to the fact that each entry in a row of the historical transition matrix is multi-
plied by the calculated risk premium, which makes this method infeasible. Second, 
as pointed out by Lando [31], even small changes in the uncertain empirical esti-
mates of the high-grade default probabilities may lead to extremely high changes in 
the risk adjustments with this method. To overcome these shortcomings, Kijima and 
Komoribayashi [29], (KK model, henceforth), proposed an alternative procedure to 
calculate the martingale probabilities. The procedure suggested by the KK model 
guarantees numerical stability. However, it adjusts the default and all other entries in 
opposite directions. Furthermore, Lando and Mortensen [32] conducted an adjust-
ment based on an economic theory to overcome the numerical problems of the JLT 
method, and thus to make it economically intuitive in contrast to the KK model.

Overall, this paper contributes to regulatory capital, equity risk, interest-rate risk 
and spread risk on several fronts. First, it develops and implements a model using 
the GJR–EVT–Copula1 (GEC) approach for calculating SCR as the regulatory capi-
tal for stocks from diverse developed and emerging markets, and with different lev-
els of risk. Second, it incorporates the Lando and Mortensen [32] approach for the 
valuation of interest-rate risk, spread risk and credit risk for government and cor-
porate bonds.2 Third, our study is among very few studies (e.g., [23]) that compare 
the calculated solvency capital with the Solvency II standard approach (SCR) for a 
given portfolio of stocks and bonds, which are the two largest components of invest-
ment portfolios across insurance companies.

Our empirical results confirm the large discrepancies between the estimated SCRs 
using both the Solvency II standard approach and our robust multifaceted internal 
modeling techniques. In particular, the results of the standard approach in the equity 
risk sub-module show slight differences with the parametric VaR, whereas the 
empirical results from the proposed GJR–EVT–Copula approach are quite higher 
than the standard approach. This empirical outcome is because the GJR–EVT–Cop-
ula model strongly rejects the normality assumption for returns in financial markets, 
as well as the way it tackles the impact of extreme asymmetric dependence between 
financial assets [34]. In addition, this empirical analysis indicates that considering 
only two risk factors of “Global” and “Other” for investment classes in the Solvency 
II standard approach is not an accurate technique because international stock mar-
kets have distinctive distributional patterns and unique risk parameters. Finally, as to 
government and corporate bonds, we conclude that the Solvency II standard model 

1  GJR stands for the Glosten–Jagannathan–Runkle model (for further details, see [24], and EVT denotes 
Extreme Value Theory.
2  Financial time series have typical non-normal properties, such as leptokurtosis, fat tails, volatility clus-
tering and leverage effect. In addition, calculating regulatory capital for a portfolio requires modeling 
the tail of the joint distribution. To that end, it is possible to describe the time series effectively using the 
GJR–GARCH–EVT–Copula technique, and for this reason, this paper applies the GEC approach to fit 
the portfolio return series. On the other hand, a bond portfolio has different types of risks, and as indi-
cated in the empirical literature the technique of Lando and Mortensen [32] addresses those risks.
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requires approximately the same SCR as our proposed internal model for the higher 
quality and longer maturity bonds, whereas the standard model overestimates SCR 
for the lower quality and shorter maturity bonds. At the same time, the standard 
model underestimates interest-rate risk and overestimates the spread risk.3 Overall, 
the discrepancies in the estimated SCRs between the Solvency II standard technique 
and our proposed internal models increase as the levels of the risk rise for both stock 
and bond markets.

Finally, our empirical results for the comparison between the Solvency II stand-
ard approach and internal models are in line with other competing internal modeling 
techniques (e.g., [23]) regarding stock portfolios and bond portfolios with the higher 
quality and longer maturity bonds. However, for the lower quality and shorter matu-
rity bonds, our empirical results for the comparison between the two approaches 
contradict the Gatzert and Martin [23] modeling technique.

The remainder of this paper is structured as follows. Section 2 provides a general 
overview and introduction to Solvency II and the standard approach with a focus on 
equity risk, interest-rate, and spread risk modules. Section 3 presents the quantita-
tive framework of the alternative internal modeling techniques for stock and bond 
markets. The results of the empirical analysis are discussed in Sect. 4. Section 5 pro-
vides robustness and validation tests, and Sect. 6 concludes the paper.

2 � Solvency II standard model

2.1 � SCR in the equity risk sub‑module

The SCR for equity risk is calculated based on the market value MVeq,i(0) for invest-
ment exposure i; and the shock scenario differentiates between two investment 
classes to determine the SCR in this sub-module. First, the risk class “Global” 
includes all transactional exposures in countries that are members of the European 
Economic Area (EEA) or the Organization for Economic Cooperation and Develop-
ment (OECD) (see, [19], p. 113). In this case, the scenario approach assumes a 
decrease in equity by 30% based on the market value MVeq,i(0) at time t = 0, thus the 
SCR for the risk class “Global”, SCRII

eq,Global
 , is obtained from:

Second, “Other” is defined as the class of higher risks, which contains all other 
equity price sensitive assets, such as, hedge funds, alternative investments, and 
non-listed equities as well as transactional exposures in emerging markets. Here, 
the shock scenario is given by a drop of 40%, implying:

(1)SCRII
eq,Global

= max

(
0.3 ⋅

∑
i∈Global

MVeq,i(0), 0

)
.

3  It is important to emphasize that counterparty default risk is implicitly addressed in both the Solvency 
II standard model and our robust internal models.
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2.2 � SCR in the interest‑rate risk sub‑module

The calibration of the standard formula for interest-rate capital charge is based 
on the concept of Principal Component Analysis (PCA). The analysis indicates 
that four principal components of level, slope, curvature, and twist are common 
across all datasets; and these components explain 99.98% of the variability of the 
annual percentage rate change in each of the maturities in the underlying datasets. 
Thus, from the PCA analysis, the following stressed rates at the 99.5% level are 
obtained (Table 1).

2.3 � SCR in the spread risk sub‑module

The spread risk reflects the change in the value of net assets due to a move in the 
yield of an asset relative to the risk-free interest-rate term structure. The spread 
risk sub-module should address changes in both the level and volatility of the 
spreads. In this paper, the spread risk sub-module does not explicitly model the 
migration and the default risks. Instead, these risks are addressed implicitly, 
both in the calibration of the factors and in the movements in credit spreads. As 
such, the capital charge for spread risk of bond j is determined by multiplying the 
amount of invested capital, AB,j, with its modified duration, MDj, and a function 
Fup of the rating class of the bond:

The modified duration of bond j, denoted by MDj, is the weighted average time 
to maturity divided by the yield to maturity as follows:

with the risk-free interest term structure rf provided by the European Commission. 
Furthermore, Fup

(
ratingj

)
 is a rating-specific stress parameter. As such, Table  2 

below summarizes the spread shocks for different rating classes and according to the 
maturity buckets of bonds.

