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1 Introduction

Scattering resonances appear in many branches of mathematics, physics and engineer-
ing. They generalize eigenvalues or bound states to systems inwhich energy can scatter
to infinity. A typical state has then a rate of oscillation (just as a bound state does) and a
rate of decay. Although this notion is intrinsically dynamical, an elegant mathematical
formulation comes from considering meromorphic continuations of Green’s functions
or scatteringmatrices. The poles of thesemeromorphic continuations capture the phys-
ical information by identifying the rate of oscillations with the real part of a pole and
the rate of decaywith its imaginary part. The resonant state, which is the corresponding
wave function, then appears in the residue of the meromorphically continued operator.
An example from pure mathematics is given by the zeros of the Riemann zeta func-
tion: they are the resonances of the Laplacian on the modular surface. The Riemann
hypothesis then states that the decay rates for the modular surface are all either 0 or
1
4 . A standard example from physics is given by shape resonances created when the
interaction region is separated from free space by a potential barrier. The decay rate
is then exponentially small in a way depending on the width of the barrier.

In this article we survey some foundational and some recent aspects of the subject
selected using the perspective and experience of the author. Proofs of many results
can be found in the monograph written in collaboration with Semyon Dyatlov [80] to
which we provide frequent references.

What we call scattering resonances appear under different names in different fields:
in quantumscattering theory they are calledquantum resonancesor resonance poles. In
obstacle scattering, or more generally wave scattering, they go by scattering poles. In
general relativity the corresponding complex modes of gravitational waves are known
as quasi-normal modes. The closely related poles of power spectra of correlations in
chaotic dynamics are calledPollicott–Ruelle resonances.Wewill discussmathematical
results related to each of these settings stressing unifying features.

The survey is organized as follows:

• in the introduction we provide a basic physical motivation from quantum mechan-
ics, discuss the case of the wave equation in one dimension, intuitions behind
semiclassical study of resonances and some examples from modern science and
engineering;
• in Sect. 2 we present scattering by bounded compactly supported potentials in
three dimensions and prove meromorphic continuation of the resolvent (Green
function), an upper bound on the counting function, existence of resonance free
regions and expansions of waves; we also explain the method of complex scaling
in the elementary setting of one dimension; finally we discuss recent progress and
open problems in potential scattering;
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Mathematical study of scattering resonances 3

• wedevote Sect. 3 to a survey of recent results organized around topics introduced in
the special setting of Sect. 2: meromorphic continuation for asymptotically hyper-
bolic spaces, fractal upper bounds in physical and geometric settings, resonance
free strips in chaotic scattering and resonance expansions; we also provide some
references to recent progress in some of the topics not covered in this survey;
• Section 4 surveys the use of microlocal/scattering theory methods in the study
of chaotic dynamical systems. Their introduction by Faure–Sjöstrand [84] and
Tsujii [261] led to rapid progress which included a microlocal proof of Smale’s
conjecture about dynamical zeta functions [78], first proved shortly before by
Giulietti–Liverani–Pollicott [109]. We review this and other results, again related
to upper bounds, resonance free strips and resonances expansions.

1.1 Motivation from quantum mechanics

In quantummechanics a particle is described by awave functionψ which is normalized
in L2, ‖ψ‖L2 = 1. The probability of finding the particle in a region� is the given by
the integral of |ψ(x)|2 over�. A pure state is typically an eigenstate of a Hamiltonian
P and hence the evolved state is given by ψ(t) := e−i t Pψ = e−i t E0ψ where Pψ =
E0ψ . In particular the probability density does not changewhen the state is propagated.

An example could be given by the Bloch electron in a molecular corral shown in
Fig. 1. However the same figure also shows that the measured states have non-zero
“widths”—the peak is not a delta function at E0—and hence can be more accurately
modeled by resonant states. Scattering or quantum resonances are given as complex
numbers E0 − i�/2 and the following standard argument of the physics literature
explains the meaning of the real and imaginary parts: a time dependent pure reso-
nant state propagates according to ψ(t) = e−i t E0−t�/2ψ(0) so that the probability of
survival beyond time t is p(t) = |ψ(t)|2/|ψ(0)|2 = e−�t . This explains why the con-
vention for the imaginary part of a resonance is �/2. Here we neglected the issue that
ψ(0) /∈ L2 which is remedied by taking the probabilities over a bounded interaction
region. In the energy representation the wave function is given

ϕ(E) := F−1ψ(E) = 1√
2π

∫∞
0 e−i t E0−t�/2ψ(0)dt = 1√

2π i
ψ(0)

E0−i�/2−E ,

whichmeans that the probability density of the resonancewith energyE is proportional
to the square of the absolute value of the right hand side. Consequently the probability
density is

1

2π

�

(E − E0)2 + (�/2)2
d E, (1.1)

and this Lorentzian is the famousBreit-Wigner distribution. This derivation is of course
non-rigorous and there are many mathematical issues:

• the state ψ(0) is not in L2—it has physical meaning only in the “interaction
region”; that is justified differently in Euclidean and non-Euclidean scattering—
see Sects. 2.2, 2.6 and 3.1 respectively.
• it is not clear why the evolution of a physical state should have an expansion
in terms of resonant states; that is justified using meromorphic continuation and
asymptotic control of Green’s function and—see Sect. 2.5;
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4 M. Zworski

Fig. 1 A scanning tunneling microscope (STM) spectrum is a plot of d I/dV (I being the current) as a
function of bias voltage V . According to the basic theory of STM, this reflects the sample density of states as
a function of energy with respect to the Fermi energy (at V = 0). This spectrum shows the series of surface
state electron resonances in inside a circular quantum corral on Cu(111)—see Fig. 3 for a visualization of
the relation between the peaks and the complex resonance poles. The bulk bands contribute to a gradually
varying background in this spectrum. The setpoint was V0 = 1V and I0 = 10 nA and the modulation
voltage was Vrms = 4mV. Inset: a low-bias topograph of the corral studied (17 × 17 nm2, V = 10mV,
I = 1 nA). The corral is made from 84 CO molecules adsorbed to Cu(111) and has an average radius of
69.28 Å—the date and images are from the Manoharan Lab at Stanford [186]. The large amplitude in the
center of the top graph is a reflection of the sharp peak seen in the spectrum at V = 0. For another quantum
corall, in the shape of the Bunimovich stadium and made out of iron atoms, see Fig. 14

• one needs to justify the passage from the Fourier transform t �→ E to the probabil-
ity distribution (1.1); that is done using the scattering matrix or spectral measure
– see the end of Sect. 2.5.

Returning to physical motivation, one should stress that in practice there are many
deviations from the simple formula (1.1), especially at high energies and in thepresence
of overlapping resonances. In Fig. 1 we see clear Lorentzian peaks and individual
resonances can be recovered. In the experiment shown in Fig. 2 the resonances overlap
and the peaks in scattering data do not have the simple interpretation using (1.1). The
density laws (Weyl laws) for counting of resonant states are more complicated and
richer as they involve both energy and rates of decay. Even the leading term can be
affected by dynamical properties of the system—see Sects. 2.3 and 3.4.

A more abstract version of Fig. 1 is shown in Fig. 3 where correlations of evolved
states and unevolved states are shown with peaks corresponding to poles of their
Fourier transforms (power spectra).

1.2 Scattering of waves in one dimension

A simple mathematical example is given by scattering by compactly supported poten-
tials in dimension one, see Fig. 4 for an example of such potential. Scattering
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Mathematical study of scattering resonances 5

Fig. 2 The experimental set-up for the study of the fractal Weyl law [216] and of the distribution of
resonance widths [13]. On the left panel below the resonances for the aspect ration 5.5 in the complex
k-plane are shown as well as the distribution of the imaginary parts of k in the right panel. The orange
clouds correspond to all resonances resulting in a good reconstruction as well as the orange histogram. Note
that many orange dots might overlay each other. Blue triangles and blue dashed-dotted histogram describe
the set belonging to the best reconstruction. Black crosses are the numerically calculated poles and the solid
black histogram the corresponding distribution. The dotted red line in the right panel is P(1/2) , the red
dashed line half of the classical decay rate P(1)/2. Here P(s) is the topological pressure associated to the
unstable Jacobian (colour figure online)

resonances are the rates of oscillations and decay of the solution of the wave equation
and Fig. 6 shows such a solution.

We see the main wave escape and some trapped waves bounce in the well created
by the potential and leak out. Figure 7 shows the values of the solution at one point.
Roughly speaking if u(t, x) is a solution of the wave equation (∂2t − ∂2x +V (x))u = 0
with localized initial data then

u(t, x) ∼
∑

Im λ j>−A

e−iλ j t u j (x)+OK (e−t A), x ∈ K � R, (1.2)
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6 M. Zworski

Fig. 3 If U (t) is a propagator and f, g are states then the correlation (the evolution of f measured by g)
is given by ρ f,g(t) = 〈U (t) f, g〉. For instance the evolution could come from a flow ϕt : M → M on a
compact manifold, U (t) f (x) = f (ϕ−t (x)). The power spectrum of correlations is given by ρ̂ f,g(λ) :=∫∞
0 ρ f,g(t)e

iλt dt . Resonances are the poles of ρ̂ f,g(λ) and are independent of f and g. The figure shows
a schematic correspondence between the power spectrum for different states and these poles: the real part
corresponds to the location of a peak in the power spectrum and the imaginary to its width; the x axis is the
real part (frequency λ), y axis the imaginary (rate of decay), z axis |ρ̂ f,g(λ)|. Unlike the power spectrum
which depends on f and g, the poles depend only on the system

Fig. 4 A simple one dimensional potential with resonances shown in Fig. 5. Same potential is used to see
propagation, trapping and tunneling of a wave in Fig. 6

whereλ j are complex numberswith Im λ j < 0. They are independent of the initial data
and are precisely the scattering resonances—see Sect. 2.5 for the precise statement.
The expansion (1.2) is formally related to the Breit–Wigner distribution (1.1) via the
Fourier transform—see Fig. 3.

Harmonic inversion methods, the first being the celebrated Prony algorithm [217],
can then be used to extract scattering resonances from solutions of the wave equation
(as shown in Fig. 7; see for instance [171]). The resulting complex numbers, that is
the resonances for the potential in Fig. 4 are shown in Fig. 5.
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Mathematical study of scattering resonances 7

Fig. 5 Scattering poles of the potential shown in Fig. 4. They are computed very accurately using a Matlab
code [21]

Fig. 6 A solution of the wave equation ∂2t u − ∂2x u + V u = 0 where V is shown in Fig. 4. The initial data
is localized near 0 and the time variable t points away from the viewer

Fig. 7 The plot of u(0, t) showing oscillations and decay of the solution from Fig. 6 in the interaction
region. The principal decay rate of the wave is determined by the resonance(s) closest to the real axis. For
that we need to justify the expansion (1.2)—see Theorem 5
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8 M. Zworski

Fig. 8 Resonances for the sphere in three dimensions. For each spherical momentum 
 they are given by

solutions of H (2)

+ 1

2
(λ) = 0 where H (2)

ν is the Hankel function of the second kind and order ν. Each zero

appears as a resonance of multiplicity 2
+ 1: the resonances with 
 = 20 are highlighted

1.3 Resonances in the semiclassical limit

For some very special systems resonances can be computed explicitely. One famous
example is the Eckart barrier:−∂2x+cosh−2 x . It falls into the general class of Pöschel–
Teller potentials which can also be used to compute resonances of hyperbolic spaces or
hyperbolic cylinders—see [31]. Another example is given by scattering in the exterior
of a spherical obstacle. In this case scattering resonances are zeros of Hankel functions
which in odddimensions are in fact zeros of explicit polynomials—see [255] andFig. 8.

In general however it is impossible to obtain an explicit description of individual
resonances. Hencewe need to consider their properties and their distribution in asymp-
totic regimes. For instance in the case of obstacle scattering that could mean the high
energy limit. In the case of the sphere in Fig. 8 that corresponds to letting the angular
momentum 
 → +∞. For a general obstacle that means considering resonances as
|λ| → +∞ and | Im λ| � |λ|.

The high energy limit is an example of a semiclassical limit. To describe it we
consider resonances of the Dirichlet realization of −h2�+ V on R

n \O in bounded
subsets of C as h → 0. When V ≡ 0 that corresponds to the high energy limit for
obstacle problems and when O = ∅ to Schrödinger operators.

In the case of semiclassical Schrödinger operators, the properties of the classical
energy surface ξ2 + V (x) = E can be used to study resonances close to E ∈ R.
Figure 9 shows some of the principles in dimension one. The classical energy surfaces
are in this case integral curves of the Hamilton flow, ẋ = 2ξ , ξ̇ = −V ′(x) (Newton
equations) and the properties of this flow determine location of resonances when h
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Mathematical study of scattering resonances 9

Fig. 9 Resonances corresponding to different dynamical phenomena as poles of continuation of the resol-
vent λ → (−h2∂2x + V (x) − λ2)−1 from Im λ > 0 to Im λ ≤ 0—see Sect. 2.2. The bound states
are generated by negative level sets of ξ2 + V (x) satisfying Bohr–Sommerfeld quantization conditions.
Bounded positive level sets of ξ2 + V (x) can also satisfy the quantization conditions but they cannot pro-
duce bound state—tunnelling to the unbounded components of these level sets is responsible for resonances
with exponentially small (∼e−S/h ) imaginary parts/width. The unstable trapped points corresponding to
maxima of the potential produce resonances which are at distance h of the real axis

is small. The level sets which are totally trapped and satisfy quantization conditions
correspond to bound states. The level sets which have a trapped component but also an
unbounded component, give rise to resonances with exponentially small decay rates,
e−S/h . That make sense since the corresponding quantum state take an exponentially
long time to tunnel through the barrier (see [125] for a general theory and [95,114] for
some recent results and references). Then we have energy levels which contain fixed
points: that is an example of normally hyperbolic trapping which produces resonances
at distance h from the real axis—see Sect. 3.2 for a general discussion and [220] for
precise analysis in one dimension and more references. Interestingly the same form of
trapping occurs in the setting of rotating black holes, see Sect. 2.5 and [76]. Finally the
unbounded trajectories would not produce resonances close (that is with imaginary
parts tending to 0 with h → 0) to the real axis if our potential were real analytic. But
in the compactly supported, non smooth, case the singularities at the boundary of the
support produce resonances at distance Mh log 1

h where M depends on the regularity
of the potential at the boundary of the support. (We call themRegge resonances as they
were investigated in [221] but should not be confused with closely related Regge poles
[113].) The anti-bound states are too deep in the lower half plane to have dynamical
interpretation. They seem to be almost symmetric to bound states and in fact when the
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10 M. Zworski

Fig. 10 Distribution of resonance width (decay rates) for a three disc scatterer [13] in a symmetry reduced
microwave model shown in Fig. 2: the plots show the density of values of resonance width, Im k, for a
range of rest frequencies (40m−1 ≤ Re k ≤ 500m−1) against the aspect ration of a three disc system (see
Fig. 2). The experimental data (left) and numerical data (right) are compared. The dotted line shows the
topological pressure at 1

2 and the solid line 1
2 of the classical decay rate as functions of the aspect ratio.

The former predicts the resonance free region and the latter, the concentration of decay rates

potential is positive near the boundary of its support they are exponentially close to
the reflection of bound states [72].

1.4 Other examples from physics and engineering

We present here a few recent examples of scattering resonances appearing in physical
systems.

Figure 1 shows resonance peaks for a scanning tunneling microscope experiment
where a circular quantum corral of CO molecules is constructed—see [187] and ref-
erences given there. The resonances are very close to eigenvalues of the Dirichlet
Laplacian (rescaled by h̄2/meff where meff is the effective mass of the Bloch elec-
tron). Mathematical results explaining existence of resonances created by a barrier
(here formed by a corral of CO molecules) can be found in [194].

Figure 2 shows an experimental set-up for microwave cavities used to study scat-
tering resonances for chaotic systems. Density of resonance was investigated in this
setting in [216] and that is related to semiclassical upper bounds in Sect. 3.4. In [13]
dependence of resonance free strips on dynamical quantities was confirmed exper-
imentally and Sect. 3.2 contains related mathematical results and references. The
experimental and numerical findings in [13] are presented in Fig. 10.

Figure 11 shows a MEMS (the acronym for the microelectromechanical systems)
resonator. The numerical calculations [20] in that case are based on the complex
scaling technique, presented in a model case in Sect. 2.6, adapted to the finite element
methods. In that field it is known as the method of perfectly matched layers [19].

Figure 12 shows the profile of gravitational waves recently detected by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) and originating from a binary
black holemerger. Resonances for suchwaves are known by the name of quasi-normal
modes in physics literature and are the characteristic frequencies of the waves emitted
during the ringdown phase of the merger, when the resulting single black hole settles
down to its stationary state – see for instance [66,76,157] and Sect. 3.3.

