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Abstract Distorted expectations can be expressed as weighted averages of

quantiles. In this note, we show that this statement is essentially true, but that one

has to be careful with the correct formulation of it. Furthermore, the proofs of the

additivity property for distorted expectations of a comonotonic sum that appear in

the literature often do not cover the case of a general distortion function. We present

a straightforward proof for the general case, making use of the appropriate

expressions for distorted expectations in terms of quantiles.

Keywords Comonotonicity � Distorted expectation � Distortion risk measure �
TVaR � Quantile

1 Introduction

It is well-known that a distorted expectation of a random variable (r.v.) can be

expressed as a mixture of its corresponding quantiles; see e.g. Wang [8] or Denuit

et al. [2]. Although this statement is true, one has to be careful to formulate it in an
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appropriate and correct way. In this short note, we explore this statement and the

conditions under which it holds.

A second goal of this note is to present a complete proof for the additivity

property which holds for distorted expectations of a comonotonic sum. The proofs

of this theorem that are presented in the literature are often incomplete, in the sense

that they only hold for a particular type of distortion functions, such as the class of

concave distortion functions. We present a straightforward proof for the general

case, making use of the appropriate expressions for distorted expectations in terms

of quantiles.

2 Distortion risk measures as mixtures of quantiles

In this section, we investigate the representation of a distorted expectation of a r.v.

as a weighted average of its quantiles. All r.v.’s that we consider are defined on a

common probability space ðX;F ;PÞ: The cumulative distribution function (cdf) and

the decumulative distribution function (ddf) of a r.v. X are denoted by FX and FX;
respectively.

2.1 Distorted expectations

For a given r.v. X, we define its càglàd (continue à gauche, limitée à droite) inverse

cdf FX
-1, as well as its càdlàg (continue à droite, limitée à gauche) inverse cdf FX

-1?

as follows.

Definition 1 (The inverse cdf’s FX
-1 and FX

-1?) For any p 2 ½0; 1�; the inverse cdf

FX
-1(p) is defined by

F�1
X ðpÞ ¼ inffx j FXðxÞ� pg;

whereas the inverse cdf FX
-1?(p) is defined by

F�1þ
X ðpÞ ¼ supfx j FXðxÞ� pg:

In these expressions, inf £ ¼ þ1 and sup £ ¼ �1 by convention.

We recall the following equivalence relations:

p�FXðxÞ , F�1
X ðpÞ� x; x 2 R and p 2 ½0; 1�; ð1Þ

and

P½X\x� � p, x�F�1þ
X ðpÞ; x 2 R and p 2 ½0; 1�; ð2Þ

which will be used in the derivations hereafter.

In order to define the distorted expectation of a r.v., we have to introduce the

notion of distortion function.

Definition 2 (Distortion function) A distortion function is a non-decreasing

function g : ½0; 1� ! ½0; 1� such that g(0) = 0 and g(1) = 1.
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Any distortion function g can be represented as the following convex

combination of distortion functions:

gðqÞ ¼ p1gðcÞðqÞ þ p2gðdÞðqÞ þ p3gðsÞðqÞ; q 2 ½0; 1�;

where pi C 0 for i = 1, 2, 3 and p1 ? p2 ? p3 = 1. In this expression, g(c) is

absolutely continuous, g(d) is discrete and g(s) is singular continuous.

Wang [8] introduced a class of risk measures in the actuarial literature, the

elements of which are known as distortion risk measures.

Definition 3 (Distorted expectation) Consider a distortion function g. The

distorted expectation of the r.v. X, notation qg½X�; is defined as

qg½X� ¼ �
Z0

�1

½1� gðFXðxÞÞ�dxþ
Zþ1

0

gðFXðxÞÞdx; ð3Þ

provided at least one of the two integrals in (3) is finite.

The functional qg is called the distortion risk measure with distortion function

g. Both integrals in (3) are well-defined and take a value in ½0;þ1�: Provided at

least one of the two integrals is finite, the distorted expectation qg½X� is well-defined

and takes a value in ½�1;þ1�: Hereafter, when using a distorted expectation

qg½X�; we silently assume that both integrals in the definition (3) are finite, or

equivalently, that qg½X� 2 R; unless explicitly stated otherwise.