(2)SCRII
eq,Other

= max

(
0.4 ⋅

∑
i∈Other

MVeq,i(0), 0

)

(3)SCRII
b,sp

= max

(∑
j

AB.j(0) ⋅MDj ⋅ F
up
(
ratingj

)
, 0

)

(3a)MDj =

∑Tmax
t=1

t ⋅ CFj(t) ⋅
�
1 + rf (t)

�−t
∑Tmax

t=1
CFj(t) ⋅

�
1 + rf (t)

�−t ⋅

1

1 + rYtm
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3 � Internal models framework

3.1 � Construction of GJR–EVT–Copula (GEC) internal model

In this section, we design a robust internal model to calculate VaR for a given 
stock portfolio; as the main difference between VaR methods is related to estimat-
ing the distribution of portfolio returns.

In line with [35] approach we first use the Glosten–Jagannathan–Runkle (GJR) 
model [24] to fit the assets return series and then apply the Extreme Value The-
ory (EVT) to the innovations rather than to the assets return series. While the 
GJR-EVT model is applied to draw the marginal distributions, student’s t-copula 
function is used to model the multivariate dependence structure between stock 
markets. The combined GJR–EVT–Copula framework thus becomes the natural 
choice for estimating the VaR of a multiple-assets portfolio.

The conditional mean and conditional variance, as the two most important 
statistical features of a time series, are modeled as ARMA and GARCH models 
respectively. Thus, a general ARMA(p,q) model is defined in the following form:

where It is the information set at time t, {εt} is a white noise process and p and q are 
non-negative integers. Therefore, we employ a GARCH family approach to model 
the conditional variance and to capture some of the stylized characteristics such as 
volatility clustering and heteroscedastic volatility [8, 18]. The GARCH(r,s) model 
specifies the conditional variance of the process, and defined as:

(4)E(rt|It) = �0 +

p∑
i=1

�irt−i + �t −

q∑
j=1

�i�t−i

Table 2   Spread shock parameters for different rating classes and maturities (Source: QIS5)

Fup AAA (%) AA (%) A (%) BBB (%) BB (%) B (%)

0.50–1.49 year 2.63 1.53 3.97 5.16 15.49 88.78
1.50–2.49 years 0.95 1.60 2.52 7.47 15.10 61.71
2.50–2.49 years 1.74 1.74 3.19 6.04 15.87 20.25
3.50–4.49 years 1.64 1.43 3.14 5.88 23.60 17.27
4.50–5.49 years 0.83 1.79 4.96 4.42 11.71 15.62
5.50–6.49 years 0.64 1.63 2.98 5.07 6.83 16.49
6.50–7.49 years 1.91 1.41 3.05 5.74 4.33 22.05
7.50–8.49 years 1.11 1.52 2.61 4.46 4.04 13.93
8.50–9.49 years 0.65 1.34 2.59 5.58 4.62 11.48
9.50–10.49 years 0.61 1.19 1.50 1.79 9.95 12.44
10.50 years+ 1.06 1.45 1.76 2.81 3.42 N.A.
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where �t = �tzt and zt is a Gaussian white noise. Another volatility model commonly 
used to handle leverage effects is the threshold GARCH (or TGARCH) model (see, 
[24]). A TGARCH(m, s) model assumes the following form:

where Nt−k is an indicator for negative εt−k, that is:

From this model, it is seen that a positive εt−k contributes ak�2t−k to V
(
�t|It

)
 , 

whereas a negative εt−k has a larger impact 
(
ak + �k

)
�2
t−k

 with γk> 0. In fact, formula 
(6) is also called the GJR model because Glosten et al. [24] proposed essentially the 
same model.

In relation to Extreme Value Theory, the Pickands-Balkema-de Hann theorem [6, 
36] is known as the second theorem of EVT. The theorem states that for a sequence 
of identically independent distributed X1, X2,…, Xn, and for a large threshold, μ, the 
exceedances, (X-μ), follow a Generalized Pareto Distribution (GPD). The GPD can 
be written as:

where � , σ and μ are the shape, scale, and threshold parameters respectively. Then, 
we can use the GPD to model the innovation ɛi,t in the lower and upper tails and the 
empirical distribution in the remaining part. Thus, the marginal distribution of each 
innovation is given by:

where uL
i
 and uR

i
 are the lower and upper thresholds respectively, φ(zi) is the empiri-

cal distribution on the interval [ uL
i
, uR

i
 ], T is the number of zi, and TuL

i
 is the number 

of innovations whose value is less than uL
i
 , and TuR

i
++- is the number of innovations 

whose value is greater than uR
i
.

In addition, we use the Mean Square Error (MSE) as an objective function to 
determine the most relevant threshold. As such, the objective function for threshold 
ui can be formulated as:

(5)V
(
rt|It

)
= V

(
�t|It

)
= � +

r∑
k=1

�k�
2

t−k
+

s∑
j=1

�j�
2

t−j

(6)V
(
rt|It

)
= V

(
�t|It

)
= � +

m∑
k=1

(
ak + �kNt−k

)
�2
t−k

+

s∑
j=1

�j�
2

t−j

Nt−k =

{
1 if 𝜀t−k < 0

0 if 𝜀t−k ≥ 0

(7)G�,�,�(X) = 1 −

[
1 + �

(
X − �

�

)]−1∕�

(7a)Fi

�
𝜀i
�
=

⎧⎪⎪⎨⎪⎪⎩

T
uL
i

T

�
1 + 𝜉L

i

uL
i
−𝜀i

𝛽L
i

�−1∕𝜉L
i 𝜀i < uL

i

𝜑
�
𝜀i
�

uL
i
< 𝜀i < uR

i

1 −
T
uR
i

T

�
1 + 𝜉R

i

𝜀i−u
R
i

𝛽R
i

�−1∕𝜉R
i 𝜀i > uR

i

,
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Every single exceeding data has two amounts: an empirical cumulative distribution 
amount ( Fk ), and the estimated cumulative distribution amount from the GPD ( ̂Fk) . In 
addition, nui is the number of exceeding data from ui . To illustrate this case, we show in 
Fig. 3 how the MSE is calculated.