Our last example is a proposal of using Pollicott–Ruelle resonances in climate
study by Chekroun et al [44]. These are the resonances appearing in expansions of
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Fig. 11 A MEMS device on the left has resonances investigated using the complex scaling/perfectly
matched layer methods [20]—see Sect. 2.6. A numerically constructed resonant state for the elasticity
operator used to model the system—see Definition 2 for a simpler case—is shown on the right

Fig. 12 Left an aerial view of the LIGO laboratory in Livingston, Louisiana, US. Right: the gravitational
wave signal observed on September 14, 2015 simultaneously by LIGOLivingston (blue) and LIGOHanford
(red); see [1]. Quasi-normal modes, as scattering resonances are called in the context of gravitational waves,
are supposed to appear in the “ringdown phase” but have not been observed yet. The picture is obtained
from the LIGO Open Science Center, https://losc.ligo.org, a service of LIGO Laboratory and the LIGO
Scientific Collaboration. LIGO is funded by the U.S. National Science Foundation (colour figure online)

correlations of chaotic flows and for the new mathematical developments in their
study see Sect. 4. The idea in [44] is to use these resonances to encode information
about low-frequency variability of turbulent flows in the atmosphere and oceans. The
spectral gap—defined as the distance between the Ruelle–Pollicott resonances and
the unitarity axis—is used to see the roughness of parameter dependences in different
models—see Fig. 13. The authors claim that “links between model sensitivity and the
decay of correlation properties are not limited to this particular model and could hold
much more generally”.

2 Potential scattering in three dimensions

Operators of the form PV := −�+ V , where � = ∂2x1 + ∂2x2 + ∂2x3 , and where V is
bounded and compactly supported, provide a setting in which one can easily present
basic theory. Despite the elementary set up, interesting open problems remain—see
Sect. 2.7. In this section we prove meromorphic continuation of the resolvent of PV ,
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Spectral RP-gap observed through the Niño 3 index (  s = 0.1)

Spectral RP-gap observed through the Niño 3 index (  s = 0.95)
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Fig. 13 Left parameter (denoted by δ) dependence of power spectra of El Niño models considered in [44].
Right the dependence of the spectral gap on the same parameter δ; here the resonance of maps obtained
by using Markov partitions are presented and they lie inside of the unit disk. The resonance for flows are
obtained by taking logarithms which is similar to the case of resonances of quantum maps—see Fig. 23

RV (λ) := (PV−λ2)−1, give a sharp bound on the number of resonances in discs, show
existence of resonance free regions and justify the expansion (1.2). We also explain
the method of complex scaling in the simplest setting of one dimension. These are the
themeswhich reappear in Sects. 3, 4 whenwe discuss some recent advances. However,
in the setting of this section we can present them with complete proofs. In Sect. 2.4
we also review some results in obstacle scattering as they fit naturally in our narrative.

2.1 The free resolvent

Let P0 := −�. This is a self-adjoint unbounded operator on L2(R3). We consider its
resolvent, writing the spectral parameter as λ2. For Im λ > 0,

R0(λ) f (x) =
∫

R3
R0(λ, x, y) f (y)dy, f ∈ L2(R3), (2.1)

and we have an explicit formula for the Schwartz kernel of R0(λ):

R0(λ, x, y) = eiλ|x−y|

4π |x − y| . (2.2)

(Since R0(λ, x, y) depends only on |x− y| due to translation and rotation invariance of
−�, this can be seen using polar coordinates; see see [80, Theorem 3.3] for a different
derivation.)

From this we see that (2.1) makes sense for any λ ∈ C and any compactly supported
f (for instance f ∈ L2

comp(R
3)) and R0(λ) f is then a function locally in L2, R0(λ) f ∈

L2
loc(R

3). In other words,

123



Mathematical study of scattering resonances 13

R0(λ) : L2(R3)→ L2(R3), Im λ > 0, (2.3)

has a holomorphic continuation,

R0(λ) : L2
comp(R

3)→ L2
loc(R

3), λ ∈ C. (2.4)

This, and the connection to the wave equation, explains why we took λ as our param-
eter. The mapping property (2.4) remains valid in all odd dimensions while in even
dimensions continuation has to be made to the infinitely sheeted logarithmic plane.
In quantum scattering (as opposed to scattering of classical waves) the usual spectral
parameter z = λ2 is more natural in which case the continuation is from C \ [0,∞)

through the cut [0,∞).
We have the following formula which will be useful later:

R0(λ)− R0(−λ) = iλ

2
E(λ̄)∗E(λ), λ ∈ C,

E(λ) : L2(R3)→ L2
loc(S

2), E(λ)g(ω) := 1

2π

∫

R3
e−iλ〈x,ω〉g(x)dx, (2.5)

where L2(S2) is defined using the standard measure on the sphere. This follows from
(2.2) and the elementary identity

∫
S2

e−i〈y,ω〉dω = −2iπ(ei |y| − e−i |y|)/|y|, see [80,
Lemma 3.2]. In view of the spectral decomposition based on the Fourier transform,

f = 1

2π

∫ ∞

0
E(λ)∗E(λ) f λ2dλ, −� f = 1

2π

∫ ∞

0
λ2E(λ)∗E(λ) f λ2dλ, (2.6)

f ∈ C∞c (R3), formula (2.5) is a special case of the Stone formula relating resolvents
and spectral measures [80, (B.1.12)].

The spectral decomposition (2.6) and (2.5) is one way to see the relation of R0(λ)

with the wave equation: for f ∈ C∞c (R3)

sin t
√−�√−� f = 1

2π

∫ ∞

0
sin tλE(λ)∗E(λ) f λ dλ

= 1

π i

∫ ∞

0
sin tλ (R0(λ)− R0(−λ)) f dλ

= 1

π i

∫ ∞

0

eitλ − e−i tλ

2i
(R0(λ)− R0(−λ)) f dλ

= 1

2π

∫

R

e−i tλR0(λ) f dλ− 1

2π

∫

R

e−i tλR0(−λ)) f dλ. (2.7)

For t > 0 we can deform R in the second integral to the contour R− iγ , γ > 0. By
letting γ →+∞ we then see that

sin t
√−�√−� f = 1

2π

∫

R

e−iλt R0(λ) f dλ, t > 0, f ∈ C∞c (R3). (2.8)
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14 M. Zworski

(The integrals above converge only in the distributional sense and hence one should
first “integrate” both sides against ϕ(t) ∈ C∞c ((0,∞)) and then deform the contour.)
When combined with (2.2) we obtain the Schwartz kernel of sin(t

√−�)/
√−�,

sin t
√−�√−� (x, y) = δ (t − |x − y|)

4π t
, t > 0. (2.9)

which gives Kirchhoff’s formula

sin t
√−�√−� f (x) = 1

4π t

∫

∂B(x,t)
f (y)dσ(y), t > 0.

The important feature of (2.9) is the support property of theSchwartz kernel: it vanishes
outside of the light cone |x − y| = t . That is the sharp Huyghens principle valid in
all odd dimensions greater than one and violated in even dimensions.

We conclude this section with

Theorem 1 Let � =∑3
j=1 ∂2x j

be the Laplacian in R
3. Then the resolvent

R0(λ) :=
(
−�− λ2

)−1 : L2(R3)→ L2(R3), Im λ > 0,

extends holomorphically to C as an operator

R0(λ) : L2
comp(R

3)→ L2
loc(R

3).

Moreover, for any ρ ∈ C∞c (B(0, R); [0, 1]) we have

‖ρR0(λ)ρ‖L2→H j ≤ Ce2R(Im λ)− (1+ |λ|) j−1 , j = 0, 1, (2.10)

where C depends only on ρ.

Proof To see (2.10) we apply the (distributional) Fourier inversion formula to (2.8).
That gives

R0(λ) =
∫ ∞

0
eiλtU (t)dt, U (t) := sin t

√−�√−� .

Since the Schwartz kernel (2.9) is supported on |x − y| = t and ρ is supported in
|x | < R we can also have

ρR0(λ)ρ =
∫ 2R

0
eiλtρU (t)ρdt. (2.11)

To use this to prove (2.10), we note that

‖U (t)‖L2→H1�‖U (t)‖L2→L2+
∥
∥
∥
√−�U (t)

∥
∥
∥

L2→L2
= sup

λ∈R
|sin tλ|
|λ| + sup

λ∈R
|sin tλ|

= 1+ |t |.
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This and (2.11) give the bound (2.10) for j = 1. For j = 0 we write (noting that
U (0) = 0)

λρR0(λ)ρ = 1

i

∫ 2R

0
∂t

(
eiλt

)
ρU (t)ρdt = −1

i

∫ 2R

0
eiλtρ∂tU (t)ρdt .

Since ∂tU (t) = cos t
√−� is uniformly bounded on L2, the bound (2.10) for j = 0

follows. ��

2.2 Meromorphic continuation and definition of resonances

We now consider PV := −� + V where V ∈ L∞comp(R
3) is allowed to be complex

valued. Since
PV − λ2 = (I + V R0(λ))

(
P0 − λ2

)
(2.12)

the study of (PV − λ2)−1 reduces to the study of I + V R0(λ). For Im λ > 0

R̂0(λ) f (ξ) = f̂ (ξ)

|ξ |2 − λ2
,

where f �→ f̂ is the Fourier transform. This implies that

‖R0(λ)‖L2→L2 = 1

d
(
λ2,R+

) ≤ 1

|λ| Im λ
, Im λ > 0. (2.13)

It follows that

Im λ� 1 �⇒ ‖V R0(λ)‖L2→L2 < 1,

and hence

RV (λ) :=
(

PV − λ2
)−1

= R0(λ) (I + V R0(λ))
−1 (2.14)

is a holomorphic family of operators from L2 to L2 when Im λ� 1.
We would like to continue RV (λ) as a meromorphic family of operators

L2
comp(R

3) → L2
loc(R

3). Because of (2.14) and Theorem 1 this follows from the
following statement

(I + V R0(λ))
−1 : L2

comp(R
3)→ L2

comp(R
3)

is a meromorphic family of operators for λ ∈ C. (2.15)

Strictly speaking,we should really say that this family is a continuation of the holomor-
phic family of inverses defined for Im λ� 1. By a meromorphic family of operators
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16 M. Zworski

λ �→ A(λ) we mean a family which is holomorphic outside a discrete subset of C and
at any point λ0 in that subset we have

A(λ) =
J∑

j=1

A j

(λ− λ0) j
+ A0(λ), (2.16)

where A j are operators of finite rank and λ �→ A0(λ) is holomorphic near λ0.
The proof of (2.15) relies on analytic Fredholm theory: suppose that K (λ) : L2 →

L2 is a holomorphic family of compact operators for λ ∈ C and that (I + K (λ0))
−1 :

L2 → L2 exists at some λ0 ∈ C. Then

λ �→ (I + K (λ))−1 is a meromorphic family operators for λ ∈ C. (2.17)

(See [80, Theorem C.5] for a general statement and a proof.)
It is tempting to apply (2.17) to obtain (2.15) but one immediately notices that

V R0(λ) is not defined on on L2 once Im λ ≤ 0. To remedy this we introduce ρ ∈
C∞c (R3) equal to 1 on supp V and write

I + V R0(λ) = (I + V R0(λ)(1− ρ)) (I + V R0(λ)ρ) .

We consider this first for Im λ� 1 in which case R0(λ) is bounded on L2. Then

(I + V R0(λ)(1− ρ))−1 = I − V R0(λ)(1− ρ)

is a bounded operator L2 → L2 when Im λ > 0 and it continues holomorphically to
C as an operator L2

comp→ L2
comp.

For Im λ� 1, V R0(λ)ρ has small norm and we conclude that

(I + V R0(λ))
−1 = (I + V R0(λ)ρ)

−1 (I − V R0(λ)(1− ρ)) , (2.18)

is a bounded operator on L2 when Im λ� 1 and we need to continue it as an operator
L2
comp→ L2

comp
Hence to obtain (2.15) we need to show that

(I + V R0(λ)ρ)
−1 : L2

comp(R
3)→ L2

comp(R
3) is meromorphic in λ ∈ C. (2.19)

But now we can apply (2.17) with K (λ) := V R0(λ)ρ. In fact, (2.10) shows that if
supp ρ ⊂ B(0, R) then ρR0(λ)ρ : L2 → H1(B(0, R)). The Rellich–Kondrachov
Theorem [80, Theorem B.3], shows that ρR0(λ)ρ is a compact operator. But then so
is V R0(λ)ρ = V (ρR0(λ)ρ). It follows from (2.17) that

(I + V R0(λ)ρ)
−1 : L2(R3)→ L2(R3) is a meromorphic family for λ ∈ C.

(2.20)
To obtain (2.15) we need to show that compactness of the support is preserved by

(I + V R0(λ)ρ)
−1. To see this let χ ∈ C∞c (Rn) be equal to 1 on supp ρ. We claim that
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Mathematical study of scattering resonances 17

(I + V R0(λ)ρ)
−1 χ = χ (I + V R0(λ)ρ)

−1 . (2.21)

In fact, this is valid for Im λ� 1 by expanding the inverse in Neumann series and then
it follows by analytic continuation. From (2.20) and (2.21) we obtain (2.19) which
then gives (2.15).

Combining (2.14) and (2.18) with (2.15) we proved

Theorem 2 The operator RV (λ) defined in (2.14) continues to a meromorphic family

RV (λ) : L2
comp(R

3) −→ L2
loc(R

3), λ ∈ C.

This gives a mathematical definition of scattering resonances:

Definition 1 Suppose that V ∈ L∞comp(R
3) and that RV (λ) is the scattering resolvent

of Theorem 2. The poles of λ �→ RV (λ) are called scattering resonances of V . If
λ0 is a scattering resonance then, in the notation of (2.16) with A(λ) = R0(λ), the
multiplicity of λ0 is defined as

m(λ0) = dim span
{

A1

(
L2
comp

)
, . . . , AJ

(
L2
comp

)}
.

There are other equivalent definitions of multiplicity which use the special structure
of A j ’s in the case of a resolvent. For instance for λ0 �= 0,

m(λ0) = rank A1

= rank
∮

λ0

RV (λ)2λdλ, (2.22)

where the integral is over a small circle containing λ0 but no other pole of RV . The
situation at 0 is more complicated—see [80, §3.3] which can serve as an introduction
to general theory of Jensen–Kato [149] and Jensen–Nenciu [150].

To see the validity of (2.22) we use the equation (P−λ2)RV (λ) f = f , f ∈ L2
comp,

to see that near a pole λ0 �= 0,

RV (λ) =
J∑

j=1

(
PV − λ20

) j−1
�λ0

(
λ2 − λ20

) j
+ A(λ, λ0),

�λ0 = 1
2π i

∮

λ0

RV (λ)2λdλ, (2.23)

where λ �→ A(λ, λ0) is holomorphic near λ0, (PV − λ20)
J�λ0 = 0 and PV − λ20 :

�λ0(L2
comp)→ �λ0(L2

comp)—see [80, §3.2, §4.2]. This leads to

Definition 2 A function u ∈ �λ0(L2
comp(R

3)) ⊂ L2
loc(R

3) is called a generalized

resonant state. If (PV − λ20)u = 0 then u is called a resonant state. This is equivalent
to u ∈ (PV − λ20)

J−1�λ0(L2
comp(R

3)).
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18 M. Zworski

Formula (2.14) and the expansion (2.23) give the following characterization (see
[80, Theorem 3.7, Theorem 4.9])

u is a resonant state for a resonance λ0

�
∃ f ∈ L2

comp(R
3) u = R0(λ0) f,

(
PV − λ20

)
u = 0. (2.24)

The condition u = R0(λ) f is called the outgoing condition. In Sect. 2.6 we will see
a more complicated but much more natural characterization of outgoing states.

When V is real valued then PV is a self-adjoint operator (with the domain given
by H2(R3)). The poles of RV (λ) in Im λ > 0 correspond to negative eigenvalues of
PV and in (2.23) we have J = 1. This of course is consistent with (2.24) since for
Im λ0 > 0, R0(λ0) f ∈ L2(R3).