Consider a distortion function g which can be expressed as a strictly convex

combination of two distortion functions g1 and g2, i.e.

g ¼ c1g1 þ c2g2

with weights 0 \ ci \ 1, i = 1, 2, and c1 ? c2 = 1. Assuming that qg½X� 2 R is

then equivalent with assuming that qgi
½X� 2 R; i ¼ 1; 2: Under any of these

assumptions, we have that qg½X� is additive with respect to g, in the sense that

qg½X� ¼ c1qg1
½X� þ c2qg2

½X�: ð4Þ

The proofs of the equivalence of the stated assumptions and of (4) follow from the

observation that the additivity property (with respect to g) holds for both integrals in

(3). Notice that the statements above remain to hold in case ci = 0 for i = 1 or

i = 2, provided gi is chosen such that qgi
½X� is finite.

Hereafter, we will often consider distortion functions that are left continuous

(l.c.) on (0, 1] or right continuous (r.c.) on [0, 1).

The inverse FX
-1 defined above belongs to the class of distortion risk measures.

Indeed, for p 2 ð0; 1Þ; consider the l.c. distortion function g defined by

gðqÞ ¼ Iðq [ 1� pÞ; 0� q� 1; ð5Þ

where we use the notation IðAÞ to denote the indicator function, which equals 1

when A holds true and 0 otherwise. From definition (3) and equivalence relation (1),

we find that the corresponding distorted expectation is equal to the p-quantile of X:
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qg½X� ¼ F�1
X ðpÞ:

2.2 Distorted expectations and r.c. distortion functions

In the following theorem, it is shown that any distorted expectation qg½X� with r.c.

distortion function g can be expressed as a weighted average of the quantiles

F�1þ
X ðqÞ of X.

Theorem 4 When g is a r.c. distortion function, the distorted expectation qg½X�
has the following Lebesgue–Stieltjes integral representation:

qg½X� ¼
Z

½0;1�

F�1þ
X ð1� qÞdgðqÞ: ð6Þ

Proof Taking into account that FX has at most countably many jumps, we have

that FXðxÞ ¼ P½X� x� a.e., and we can rewrite expression (3) for qg½X� as follows:

qg½X� ¼ �
Z0

�1

½1� gðP½X� x�Þ�dxþ
Zþ1

0

gðP½X� x�Þdx: ð7Þ

As the distortion function g is r.c., we find that gðP½X� x�Þ can be expressed asR
½0;P½X� x��dg(q), which has to be understood as a Lebesgue–Stieltjes integral.

Applying Fubini’s theorem to change the order of integration and noticing (2), the

second integral in (7) can be transformed into

Zþ1

0

gðP½X� x�Þdx ¼
Z

½0;P½X� 0��

dgðqÞ
ZF�1þ

X ð1�qÞ

0

dx

¼
Z

½0;P½X� 0��

F�1þ
X ð1� qÞdgðqÞ: ð8Þ

Similarly, taking into account that 1� gðP½X� x�Þ can be expressed asR
ðP½X� x�;1�dg(q), the first integral in (7) can be transformed into

Z0

�1

½1� gðP½X� x�Þ�dx ¼ �
Z

ðP½X� 0�;1�

F�1þ
X ð1� qÞdgðqÞ: ð9Þ

Inserting the expressions (8) and (9) into (7) leads to (6). h

Theorem 4 can be strengthened in the following sense: if either the distorted

expectation qg½X� or the Lebesgue–Stieltjes integral
R
½0;1� F

�1þ
X ð1� qÞdg(q) is finite,

then also the other quantity is finite and both are equal. Indeed, the case where one

starts from a finite qg[X] is considered in the proof of the theorem. On the other

hand, in case the integral in (6) is finite, it can be written as the sum of the finite
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integrals
R
½0;P½X� 0�� F

�1þ
X ð1� qÞdgðqÞ and

R
ðP½X� 0�;1� F

�1þ
X ð1� qÞdgðqÞ: Applying

Fubini’s theorem leads to the relations (8) and (9), which proves that relation (6)

holds.