After modeling the marginal distributions of every single asset in the portfolio, 
using the hybrid approach of the GJR-EVT model, we can measure the overall risk 
of a multiple-asset portfolio using the VaR method. In doing so, we need to know the 
dependence structure or the market co-movements between the entire components of 
the multiple-asset portfolio.

For this purpose, Sklar’s theorem [41] indicates that for given n random variables {
xi|i = 1, 2,… , n

}
 with marginal functions Fi(xi), we can express the joint distribution 

as a multivariate function coupling the marginal distribution functions to represent the 
joint distribution function as:

where C{⋅} is an n-dimensional copula that is uniquely determined when the mar-
gins are continuous. In addition, the joint density can be obtained from the copula 
density c1…n{⋅} as:

where fi
(
xi
)
 are the marginal density functions. Finally, the SCR for a stock portfo-

lio is calculated using VaR as the maximum loss that can occur with α % confidence 
over a holding period of h days:

(8)MSE
(
ui
)
=

1

nui

nui∑
k=1

(
Fk − F̂k

)2

(9)F
(
x1, x2,… , xn

)
= C

{
F1

(
x1
)
,F2

(
x2
)
,… ,Fn

(
xn
)}

(10)
f
(
x1, x2,… , xn

)
= c1…n

{
F1

(
x1
)
,F2

(
x2
)
,… ,Fn

(
xn
)}

⋅ f1
(
x1
)
⋅ ⋯ ⋅ fn

(
xn
)

(11)SCRIM
GEC

= VaR𝛼,h(X) = inf {x ∈ ℝ ∶ P(X > x) ≤ 𝛼}

Fig. 3   Mean square error 
calculation
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3.2 � Internal model for the valuation of bonds

Investing in bonds entails interest-rate risk, spread risk, and credit risk. To measure 
the real magnitude of risks, we first examine the value of a non-defaultable zero-
coupon bond at time t that pays one monetary unit at time T:

The zero coupon bond price is defined through the short rate r (t) on the prob-
ability space 

(
�r,Fr,ℚ

)
 where �r is the sample space, Fr is the filtration generated 

by the Brownian motion under the risk-neutral probability measure ℚ . By taking the 
relevant expectation, the zero-coupon bond price can be obtained from:

where

Furthermore, the short rate r(t), which is defined in Eq.  (13), is given by the 
Cox–Ingersoll–Ross (CIR) model [12] as:

For k, θ > 0, this corresponds to a continuous time first-order autoregressive pro-
cess where the randomly moving interest-rate is elastically pulled toward a central 
location or a long-term mean, θ. The parameter k determines the speed of adjust-
ment and the condition 2k� ≥ �2 implies that interest-rate can never take a negative 
value.

In order to integrate spread risk into the internal model, in line with Lando and 
Mortensen [32], we assume that all insurance companies have utility from (consum-
ing) wealth according to the power utility function U(w) = w(1−�)∕(1 − �) , imply-
ing a constant relative risk aversion of θ. Moreover, we assume a constant riskless 
interest-rate, r, and constant credit spreads si, in each of the rating classes i = 1,…,K. 
Then, the risky T-period zero-coupon bond price is Vi(t) = e−(r+si)(T−t) with credit 
rating i at time t.

(12)p(t, T) = Eℚ

t

(
e
−

T

∫
t
r(s)ds

)

(13)p(t,T) = A(t,T)e−B(t,T).r(t),

(14)A(t, T) =

⎡⎢⎢⎣
2�e

[(k + �)(T − t)]∕2

(� + k)
�
e�(T−t) − 1

�
+ 2�

⎤⎥⎥⎦

2k�∕�2

(15)B(t, T) =
2(e�(T−t) − 1)

(� + k)
(
e�(T−t) − 1

)
+ 2�

(16)� =
(
k2 + 2�2

)1∕2

(17)dr(t) = k(� − r)dt + �
√
r(t)dwℚ

r
(t)



437

1 3

Measuring market and credit risk under Solvency II: evaluation…

It is well known that the first-order condition for utility-maximizing agents is an 
Euler equation implying that the state price density is proportional to the marginal 
utility given an optimal investment. In our setting, this means:

where the variables pij(t, t + 1) and q̃ij(t, t + 1) represent the actual and martingale 
probability of moving in one time step from the initial rating i to state j respectively. 
In addition, the wealth in state j at time t + 1 is

Thus,

Finally, SCRIM
b

 for a bond with credit state i, maturity T and recovery rate4 � is 
calculated using the valuation formula for a risky zero-coupon debt, which can be 
expressed as follows:

As such, interest-rate, default and spread risks can be described by Eq. (21) and 
subsequently the SCR for a bond is integrated into it, whereas the SCR in the stand-
ard model has different modules for interest-rate and spread risks (i.e., the counter-
party default risk is implicitly addressed in the Solvency II standard model), there-
fore, they are calculated separately.

4 � Data and empirical analysis

4.1 � Data and stochastic properties of equity markets

In this section, we discuss the dataset and then analyze the stochastic properties 
of the stock and bond markets. The input data consists of 3304 daily observations 
that span from 03-Jan-2005 to 31-August-2017. The sampling period is from 2005 
through 2017, such that to include the effects of the Global Financial Crisis (GFC). 
Then, we split the time series data into evaluation and validation datasets as follows: 

(18)
q̃ij(t, t + 1)

pij(t, t + 1)
= ku�

�
wj(t + 1)

�
=

u�
�
wj(t + 1)

�
∑K

k=1
piku

�
�
wk(t + 1)

� ,∀j = 1,… ,K,

(19)wj(t + 1) = wi(t)
Vj(t + 1)

Vi(t)
.

(20)
q̃ij(t, t + 1)

pij(t, t + 1)
= ku�

�
wj(t + 1)

�
=

�
esj+(si−sj)T

�−𝜃

∑K

k=1
pik

�
esk+(si−sk)T

�−𝜃 ,∀j = 1, 2,…K.

(21)SCRIM
b

= vi(t, T) = p(t, T)𝜑 + p(t, T)(1 − 𝜑)
(
1 − q̃ik(t, T)

)
.

4  The percentage of interest and principal that a firm is paid back, according to seniority, is called the 
recovery rate. Thus, bonds’ recovery rate is considered to assess counterparty default risk.
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(1) the evaluation dataset period is from 2005 through 2013, and it matches the evo-
lution of financial markets in the pre-crisis, crisis, and post-crisis periods; (2) the 
validation dataset period consists of observations from the 2014–2017 period.