2.3 Upper bound on the number of resonances

Once we have defined resonances it is natural to estimate the number of resonances.
Since they are now in the complex plane the basic counting function is given by

NV (r) :=
∑
{m(λ) : |λ| ≤ r} , (2.25)

where m(λ) is defined in (2.22).
We will prove the following optimal bound

Theorem 3 Suppose that V ∈ L∞comp(R
3). Then

NV (r) ≤ Cr3. (2.26)

The bound, NV (r) ≤ Crn , valid in all odd dimensions n, was proved in [278] using
methods developed by Melrose [181,182] who proved NV (r) ≤ Crn+1. The proof
presented here uses a substantial simplification of the argument due to Vodev [265]
who proved corresponding upper bounds in even dimension [266,267], following an
earlier contribution by Intissar [142]. When n = 1 we have an asymptotic formula,

NV (r) = 2
π
diam (supp V ) r + o(r), (2.27)

stated by Regge [221] and proved in [276].
The exponent 3 in (2.26) is optimal as shown by the case of radial potentials. When

V (x) = v(|x |)(R − |x |)0+, where v is a C2 even function, and v(R) > 0, then,
see [277],

NV (r) = CRr3 + o(r3) . (2.28)

The constant CR and its appearance in a refinement of (2.26) is explained by Ste-
fanov [255].
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Mathematical study of scattering resonances 19

Interpretation. In the case of−�+V on a bounded domain or a closed manifold, for
instance on M = T

n := R
n/Zn or M = S

n (the n-sphere), the spectrum is discrete and
for V ∈ L∞(Tn;R)we have the asymptotic Weyl law for the number of eigenvalues:

∣
∣
∣
{
λ : λ2 ∈ Spec (−�M + V ) ,

∣
∣
∣ λ |≤ r}

∣
∣
∣ = cnvol (M)rn + o(rn) ,

cn = 2 vol (BRn (0, 1))/(2π)n , (2.29)

where the eigenvalues are included according to their multiplicities.
In the case of −� + V on R

n , the discrete spectrum is replaced by the discrete
set of resonances. Hence the bound (2.26) is an analogue of the Weyl law. Except in
dimension one—see (2.27)—the issue of asymptotics or even optimal lower bounds
remains unclear at the time of writing of this survey. We will discuss lower bounds
and existence of resonances in Sect. 2.7.

The strategy for the proof of the upper bound (2.26) is to include poles of RV (λ)

among zeros of an entire function. The number of poles is then estimated by estimating
the growth of that function and using Jensen’s inequality—see the proof of Theorem 3
below. In particular, if h(λ) is our entire function then (2.26) follows from a bound

|h(λ)| ≤ AeA|λ|3, (2.30)

for some constant A.
Hence our goal is to find a suitable h and to prove (2.30). Before doing it we recall

some basic facts about trace class operators and Fredholm determinants. We refer to
[80, Appendix B] for proofs and pointers to the literature.

Suppose that A : H1 → H2 is a bounded operator between two Hilbert spaces.

Then (A∗A)
1
2 : H1 → H1 is a bounded non-negative self-adjoint operator and we

denote its spectrum by {s j (A)}∞j=0. The numbers s j (A) are called singular values of
A. We will need the following well known inequalities [80, Proposition B.15]

s j+k(A + B) ≤ s j (A)+ sk(B), s j+k(AB) ≤ s j (A)sk(B). (2.31)

If H1 = H2 = L2(R3) and in addition A : L2(R3)→ Hs(R3), s ≥ 0, and the support
of the Schwartz kernel of A is contained in B(0, R)× B(0, R), then, with a constant
depending on R,

s j (A) ≤ CR ‖A‖L2(R3)→Hs (R3) (1+ j)−s/3. (2.32)

(See [80, Example after Proposition B.16] for a proof valid in all dimensions n, that
is with 3 replaced by n in (2.32).)

The operator A is said to be of trace class, A ∈ L1(H1, H2), if

‖A‖L1 :=
∞∑

j=0
s j (A) <∞.
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20 M. Zworski

For A ∈ L1(H1, H1) can we define Fredholm determinant, det(I + A),

|det(I + A)| ≤ e‖A‖L1 , (2.33)

see [80, §B.5]. A more precise statement is provided by a Weyl inequality (see [80,
Proposition B.24])

|det(I + A)| ≤
∞∏

j=0

(
1+ s j (A)

)
. (2.34)

Lidskii’s theorem [80, Proposition B.27] states that

det(I + A) =
∞∏

j=0

(
1+ λ j (A)

)
,

where {λ j (A)}∞j=0 are the eigenvalues of A. In particular, det(I + A) = 0 if and only
if I + A is not invertible. When λ �→ A(λ) is a holomorphic family of operators a
more precise statement can be made by taking account multiplicities—see [80, §C.4].

We will now take A = −(V R0(λ)ρ)
4, H1 = L2(R3). From (2.10), (2.31) and

(2.32) we see that

s j (V R0(λ)ρ) ≤ ‖V ‖ s j (ρR0(λ)ρ) ≤ CeC(Im λ)−(1+ j)−1/3. (2.35)

Another application of (2.31) shows that

s j

(
(V R0(λ)ρ)

4
)
≤ CeC(Im λ)−(1+ j)−4/3, (2.36)

and hence (V R0(λ)ρ)
4 ∈ L1. Thus we can define

h(λ) := det
(

I − (V R0(λ)ρ)
4
)
. (2.37)

We have

I−(V R0(λ)ρ)
4=

(
I−V R0(λ)ρ +(V R0(λ)ρ)

2 − (V R0(λ)ρ)
3
)
(I+V R0(λ)ρ) .

Hence in view of (2.14) and (2.18) it is easy to believe that the poles of RV (λ) are
included, with multiplicities, among the zeros of h(λ)—see [80, Theorem 3.23]:

mV (λ0) ≤ 1

2π i

∮

λ0

h′(λ)
h(λ)

dλ. (2.38)

Remark It is not difficult to see that we could, just as in [278], take det(I −
(V R0(λ)ρ)

2). But the power 4 makes some estimates more straightforward. We could
also have taken a modified determinant of I +V R0(λ)ρ [80, Theorem 3.23, §B.7] and
that would give an entire function whose zeros are exactly the resonances of V . That
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works in dimension three but in higher dimensions the modified determinants grow
faster than (2.30)—see [278].

Proof of Theorem 3 Jensen’s formula relates the number of zeros of an entire function
h to its growth: if n(r) is the number of zeros of h in |z| ≤ r

∫ r

0

n(t)

t
dt = 1

2π

∫ 2π

0
log

∣
∣
∣h(reiθ )

∣
∣
∣ dθ − log |h(0)| ,

where we assumed that h(0) �= 0 (an easy modification takes care of the general case).
By changing r to 2r , it follows that

n(r) ≤ 1

log 2
sup
|λ|≤2r

log |h(λ)| − log |h(0)| .

It follows from this and (2.38) that

|h(λ)| ≤ AeA|λ|3 �⇒ n(r) ≤ Cr3 �⇒ NV (r) ≤ Cr3.

To prove the bound on h we first note that (2.36) and (2.33) show that |h(λ)| ≤ C for
Im λ ≥ 0. To get a good estimate for Im λ ≤ 0 we use (2.31) and (2.34):

|h(λ)| ≤
∞∏

k=0

(
1+ sk

(
(V R0(λ)ρ)

4
))
≤
∞∏

k=0

(
1+ ‖V ‖4L∞ s[k/4] (ρR0(λ)ρ)

4
)
.

(2.39)
Hence we need to estimate s j (ρR0(λ)ρ) for ρ ∈ C∞c (Rn).

For Im λ ≥ 0 we already have the estimate (2.35). To obtain estimates for Im λ ≤ 0
we use (2.5) to write

ρ (R0(λ)− R0(−λ)) ρ = iλ
2 ρE

(
λ̄
)∗

E(λ)ρ

Hence, using (2.31) and (2.35) again,

s j (ρR0(λ)ρ) ≤ C |λ| ‖E(λ)ρ‖ s[ j/2] (E(λ)ρ)+ s[ j/2] (ρR0(−λ)ρ)
≤ C exp(C |λ|)s[ j/2] (E(λ)ρ)+ C(1+ j)−1/3 . (2.40)

To estimate s j (E(λ)ρ) we use the Laplacian on the sphere, −�S2 and the estimate:

∥
∥
∥
(−�S2 + 1

)

E(λ)ρ

∥
∥
∥ ≤ C sup

ω∈Sn−1,|x |≤R

∣
∣
∣(−�ω + 1)
 eiλ〈x,ω〉

∣
∣
∣

≤ C
 exp(C |λ|)(2
)!,

where we estimated the supremum using the Cauchy estimates and assumed that
supp ρ ⊂ B(0, R). (We follow the usual practice of changing the value of C from line
to line.)
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From the explicit formula for the eigenvalues of −�S2 (given by k(k + 1) with
multiplicity k + 1), or from the general counting law (2.29), we see that

s j

((−�S2 + 1
)−
) ≤ C
(1+ j)−
.

The combination of the last two estimates gives

s j (E(λ)ρ) ≤ s j

((−�S2 + 1
)−
) ∥∥

∥
(−�S2 + 1

)

Eρ(λ)

∥
∥
∥

≤ C
(1+ j)−
 exp(C |λ|)(2
)! . (2.41)

We now optimize the estimate (2.41) in 
 which gives

s j (E(λ)ρ) ≤ C exp
(

C |λ| − j
1
2 /C

)
. (2.42)

Going back to (2.40) we obtain

s j (V R0(λ)ρ) ≤ C exp
(

C |λ| − j
1
2 /C

)
+ C(1+ j)−

1
3

≤
{

eC|λ|+C , j ≤ C |λ|2
C(1+ j)− 1

3 , j ≥ C |λ|2 .
(2.43)

Returning to (2.39) we use (2.43) as follows

|h(λ)| ≤
∏

k≤C|λ|2
eC|λ|+C

⎛

⎝exp
∑

k≥C|λ|2
k−4/3

⎞

⎠ ≤ CeC|λ|3 , (2.44)

which completes the proof. ��
The key to fighting exponential growth when Im λ < 0 is analyticity near infin-

ity which is used implicitely in (2.41)–(2.44). That is a recurrent theme in many
approaches to the study of resonances—see 2.6.

Resonance counting has moved on significantly since these early results. Some of
the recent advances will be reviewed in Sect. 3.4, see also [279] for an account of
other early works. The most significant breakthrough was Sjöstrand’s discovery [240]
of geometric upper bounds on the number of resonances in which the exponent is no
longer the dimension as in (2.26) and (2.29) but depends on the dynamical properties
of the classical system.

2.4 Resonance free regions

The imaginary parts of resonances are interpreted as decay rates of the corresponding
resonant states—see Sect. 2.5 for a justification of that in the context of the wave
equation. If there exists a resonance closest to the real axis then (assuming we can
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justify expansions like (1.2)—see Theorems 5,12) its imaginary part determines the
principal rate of decay of waves—see the end of this section for some comments on
that. If waves are localized in frequency then imaginary parts of resonances with real
parts near that frequency should determine the decay of those waves.

But to assure the possibility of having a principal resonance, that is a resonance
closest to the real axis, we need to know that there exists a strip without any reso-
nances. Hence it is of interest to study high frequency resonance free regions which
are typically of the form

Im λ > −F(Re λ), Re λ > C, F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(a) e−αx , α > 0
(b) M
(c) M log x
(d) γ xβ, β ∈ R, γ > 0

(2.45)

where M > 0 may be fixed or arbitrarily large. In the setting of compactly supported
potentials we see cases of (c) and (d): fixed M for bounded potentials [162], arbitrary
M for smooth potentials [262] and β = 1/a for potentials in the a–Gevrey class
[110]. For applications it is important that the statement about resonance free region
is quantitative which means that it comes with some resolvent bounds—see (2.46)
below and for applications Sect. 2.5.

Here we present the simplest case:

Theorem 4 Suppose that V ∈ L∞(R3), supp V ⊂ B(0, R0), and that RV (λ) is the
scattering resolvent of Theorem 2.

Then we can find A > 0 such that for any χ ∈ C∞c (B(0, R1)), R1 ≥ R0, there
exists C for which

‖χ RV (λ)χ‖L2→H j ≤ C (1+ |λ|) j−1 e2R1(Im λ)− , j = 0, 1, (2.46)

when Im λ > − 1
2R0

log |Re λ| + A.

Proof Without loss of generality we can take χ which is equal to 1 on the support of
ρ used in (2.19). Then using Theorem 1, (2.14), (2.18) and (2.21) we see that

‖χ RV (λ)χ‖L2→H j =
∥
∥
∥χ R0(λ)χ (I+V R0(λ)ρ)

−1 (I−Vχ R0(λ)χ(1−ρ))

∥
∥
∥

L2→H j

≤ ‖χ R0(λ)χ‖L2→H j (1+‖V ‖∞ ‖χ R0(λ)χ‖)
∥
∥
∥(I+V R0(λ)ρ)

−1
∥
∥
∥

≤ C1(1+ |λ|) j−1e4R1(Im λ)−
∥
∥
∥(I + V R0(λ)ρ)

−1
∥
∥
∥ ,

where the norms are operator norms L2 → L2 unless indicated otherwise. Assuming,
as we may that, supp ρ ⊂ B(0, R0) (the only requirement on ρ ∈ C∞c (R3) is that it is
equal to 1 on the support of V ), it is sufficient to prove that there exist A such that

∥
∥
∥(I + V R0(λ)ρ)

−1
∥
∥
∥

L2→L2
< 2 when Im λ > − 1

2R0
log |Re λ| + A. (2.47)
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However, (2.10) applied with j = 0 gives

‖V R0(λ)ρ‖ ≤ C2(1+ |λ|)−1e2R0(Im λ)− < 1
2 ,

once A is large enough (depending on C2 which depends on ρ and V ). This completes
the proof as we can then invert I + V R0(λ)ρ as a Neumann series. ��

In the setting of obstacle scattering, (see Fig. 15 for an example and [80, §§4.1,4.2]
for a general framework which includes this case) the study of resonance free regions
and of the closely related decay of waves was initiated by Lax–Phillips [162],
Morawetz [187] and Ralston [218], see also Morawetz–Ralston–Strauss [189]. These
early results stressed the importance of the billiard flow1 and provided an impetus for
the study of propagation of singularities for boundary value problems by Andersson,
Ivrii, Melrose, Lebeau, Sjöstrand and Taylor—see Hörmander [137, Chapter 24] and
references given there. A direct method, alternative to Lax–Phillips theory, for relating
propagation of singularities to resonance free strips was developed by Vainberg [262],
[80, §4.6]. All the possibilities in (2.45) can occur in the case of scattering by obstacles
with smooth boundaries:

Geometry Resonance free region

Arbitrary obstacle (a) [37]; optimal for obstacles with elliptic closed orbits [254,256,260]
Two convex obstacles (b) with a pseudo-lattice of resonances below the strip [104,139],

hence optimal
Several convex obstacles (b) with M determined by a topological pressure of the chaotic system

[103,140]; an improved gap [210]
Smooth non-trapping
obstacles

(c) with arbitrarily large M [179,262], using propagation of
singularities [137, Chapter 24];

Analytic non-trapping
obstacles

(d) with β = 1
3 [12,215] based on propagation of Gevrey-3

singularities [164]; optimal for convex obstacles
Smooth strictly convex
obstacles

(d) with β = 1
3 and γ determined by the curvature [124,151,246];

Weyl asymptotics for resonances in cubic bands ∼ rn−1 [247]

There has been recent progress in the study of non-smooth obstacles, and in par-
ticular in taking account of the effect of diffraction at conic points on the distribution
of resonances—see the lecture by Wunsch [272] for a survey and references.

Another rich set of recent results concerns scattering by “thin” barriers modeled
by delta function potentials (possibly energy dependent) supported on hypersurfaces
in R

n . For example, refinements of the Melrose–Taylor parametrix techniques give,
in some cases, the optimal resonance free region defined by F(x) = x−β , β > 0
and a mathematical explanation of a Sabine law for quantum corrals [17]. See the
works of Galkowski [96–98] and Smith–Galkowski [100] where references to earlier
literature on resonances for transmission problems can also be found, and Fig. 14 for
an illustration.