Using integration by parts, Theorem 4 can be considered as a consequence of

Corollary 2.1 in Gzyland and Mayoral [7]. The proof presented above is different

and is based on Fubini’s theorem.

In order to prove that the càdlàg inverse FX
-1? also belongs to the class of

distortion risk measures, let p [ (0,1) and consider the r.c. discrete distortion

function g defined by

gðqÞ ¼ Iðq� 1� pÞ; 0� q� 1:

Taking into account expression (6) for qg½X�; we find that

qg½X� ¼ F�1þ
X ðpÞ:

The assumption that g is r.c. is essential for (6) to hold. If we assume e.g.

that g is l.c., expression (6) for qg½X� above is not valid anymore. This can be

illustrated by the l.c. distortion function g that we defined in (5) and for which

qg½X� ¼ F�1
X ðpÞ: Suppose for a moment that expression (6) is valid for l.c.

distortion functions. Applying this formula to the distortion function defined in

(5), we find that qg½X� ¼ F�1þ
X ðpÞ: As FX

-1(p) and FX
-1?(p) are in general not

equal, we can indeed conclude that (6) is in general not valid for a l.c. distortion

function. The situation where the distortion function g is left continuous will be

considered in Theorem 6.

2.3 Distorted expectations and l.c. distortion functions

In order to present a left continuous version of Theorem 4, we introduce the notion

of a dual distortion function. Therefore, consider a distortion function g and define

the related function g : ½0; 1� ! ½0; 1� by

gðqÞ ¼ 1� gð1� qÞ; 0� q� 1:

Obviously, g is also a distortion function, called the dual distortion function of

g. The relation between the distorted expectations with distortion functions g and g;
respectively, is explored in the following lemma. A proof of this lemma can be

found e.g. in Dhaene et al. [5].

Lemma 5 For any r.v. X and distortion function g, we have

qg½X� ¼ �qg½�X�

and

qg½X� ¼ �qg½�X�: ð10Þ

The following theorem can be considered as an adapted version of Theorem 4 for

l.c. distortion functions. Notice that for a l.c. distortion function g, we have
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Z

½0;1�

F�1
X ð1� qÞdgðqÞ ¼

Z

½0;1�

F�1
X ðqÞdgðqÞ; ð11Þ

by the definition of Lebesgue–Stieltjes integration for l.c. distortion functions.

Theorem 6 When g is a l.c. distortion function, the distorted expectation qg½X� has

the following Lebesgue–Stieltjes integral representation:

qg½X� ¼
Z

½0;1�

F�1
X ð1� qÞdgðqÞ: ð12Þ

Proof Let g be a l.c. distortion function. The dual distortion function g of g is r.c.

Applying (6) and (10) leads to

qg½X� ¼ �qg½�X� ¼ �
Z

½0;1�

F�1þ
�X ð1� qÞdgðqÞ:

Taking into account the expression

F�1þ
�X ð1� qÞ ¼ �F�1

X ðqÞ;

as well as the equality (11), we find (12). h

An alternate proof of Theorem 6 follows from first rewriting gðP½X� x�Þ asR
½0;P½X� x�Þdg(q) and 1� gðP½X� x�Þ as

R
½P½X� x�;1�dg(q), respectively, and then

proceeding as in the proof of Theorem 4.

Theorem 6 can be strengthened in the following sense: if either the distorted

expectation qg[X] or the Lebesgue–Stieltjes integral
R
½0;1� F

�1
X ð1� qÞ dg(q) is finite,

then also the other quantity is finite and both are equal.

The distortion function g defined in (5) is an example of a l.c. discrete distortion

function. Its dual distortion function g is given by

gðqÞ ¼ Iðq� pÞ; 0� q� 1:

From Theorem 6 it follows that qg½X� is given by FX
-1(p), as we found before.

There are at most countably many values of q 2 ½0; 1� where the inverses F�1
X ðqÞ

and F�1þ
X ðqÞ differ. This implies that in case g is continuous on ½0; 1�; we can

replace FX
-1? by FX

-1 in (6) without changing the value of the integral. This

observation leads to the following implication:

g is continuous ¼) qg½X� ¼
Z

½0;1�

F�1
X ð1� qÞdgðqÞ: ð13Þ

Notice that this implication follows also directly from (12). Furthermore, when g is

absolutely continuous, we can replace dgðqÞ by g0ðqÞdq in (13), and we find that
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g is absolutely continuous ¼) qg½X� ¼ E½F�1
X ð1� UÞg0ðUÞ�; ð14Þ

where U is a r.v. uniformly distributed on the unit interval [0, 1].