Furthermore, our equity portfolio contains twelve stock market indices, which are 
selected from both developed and developing countries. In this paper, we exclude 
foreign exchange risk in calculating the SCR so that we can obtain consistent com-
parison between the standard approach and the GEC model. To that end, we use 
the MSCI indices, which are indicated in US dollars: USA, Germany, France, UK, 
Japan, BRICS,5 Indonesia, and Mexico.

Table 3 presents the stochastic properties of the log return series. The first col-
umn indicates the Augmented Dickey–Fuller test, i.e., ADF-stat before, and pro-
vides a compelling evidence that the time series of data are non-stationary for all 
stock market indices. As a result, the price return series are needed in order to imple-
ment the GJR-GARCH approach. Thus, in this study, the price returns are defined as 
Ri,t = ln

(
Pi,t

)
− ln

(
Pi,t−1

)
 , where Ri,t is the daily return of index i, ln is the natural 

logarithm, Pi,t is the current day value, and Pi,t-1 is the previous day value. After 
calculating the logarithmic returns, our time series turn to be stationary, which is 
confirmed by the second column results (i.e., ADF-stat after).

The daily average returns are close to zero for all stock markets under consid-
eration. Moreover, the stock markets of Brazil, Russia, South Africa, and Indonesia 
exhibit the highest volatility in terms of standard deviation. Moreover, all the return 
distributions are skewed to the left, with the exception of the French and Indian stock 
markets. The whole stock markets display fatter tails than the corresponding normal 
distributions since all the kurtosis coefficients have values greater than three. These 
statistics indicate that the return distributions depart from normality, which is also 
confirmed by the Jarque–Bera testing results. Furthermore, the evidence from the 
ARCH-LM(1) and Ljung-Box [LBQ (20)] statistics for the squared returns suggests 
the presence of time-varying volatility (i.e., ARCH effects) and serial correlations. 
As a result, the stochastic properties of the time-series of the log-returns justify our 
choice of the GJR-GARCH-based approach to model the conditional volatility under 
the assumption of t-distributed returns.

4.2 � Data and stochastic properties of bond markets

Tables 4 and 5 include all the corporate and government bonds considered in this 
paper. All corporate bonds are from the USA, and the markets of issuance are inter-
national; and they differ by maturity (i.e., 3, 5, 7, 10, 20, and 25 years), coupon rate,6 
and credit rating. Moreover, all corporate bonds are senior unsecured with the same 
recovery rate of 0.51. On the other hand, the government bonds (Table 5) that are 
issued in developed countries (i.e., USA, UK, Germany, and Japan) are rated7 AAA 

6  The coupon payment frequency for all corporate bonds is annual.
7  Credit ratings are on the scale of Standard and Poor’s (S&P).

5  BRICS is the acronym for the association of five major emerging countries: Brazil, Russia, India, 
China, and South Africa.
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and A and with lower coupon rates, whereas bonds issued in developing countries 
(i.e., BRICS, Mexico, and Indonesia) are mostly rated BB and with higher coupon 
rates.

Furthermore, the Maximum Likelihood Estimation (MLE) is applied as a method 
for estimating the parameters of the Cox–Ingersoll–Ross (CIR) model [12] using 
daily observations of one-year treasury yield curve, spanning from 01/2007 to 
12/2014. As a result, the parameters of long-term mean level, the speed of mean 
reversion and standard deviation are estimated as θ = 0.0022, k = 1.8181, and 
σ = 0.4338, while the initial value of r0 is set to 0.04. Moreover, Monte Carlo simu-
lation is used to model interest-rate patterns.

Table 4   Corporate bonds

The table presents fixed-income bonds that are issued in 2015; the 
issuance country is USA and the markets of issuing are international

Corporate name Maturity in 
years

Rating Coupon rate (%)

Citigroup Inc. 3 A 1.700
5 A 4.000

10 A 3.875
25 A 2.400

AT&T Inc. 5 BBB 2.45
7 BBB 3.00

10 BBB 3.40
20 BBB 4.50

Boeing 10 AA 2.500
Sprint Corporation 10 B 7.625
Dominion Energy 10 A 3.100

Table 5   Government bonds

The table presents fixed-income bonds that are issued in four developed countries (i.e., USA, UK, Ger-
many, and Japan), BRICS emerging markets, as well as Indonesia and Mexico

Country of issue Issuance date Maturity Rating Coupon rate (%)

USA 2018 10 AAA​ 2.75
UK 2006 21 AAA​ 5.50
Germany 2018 10 AAA​ 0.50
Japan 2017 10 A 0.20
Brazil 2012 11 BB 20.00
Russia 2017 5 BB 14.80
India 2016 6 BB 13.68
China 2017 10 A 7.64
South Africa 2012 11 BB 15.50
Mexico 2010 10 A 16.00
Indonesia 2012 11 BBB 11.25
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4.3 � SCR for stocks

This section shows how to model the market risk of a global equity index port-
folio with Monte Carlo simulation method using Student’s t-copula and EVT 
techniques. To that end, the simulation process extracts first the filtered residuals 
from each return series with the aid of an asymmetric GJR-GARCH model, and 
then constructs the sample marginal cumulative distribution function (CDF) of 
each asset using a Gaussian kernel estimate for the interior, and a Generalized 
Pareto Distribution (GPD) estimate for the upper and lower tails. The Student’s 
t-copula is then fitted to the dataset and used to induce the correlation between 
the simulated residuals of each asset. Finally, the simulation algorithm assesses 
the VaR of the global equity portfolio over a 1-year horizon.

Table  6 presents the estimation results from the GJR-GARCH model with 
t-distribution. As a result, all the parameters of the GJR-GARCH model are sig-
nificant and the entire return series are characterized by a strong degree of persis-
tence (i.e., the β varies around 0.9 for all stock markets). In addition, the UK and 
Indian stock markets display the largest α values, indicating that the conditional 
volatility of both markets reacts more sharply to market shocks. Furthermore, it is 
evident from γk results that all return series show leverage effects, with the excep-
tion of the UK, Russia, Mexico, and Indonesia.