1 That is the flow defined by propagation along straight lines with reflection at the boundary; trapping refers
to existence of trajectories which never escape to infinity.
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Fig. 14 An illustration of the
results of [96,98]. At the top an
image of a quantum corral
formed from individual iron
atoms taken using a scanning
tunneling microscope; this
motivated the quantum Sabine
law of [17] where other
numerical experiments can be
found. In the middle resonances
computed for a simple model of
a circular quantum corral:
scattering by a delta function of
the form δ

S1 where S
1 ⊂ R

2 is
the unit circle. It shows
resonances and the bound on the
resonance free region predicted
by the Sabine law (the dashed
black line). To understand the
Sabine law, consider, u0, a
function localized in space and
momentum to (x0, ξ0) ∈ �× S

1

up to the scale allowed by the
uncertainty principle (a “wave
packet”). A wave started with
initial data u0 propagates along
the billiard flow starting from
(x0, ξ0). At each intersection of
the billiard flow with the
boundary, the amplitude inside
of � will decay by a factor, R,
depending on the point and
direction of intersection.
Suppose that the billiard flow
from (x0, ξ0) intersects the
boundary at (xn , ξn) ∈ ∂�× S

1,
n > 0. Let ln = |xn+1 − xn | be
the distance between two
consecutive intersections with
the boundary, as shown at the
bottom figure. Then the
amplitude of the wave decays by
a factor

∏n
i=1 Ri in time∑n

i=1 li where Ri = R(xi , ξi ).
The energy scales as amplitude
squared and since the imaginary
part of a resonance gives the
exponential decay rate of L2

norm, this leads us to the
heuristic that resonances should
occur at Im λ = log |R|2

/
(2l̄)

where the mean is defined by
f̄ = 1

N
∑N

i=1 fi . We call this
heuristic rule the quantum
Sabine law
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Fig. 15 Left an actual Helmholtz resonator (reproduced from https://en.wikipedia.org/wiki/
Helmholtz_resonance under the Creative Commons licence). Right a general mathematical model allowing
for arbitrary cavities and exteriors [64]. The shaded part is the obstacle O and resonances are the values
of λ for which there exists a solution to (−� − λ2)u = 0 in R

n \O, u|∂O = 0 which is outgoing, that
is, u|Rn\B(0,R) = R0(λ) f |Rn\B(0,R) for some f ∈ L2

comp(R
n) and R � 1. This is also an example in

which high energy quasimodes supported in the cavity provide an approximation to resonances [254,260]
with imaginary parts O(e−c|Re λ|)

Finally we make some comments on low energy bounds on resonance widths. Uni-
versal lower bounds bounds on | Im λ| for star shaped obstacles were obtained by
Morawetz [187,188] for obstacle problems and by Fernández–Lavine [91] for more
general operators. In the case of star shaped obstacles the best bound is due to Ralston
[219] who using Lax–Phillips theory [162] showed that in all odd dimensions

Im λ < −2 diam(O)−1.

Remarkably this bound is optimal for the sphere in dimensions three and five. The
obvious difficulty in obtaining such bounds is the lack of a variational principle due
to the non-self-adjoint nature of the problem (see Sect. 2.6).

The opposite extreme of star shaped obstacles are Helmholtz resonators shown in
Fig. 15. Here a cavity is connected to the exterior through a neck of width ε. A recent
breakthrough by Duyckaerts–Grigis–Martinez [64] provided precise asymptotics (as
ε→ 0) of the resonance width associated to the lowest mode of the cavity.

2.5 Resonance expansions of scattered waves

We will use Theorem 4 and prove an expansion of solutions to the wave equation in
terms of resonances—see (1.2) and Figs. 6 and 7. To simplify the presentation we
make the following assumption:
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PV has no eigenvalues and 0 is not a resonance;
all resonances of PV are simple 2 ,

see [80, §2.2,3.2.2] for the general case and [80, §7.5] for resonance expansions in the
case where trapping is allowed.

Theorem 5 Suppose that V ∈ L∞(R3) is real valued, supp V ⊂ B(0, R0) and that
the assumptions above holds. Let w(t, x) be the solution of

⎧
⎪⎨

⎪⎩

(
∂2t + PV

)
w(t, x) = 0 ,

w(0, x) = f (x) ∈ H1(B(0, R1)) ,

∂tw(0, x) = g(x) ∈ L2(B(0, R1)) ,

(2.48)

where R1 ≥ R0. Then for any a > 0,

w(t, x) =
∑

Im λ j>−a

e−iλ j tw j (x)+ Ea(t) , (2.49)

where {λ j }∞j=1 are the resonances of PV and w j are the corresponding resonant states,

w j = Resλ=λ j (i RV (λ)g + λRV (λ) f ) . (2.50)

exists a constants C depending on V , R1 and a such that

‖Ea(t)‖H1(B(0,R1))
≤ Ce−ta (‖ f ‖H1 + ‖g‖L2

)
, t ≥ 0. (2.51)

Interpretation. Suppose that instead of solving the wave equation (2.48) with x ∈ R
3

we consider it for x ∈ � � R
3, with, say, Dirichlet boundary conditions, u(x, t) = 0,

x ∈ ∂� (for ∂� smooth). Then the solution can be expanded in a series of eigen-
functions of the Dirichlet realization of PV . Let us assume for simplicity that all
eigenvalues are positive, 0 < λ21 ≤ λ22 · · · ≤ λ2j → ∞, PV ϕ j = λ2jϕ j , ϕ j |∂� = 0,
〈ϕi , ϕ j 〉L2(�) = δi j . For j ∈ −N

∗ we then put

λ− j := −λ j < 0, ϕ− j := ϕ j .

The solution of (2.48) on R×� has an expansion converging in C∞(R; L2(�)):

w(t, x) =
∑

j∈Z∗
e−iλ j t u j (x),

u j (x) = 1
2

(
〈 f, ϕ j 〉L2(�) + iλ−1j 〈g, ϕ j 〉L2(�)

)
ϕ j (x). (2.52)

A more invariant way to express u′j s is given by (2.50) with RV (λ) = (PV − λ2)−1,
the resolvent of the Dirichlet realization of PV on �.

2 This is expected to be true generically and is claimed in [156]. The proof is incomplete so this seems to
be an open problem.
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Hence (2.49) is an analogue of the standard expansion (2.52). However, for large
times the solution u(t, x) (that is both u j ’s and the remainder E A) are more regular.
The proof shows (by applying (2.46) with j = 2, which is also valid) that

‖Ea(t)‖H2(B(0,R1))
≤ Ce−ta (‖ f ‖H1 + ‖g‖L2

)
, t > 10R1, (2.53)

and if V ∈ C∞ we could replace H2(B(0, R1)) in (2.53) by H p for any p. That
smoothing is visible in Fig. 6. This indicates in a simple case a relation between
distribution of resonances and propagation of singularities—see [262], [80, §4.6] and
also [14,16] and [99] for some recent applications.

In (2.53) we did not aim at the optimality of the condition t > 10R1: using propa-
gation of singularities it suffices to take t > 2R1.

Proof of Theorem 5 We first consider (2.48) with f ≡ 0 and g ∈ H2
comp. By the

spectral theorem, the solution of (2.48) can be written as

w(t) = U (t)g := sin t
√

PV√
PV

=
∫ ∞

0

sin tλ

λ
d Eλ(g) (2.54)

where d Eλ is the spectral measure, which just as in the case of the free operator P0
(2.5), (2.6), can be expressed using Stone’s formula [80, Theorem B.8]:

d Eλ = 1

π i
(RV (λ)− RV (−λ)) λdλ. (2.55)

Hence, as in (2.7),

w(t) = 1

π i

∫ ∞

0
sin tλ(RV (λ)− RV (−λ))gdλ

= 1

2π

∫

R

e−i tλ(RV (λ)− RV (−λ))gdλ . (2.56)

To justify convergence of the integral we use the spectral theorem (see 2.55) which
shows that

(RV (λ)− RV (−λ)) (1+ PV ) = (1+ λ2) (RV (λ)− RV (−λ)) .

From that we conclude that for χ ∈ C∞c equal to 1 on supp g,

χ (RV (λ)−RV (−λ)) χg = χ (RV (λ)−RV (−λ)) g

= χ (RV (λ)−RV (−λ)) χ(1+ λ2)−1(1+PV )g. (2.57)

Theorem 4 and the assumption that there is no zero resonance3 shows that

3 We do not prove it here but it is a consequence of Rellich’s uniqueness theorem that for V real valued
RV (λ) has no poles in R \ {0}—see [80, §3.6].
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∗ ∗

∗ ∗

∗ ∗∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗∗ ∗∗

Re λ

Im λ

−A

Im λ = −A − δ log〈λ〉

Fig. 16 The contour used to obtain the resonance expansion

‖χ(RV (λ)− RV (−λ)χ‖L2→H1 ≤ C, λ ∈ R.

Hence the integral on the right hand side of (2.56) converges in H1
loc.

We now want to deform the contour in (2.56). For that we choose r large enough
so that all the resonances with Im λ > −a − δ log(1+ |λ|) are contained in |λ| ≤ r .
If we choose δ < 1

2R0
that is possible thanks to Theorem 4.

We now deform the contour of integration using the following contours:

� := {λ− i (a + ε + δ log(1+ |λ|)) : λ ∈ R} ,
γ±r := {±r − i t : 0 ≤ t ≤ a + ε + δ log(1+ r)} , γr := γ+r ∪ γ−r ,

�r := � ∩ {|λ| ≤ r} , γ∞r := (−∞,−r) ∪ (r,∞) . (2.58)

Here we choose ε and so that there are no resonances on �. We also put

�a := {λ : Im λ ≥ −a − ε − δ log(1+ |λ|)} .

and define

�a(t) := i
∑

λ∈�a

Resλ=λ j

(
χ RV (λ)χe−iλt

)
.

In this notation the residue theorem shows that U (t) defined in (2.54) is given by

χ U (t)g = �A(t)g + E�r (t)+ Eγr (t)+ Eγ∞r (t) , (2.59)

where (with natural orientations—see Fig. 16)

Eγ (t) := 1

2π

∫

γ

e−i tλχ(RV (λ))− RV (−λ))χgdλ . (2.60)

Using (2.46) and (2.57) we obtain

∥
∥Eγ∞r (t)g

∥
∥

H1 ≤ C
∫ ∞

r
(1+ |λ|2)−1 ‖g‖H2 ≤ C

r
‖g‖H2 → 0, r →∞ ,
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and

∥
∥Eγr (t)g

∥
∥

H1 ≤ C(1+ r)4R1δ

1+ r2
‖g‖H2 → 0, r →∞ if δ <

1

2R1
.

Returning to (2.59) we see that

χ U (t)χg = �A(t)g + E�(t)g , g ∈ H2 , (2.61)

where E� is defined using (2.60) with � given in (2.58).
We now show that when t is large enough,

‖E�(t)g‖H1 ≤ Ce−ta ‖g‖L2 . (2.62)

For that we use (2.46) with j = 1 for |λ| > R, and the assumption that there are no
poles of RV (λ) near �. Thus we obtain:

‖E�(t)g‖H1 ≤ Ce−at
∫

R

e−tδ log(1+|λ|)eδ2R1 log(1+|λ|) ‖g‖L2 dλ

≤ Ce−at
∫

R

(1+ |λ|)−δ(t−2R1) ‖g‖L2 dλ

≤ Cεe−at ‖g‖L2 , t > 2R1 + 1/δ + ε .

Since H1 is dense in L2 the decomposition (2.61) is valid for g ∈ L2 proving theorem
for f = 0, once t is large enough. But for bounded t , ‖w(t)‖H1 ≤ C‖g‖L2 . The result
follows by noting that χ Ea(t) = E�(t)g.

The case of arbitrary f ∈ H1
comp and g ≡ 0 follows by replacing sin tλ/λ by cos tλ

in the formula for w(t, x). ��
The expansion of waves provides an (admittedly) weak approximation to cor-

relations (see Fig. 3) related to the Breit–Wigner approximation. Suppose g ∈
L2(B(0, R1)), h ∈ H−1(B(0, R0)) and put U (t) := sin t

√
PV /
√

PV . We define
the following correlation function

ρg,h(t) :=
∫

R3
U (t)g(x)h(x)dx, (2.63)

and its power spectrum:

ρ̂g,h(λ) =
∫ ∞

0
ρg,h(t)e

iλt dt. (2.64)

A formal application of the expansion (2.56) suggests

ρ̂g,h(λ) ∼
∑

Im λ j>−a

Resλ=λ j 〈RV (λ)g, h〉
λ− λ j

(2.65)
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but it is difficult to give useful remainder estimates in general. Expansion (2.65) is
just an expansion of a meromorphic function with simple poles (as assumed here)
following an analogue of (2.11).

For Breit–Wigner type formula near a single resonance in the semiclassical limit see
Gérard–Martinez [105] andGérard–Martinez–Robert [106] and for high energy results
and results for clouds of resonances, Petkov–Zworski [211,212] and Nakamura–
Stefanov–Zworski [194].

We finally comment on expansions on the case of the Schrödinger equation. In that
case the dispersive nature of the equation makes it harder to justify resonance expan-
sions. It can be done when a semiclassical parameter is present, see Burq–Zworski
[40] and Nakamura–Stefanov–Zworski [194], or when one considers a localized
resonance—see Merkli–Sigal [185], Soffer–Weinstein [253] and references given
there.

2.6 Complex scaling in dimension one

In Sect. 2.2 we established meromorphic continuation using analytic Fredholm the-
ory. That allowed us to obtain general bounds on the number of resonances and to
justify resonance expansions. To obtain more refined results relating geometry to the
distribution of resonances, as indicated in Sect. 1.3, we would like to use spectral
theory of partial differential equations. And for that we would like to have a differen-
tial operator whose eigenvalues would be given by resonances. That operator should
also have suitable Fredholm properties. We would call this an effective meromorphic
continuation.

The method of complex scaling produces a natural family of non-self-adjoint oper-
ators whose discrete spectrum consists of resonances. It originated in the work of
Aguilar-Combes [3], Balslev-Combes [10] and was developed by Simon [239], Hun-
ziker [138], Helffer-Sjöstrand [125], Hislop–Sigal [133] and other authors. For very
general compactly supported “black box” perturbations and for large angles of scaling
it was studied in [245]while the case of long range black box perturbationswasworked
out in [241]. The method has been extensively used in computational chemistry—see
Reinhardt [222] for a review. As the method of perfectly matched layers it reappeared
in numerical analysis—see Berenger [19].

In this section we present the simplest case of the method by working in one
dimension.4 The idea is to consider D2

x as a restriction of the complex second derivative
D2

z to the real axis thought of as a contour in C. This contour is then deformed away
from the support of V so that P = D2

x + V (x) can be restricted to it. This provides
ellipticity at infinity at the price of losing self-adjointness.

Before proceeding we need to discuss the definition of resonances in dimension
one. In that case the free resolvent, R0(λ) = (P0 − λ2)−1, P0 = −∂2x , has a very
simple Schwartz kernel,

4 Our presentation is based on [245, §2] and on an upublished note by Kiril Datchev http://www.math.
purdue.edu/~kdatchev/res.ps.
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R0(λ, x, y) = i

2λ
eiλ|x−y|,

whichmeans that as an operator R0(λ) : L2
comp(R)→ L2

loc(R), the resolvent continues

to a meromorphic family with a single pole at λ = 0.5

The approach of Sect. 2.2 carries through without essential modifications and in
particular the characterization of resonant states (2.24) applies. Since for λ �= 0,

u(x) = R0(λ) f, f ∈ L2
comp ⇐⇒ u(x) = a±e±iλx , ±x � 1, u ∈ H2

loc(R),

we have the following characterization of scattering resonances

λ �= 0 is a scattering resonance of PV = −∂2x + V (x), V ∈ L∞comp(R)

�
∃ u ∈ H2

loc(R), (PV − λ2)u = 0, u(x) = a±e±iλx �= 0, ±x � 1, (2.66)

For reasons of simplicity we will not consider multiplicities. The only possibility here
is having algebraic multiplicities since solutions satisfying the condition in (2.66) are
unique up to a multiplicative constant.

We now construct an operator which has resonances as its discrete spectrum. For
that let � ⊂ C be a C1 simple curve. We define differentiation and integration of
functions mapping � to C as follows. Let γ (t) be a parametrization R→ �, and let
f ∈ C1(�) in the sense that f ◦ γ ∈ C1(R). We define

∂z,� f (z0) = γ ′(t0)−1∂t ( f ◦ γ )(t0) , γ (t0) = z0 ,

where the inverse and the multiplication are in the sense of complex numbers.
The chain rule shows that ∂�

z f (z0) is independent of parametrization and that for
F holomorphic near �,

∂z,� F |� = ∂z F |� ,

where ∂z = 1
2 (∂x − i∂y) (see [80, §4.6]).

We make the following assumption on the behaviour of � at infinity:

∃ 0 < θ < π , z± ∈ C , K � C, �\K =
⋃

±

(
z± ± eiθ (0,∞)

)
\ K . (2.67)

An example of � is shown in Fig. 17. One can consider more general behaviour at
infinity such as shown in Fig. 18 where � = {x + ig(x) : x ∈ R} for a specific g.