In the literature, much attention is paid to the class of concave (resp. convex)

distortion functions. A concave distortion function is continuous on ð0; 1� and can

only jump at 0, while a convex distortion function is continuous on ½0; 1Þ and can

only jump at 1. Concave (resp. convex) distortion functions without jumps in the

endpoints of the unit interval are absolutely continuous, which implies that the

expressions for qg½X� in (13) and (14) hold in particular for these functions.

Consider a concave distortion function g without a jump at 0. Taking into account

(14), one can rewrite the corresponding distorted expectation qg½X� as

qg½X� ¼ �
Z1

0

F�1
X ðqÞ/ðqÞdq; ð15Þ

with

/ðqÞ ¼ �g0ð1� qÞ:

Notice that /ðqÞ may not exist on a set of Lebesgue measure 0, but this observation

does not hurt the validity of (15). A risk measure of the form (15) is called a spectral

risk measure with risk spectrum /ðqÞ; see e.g. Gzyland and Mayoral [7].

As an example of a concave distortion function, for p 2 ½0; 1Þ; consider

gðqÞ ¼ min
q

1� p
; 1

� �
; 0� q� 1:

The corresponding distorted expectation qg½X� is denoted by TVaRp½X�: From (14)

we find that TVaRp½X� is given by

TVaRp½X� ¼
1

1� p

Z1

p

F�1
X ðqÞdq:

2.4 Distorted expectations and general distortion functions

In Theorems 4 and 6, we derived expressions for distortion risk measures qg½X� related

to r.c. and l.c. distortion functions g, in terms of the quantile functions FX
-1? and FX

-1,

respectively. In general, distortion functions may be neither r.c. nor l.c. However, as

will be proven in the following theorem, a general distortion function can always be

represented by a convex combination of a r.c. and a l.c. distortion function.

Theorem 7 Any distortion function g can be represented by a convex
combination

g ¼ crgr þ clgl; ð16Þ

where gr and gl are a r.c. and a l.c. distortion function, respectively, and the non-
negative weights cr and cl sum to 1.
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When cr 2 ð0; 1Þ; the distorted expectation qg½X� can be expressed as

qg½X� ¼ crqgr
½X� þ clqgl

½X�: ð17Þ

Proof Consider a general distortion function g. For any p 2 ð0; 1�; we define

DðpÞ ¼
X

q2½0;pÞ
½gðqþÞ � gðqÞ�;

where the sum is taken over the finite or countable set of all values of q in ½0; pÞ
where the distortion function is right discontinuous. Furthermore, we set

D(0) = 0.

In case Dð1Þ ¼ 0; we have that g is r.c., while in case D(1) = 1, we find that g is

l.c., and in both cases (16) and (17) are obvious.

Let us now assume that 0\Dð1Þ\1: Define

glðpÞ ¼
DðpÞ
Dð1Þ ; 0� p� 1;

and

grðpÞ ¼
gðpÞ � Dð1ÞglðpÞ

1� Dð1Þ ; 0� p� 1:

It is easy to check that gl and gr are a l.c. and a r.c. distortion function, respectively.

Moreover,

g ¼ ð1� Dð1ÞÞgr þ Dð1Þgl;

so that (16) holds. From (4) and the discussion of that result, we can conclude that

under the implicit assumption that qg½X� 2 R; or equivalently, that qgr
½X� and qgl

½X�
are real-valued, relation (17) holds. h

Expression (17) remains to hold in case cr = 0, provided gr is chosen such that

qgr
½X� is finite, while it also holds in case cr = 1, provided gl is chosen such that

qgl
½X� is finite. Notice that it is always possible to choose such a distortion function,

and hereafter, we will make this appropriate choice when cr = 0 or cr = 1.