Table  7 displays the t-copula correlation parameters for each pair of stocks 
in our representative portfolio. The strongest and the weakest correlations occur 
between the European Union countries (i.e., the UK, Germany, and France) and 
between the USA and Japan respectively, while the Japanese MSCI index returns 
display a weak correlation with all other markets. Table  7 also shows that the 

Table 6   Estimation results of the GJR-GARCH model with t-distribution

The table presents the GJR-GARCH parameters for the return series of 12 MSCI indices from January 
3, 2005 through December 31, 2013. In addition, αk, and βj are referred to as ARCH and GARCH coef-
ficients, γ is the GJR parameter that handles leverage effects, and for the special case when γ = 0, then 
there is not any leverage effect. The abbreviation of LL stands for Log Likelihood

ω αk γk βj LL

USA 0.000 − 0.031 (0.110, 0.052) 0.949 30,134.828
UK 0.000 (0.536, 0.617, 0.526) 0 0 35,175.121
Germany 0.000 0.028 0.097 0.932 31,293.970
France 0.000 0 0.158 (0.711, 0.196) 30,159.730
Japan 0.000 0.030 0.110 0.869 6962.348
Brazil 0.000 0.030 0.087 0.940 31,135.975
Russia 0.000 (0.050, 0.084) 0 (0.701, 0.157) 29,118.130
India 0.000 (0.331, 0.589) 0.427 0 35,685.300
China 0.000 0.045 0.075 0.923 32,207.660
South Africa 0.000 0.019 0.105 0.894 31,340.960
Mexico 0.000 (0.029, 0.083) 0 (0.952, − 0.055) 31,853.310
Indonesia 0.000 0.139 0 0.899 32,075.050
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cross-correlations among stock markets are affected by the geographical position 
of countries.

In Table  8, we compare the empirical results of VaR calculations between the 
GJR–EVT–Copula (GEC) model, the Solvency II standard approach and the para-
metric VaR technique. Moreover, Table 8 includes the degrees of freedom for the fit-
ted t-distribution and the semi-deviation8 as a measure of risk instead of the standard 
deviation because the latter assumes normal distributions of the asset returns. There-
fore, we can observe from Table 8 that the SCR simulation results of the Solvency II 
standard approach ( SCRII

eq
 ) are much closer to the parametric VaR technique than to 

the GEC model ( SCRIM
GEC

 ). While all stock markets display fat tails, Japan and USA 
markets demonstrate the highest and lowest degrees of freedom respectively.

Table 8   Differences between the SCR results of Solvency II standard approach, Parametric VaR and the 
GEC model for each country in our representative stock portfolio

The abbreviation of DoF stands for Degrees of Freedom. In addition, Average DD and Average DG rep-
resent average values for developed countries and developing countries respectively

Diff. between SCRIM
GEC

 
and Parametric ($)

Diff. between 
SCRIM

GEC
 and SCRII

eq
 

($)

Diff. between SCRII
eq

 
and Parametric ($)

Semi-devi-
ation (%)

DoF

USA 20.72 14.50 6.23 1.101 2.06
UK 28.20 25.86 2.34 1.195 2.84
Germany 22.53 23.52 0.99 1.302 2.94
France 18.19 20.08 1.90 1.324 3.02
Japan 15.42 11.59 3.83 1.043 4.50
Brazil 18.80 20.57 1.77 1.821 3.19
Russia 35.86 40.95 5.08 2.066 2.41
India 40.37 34.55 5.81 1.421 3.00
China 30.65 24.62 6.03 1.437 2.62
South Africa 21.15 17.19 3.96 1.476 4.15
Mexico 26.51 18.76 7.75 1.366 3.17
Indonesia 40.44 36.03 4.40 1.552 2.85
Average DD 21.01 19.11 3.06 1.193 3.07
Average DG 30.54 27.53 4.97 1.591 3.06
Max 40.44 40.95 7.75 2.066 4.50
Min 15.42 11.59 0.99 1.043 2.06

8  The semi-deviation 

�∑n

r<mean (mean−rt)
2

n
 provides an effective measure of the downside risk, which eval-

uates the dispersion for the values of a dataset below the mean.
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Figure 4 illustrates the capital requirements from parametric VaR,9 Solvency II 
standard model, and the GEC model. As such, the SCRIM

GEC
 simulation results are 

considerably higher than the outcomes of both SCRII
eq

 and parametric VaR, especially 
for stocks with higher risk factors and heavier tails as evidenced by the semi-devi-
ation and degrees of freedom of the fitted t-distribution respectively. Similarly, the 
skewness and kurtosis values for the distributions of returns (see, Table 3) justify the 
large discrepancies between the SCRIM

GEC
 and both the SCRII

eq
 and the parametric VaR 

technique. These empirical results are in line with the competing internal modeling 
technique and empirical analysis of Gatzert and Martin [23]. In agreement with our 
empirical results, Gatzert and Martin [23] concluded that the Solvency II standard 
model estimated lower SCRs for all stock market indices considered in their study 
(i.e., Germany, UK, USA, India, and the MSCI world index).

Using the degree of freedom as a parameter for heavy tails, Fig. 5 illustrates the 
divergence from the normality assumption for the distribution of returns for both 
the GEC and the parametric VaR modeling techniques. This is also evidenced 
from Table 8, which indicates that the lower the degrees of freedom of the stocks, 
the higher the differences in the simulated SCRs between our robust GEC inter-
nal model and the parametric VaR technique. Therefore, as discussed earlier, the 
assumption of normality for the distribution of stock returns is not always an accu-
rate and reliable supposition.

Fig. 4   Solvency capital requirement for stocks (standalone stock markets and portfolio with equal 
weights)

9  The parametric VaR is also known as the linear VaR. This VaR approach is parametric in the sense 
that it assumes that the probability distribution is normal; and thus it requires the calculation of the 
variance and covariance parameters. For example, assume there is a portfolio that consists of two 
stocks. The VaR for that portfolio is calculated as follows: R = Vp × Z� × �p , where, Vp, Zα, σp are the 
amount of invested capital, the inverse of the standard normal cumulative distribution and the stand-
ard deviation of portfolio respectively. Next, the standard deviation of the portfolio is calculated as 
�p =

√
w2

1
�2

1
+ w2

2
�2

2
+ 2w1w2�1�2� , where, ρ, σ2 and w are the Pearson correlation coefficient, the vari-

ance and the corresponding weights of investment in each individual stock.
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Using semi-deviation as a risk measure, Fig. 6 shows that the difference between 
the GEC model and the Solvency II standard approach rises as the level of semi-
deviation increases. In fact, having a higher level of semi-deviation, as an effective 
measure of downside risk, means that the pattern of loss is more volatile. Therefore, 
the underestimation of SCR in the Solvency II standard approach is more significant 
for stocks with a higher level of risk. Thus, all simulation results have consistently 
shown that the discrepancies in the estimated SCRs, between the Solvency II stand-
ard technique and our internal GEC model, increase as the level of risk rises for all 
stock markets under consideration.