Given a potential V ∈ L∞comp(R;C) we further assume that

� ∩ R ⊃ [−L , L], supp V ⊂ (−L , L). (2.68)

5 This is consistent with the expansion (1.2) for the free wave equation: the single pole is “responsible” for
the failure of the sharp Huyghens principle in that case.
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Re z

Im z

R−R

Γ

θ

Fig. 17 Curve � used in complex scaling. The curve is given by x �→ x + ig(x) for a C∞ function g
satisfying g(x) = 0 for −R ≤ x ≤ R and g(x) = x tan θ for |x | sufficiently large, where θ is a given
constant

Re z

Im z

R−R

Γ

Fig. 18 Curve � used in PML computations—see [20] and references given there. A typical curve is given
by a function R $ x �→ x + ig(x) where g(x) = −|x + R|α for x < −R, g(x) = 0 for−R ≤ x ≤ R, and
g(x) = (x − L)α for x > R, where α > 1

The potential V is then a well defined function on �, so that putting

PV,� := −∂2z,� + V (z) , (2.69)

makes sense.
We nowwant to relate eigenvalues of PV,� to the resonances, that is to λ’s for which

(2.66) holds. For that let us write � as a disjoint union of connected components:

� = �− ∪ [−L , L] ∪ �+

where Im z →±∞ on �±. We then observe that

(
PV,� − λ2

)
u� �⇒ u�(z) = a±e±iλz + b±e∓iλz, z ∈ �±. (2.70)
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That is because on �± we are away from the support of the potential and the unique
solutions to our differential equations have to come from holomorphic solutions to

(
−∂2z − λ2

)
U± = 0, u�

∣
∣
�± = U±

∣
∣
�± . (2.71)

Condition (2.67) shows that

Re
(±iλz|�±

) = − sin(θ + arg λ) |λ| |z| +O(1) < −ε |λ| |z| +O(1),

Re
(∓iλz|�±

) = sin(θ + arg λ) |λ| |z| +O(1) > ε |λ| |z| +O(1).

Hence u� ∈ L2(�) if and only if b± = 0 in (2.70). But then

u(x) :=
⎧
⎨

⎩

U+|[L ,∞)(x), x > L ,

u�(x), x ∈ [−L , L],
U−|(−∞,−L](x), x < −L ,

satisfies the condition in (2.66) and hence λ is a resonance.
This argument can be reversed and consequently we basically proved [80, Theorem

2.20]:

Theorem 6 (Complex scaling in dimension one) Suppose that � satisfies (2.67) and
PV,� is defined by (2.69) with V ∈ L∞comp(R;C). Define

�� :=
{
λ ∈ C \ R− : −θ < arg λ < π − θ

}
,

where arg : R− → (−π, π).
For λ ∈ �� ,

PV,� − λ2 : H2(�)→ L2(�) , (2.72)

is a Fredholm operator and the spectrum of P�,V in �� is discrete.
Moreover, the eigenvalues of PV,� in �� coincide with the resonances of PV there,

and

m(λ) = 1
2π i trL2(�)

∮

λ

(
ζ 2 − PV,�

)−1
2ζdζ, λ ∈ ��, (2.73)

where m(λ) is the multiplicity of the resonance at λ (see Definition 1) and the integral
is over a sufficiently small positively oriented circle enclosing λ.

Interpretation. We first remark that

�λ,� = 1

2π i

∮

λ

(
ζ 2 − PV,�

)−1
2ζ dζ : L2(�)→ L2(�),

is a projection. Hence, the method of complex scaling identifies the multiplicity of
a resonance with a trace of a (non-orthogonal) projection. We gain the advantage of
being able to use methods of spectral theory, albeit in the murkier non-normal setting.
The resonant states, that is the outgoing solutions to (P−λ2)u, are restrictions toR of
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functions which continue holomorphically to fuctions with L2 restrictions to �. Since
have dealt only with compactly supported potentials our countours � had to coincide
with R near the support of V . The method generalizes to the case of potentials which
are analytic and decaying in conic neighbourhoods of ±(L ,∞). Generalizations to
higher dimensions are based on the same principles but the treatment is no longer as
explicit.

2.7 Other results and open problems

For V ∈ C∞c (Rn), real valued, existence of infinitely many resonances was proved by
Melrose [184] for n = 3 and by Sá Barreto–Zworski [230] for all odd n (including
for any superexponentially decaying potentials). The surprising fact that there exist
complex valued potentials in odd dimensions greater than or equal to three that have
no resonances at all was discovered by Christiansen [46].

Quantitative statements about the counting function, NV (r), of resonances in {|λ| ≤
r} were obtained by Christiansen [45] and Sá Barreto [229]:

lim sup
r→∞

NV (r)

r
> 0, V ∈ C∞c (Rn;R), V �= 0.

For potentials generic in C∞c (Rn;F) or L∞c (Rn;F), F = R or C, Christiansen and
Hislop [47] proved a stronger statement

lim sup
r→∞

log NV (r)

log r
= n. (2.74)

The limit (2.74) means that the upper bound NV (r) ≤ Crn in Theorem 3 is optimal
for generic complex or real valued potentials. The only case of asymptotics ∼ rn for
non-radial potentials was provided by Dinh and Vu [58] who proved that potentials
in a large subset of L∞(B(0, 1)) have resonances satisfying the Weyl law (2.28). The
proofs of these results use techniques from several complex variables.

Recently Smith–Zworski [252] showed that any real valued

V ∈ H
n−3
2 (Rn) ∩ L∞comp(R

n),

has infinitely many resonances and any V ∈ L∞comp(R
n) has some resonances (n odd).

It is still a (ridiculous) open question if every real bounded potential (�= 0) has infinitely
many resonances.

The most frustrating open problem is existence of an optimal lower bound. It is not
clear if we can expect an asymptotic formula.

Conjecture 1 Suppose V ∈ L∞comp(R
n), n odd, is real-valued and non-zero. Then

there exists c > 0 such that

NV (r) ≥ crn,
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where the counting function NV (r) is defined in (2.25).

All of the above questions can be asked in even dimensions and for obstacle
problems in which case the bound (2.26) was established by Melrose [182] for odd
dimensions and by Vodev [266,267] in even dimension. A remarkable recent advance
is due to Christiansen [48] who proved that for any obstacle in even dimensions we
always have rn growth for the number of resonances—see that paper for other refer-
ences concerning lower bounds in even dimension.

Existence of resonances can be considered as a primitive inverse problem: a poten-
tial with no resonances is identically zero. In one dimension or in the radial case
finer inverse results have been obtained: see Korotyaev [160,161], Brown–Knowles–
Weikard [36], Bledsoe–Weikard [18], Datchev–Hezari [55] and references given
there.

Another recent development in the study of resonances for compactly supported
potentials concerns highly oscillatory potentials V (x) = W (x, x/ε) where W : Rn ×
R

n/Zn → R (or C) is compactly supported in the first set of variables. Precise
results for n = 1 were obtained by Duchêne–Vukićević–Weinstein [63]: resonances
are close to resonances of W0(x) :=

∫
Rn/Zn W (x, y)dy, and the difference is given by

ε4α +O(ε5) where, in the spirit of homogenization theory, α can be computed using
an effective potential. In a remarkable follow-up Drouot [61] generalized this result
to all odd dimensions and obtained a full asymptotic expansion in powers of ε.

3 Some recent developments

We will now describe some recent developments in meromorphic continuation, res-
onance free regions, resonance counting and resonance expansions for semiclassical
operators −h2�g + V on Riemannian manifolds with Euclidean and non-Euclidean
infinities. We will also formulate some conjectures: some quite realistic (even num-
bered) and some perhaps less so (odd numbered).6

Before doing it let us mention some interesting topics which lie beyond the scope
of this survey.Wewill discuss hyperbolic trapped sets but not homoclinic trapped sets.
Although not stable under perturbations these trapped sets occur in many situations
each with its own interesting structure in distribution of resonances. An impressively
precise study of this has been made by Bony–Fujiie–Ramond–Zerzeri [28]. In our
survey of counting results we will concentrate on fractal Weyl laws and we refer
to Borthwick–Guillarmou [32] for recent results on resonance counting in geomet-
ric settings. In the semiclassical Euclidean setting Sjöstrand [244] obtained precise
asymptotic counting results in the case of random potentials. The introduction of ran-
domness should be a beginning of a new development in the subject. We also do not
discuss the important case of resonances for magnetic Schrödinger operators and refer
to Alexandrova–Tamura [4], Bony–Bruneau–Raikov, [26] and Tamura [258,259] for

6 Small prizes are offered by the author for the first proofs of the conjectures within five years of the

publication of this survey: a dinner in a restaurant for an even numbered conjecture and in a
restaurant, for an odd numbered one.
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some recent results and pointers to the literature. We do not address issues around
threshold resonances (see Jensen–Nenciu [150] and references given there) and their
importance in dispersive estimates (see the survey by Schlag [233]) and for non-linear
equations (for an example of a linearly counterintuitive phenomenon, see [135, Fig-
ure 6]). Finally, for the role that shape resonances have had in the study of blow-up
phenomena we defer to Perelman [208] and Holmer–Liu [134] and to the references
given there.

The section is organized as follows: in Sect. 3.1 we review Vasy’s method for defin-
ing resonances for asymptotically hyperbolic manifolds. In Sect. 3.2 we first review
general results on resonance free regions and then describe the case of hyperbolic (in
the dynamical sense) trapped sets. As applications of results in Sects. 3.1 and 3.2 we
discuss expansions of waves in black hole backgrounds in Sect. 3.3. The last Sect. 3.4
is devoted to mathematical study of fractal Weyl laws with some references to the
growing physics literature on that subject.

3.1 Meromorphic continuation in geometric scattering

In Sect. 2.2 we showed how to continue the resolvent meromorphically across the
spectrum using analytic Fredholm theory. In Sect. 2.6 we presented the method of
complex scaling which provides an effective meromorphic continuation in the sense
that resonances are identifiedwith eigenvalues of non-self-adjoint Fredholmoperators.
As one can see already in the one dimensional presentation that method is closely tied
to the structure of the operator near infinity.

With motivation coming from general relativity in physics (see Sect. 3.3) and from
analysis on locally symmetric spaces it is natural to consider different structures near
infinity. Here we will discuss complete asymptotically hyperbolic Riemannian mani-
folds modeled on the hyperbolic space near infinity. For more general hyperbolic ends
see Guillarmou–Mazzeo [119] where meromorphy of the resolvent was established
using analytic Fredholm theory without providing an effective meromorphic contin-
uation as defined above. We also remark that complex scaling method is possible in
the case of manifolds with cusps. For a subtle application of that see a recent paper
by Datchev [52] where existence of arbitrarily wide resonance free strips for negative
curvature perturbations of 〈z �→ z + 1〉\H2 is established. For a recent analysis of
a higher rank symmetric spaces and references to earlier works see Mazzeo–Vasy
[177,178] and Hilgert–Pasquale–Przebinda [126].

A basic example of our class of manifolds is given by the hyperbolic space H
n ,

which can be viewed as the open unit ball in R
n with the metric

g = 4
dw2

(1− |w|2)2 , w ∈ BRn (0, 1). (3.1)

A more interesting family of examples is provided by convex co-compact hyperbolic
surfaces, which are complete two-dimensional Riemannian manifolds of constant
sectional curvature −1 whose infinite ends are funnels, that is they have the form
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Fig. 19 Left surfaces X (
1, 
2, 
3) with three funnels determined by lengths of the geodesic boundaries
of the funnels (3.2)—see [31, §16.2.1]. Right funneled tori Y (
1, 
2, ϕ) parametrized by the length of the
two geodesics generating homotopy group of the torus and the angle between. The left example has infinity
with three components; the right one with one component

[0,∞)v × S
1
θ , S

1 = R/
Z, 
 > 0; g = dv2 + cosh2 v dθ2. (3.2)

Convex co-compact hyperbolic surfaces can be viewed as the quotients of H
2 by

certain discrete subgroups of its isometry group PSL(2;R) [31], and have profound
applications in algebra and number theory—see for instance Bourgain–Gamburd–
Sarnak [35]. Furthermore, they give fundamental examples of hyperbolic trapped sets
and are a model object to study the effects of hyperbolic trapping on distribution of
resonances. Examples which will be discussed in Sects. 3.2, 3.4 are shown in Fig. 19.

The examples above are generalized as even asymptotically hyperbolic manifolds.
To define that class of manifolds, suppose that M is a compact manifold with boundary
∂M �= ∅ of dimension n+1.We denote by M the interior of M . TheRiemannianmani-
fold (M, g) is even asymptotically hyperbolic if there exist functions y′ ∈ C̄∞(M; ∂M)

and y1 ∈ C̄∞(M; (0, 2))7, y1|∂M = 0, dy1|∂M �= 0, such that

M ⊃ y−11 ([0, 1)) $ m �→ (y1(m), y′(m)) ∈ [0, 1)× ∂M (3.3)

is a diffeomorphism, and near ∂M the metric has the form,

g|y1≤ε =
dy21 + h(y21 )

y21
, (3.4)

where [0, 1) $ t �→ h(t), is a smooth family of Riemannian metrics on ∂M . For the
discussion of invariance of this definition and of its geometric meaning we refer to
[80, §5.1] and [115, §2]. Here we will point out how it fits with the two examples. For
(3.1) we have

g = 4
dw2

(1− |w|2)2 =
dy21 + h(y21 )

y21
,

7 Here we follow the notation of [137, Appendix B] where C̄∞(M; V ) denotes functions M → V , which
are smoothly extendable across ∂M and Ċ∞(M; V ) functions which are extendable to smooth functions
supported in M .
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y1 := 2 (1− |w|)
1+ |w| ∈ [0, 2), y′ := w

|w| ∈ S
n−1, h(t) = (1− t)2h0(y′, dy′), (3.5)

where h0 is the standard metric on the unit sphere S
n−1. In the case of (3.2), we have

a coordinate system y on {v > 0}:

g = dv2 + cosh2 v dθ2 = dy21 + h(y21 )

y21
,

y1 = 2e−v ∈ [0, 2), y2 = θ ∈ S
1, h(t) = (1+ t)2dy22 . (3.6)

Let −�g ≥ 0 be the Laplace–Beltrami operator for the metric g. Since −�g is a
self-adjoint operator, the spectrum is contained in [0,∞) the operator−�g−λ2−( n

2 )
2

is invertible on H2(M, d volg) for Im λ > n
2 . Hence we can define

R(λ) :=
(
−�g − λ2 − n2

4

)−1 : L2 (M, d volg
)→ H2(M, d volg), Im λ > n

2 .

(3.7)
It turns out that R(λ) : L2 → H2 is meromorphic for Im λ > 0: the poles correspond
to L2 eigenvalues of −�g and hence lie in i(0, n

2 ). A closely related standard fact is
that the continuous spectrum of−�g is equal to [( n

2 )
2,∞). This explains our “shifted”

convention in defining R(λ).
Elliptic regularity shows that R(ζ ) : Ċ∞(M) → C∞(M), Im λ > n/2. Hence is

natural to consider meromorphic continuation of

R(λ) : Ċ∞(M) −→ C∞(M), λ ∈ C. (3.8)

That meromorphy was first established for any asymptotically hyperbolic metric (that
is a metric of the form (3.4) but with h = h(y1)) by Mazzeo–Melrose [176]. Other
early contributions were made by Agmon [2], Fay [90], Lax–Phillips [163], Mandou-
valos [172], Patterson [205–207] and Perry [209]. Guillarmou [115] showed that the
evenness condition was needed for a global meromorphic continuation and clarified
the construction given in [176].

All these arguments relied on analytic Fredholm theory (2.17) and did not provide
an effective continuation in the sense Sect. 2.6. A recent breakthrough due to Vasy
[263] provided such effective continuation by expressing R(λ) using P(λ)−1 where

λ �→ P(λ) is a holomorphic family of differential operators.

Hence, microlocal methods can now be used to prove results which were not available
before, for instance existence of resonance free strips for non-trapping metrics [264].
Other applications in the theory of resonances will be presented in Sects. 3.2, 3.4.
Roughly speaking, thanks to Vasy’s method we can now concentrate on the interac-
tion region where interesting dynamical phenomena occur and treat infinity as a black
box, almost in the same way as complex scaling allowed us in the Euclidean case. (See
Wunsch–Zworski [273] for a class of asymptotically Euclideanmanifolds to which the
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method of complex scaling also applies.) We also mention some applications not cov-
ered by this survey: a quantitative version of Hawking radiation by Drouot [61], expo-
nential decay of waves in the Kerr–de Sitter case and the description of quasi-normal
modes for perturbations of Kerr–de Sitter black holes by Dyatlov [65,68], rigorous
definition of quasi-normalmodes forKerr–Anti de Sitter black holes8 byGannot [101].
The construction of the Fredholm family also plays a role in the study of linear and
non-linear scattering problems—see the works of Baskin–Vasy–Wunsch [15], Hintz–
Vasy [129,130] and references given there. In particular, it is important in the recent
proof of nonlinear stability of Kerr–de Sitter black holes by Hintz and Vasy [131].

We will follow the presentation of [282] and for simplicity will not consider the
semiclassical case. That of course is essential for applications and can be found in a
textbook presentation of [80, Chapter 5].