The intuitive idea behind the proof of the theorem above is that we form a

piecewise constant l.c. distortion function gl by successively adding all jumps

corresponding to right-side discontinuities of g. The rescaled difference ðg�
Dð1ÞglÞ=ð1� Dð1ÞÞ is a distortion function that is obtained from g by pulling down

its graph at its right-side discontinuities, making it a r.c. distortion function. The

reader is referred to Dudley and Norvaiša [6] for related discussions on Young type

integrals where the integrand and the integrator may have any kind of discontinuities.

As an illustration of Theorem 7, consider the distortion function g defined by

gðqÞ ¼ 1

2
I

1

3
\q\

2

3

� �
þ I

2

3
� q� 1

� �
; 0� q� 1:
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This distortion function is neither r.c. nor l.c., but it can be represented as follows:

gðqÞ ¼ 1

2
ðgrðqÞ þ glðqÞÞ; 0� q� 1;

with

grðqÞ ¼ I
2

3
� q� 1

� �
and glðqÞ ¼ I

1

3
\q� 1

� �
;

where gr(q) and gl(q) are a r.c. and a l.c. distortion function, respectively. Taking

into account (17), we find that

qg½X� ¼
1

2
ðqgr
½X� þ qgl

½X�Þ:

3 Distortion risk measures and comonotonic sums

A random vector X ¼ ðX1; . . .;XnÞ is said to be comonotonic if

Xd ¼ ðF�1
X1
ðUÞ; . . .;F�1

Xn
ðUÞÞ; ð18Þ

where U is a uniform ð0; 1Þ r.v. and ¼d stands for equality in distribution.

For a general random vector X ¼ ðX1; . . .;XnÞ; we call ðF�1
X1
ðUÞ; . . .;F�1

Xn
ðUÞÞ

the comonotonic modification of X; corresponding to the uniform r.v.

U. Furthermore, the sum of the components of the comonotonic modification

is denoted by Sc:

Sc ¼ F�1
X1
ðUÞ þ F�1

X2
ðUÞ þ � � � þ F�1

Xn
ðUÞ:

For an overview of the theory of comonotonicity and its applications in actuarial

science and finance, we refer to Dhaene et al. [3]. Financial and actuarial appli-

cations are described in Dhaene et al. [4]. An updated overview of applications of

comonotonicity can be found in Deelstra et al. [1].

The following theorem states that distorted expectations related to general

distortion functions are additive for comonotonic sums.

Theorem 8 (Additivity of qg for comonotonic r.v.’s) Consider a random vector
X ¼ ðX1; . . .;XnÞ; a distortion function g and the distorted expectations qg½Xi�;
i ¼ 1; 2; . . .; n: The distorted expectation of the comonotonic sum Sc is then given by

qg½Sc� ¼
Xn

i¼1

qg½Xi�: ð19Þ

Proof Applying the decomposition (17) in the first and the last steps of the

following derivation, while taking into account Theorems 4 and 6 in the second

and the fourth steps and, finally, applying the additivity property of the càglàd

and càdlàg inverses F-1 and F-1? for comonotonic r.v.’s in the third step, we

find that
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Xn

i¼1

qg½Xi� ¼
Xn

i¼1

ðcrqgr
½Xi� þ clqgl

½Xi�Þ

¼ cr

Z

½0;1�

Xn

i¼1

F�1þ
Xi
ð1� qÞdgrðqÞ þ cl

Z

½0;1�

Xn

i¼1

F�1
Xi
ð1� qÞdglðqÞ

¼ cr

Z

½0;1�

F�1þ
Sc ð1� qÞdgrðqÞ þ cl

Z

½0;1�

F�1
Sc ð1� qÞdglðqÞ

¼ crqgr
½Sc� þ clqgl

½Sc�
¼ qg½Sc�

Given that qg½Xi�; i ¼ 1; 2; . . .; n; is finite by assumption, we have that qgr[Xi] and

qgl[Xi] are finite too, so that all steps in the derivation above are allowed. We can

conclude that qg½Sc� is finite and given by (19). h

The additivity property of distorted expectations for comonotonic sums presented

in Theorem 8 is well-known. However, most proofs that appear in the literature only

consider the case where the distortion function is continuous or concave. The proof

that we presented here is simple and considers the general case.
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