Apart from the individual stock investment, we can benefit from the diversifica-
tion effect when building a stock portfolio. As such, after comparing our results in 
the equally-weighted portfolio case (see, Fig. 4) with the averaged SCR values of 

Fig. 5   Differences between the SCR simulation results of the Parametric VaR technique and the GEC 
model for twelve countries (USA, Germany, France, UK, Japan, Brazil, Russia, India, China, South 
Africa, Indonesia, and Mexico)

Fig. 6   Differences between the SCR simulation results of the Solvency II standard approach and the 
GEC model for twelve countries (USA, Germany, France, UK, Japan, Brazil, Russia, India, China, South 
Africa, Indonesia, and Mexico)
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twelve stocks (i.e., 33.28$, 35.83$, 59.85$ for the parametric VaR technique, the 
Solvency II standard approach and the GEC model respectively), we can deduce a 
significant reduction in the averaged SCRs. This, indeed, is a result of the consider-
ably higher diversification benefits that is fully accounted for when using the GEC 
model in contrast to the Solvency II standard model (that is, − 37.5% for the GEC 
model versus − 27.1% for the Solvency II and − 26.4% for the parametric VaR).

In relation to the two investment classes of “Global” and “Other” in the Solvency 
II standard approach, Figs. 4, 5 and 6 show that the MSCI index of every country 
in our representative portfolio has a distinctive distributional pattern and a different 
level of risk. As a result, this analysis indicates that considering only two risk factors 
of “Global” and “Other” for investment classes in the Solvency II standard approach 
is not an accurate technique because international stock markets have distinctive dis-
tributional patterns and unique risk parameters. Furthermore, developed countries 
(i.e., USA, UK, Germany, France, and Japan) show more of similar behavior than 
developing countries (i.e., BRICS, Mexico, and Indonesia) (see Figs. 4, 5 and 6). 
For instance, the case of South Africa, which is considered in the “Other” invest-
ment class, nevertheless, it has a lower level of risk with respect to the GEC simula-
tion results than other developing countries.

In conclusion, this empirical study emphasizes one of the key contributions of our 
paper for the estimation of SRC for stock markets by confirming the large discrep-
ancies between the predicted SCRs using both the Solvency II standard approach 
and our robust multilayered internal modeling algorithm. In particular, the outcomes 
of the standard approach in the equity risk sub-module indicate slight discrepan-
cies with the parametric VaR, whereas the empirical results from our implemented 
GEC method are higher than the standard approach. This phenomenon is because 
our novel GEC modeling technique strongly rejects the assumption of normality in 
financial assets returns. Furthermore, the employed GEC technique can tackle the 
impact of extreme asymmetric dependence between financial assets returns [34].

4.4 � SCR for bonds

As discussed earlier in the methodology section of internal models, we use the 
Lando and Mortensen [32] approach to obtain the risk-neutral transition probabili-
ties. In doing so, we calibrate the AAA, AA, A, BBB, BB, B and C rated bonds to 
the implied 1-year default probability of 0.003%, 0.04%, 0.1%, 0.9%, 2.1%, 6.8%, 
and 39.5% respectively. The results of the risk-neutral transition probabilities (qij) 
are reported in Table 9. In addition, real-world rating transition probabilities (pij) are 
drawn from Standard and Poor’s, and the credit spreads are in line with the historical 
average levels. The parameter θ is set to fit the implied default probability.

In this section, we analyze the SCRs for both corporate and government bonds. 
In the case of corporate bonds, we assess the effect of time to maturity and credit 
rating on the SCRs separately. To that end, we consider two scenarios: for the first 
case, there are four BBB-rated bonds with different maturities, and for the second 
case, there are four 10-year bonds with different credit ratings. Besides, we analyze 
the SCRs for government bonds that are issued in both developed countries (i.e., 
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USA, UK, Germany, and Japan) and developing countries (i.e., BRICS, Mexico, and 
Indonesia). In addition, in calculating the SCRs, we assume an investment of $100 
million in each bond.

Starting with corporate bonds, Fig.  7 displays the SCR for bonds of different 
maturities and a BBB rating. As shown in Fig.  7a, there is a direct relationship 
between the total SCR and bond maturities, indicating that longer maturity bonds 
require insurance companies to hold larger SCRs. In addition, bonds with longer 
maturity are more sensitive to interest-rate fluctuations. However, the data in Fig. 7b 
suggest that higher coupon rates for longer maturity bonds negate this effect because 
the duration risk factor takes into consideration both the maturity and the coupon 
rate of bonds. Therefore, there is not a definite relationship between maturity and the 
SCRIM

b,int
,10 whereas a direct relationship between the SCRIM

b,sp
 and maturity can be 

found in Fig. 7b because bonds with longer maturity are more likely to default in the 
long run. In addition, it is evident that the SCRII

b,sp
11 is an integral part of the SCRII

b
 , 

whereas the major part of the SCRIM
b

 is mainly related to the SCRIM
b,sp

 and only for 
long maturity bonds.

Table 9   Average one-year real-world and risk-neutral transition rates (1981-2016) in  %

This table provides transition rates between seven credit ratings (AAA, AA, A, BBB, BB, B, and C) and 
the default case (D). The pi,j and qi,j represent real-world and risk-neutral transition rates from state i to 
state j respectively. For every credit rating, the calculated risk aversion parameter (θ) is indicated in the 
first column of the table. In addition, the credit spreads that are derived from the average historical levels 
are shown in the first row of the table

AAA​ AA A BBB BB B C D

Credit Spreads 0.005 0.008 0.012 0.018 0.03 0.045 0.09 0.1733
pAAA,j 89.900 9.326 0.547 0.062 0.082 0.031 0.051 0.001
qAAA,j (θ = 6.300) 89.659 9.479 0.570 0.067 0.096 0.040 0.086 0.003
pAA,j 0.542 90.428 8.332 0.531 0.052 0.073 0.021 0.021
qAA,j (θ = 3.960) 0.534 90.255 8.449 0.552 0.057 0.084 0.029 0.040
pA,j 0.031 1.854 91.975 5.584 0.335 0.136 0.021 0.064
qA,j (θ = 2.890) 0.031 1.830 91.837 5.673 0.353 0.150 0.026 0.100
pBBB,j 0.011 0.107 3.743 91.245 4.042 0.544 0.127 0.181
qBBB,j (θ = 10.404) 0.009 0.095 3.470 90.030 4.518 0.711 0.267 0.900
pBB,j 0.011 0.033 0.133 5.500 85.183 7.657 0.686 0.797
qBB,j (θ = 6.907) 0.009 0.028 0.115 4.959 83.451 8.321 1.017 2.100
pB,j 0.000 0.034 0.102 0.216 5.856 84.444 5.072 4.276
qB,j (θ = 3.873) 0.000 0.029 0.087 0.188 5.347 81.708 5.841 6.800
pC,j 0.000 0.000 0.154 0.225 0.745 15.257 51.968 31.651
qC,j (θ = 3.666) 0.000 0.000 0.106 0.159 0.550 11.897 47.788 39.500