Let y′ ∈ ∂M denote the variable on ∂M . Then (3.4) implies that near ∂M , the
Laplacian has the form

−�g =
(
y1Dy1

)2 + i
(

n + y21γ (y21 , y′)
)

y1Dy1 − y21�h(y21 )
,

γ (t, y′) := −∂t h̄(t)/h̄(t), h̄(t) := det h(t), D := 1
i ∂. (3.9)

Here �h(y21 )
is the Laplacian for the family of metrics on ∂M depending smoothly on

y21 and γ ∈ C∞([0, 1] × ∂M). (The logarithmic derivative defining γ is independent
of of the density on ∂M needed to define the determinant h̄.)

As established in [176] (see [282, §6] for a direct argument) the unique L2 solution,
u, to (−�g − λ2 − ( n

2 )
2)u = f ∈ Ċ∞(M), Im λ > 0, satisfies

u = y
−iλ+ n

2
1 C̄∞(M) and y

iλ− n
2

1 u|y1<1 = F(y21 , y′), F ∈ C̄∞([0, 1] × ∂M).

(3.10)
This suggests two things:

• in order to reduce the investigation to the study of regularity we should conjugate

−�g by the weight y
−iλ+ n

2
1 .

• the desired smoothness properties should be stronger in the sense that the functions
should be smooth in (y21 , y′).
Motivated by this we calculate,

y
iλ− n

2
1

(
−�g − λ2 − ( n

2

)2)
y
−iλ+ n

2
1 = x1P(λ), x1 = y21 , x ′ = y′, , (3.11)

where, near ∂M ,

P(λ) = 4
(

x1D2
x1 − (λ+ i)Dx1

)
−�h + iγ (x)

(
2x1Dx1 − λ− i n−1

2

)
. (3.12)

8 A related approach tomeromorphic continuation, alsomotivated by the study ofAnti-de Sitter black holes,
was independently developed by Warnick [269]. It is based on physical space techniques for hyperbolic
equations and it also provides meromorphic continuation of resolvents for even asymptotically hyperbolic
metrics [269, §7.5].
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We note that (3.11) makes sense globally since away from the boundary y1 is a smooth
non-zero function on M .

To define the operator P(λ) geometrically we introduce a new manifold using
coordinates (3.3) and x1 = y21 for y1 > 0:

X = [−1, 1]x1 × ∂M �
(

M \ y−1((0, 1))
)
. (3.13)

We note that X1 := X ∩ {x1 > 0} is diffeomorphic to M but X1 and M have different
C∞-structures. We can extend x1 → h(x1) to a family of smooth non-degenerate
metrics on ∂M on [−1, 1]. Using (3.9) that provides a natural extension of the function
γ appearing (3.11). If in local coordinates we define

dμg = h̄(x)dx . (3.14)

then with respect to L2 = L2(X, dμg) we have

P(λ)∗ = P(λ̄). (3.15)

To define spaces on which P(λ) is a Fredholm operator we recall the notation
for Sobolev spaces on manifolds with boundary. We denote by H̄ s(X◦) the space of
restrictions of elements of Hs on an extension of X across the boundary to the interior
of X .

Definition 3 We define the following Hilbert spaces

Ys := H̄ s(X◦), Xs := {u ∈ Ys+1 : P(λ)u ∈ Ys}, (3.16)

and the operator P(λ) :Xs → Ys , given by (3.11) and (3.12).

Since the dependence on λ in P(λ) occurs only in lower order terms we can replace
P(λ) by P(0) in (3.16). Hence the definition of Xs is independent of λ.

Motivation: Since for x1 < 0 the operator P(λ) is hyperbolic with respect to the
surfaces x1 = a < 0we canmotivateDefinition 3 as follows. Consider P = D2

x1−D2
x2

on [−1, 0] × S
1 and define

Ys :=
{

u ∈ H̄ s([−1,∞)× S
1) : supp u ⊂ [−1, 0] × S

1
}
,

Xs := {u ∈ Ys+1 : Pu ∈ Ys} .

Then standard hyperbolic estimates—see for instance [137, Theorem 23.2.4]—show
that for any s ∈ R, the operator P : Xs → Ys is invertible. Roughly, the support
condition gives 0 initial values at x1 = 0 and hence Pu = f can be uniquely solved
for x1 < 0.

We can now state the result about mapping properties of P(λ):
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Theorem 7 Let Xs,Ys be defined in (3.16). Then for Im λ > −s − 1
2 the operator

P(λ) :Xs → Ys , has the Fredholm property, that isdim{u ∈Xs : P(λ)u = 0} <∞,
dimYs/P(λ)Xs <∞, and P(λ)Xs is closed.

Moreover for Im λ > 0, λ2 + ( n
2 )

2 /∈ Spec(−�g) and s > − Im λ − 1
2 , P(λ) :

Xs → Ys is invertible. Hence, for s ∈ R and Im λ > −s − 1
2 , λ �→ P(λ)−1 : Ys →

Xs, is a meromorphic family of operators with poles of finite rank.

In view of (3.11) this immediately recovers the results of Mazzeo–Melrose [176]
and Guillarmou [115] in the case of even metrics (Guillarmou showed that for generic
non-even metrics global meromorphic continuation does not hold; he also showed that
the method of [176] does provide a meromorphic continuation to C \ −iN∗ for all
asymptotically hyperbolic metrics and to C for the even ones):

Theorem 8 Suppose that (M, g) is an even asymptotically hyperbolic manifold and
that R(λ) is defined by (3.7). Then R(λ) : Ċ∞(M) → C∞(M), continues meromor-
phically from Im λ > n

2 to C with poles of finite rank.

For self-contained proofs of these theorems we refer to [282], and for the semiclas-
sical version in the same spirit to [80, §5.6]. The general idea is to estimate u in terms
of P(λ)u with lower order corrections:

‖u‖H̄ s+1(X◦) ≤ C ‖P(λ)u‖H̄ s (X◦) + C ‖χu‖H−N (X) ,

where χ ∈ C∞c (X◦), χ = 0 in x1 < −2δ, χ = 1 in x1 > −δ, δ > 0. That is done by
using ellipticity of P(λ) in x1 > δ, hyperbolicity of P(λ) in x1 < −δ and propagation
of singularities in the transition region x1 = 0—see [282, §4,5].

The key propagation estimate used by Vasy [263] comes from the work of Melrose
on propagation estimates at radial points occurring in scattering on asymptotically
Euclidean spaces [183]. These estimates also play a role in applications of microlo-
cal methods to dynamical systems—see Sect. 4. Here we will only state one basic
consequence—see [282, §4, Remark 3]:

P(λ)u ∈ C̄∞(X), u ∈ H̄ s+1(X), s > − Im λ− 1
2 �⇒ u ∈ C̄∞(X). (3.17)

This means that above a threshold of regularity given by − Im λ + 1
2 the operator is

hypoelliptic and that

kerXs P(λ) �= {0} , s > − Im λ− 1
2 ⇐⇒ ∃ u ∈ C̄∞(X), P(λ)u = 0. (3.18)

This implies that resonant states, in the original coordinates, are characterized by

(
−�g − λ2 − ( n

2

)2)
w = 0, y

iλ− n
2

1 w ∈ C̄∞(M), (3.19)

which should be compared to (2.24).
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Some understanding of (3.17) can be obtained as follows. Suppose we consider a
simplified operator P0(λ) = x D2

x − (λ + i)Dx , Then solutions of P0(λ)u = 0 are
given by

u(x) = a+xiλ+ + a−xiλ− + b, λ /∈ −iN, x ∈ R.

Here we use the notation of [136, §3.2]. From [136, Example 7.1.17] we then see that

xiλ± ∈ H
− Im λ+ 1

2−
loc \ H

− Im λ+ 1
2

loc . Hence,

u ∈ H̄ s+1((−1, 1)), s > − Im λ− 1
2 �⇒ a± = 0 �⇒ u ∈ C̄∞((−1, 1)).

This also shows that (3.17), and consequently Theorem 7, are essentially optimal.
The actual proof of (3.17) is based on the analysis of the Hamilton flow of the

principal symbol of P(λ), x1ξ21 + |ξ ′|2h(x) ∈ C∞(T ∗X), and of positive commutator
estimates depending on lower order terms—that is where the dependence on λ comes
from. For that we refer to [282, §4], [80, §E.5.2].

One weakness of the method lies in the fact that it provides effective meromorphic
continuation only in strips, even though the resolvent is meromorphic in C. Hence,
results which involve larger regions (such as asymptotics of resonances for convex

obstacles [152,247] where resonances lie in cubic regions, Im λ ∼ −|Re λ| 13 ) are still
inaccessible in the setting of asymptotically hyperbolic manifolds (or even H

n \ O).
Analyticity near infinity should play a role when larger regions are considered and
towards that aim we formulate a conjecture which could perhaps interest specialists in
analytic hypoellipticity. It is an analytic analogue of (3.17) and it also has a microlocal
version:

Conjecture 2 9 Suppose that P(λ) is given by (3.12) and that near x1 = 0 the coeffi-
cients of P(λ) are real analytic. Let U be a sufficiently small neighbourhood of x1 = 0.
Then,

P(λ)u ∈ Cω(U ), u ∈ Hs+1(U ), s > − Im λ− 1
2 �⇒ u ∈ Cω(U ),

where Cω denotes the space of analytic functions.

We remark that in the analytic case the operator P(λ) belongs to the class of
Fuchsian differential operators studied by Baouendi–Goulaouic [11] and that the
conjecture is true for P(λ) = 4(x1D2

x1 − (λ + i)Dx1) − �h , where h is a metric on
∂M , independent of x1 and λ /∈ −iN∗ [166].

3.2 Resonance free regions

We will now consider semiclassical operators

P = P(h) := −h2�g + V, (3.20)

9 After this survey first appeared Conjecture 2 was proved by Claude Zuily [275] who used results of
Bolley–Camus [24] and Bolley–Camus–Hanouzet [25]. These methods also showed analyticity of radiation
patterns of resonant states, F in (3.10), also when the metric is not even. The award of the prize (see
footnote 6) took place at http://www.latabledulancaster.fr on November 30, 2016.
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Fig. 20 The meromorphic continuation (3.21): The resonances of P are identified with the eigenvalues
the scaled operator Pθ constructed by a higher dimensional version of the method presented in Sect. 2.6.
Resonances are studied near a fixed energy level in a neighbourhood of size depending on h

on Riemannian manifolds (M, g) where M is isometric to (Rn, g0) outside of a com-
pact set, with g0 the Euclidean metric, and V ∈ C∞c (Rn;R). More general classes
of metrics and potentials can be considered—see [241]. We could also generalize the
class of manifolds—see [273]. Later in this section we will also discuss the case of
asymptotically hyperbolic manifolds of Sect. 3.1.

The method of complex scaling (see [241,273]) gives (see Fig. 20)

(P − z)−1 : C∞c (M)→ C∞(M) continues meromorphically from Im z > 0

to Im z > −θ Re z,Re z > 0. (3.21)

We denote the set of poles of (P(h)− z)−1, that is the set of resonances of P(h), by
Res(P(h)) (we include h to stress the dependence on our semiclassical parameter).

The asymptotic parameter h is supposed to be small andwewill consider resonances
of P(h) near a fixed energy level. When V ≡ 0 then the limit h → 0 corresponds
to the high energy limit but even in that case the link with physical intuitions around
classical/quantum correspondence is useful.

The distribution of resonances is closely related to the properties of the classical
Hamiltonian flow

ϕt : T ∗M → T ∗M, ϕt := exp(t Hp), p := |ξ |2g + V (x), (3.22)

where T ∗M is the cotangent bundle of M , and Hp is the Hamilton vector field of p.
In local coordinates (x, ξ) ∈ T ∗M , x ∈ M ,

Hp =
n∑

j=1
∂ξ j p ∂x j − ∂x j p ∂ξ j . (3.23)

To define the trapped set we first define incoming and outgoing sets at a given
interval of energies J ⊂ R:

�±J :=
{
(x, ξ) ∈ p−1(J ) : π(ϕt (x, ξ)) �→ ∞ as t →∓∞

}
,

π : T ∗M → M, π(x, ξ) := x .
(3.24)

and the trapped set at energy E :
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K J = �+J ∩ �−J . (3.25)

If J = {E} then we write K{E} = KE . The simplest is “non-trapping scattering” in
which KE = ∅. This implies that K J = ∅ for some neighbourhood J of E—see [80,
§6.1] for other basic properties of �± and K .

The behaviour of the flow near the trapped set has an effect on the distribution of
scattering resonances and in particular on the type of resonance free regions. As in
Sect. 2.4 we consider different possibilities:

Im z > −G(h), |Re z − E | < δ, G(h) =

⎧
⎪⎪⎨

⎪⎪⎩

(a) e−α/h, α > 0
(b) γ h
(c) Mh log 1

h
(d) γ hβ, β ∈ R, γ > 0

(3.26)

In the case of P(h) = −h2�g (or for obstacle problems) this is equivalent to resonance
free regions (2.45) with

F(x) = 2xG(1/x). (3.27)

Note that λ2 = h2z; this is consistent with dynamical quantities defined for p = |ξ |2g
in the z-picture and for p = |ξ |g in the λ picture. Nevertheless this is potentially
confusing when comparing results involving (3.29) and (3.36).

The following table indicates various stable dynamical configurations with pointers
to the literature (we refer to (3.26) for the types of resonance free regions):

Hamiltonian flow Resonance free region and resolvent bounds

General case (a) [38,43,51,224,236,268], [80, §6.4]; optimal for shape
resonances [95,125], and for “resonances from quasimodes”
[102,254,260], [80, §7.3]; corresponding cut-off resolvent
bounds (cf.(2.46)) also optimal [54]

Normally hyperbolic trapping (b) with γ given by a “Lyapounov exponent” [69,108,202,274],
[80, §6.3]; optimal for one closed hyperbolic orbit [107] and for
r -normally hyperbolic trapping [67]

Hyperbolic trapped set (b) with γ determined by a topological pressure of the trapped set
[200]; an improved gap expected; known for hyperbolic quotients
[75,191,257]

Smooth non-trapping (c) with arbitrarily large M [174,248]
a-Gevrey non-trapping (d) with β = 1− 1/a [225]
Analytic non-trapping (d) with β = 0 [125,240]; optimal with density ∼ h−n via

Sjöstrand’s trace formula [242], [80, §7.4]

(SeeDefinitions 4, 5 for definitions hyperbolic and normally hyperbolic trapped sets
and (3.29), (3.36) for definitions of “Lyapounov exponenents” and topogical pressure
respectively; smooth, Gevrey and analytic refers to the regularity of the coefficients
of the operator P .)

The first case we will consider is that of hyperbolic trapped sets:
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46 M. Zworski

Definition 4 Suppose that dp|p−1(E) �= 0. We say that the flow ϕt is hyperbolic on
KE , if for any ρ ∈ KE , the tangent space to p−1(E) at ρ splits into flow, unstable and
stable subspaces:

i) Tρ(p−1(E)) = RHp(ρ)⊕ E+ρ ⊕ E−ρ , dim E±ρ = n − 1

i i) dϕt
ρ(E±ρ ) = E±

ϕt (ρ)
, ∀t ∈ R

i i i) ∃ λ > 0 , and a smooth metric ρ �→ ‖•‖ρ such that
∥
∥dϕt

ρ(v)
∥
∥
ϕt (ρ)

≤ e−λ|t | ‖v‖ρ , for all v ∈ E∓ρ ,±t ≥ 0.

(3.28)

For more on this in dynamical systems see [154, §17.4]. One important property is
the stability of this condition. We also remark that the existence of the metric ‖ • ‖ρ
in part (iii) or (3.28) follows from the same estimates for some metric with Ce−λ|t | on
the right hand side. Examples include p = |ξ |2g where the curvature is negative near
the trapped set or p = |ξ |2+V (x)where V is a potential given by several bumps (see
[202, Figure 1]). In obstacle scattering trapped sets are hyperbolic for several convex
obstacles satisfying Ikawa’s non-eclipse condition (see [198, (1.1)]).

A dynamically defined function which plays a crucial role here is the topological
pressure. We present a definition valid when closed trajectories are dense in KE—that
is the case in the examples mentioned above. Let γ denote a closed trajectory of ϕt

on p−1(E) and Tγ its length. We then define

PE (s) := lim
T→∞

1

T
log

∑

T≤Tγ≤T+1
J+(γ )−s,

J+(γ ) :=
∫ Tγ

0
ϕ+

(
ϕt (ργ )

)
dt, ργ ∈ γ, ϕ+(ρ) := d

dt
log det

(
dϕt (ρ)|+Eργ

)
|t=0
(3.29)

and the expression is independent of the choice of ργ ∈ γ and of the density defining
the determinant. (Strictly speaking this is the pressure associated to −sϕ+ but as that
is the only one we will consider we just call it the pressure.)

This definition is not the one that is in fact useful in the study of resonances but it is
the simplest one to state. It can be interpreted as follows: because of (iii) in (3.28) we
have J+(γ ) > 1 (here we choose the determinant using the density coming from the
metric ‖ • ‖ρ) and this expression measures the averaged rate of expansion in ustable
directions E+ργ

along the closed orbit γ . Hence J+(γ )−s gets smaller with increasing
s. On the other hand, the count over closed orbits of length Tγ ∼ T measures the
complexity of the dynamical system: it is more complex if there are more closed
orbits of lengths in [T, T + 1]. It follows that for s > 0, PE (s) measures the fight
between complexity and dispersion in the unstable directions. If PE (s0) = 0 then for
s > s0 the dispersion wins. For two dimensional systems the Bowen pressure formula
shows that the Hausdorff dimension of the trapped set is given in terms of s0:

dim KE = 2s0 + 1, (3.30)
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Fig. 21 Left resonances for X (6, 7, 7) and Y (7, 7, π/2) from [70, Appendix] (see Fig. 19 for the definition
and picture of these surfaces; here we show the poles of the continuation of (−�g − λ2 − 1

4 )
−1). The

top line is the pressure gap (3.33) with P( 12 ) = 1
2 − δ. The lower line is given by half of the classical

decay rate, P(1)/2 = (1− δ)/2 where δ is the dimension of the limit sets for the two surfaces—see (3.31).
Right numerical illustration of Theorems 13 and 14 with the standard [53,122] and improved [70] fractal
Weyl laws—see Sect. 3.4—for the corresponding surfaces; here N (R, β) is the number of resonances in
|Re λ| ≤ R, Im λ > 1

2 +(β−1)δ. The “chain patterns” visible on the left (which are evenmore pronounced
for more symmetric systems such as X (
, 
, 
)—see [33]) have been recently investigated by Weich [270]

—see for instance [143] and references given there. When p = |ξ |2g on a convex co-

compact surface, M = �\H2—see Fig. 19—then, in that special constant curvature
case, we have for any E > 0,

dim KE = 2δ + 1, PE (s) = 2E−
1
2 (δ − s), δ := dim�(�),

�(�) := �z ∩ ∂H
2. (3.31)

The set �(�) is called the limit set of � and the definition does not depend on the
choice of z ∈ H

2—see [31] and references given there.
The analogue of Ikawa’s result for several convex obstacles [140], postulated

independently in the physics literature by Gaspard–Rice [103], was established for
operators of the form (3.20) by Nonnenmacher–Zworski [200,201]. Thanks to the
results of Sect. 3.1 the result also holds for −h2�g on even asymptotically hyper-
bolic manifolds. In that case it generalizes celebrated results of Patterson and Sullivan
(see [31]) formulated using dimension of the limit set (3.31). That gap is shown as the
top line on the right graphs in Fig. 21.

Theorem 9 Suppose that an operator (3.20) has a hyperbolic trapped set at energy
E, in the sense of Definition 4. If the pressure defined in (3.29) satisfies

0 > PE ( 12 ) (3.32)

then there are no resonances near E with Im z > hPE ( 12 ).
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More precisely, if γE (δ) := min|E−E ′|≤δ(−PE ′(
1
2 )) then

∃ δ > 0 ∀ γ < γE (δ) ∃ h0 Res(P(h)) ∩ ([E − δ, E + δ]− ih[0, γ ]) = ∅, (3.33)

when h < h0. In addition for any χ ∈ C∞c (M), we have, for some c,C > 0,

‖χ(P − z)−1χ‖L2→L2 ≤ Ch−1+cIm z/h log 1
h , (3.34)

for z ∈ [E − δ, E + δ] − ih[0, γ ].
It is not clear if the pressure condition (3.32) is needed to obtain a resonance strip—

see Theorem 11 below. What seems to be clear is that PE ( 12 ) is a robust classical
quantity determining the strip while the improvements require analysing quantum
effects. The upper bound (3.34) is optimal for Im z = 0 thanks to a general result of
Bony–Burq–Ramond [27], [80, §7.1].

Applications of the estimate (3.34) include local smoothing estimates with a
logarithmic loss by Datchev [50] and Strichartz estimates with no loss by Burq–
Guillarmou–Hassell [39]. The method of proof was used by Schenck [232] to obtain
decay estimates for damped wave equations and by Ingremeau [141] to describe dis-
torted plane waves in quantum chaotic scattering.

For an outline of the proof and a more relevant description of the pressure function
we refer to [200, §2] and to an excellent survey by Nonnenmacher [196, §8.1] where a
discussion of optimality can also be found. Here we make one general comment rele-
vant also in the case of Theorem 10 below. Thanks to the “gluing” results of Datchev–
Vasy [57] one canprove existence of the pole free region (3.33) and the cut-off resolvent
bound (3.34) for a simpler operator modified by a complex absorbing potential :10

PW := −h2�g + V (x)− iW, W ∈ C∞(M; [0, 1]),

with W (x) ≡ 1 for |x | > R where R is chosen large enough. The operators
PW − z : H2 → L2 are Fredholm operators for Im z > −1 and are invertible
for Im z > 0. As shown in [202, §8] the estimates on (PW − z)−1 imply estimates
(3.34) while being easier to obtain.

The trapped sets to which Theorem 9 applies are typically fractal. In fact, in dimen-
sion 2 the condition PE ( 12 ) < 0 is equivalent to the trapped set being filamentary in
the sense that dim KE < 2, that is the trapped set is below the mean of the maximal
dimension 3 and the minimal dimension 1 (direction of the flow). We will now con-
sider another case in which the trapped set is smooth but with hyperbolicity in the
transversal direction:

Definition 5 We say that the Hamiltonian flow is normally hyperbolic at energy E if
for some δ and J = [E − δ, E + δ], K J is a smooth symplectic submanifold of T ∗M ,

10 This method is related to a method used in chemistry to compute resonances—see [223] and [235]
for the original approach and [145] for some recent developments and references. A simple mathematical
result justifying this computational method is given in [283]: if V ∈ L∞comp(R

n) then the eigenvalues of

−�+V−iεx2 converge to resonances of−�+V uniformly on compact subsets of the region arg z > −π/4.
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and there exists a continuous distribution of linear subspaces, K J $ ρ �−→ E±ρ ⊂
Tρ(T ∗M), invariant under the flow, dϕt (E±ρ ) = E±ϕt (ρ)

, satisfying, dim E±ρ = d⊥ and

Tρ K J ∩ E±ρ = E+ρ ∩ E−ρ = {0} , Tρ(T
∗X) = Tρ K δ ⊕ E+ρ ⊕ E−ρ ,

∀v ∈ E±ρ , ∀t > 0, ‖dϕ∓t (ρ)v‖ϕ∓t (ρ)
≤ Ce−λt ‖v‖ρ , (3.35)

form some smoothly varying norm on Tρ(T ∗M), ρ �→ ‖ • ‖ρ .
This dynamical configuration is stable under perturbations under a stronger addi-

tion condition of r-normal hyperbolicity. Roughly speaking that means that the flow
on K J has weaker expansion and contraction rates than the flow in the transversal
directions—see [67,132] for precise a definition and (3.48) below for an example.
Normally hyperbolic trapping occurs in many situations: for instance, for null flows
for black holemetrics, see [76], Sect. 3.3, and inmolecular dynamics, see [202,Remark
1.1], [111,234]. Another important example comes from contact Anosov flows lifted
to the cotangent bundle, see [261], [202, Theorem 4], Sect. 4.4. The following general
result was proved by Nonnenmacher–Zworski [202]:

Theorem 10 Suppose that for P given by (3.20) and that at energy E the trapped set
is hyperbolic in the sense of Definition 5. Define the minimal expansion rate by

νmin := lim inf
t→∞

1

t
inf

ρ∈KE
log det

(
dϕt |E+ρ

)
. (3.36)

Then near E there are no resonances with Im z > −hνmin/2. More precisely

∃ δ ∀ ε > 0 ∃ h0 Res(P(h)) ∩ ([E − δ, E + δ]− ih 1
2 [0, μmin − ε]

) = ∅, (3.37)

and the estimate (3.34) holds in this resonance free region.

For more general trapped sets but for analytic coefficients of P and without the
estimate (3.34), the resonance free region (3.37) was obtained early on by Gérard–
Sjöstrand [108]. Sometimes, for instance in the case of black holes, d⊥ = 1 (see
3.35), �±J (see 3.24) are smooth, and Tρ K J ⊕ E+ρ = Tρ�

±
J . In that case a resonance

free region Im z > −h/C and the bound (3.34) was obtained by Wunsch–Zworski
[274]. An elegant proof with the width (3.36) and a sharp resolvent estimate was
given by Dyatlov [69][80, §6.3]. The width given by νmin is essentially optimal as
one can already see from the work of Gérard–Sjöstrand [107] on the pseudo-lattice of
resonances generated by a system with one hyperbolic closed orbit. A general result
was provided by Dyatlov [67]: if KE is r -normally hyperbolic for any r and if the
maximal expansion rate νmax satisfies νmax < 2νmin, then the resonance free region
is essentially optimal in the sense that in the strip below Im z = hνmin/2 there exist
infinitely many resonances—see Fig. 22.

We now discuss improvements over the pressure gap. The first such improvement
for scattering resonances was achieved by Naud [191] who extended Dolgopyat’s
method [59] to the case of convex co-compact quotients and showed that there exists
γ > 0 such that when δ < 1

2 (see 3.31) then there are no resonances other than i(δ− 1
2 )

with Im λ > δ − 1
2 − γ . The Dolgopyat method was further developed by Stoyanov
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Re λ

Im λ

− 1
2 (νmin−ε)

− 1
2 (νmax+ε)

−(νmin−ε)

R

Fig. 22 A schematic presentation of the results of [67] for an operator−�g with an r -normally hyperbolic
trapped set. Here R = 1/h and we use the resolvent (−�g − λ2)−1. The resonance free strip is the same

as in Theorem 10 and the resonances in the strip Im λ > − 1
2 (νmax + ε) satisfy a Weyl law: |{λ : Im λ >

− 1
2 (νmax + ε), 0 < Re λ < R}| ∼ Rn−1 vol(K[0,1])/(2π)n−1—see [67, Theorem 3]

[257] for higher dimensional quotients (as an application of general results) and by
Oh–Winter [203] for uniform gaps for arithmetic quotients. Petkov–Stoyanov [210]
also adapted Dolgopyat’s method to the case of several convex obstacles. All of these
results assume that PE ( 12 ) ≤ 0.

A newmethod for obtaining improved resonance free regions, applicable also when
PE ( 12 ) > 0, was introduced by Dyatlov–Zahl [75]. It is based on a fractal uncertainty
principle (FUP)which in [75]was combinedwith an investigation of additive structure
of limit sets (see 3.31) to obtain an improved gap for quotients �\H2, with δ(�) ≈ 1

2 .
In particular that produced the first resonance free strips when PE ( 12 ) > 0.

Roughly speaking the standard uncertainty principle says that wave functions can-
not be strongly localized in both position and frequency near a point. The fractal
uncertainty principle (FUP) states that a wave function cannot be strongly localized
in both position and frequency near a fractal set. To describe FUP rigorously we will
use a simpler model studied recently by Dyatlov and Jin [74]: open quantum maps
with products of exact Cantor sets as trapped sets.

Open quantum maps have been studied in physics and mathematics. They are
quantizations of symplectic relations on T

2 = R
2/Z2 where the symplectic rela-

tions have features of Poincaré maps in scattering theory: see Nonnenmacher [196,
§5] for a general introduction, [74, §1.4] for references to the physics literature,
Nonnenmacher–Sjöstrand–Zworski [197] for a reduction of chaotic scattering prob-
lems to quantizations of Poincaré maps and Nonnenmacher–Zworski [199] for
quantization of piecewise smooth relations.

An example of a piecewise smooth symplectic relation is shown on the left in
Fig. 23: the torus is divided into five “vertical strips”, three of them are thrown out
and the remaining two are stretched/contracted and then shifted (the caption to Fig. 23
has a general formula for κM,A.) This relation, κ5,{1,3}, is quantized by the following
family of matrices:

B5N := F∗5N

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 χNFNχN 0 0 0
0 0 0 0 0
0 0 0 χNFNχN 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

(3.38)
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Spectrum
P(1/2)
FUP
P(1)/2

Fig. 23 Left a schematic representation of an open baker map (a piecewise smooth symplectic relation)
κM,A: R

2/Z2 $ (y, η) �→ (My− a, (η+ a)/M), (y, η) ∈ (a/M, (a+ 1)/M), a ∈ A ⊂ {0, . . . , M − 1},
here with M = 5, A = {1, 3}. A quantization, B5N , of this open map (relation) is given in (3.38). Right
resonances of B5N with N = 54. Different theoretical gaps are also shown: for this quantummap the fractal
uncertainty principle (FUP) of [74,75] does produce an optimal gap

whereFL is the unitary Fourier transform on 
2L := 
2(Z/LZ), χN := diag (χ( j/N ))

for χ ∈ C∞c ((0, 1); [0, 1]).
On the classical level a relation κ defines discrete time analogues of (3.24) and

(3.25):

�± :=
⋂

±r≥0
κr (T2), K = �+ ∩ �−.

In the case of κM,A we have

�− = C × S
1, �+ = S

1 × C, K = C × C, dim K = 2δ,

C :=
⋂

k

⋃

j∈Ck

[
j

Mk
,

j + 1

Mk

]

, Ck :=
⎧
⎨

⎩

k−1∑

j=0
a j M j : a j ∈ A

⎫
⎬

⎭
,

δ := dim C = log |A|
log M

. (3.39)

If we think of T
2 as being an analogue of a hypersurface � transversal to the flow

then K is the analogue KE ∩ �. The linearization of κM,A (at regular points) has
eigenvalues M, M−1 and hence we can think of κ as the flow at time t = log M with
the expansion rate λ = 1 [see (iii) in (3.28)]. The pressure of the suspension at time
log M is given by

123



52 M. Zworski

P(s) = δ − s, (3.40)

see [196, §8] for a discussion of pressure for suspensions.
The operator BN is considered as quantization of the propagator at time t = log M

with h = 2π/N . Hence the conceptual correspondence between eigenvalues of BN

and resonances of semiclassical operators P(h) (established in some cases in [197])
is

Spec(BN ) $ λ = e−i t z/h ←→ z ∈ Res(P(h)).

Since t = log M the correspondence between resonances free regions is given by the
following

([1, 2] − ih[0, γ ])∩Res(P(h)) = ∅ ←→ Spec(BN )∩ {|λ| ≥ M−γ
} = ∅. (3.41)

In view of this and (3.40) the analogue of (3.33) is

∀ ε > 0 Spec(BN ) ∩
{
|λ| ≥ Mδ− 1

2+ε
}
= ∅, N ≥ Nε, (3.42)

see [196, §8].
The general principle of [75] and [74] for quantization of κM,A goes as follows. In

the notation of (3.38) and (3.39) we say that

FUP holds with exponent γ ⇐⇒ ∥
∥1lCk FN 1lCk

∥
∥

2N→
2N

≤ C N−γ . (3.43)

Then we have (see [74, Proposition 2.7] for this case and [75, Theorem 3] for the case
of convex co-compact quotients)

FUP holds with exponent γ �⇒ ∀ε > 0 Spec(BN ) ∩ {|λ| ≥ M−γ+ε
} = ∅,

for N > Nε,
The case of γ = 1

2 − δ is easy to establish but a finer analysis of FUP gives [74]:

Theorem 11 Suppose that BN is a quantization of κM,A and δ is given in (3.39). Then
there exists

β > max
(
0, 1

2 − δ
)

(3.44)

such that
∀ ε > 0 Spec(BN ) ∩ {|λ| ≥ M−β+ε

} = ∅, N > Nε. (3.45)

Anumerical illustration ofTheorem11 is shown inFig. 23. In the example presented
there the numerically computed best exponent in FUP (3.43) is sharp. Some other
examples in [74] show however that it is not always the case. We will return to open
quantum maps in Sect. 3.4.

Theorem 11 is the strongest gap result for hyperbolic trapped sets and it suggests
that a resonance free strip of size h exists for all operators P(h) with such trapped
sets:
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Conjecture 311 Suppose that P(h) given by (3.20) has a compact hyperbolic trapped
set KE in the sense of Definition 4 (and M is a manifold for which we have an effective
meromorphic continuation of (P(h)− z)−1). Then there exists γ > 0, δ > 0 and h0
such that

Res(P(h)) ∩ ([E − δ, E + δ] − ih[0, γ ]) = ∅, h < h0.

3.3 Resonance expansions in general relativity

In this section wewill describe some recent results concerning expansions of solutions
to wave equations for black hole metrics in terms of quasi-normal modes (QNM). That
is the name by which scattering resonances go in general relativity [157]. We want
to emphasize the connection to the results of Sects. 3.1, 3.2 and in particular to the
r–normally hyperbolic dynamics [274].