10  SCRIM
b,int

 , SCRIM
b,sp

 and SCRIM
b

 stand for the Solvency Capital Requirement derived from the internal 
model for interest-rate risk, spread risk and the bond total risk respectively.
11  SCRII

b,int
 , SCRII

b,sp
 and SCRII

b
 stand for the Solvency Capital Requirement derived from the standard 

model for interest-rate risk, spread risk and the bond total risk respectively.
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Figure 8 illustrates the SCRs for bonds with different credit ratings, i.e., AA, A, 
BBB and B. For the case of moving from AA to B credit ratings, the amount of both 
the SCRIM

b
 and the SCRII

b
 clearly rise, however the rising speed is higher for the SCRII

b
 

(see, Fig.  8a). As such, from Fig.  8b it can be seen that the amount of both the 
SCRIM

b,int
 and the SCRII

b,int
 are steady for all credit ratings, whereas the SCRIM

b,sp
 and the 

SCRII
b,sp

 have an exponential rise from AA to B credit ratings.
Figure 9a shows that in the case of developed countries, where government bonds 

are AAA-rated, the differences between the Solvency II standard approach and the 
internal model almost vanish as credit and spread risks are the major risk drivers. 
The SCRII

b
 and the SCRIM

b
 (see Fig. 9a) have interesting subtle differences of 0.17%, 

0.73%, and 0.68% for USA, UK, and Germany markets respectively.
The SCR data in Fig. 10a indicate that the Solvency II standard model requires 

more regulatory capital than the internal model for all developing countries. In addi-
tion, we can observe from Fig. 10a that the discrepancy between the two models is 
minor for the high-rated government bonds that are issued in Mexico, China and 
Indonesia (that is, 19.43%, 25.73% and 33.78% respectively), whereas the low-rated 
government bonds of Brazil, South Africa, India and Russia show the highest level 
of differences (i.e., 39.46%, 41.11%, 49.87%, and 64.31% respectively).

Fig. 7   Solvency Capital Requirement for corporate bonds. Notes: Corporate bonds are issued by AT&T 
Inc. with different maturities and coupon rates (m1 = 5, c1 = 2.45%, m2 = 7, c2 = 3%, m3 = 10, c3 = 3.4%, 
m4 = 20, c4 = 4.5%)
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For the case of bond markets, we can emphasize the contribution of our research 
study and conclude that the Solvency II standard model requires approximately the 
same SCR as our proposed internal model for the higher quality and longer maturity 
bonds, whereas the standard model overestimates the SCR for the lower quality and 
shorter maturity bonds. At the same time, the standard model underestimates inter-
est-rate risk and overestimates the spread risk. Moreover, all simulation outcomes 
have consistently shown that the discrepancies in the estimated SCRs, between the 
Solvency II standard technique and our internal model of bonds, rise as the level of 
risk increases for all bond markets under consideration.

In fact, these significant empirical findings, resultant from this key contribu-
tion of our proposed internal modeling algorithm, are in contradiction to the com-
peting paper of Gatzert and Martin [23] because they have indicated that lower-
rated bonds may be severely underestimated in the standard model. Nevertheless, 
for the higher quality and longer maturity bonds, our results are in line with the 
Gatzert and Martin [23] internal modeling technique.

Fig. 8   Solvency Capital Requirement for corporate bonds. Notes: Corporate bonds are issued by differ-
ent companies, credit rating and coupon rates: (1) Boeing, r = AA, c = 2.5%, (2) Dominion Energy, r = A, 
c = 3.1%, (3) AT&T, r = BBB, c = 3.4%, (4) Sprint Corporation, r = B, c = 7.625%
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5 � Robustness and validation tests

The Kupiec’s Proportion of Failures (POF) test (1995) is a statistical analysis 
to study whether the number of exceedances (x) has a significant difference from 
the selected confidence level (p) or not. Let T be the total number of observations, 
then we can define the failure rate as x∕T  , which in an ideal situation it reflects the 
selected confidence level. Next, according to Kupiec [30], the POF test is best con-
ducted as a likelihood ratio (LR) test. Accordingly, the test statistic takes the follow-
ing form:

Christoffersen [11] uses the same likelihood-testing framework as Kupiec [30], 
but extends the test to include a separate statistic for the independence of exceed-
ances. The test is carried out by defining two states (0,1), where 0 means no 

(22)LRPOF = −2 ln

⎛⎜⎜⎜⎝

px(1 − p)T−x�
x

T

�x�
1 −

x

T

�T−x

⎞⎟⎟⎟⎠
.

Fig. 9   Solvency Capital Requirement for government bonds that are issued in developed countries: (1) 
USA, r = AAA, c = 2.75%, m = 10 (2) UK, r = AAA, c = 5.5%, m = 21 (3) Germany, r = AAA, c = 0.5%, 
m = 10 (4) Japan, r = A, c = 0.2%, m = 10
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exceedance can occur and 1 means that exceedance can arise. The relevant test sta-
tistic for the independence of exceedance is a likelihood ratio, as follows:

where πi is the probability of observing an exceedance on the state i on the previous 
day, and nij is the number of days when the state j occurred assuming that the state 
i occurred on the previous day. By combining this independence statistic test with 
Kupiec’s POF test, we obtain a joint test that examines both properties of a good 
VaR model, the correct failure rate and the independence of exceedances or the con-
ditional coverage, as follows:

(23)LRIND = −2 ln

(
(1 − �)n00+n10�n01+n11

(
1 − �0

)n00
�n01
0

(
1 − �1

)n10
�n11
1

)
,

Fig. 10   Solvency Capital Requirement for government bonds that are issued in developing countries: 
(1) Brazil, r = BB, c = 20%, m = 11 (2) Russia, r = BB, c = 14.8%, m = 5 (3) India, r = BB, c = 13.68%, 
m = 6 (4) China, r = A, c = 7.64%, m = 10 (5) South Africa, r = BB, c = 15.5%, m = 11 (6) Mexico, r = A, 
c = 16%, m = 10 (7) Indonesia, r = BBB, c = 11.25%, m = 11
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Set against this background, the empirical backtesting results based on the GEC 
model, the parametric VaR, and the Solvency II standard approach for the stock 
portfolio are summarized in Table 10.

Table  10 shows that the GEC model leads to a lower number of exceedances, 
which is a result of higher SCR. This level of SCR helps insurance companies to 
cover unexpected losses as they happen independently. Similarly to the stock portfo-
lio case, we backtest the accuracy of the VaR for a bond portfolio using the Christof-
fersen [11] technique. To that end, we consider government and corporate bonds in 
two different portfolios as shown in Tables 11 and 12 respectively. Although both 
the internal model and the Solvency II standard approach have been accepted for the 
Kupiec’s POF, the independence of failures and the conditional coverage tests, it can 
be observed from Tables 11 and 12 that our proposed internal model has a higher 
number of exceedances than the Solvency II standard model. 

6 � Conclusions

In this paper, we focus on measuring the real magnitude of financial risks for insur-
ance companies from investing in bond and stock markets, using the VaR technique. 
In fact, there is not any unique approach to calculate VaR, so the Solvency Capital 
Requirement (SCR) may be underestimated in a way that institutions may have not 
enough capital cushion to cover investment risks. On the other hand, overestimating 
SCR can cause a capital surplus. Given the time value of money and opportunity 
cost notions, capital surplus is unfavorable although it requires insurance compa-
nies to optimize their portfolios in order to reduce capital charges. This can lead to 
unnecessary shifts in asset allocations, having widely diversified portfolios, focusing 
on high-quality investments and bearing a lower level of risk.

The 2008–2009 Global Financial Crisis (GFC) has shown that extreme events 
on the tail of probability distributions can happen in reality, and hence a rigorous 
assessment of investment risks is needed for insurance companies. This is where this 

(24)LRcc = LRPOF + LRIND.

Table 10   VaR Backtesting test results for the stock portfolio

The table presents VaR backtesting results for the stock portfolio. The statistical tests are conducted at 
the 99% confidence level and using the validation dataset period, which is from 2014 through 2017. In 
the last column, the notation (A) means that the test accepts the null hypothesis that the model used for 
VaR estimation performs well on average, and notation (R) indicates that the test rejects the null

GEC Solvency II Parametric tech-
nique

Test results

Number of exceedances 16 90 115
p-value LRPOF 0.775 0.003 0.000 (A R R)
p-value LRIND 0.569 0.325 0.001 (A A R)
p-value LRCC 0.702 0.000 0.000 (A R R)
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research paper comes in, as we attempt to explain the notions of SRC for Solvency 
II requirements, present an unambiguous description of the subject matter and pro-
pose robust internal modeling techniques for its evaluation and forecasting for bond 
and stock markets. To that end, this research study contributes to regulatory capital, 
equity risk, interest-rate risk and spread risk on different levels. First, it proposes 
a novel internal model for the computation of SCR for stock portfolios using the 
GJR–EVT–Copula (GEC) technique. Second, it integrates the Lando and Mortensen 
[32] approach for the computation of interest-rate risk, spread risk and credit risk 
for both government and corporate bonds. Third, this research study is one of very 
few known empirical attempts (e.g., [23]) that compute and compare the estimated 
solvency capital with the Solvency II standard approach (SCR) for a given portfolio 
of stocks and bonds, which are the two main components of investment portfolios 
across insurance companies.

As such, the empirical findings reported in this paper indicate that measuring the 
magnitude of the equity risk using the GJR–EVT–Copula (GEC) method requires 
insurance companies to keep more SCR than the Solvency II standard model for 
stock portfolios. In the case of bond portfolios, we conclude that the Solvency II 
standard model requires approximately the same SCR as our internal model for the 
higher quality and longer maturity bonds, whereas the standard model overestimates 
SCR for the lower quality and shorter maturity bonds. At the same time, the standard 

Table 11   VaR backtesting 
test results for the portfolio of 
government bonds

The table presents VaR backtesting results for the portfolio of gov-
ernment bonds. The statistical tests are conducted at the 99% con-
fidence level and using the validation dataset period from 2015 
through 2017. In the last column, the notation (A) means that the test 
accepts the null hypothesis that the model used for VaR estimation 
performs well on average, and notation (R) means the test rejects the 
null

Internal model Solvency II Test results

Number of exceedances 23 7
p-value LRPOF 0.184 0.619 (A A)
p-value LRIND 0.691 0.722 (A A)
p-value LRCC 0.520 0.783 (A A)

Table 12   VaR Backtesting 
test results for the portfolio of 
corporate bonds

The table presents VaR backtesting results for the portfolio of corpo-
rate bonds. The statistical tests are conducted at the 99% confidence 
level and using the validation dataset period from 2015 through 
2017. In the last column, the notation (A) means that the test accepts 
the null hypothesis that the model used for VaR estimation performs 
well on average, and notation (R) means the test rejects the null

Internal model Solvency II Test results

Number of Exceedances 19 5
p-value LRPOF 0.087 0.423 (A A)
p-value LRIND 0.791 0.552 (A A)
p-value LRCC 0.431 0.611 (A A)
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model underestimates interest-rate risk and overestimates the spread risk.12 Overall, 
the discrepancies in the estimated SCRs between the Solvency II standard technique 
and our proposed internal models increase as the levels of risk rise for both stock 
and bond markets. Moreover, our empirical results from the comparison between the 
Solvency II standard approach and internal models are in line with other competing 
internal modeling techniques (e.g., [23]) regarding stock portfolios and bond portfo-
lios with the higher quality and longer maturity bonds. However, for the lower qual-
ity and shorter maturity bonds, our empirical results from the comparison between 
the two approaches contradict the Gatzert and Martin [23] modeling technique.

One of the key contributions of this empirical study is that despite the simplicity 
of the Solvency II standard approach, it does not reflect the actual risk exposure of 
insurance companies, because under certain circumstances it can underestimate the 
risk associated with investment portfolios and vice versa. For instance, in the case of 
equity risk considering only two investment classes of “Global” and “Other” in the 
Solvency II standard approach is not an accurate procedure, because international 
stock markets have distinctive distributional patterns and unique risk parameters. To 
that end, comparing the SCR results for distinctive countries can reveal key differ-
ences in the distributional patterns, such as heavy-tail behavior. Therefore, we need 
to assign different risk factors to various countries in order to grasp full perceptions 
of the actual risk exposures.

Finally, the obtained empirical results are interesting in terms of theory and 
practical applications and have important implication for compliance with the Sol-
vency II capital requirements. Likewise, it can be of interest to insurance regula-
tors, policymakers, actuaries, and researchers in the discipline of insurance and risk 
management.
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