Wewill consider the case ofKerr–deSitter, or asymptoticallyKerr–deSittermetrics.
These model rotating black holes in the case of positive cosmological constant � >

0. From the mathematical point of view that makes infinity “larger” and provides
exponential decay of waves which makes a rigorous formulation of expansions easier.
When one adds frequency localization weaker expansions are still possible in the
Kerr case—see [68, Theorem 2], [76, (13)]. References to the extensive mathematics
literature in the case of � = 0 can be found in [68].

To define the Kerr–de Sitter metric we consider the manifold X = (r+, rC )× S
2,

where r+ is interpreted as the event horizon of the black hole and rC the cosmological
horizon. The wave equation is formulated on R× X using a Hamiltonian defined on
T ∗(R×X).We denote the coordinates onR×X by (t, r, θ, ϕ) andwrite (ξt , ξr , ξθ , ξϕ)

for the corresponding conjugate (momentum) variables. In this notation the Kerr–de
Sitter Hamiltonian has the following frightening form:

G = ρ−2(Gr + Gθ ), ρ2 = r2 + a2 cos2 θ,

Gr = �rξ
2
r −

(1+ α)2

�r

(
(r2 + a2)ξt + aξϕ

)2
,

Gθ = �θξ
2
θ +

(1+ α)2

�θ sin2 θ

(
a sin2 θ ξt + ξϕ

)2
, α = �a2

3
.

�r = (r2 + a2)
(
1− �r2

3

)
− 2Mr, �θ = 1+ α cos2 θ. (3.46)

Here � > 0 is the cosmological constant, a is the rotation speed (a = 0 corresponds
to the simpler case of the Schwarzschild–de Sitter metric), and M > 0 is a parameter

11 After this survey first appeared Conjecture 3 was proved in the case of finitely generated hyperbolic
surfaces by Bourgain–Dyatlov [34]. That means that for convex co-compact surfaces, � \H

2—see Fig. 19
and [31]—there is a high energy gap for all values, 0 ≤ δ < 1, of the dimension of the limit set of � – see
(3.31). This is the first result about gaps for quantum Hamiltonians for any value of the pressure PE ( 12 )

defined in (3.29). The proof is based on the fractal uncertainty principle of [75] and fine harmonic analysis
estimates related to the Beurling–Malliavin multiplier theorem, see [175] and references given there.
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Fig. 24 Left numerically computed admissible range of parameters for the subextremal Kerr–de Sitter
black hole (light shaded) and the range to which the resonance expansions of [68] apply. QNM are defined
and discrete for parameters below the dashed line, (1 − �a2/3)3 = 9�M2, see [68, §3.2]. Right The
dependence of νmax and νmin on the parameters M and a in the case of � = 0. The dashed line indicates
the range of validity of the pinching condition needed for the Weyl law [67] recalled in Fig. 22

(in the case of � = 0 it is the mass of the black hole)—see Fig. 24 for the allowed
range of parameters. The Hamiltonian G is the dual metric to the semi-Riemannian
Kerr–de Sitter metric g . The principal symbol of the wave operator �g is given by
G. We refer to Hintz [127] and Hintz–Vasy [129] for a geometric description of these
metrics and definitions of asymptotically Kerr–de Sitter metrics.

The key fact is that �r has simple zeros at r = r+ and r = rC which gives

Pg(λ) := e−iλt�geiλt : C∞(X)→ C∞(X), X = (r+, rC )× S
2, (3.47)

structure similar to that of P(λ) in (3.12), with r = r+ or r = rC corresponding to
x1 = 0 (when a = 0, r ∈ (r+, rC ) corresponds to x1 > 0; for rotating black holes the
situation is more complicated but microlocally the structure is similar).

Since we are interested in solving �gw = 0 we consider the null geodesic flow
ϕt := exp t HG (see 3.23) on the positive light cone C+ ⊂ {G = 0}. (Null stands for
G = 0 which is preserved by the flow.) The trapped set, K, consists of null geodesics
that stay away from r = r+, r = rC for all times. We refer to Dyatlov [68, Prop.3.2]
for the description of this trapped set and the constraints on the parameters a, M and
�. Here we remark that it has a particularly simple form when a = 0:

K =
{
(
t, 3M, ω; ξt , 0, ω

∗) : (ω,ω∗
) ∈ T ∗S2,

1− 9�M2

27M2

∣
∣ω∗

∣
∣2
ω
= ξ2t

}

,

where | • |ω is the standard metric on T ∗ωS
2.

In general K is symplectic in the sense that the symplectic form on T ∗X is nonde-
generate on the surfaces K = K∩ {t = const}. The flow is r -normally hyperbolic for
any r . That means that there exists a Cr splitting TKC+ = TK⊕ V+ ⊕ V−, invariant
under the flow and such that for some constants ν > 0,C > 0,

sup
(x,ξ)∈K

∣
∣dϕ∓t

∣
∣V± | ≤ Ce−νt , sup

(x,ξ)∈K

∣
∣dϕ±t

∣
∣
T K | ≤ Ceν|t |/r , t ≥ 0. (3.48)
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In other words, the maximal expansion rates (Lyapunov exponents) on the trapped set
are r -fold dominated by the expansion and contraction rates in the directions transver-
sal to the trapped set. As shown in Hirsch–Pugh–Schub [132] (see also [68, §5.2])
r -normal hyperbolicity is stable under perturbations: when Gε is a time independent
(that is, stationary) Hamiltonian such that Gε is close to G in Cr near K, the flow for
Gε is r -normally hyperbolic in the sense that the trapped set Kε has Cr regularity,
is symplectic and (3.48) holds. For Kerr(–de Sitter) metrics the flow is r -normally
hyperbolic for all r as shown by Wunsch–Zworski [274], Vasy [263] and Dyatlov
[68], essentially because the flow on K is completely integrable. The dependence of
maximal and minimal expansion rates on the parameters is shown in Fig. 24.

Vasy’s method [263] which was described in Sect. 3.1 applies in this setting. Quasi-
normal modes (QNM) for Kerr–de Sitter metrics are defined as in (3.18): they are
complex frequencies λ such that there exist u = u(r, θ, φ) such that

�g

(
e−iλt u

)
= 0 and u continues smoothly across the two horizons. (3.49)

The connection with (3.18) comes from (3.47) and the fact that Pg(λ)u = 0. The same
definition works for perturbations.

For Schwarzschild–de Sitter black holes, QNM were described by Sá Barreto–
Zworski [231]: at high frequencies they lie on a pseudo-lattice as in the case of one
hyperbolic closed orbit [107] but with multiplicities coming from the spherical degen-
eracy. Dyatlov [66,67] went much further by describing QNM for Kerr–de Sitter black
holes: for small values of rotations he showed a Zeeman-like splitting of multiplicities
predicted in the physics literature, and for perturbations of Kerr–de Sitter black holes,
he obtained a counting law (see Figs. 22, 24). In particular, for small values of a the
results of [66] show that there are no modes with Im λ ≥ 0. For Kerr black holes
((3.46) with � = 0) Shlapentokh-Rothman [238] showed that this is the case in the
full range |a| < M . This suggests the following

Conjecture 4 For a, � and M satisfying (1−�a2/3)3 > 9�M2 and in the shaded
region of Fig. 24 (or in some other “large” range of values), any λ �= 0 for which
(3.49) holds satisfies Im λ < 0 and λ = 0 is a simple resonance.

The study of QNM is motivated by the expectation that forward solutions to�gu =
f ∈ C∞c (R× X) have expansions in terms of uk’s and λk’s satisfying (3.49),

u (t, r, θ, ϕ) ∼
∑

k

e−iλk t uk(r, θ, ϕ),

but the convergence and errors can be subtle.
Thefirst expansion involving infinitelymanyQNMlying on horizontal strings of the

pseudo-lattice of [231] was obtained by Bony–Häfner [29]. Using his precise results
on the distribution of QNM for Kerr–de Sitter metrics with small values of a, Dyatlov
[66] obtained similar expansions for rotating black holes. In [67] he formulated an
expansion of waves for perturbations of Kerr–de Sitter metrics in terms of a microlocal
projector, see also [68].
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Here we will only state a simpler result which is an almost immediate consequence
of Theorems 8, 10 and of gluing results of Datchev–Vasy [57]. For tensor-valued wave
equations on perturbations of Schwarzschild–deSitter spaces (includingKerr–deSitter
spaces with small values of a) and in any space-time dimension n ≥ 4 this result was
obtained by Hintz [127]. A more precise formulation valid across the horizons can be
found there.

Theorem 12 Suppose that (X, g) is a stationary perturbation of the Kerr–de Sitter
metric in the sense of [127,129] and that u is the forward solution �gu = f ∈
C∞c (R× X). Let νmin be the minimal expansion rate at the trapped set given by (3.36)
(see Fig. 24). Then for any ε > 0,

u(t, x)=
∑

Im λ j>− 1
2 νmin+ε

m j∑

m=0

d j∑


=0
t
e−iλ j t u jm
(x)+OK

(
e−(νmin/2−ε)t

)
, x∈K�X.

When d j = 0, u j,m,0 and λ j satisfy (3.49); otherwise the resonance expansion is
computed from the residue of λ �→ Pg(λ)

−1e−iλt —see [129, §5.1.1] (and [80, Theo-
rem 2.7] for a simple example).

3.4 Upper bounds on the number of resonances: fractal Weyl laws

The standardWeyl law for the density of quantum states was already recalled in (2.29)
as motivation for the upper bound on the number of resonances in discs (2.26). In this
section we will describe finer upper bounds which take into account the geometry of
the trapped set. They were first proved by Sjöstrand [240] for operators with analytic
coefficients but in greater geometric generality than presented here.

Throughout this section we assume that

P(h) given by (3.20) has a compact hyperbolic trapped set KE (3.50)

in the sense of Definition 4 and that M is a manifold for which we have an effective
meromorphic continuation of (P(h)− z)−1 (see Sects. 2.6, 3.1).

When M is a compact manifold then P(h) has discrete spectrum and the counting
laws have a long tradition—see Ivrii [144]. The basic principle can be described as
follows: if we are interested in

NP(h)([a, b]) := |Spec(P(h)) ∩ [a, b]| , P(h) = −h2�g + V,

then the relevant region in phase space is given by

p−1([a, b]) = {(x, ξ) : a ≤ p(x, ξ) ≤ b} , p(x, ξ) := |ξ |2g + V (x). (3.51)

The uncertainty principle says that a maximal (homogeneous) localization of a state
in phase space is to a box of sides of length

√
h (here centered at (0, 0)):
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(∫

Rn

∣
∣x j u(x)

∣
∣2 dx

) 1
2 ×

(∫

Rn

∣
∣ξ jFhu(ξ)

∣
∣2 dξ

) 1
2 ≥ h

2
‖u‖2L2 ,

where Fhu(ξ) := (2πh)−n/2
∫
Rn u(x)e−i〈x,ξ〉/hdx is the (unitary) semiclassical

Fourier transform. Hence the maximal number of quantum states “fitting” into an
h-independent open set U ⊂ T ∗M is proportional to vol(U )h−n . For eigenvalue
counting we need a factor of (2π)−n which gives

NP(h)([a, b]) = (2πh)−n
(
vol(p−1([a, b]))+ o(1)

)
. (3.52)

By rescaling and taking [a, b] = [0, 1] we obtain (2.29).
Suppose now that we consider a scattering problem, in which case M is non-

compact, say, equal to R
n outside a compact set. In that case for a subset � = �(h)

we can define the number of resonances of P(h) in �:

NP(h)(�) = |Res(P(h)) ∩�| , (3.53)

which generalizes the definition above. The basic heuristic principle is that the trapped
set K�∩R should replace p−1([a, b]) as everything else escapes. To guarantee that
escape we assume that K ⊂ {Im z > −γ h}. This restriction on the imaginary parts
is explained by the fact that the corresponding resonant states have an h-independent
rate of decay: Re e−i t z/h = et Im z/h ≥ e−tγ .

We should then look at the maximal number of localized quantum states that can
cover K�∩R. But that number is now related to the upper box or upper Minkowski
dimension of K�∩R:

dim+M (U ) := lim sup
h→0

n
(√

h,U
)

log
(
1/
√

h
) ,

where n(ε,U ) is the minimal number of boxes of sides ε needed to cover U . This
suggests that we should have an upper bound

NP(h) ([a, b] − ih[0, γ ]) ≤ Ch−
1
2 dim+M (K[a,b]). (3.54)

This intuition is put to test by the fact that resonant states with Im z > −γ h are not
localized to the trapped set but rather to the outgoing tails �+E given in (3.24)—see
Fig. 25 and [200, Theorem 4]. The method of complex scaling described in Sect. 2.6
changes the exponential growth we see in Fig. 25 to exponential decay and hence
localizes the resonant state to the interaction region. By a microlocal complex scaling
constructed using suitable low regularity microlocal weights Sjöstrand [240] similarly
localized resonant states to an

√
h neighbourhood of the trapped set and hence was

able to prove bounds of the form (3.54). Although we concentrate here on hyperbolic
trapped sets we remark that Dyatlov’s asymptotic formula [67] in Fig. 22 is consistent
with (3.54).

Put

dE := dim+M KE − 1

2
, δE = dimH KE − 1

2
, (3.55)
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Phase space picture of the Eckart barrier

Real and imaginary parts of the first resonant state

Density plot of the FBI transform of the first resonant state

Fig. 25 The top figure shows the phase portrait for the Hamiltonian p(x, ξ ) = ξ2 + cosh−2(x), with �±1
highlighted. The middle plot shows the resonant state corresponding to the resonance closest to the real
axis at h = 1/16 (compare this to the resonances in Fig. 9 generated by the local maxima), and the bottom
plot shows the squared modulus of its FBI tranform (which describes a wave function in phase space [281,
Chapter 13]). The resonance states were computed byD. Bindel [21] and the FBI transformwas provided by
L.Demanet.We see that themass of the FBI transform is concentrated on�+1 , with the exponential growth in
the outgoing direction. See also https://www.youtube.com/watch?v=R7eUpEVpckk&feature=youtu.be&
list=PL32oQ9j1OWc0RIlNwnY6BtDawepnBnQyx

where dimH is theHausdorff dimension (hence δE ≤ dE ). Then the following theorem
was proved for Euclidean infinities by Sjöstrand–Zworski [248], for even asymptoti-
cally hyperbolic infinities (seeSect. 3.1) byDatchev–Dyatlov [53] (generalizing earlier
results [122,280]) and for several convex obstacles by Nonnenmacher–Sjöstrand–
Zworski [198]:

Theorem 13 Under the assumption (3.50) and using the notation (3.53),(3.55), for
every γ and ε > 0 there exists C such that

NP(h) ([E − h, E + h] − ih[0, γ ]) ≤ Ch−dE−ε. (3.56)

When V = 0 in (3.20) and dim M = 2 we can replace dE + ε by δE in (3.56).

For outlines and ideas of the proofs we refer the reader to general reviews [196,
§§4,7], [193] and to [248, §2], [53, §1], [198, §1].

We remark that a fractal upper bound for resonances should be valid for more
general quotients �\Hn than the ones considered in [53]—see Guillarmou–Mazzeo
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Fig. 26 Top histogram of imaginary parts of resonances of a three discs configuration (see Fig. 2) with
real parts with |Re λ| ≤ 2× 103 computed using a semiclassical zeta function [170]. The imaginary parts
concentrate at 1

2P1(1), that is at one half of the classical escape rate. (We should remark here that the
method of calculation based on the zeta function, although widely accepted in the physics literature, does
not have a rigorous justification and may well be inaccurate. However, the phenomenon of concentration at
1
2P1(1) has been verified experimentally—see [13] and Fig. 10). Bottom histograms from Borthwick [30]

showing the distribution of imaginary parts (the x axis is Im λ+ 1
2 ) for hyperbolic surfaces X (
1, 
2, 
3)

(see Fig. 19) with |Re λ| ≤ 2 × 104. The concentration at Im λ = 1
2 (δ − 1) is clearly visible. Recalling

(3.27) and (3.31) that is the same as in the top figure

[119] for results on meromorphic continuation in that case. Even the simplest case
of surfaces with both funnels and cusps is not understood (the only results treat the
non-trapping case—see Datchev [52] and Datchev–Kang–Kessler [56]).

Existence of fractal lower bounds or asymptotics has been studied numerically,
first for a three bump potential by Lin [167] and then using semiclassical zeta
function calculations [103] for three disc systems (see Figs. 2 and 10) by Lu–
Sridhar–Zworski [170]. The results have been encouraging and led to experimental
investigation by Potzuweit et al [216]: the experimentally observed density is higher
than linear but does not fit the upper bound (3.56). There are many possible rea-
sons for this, including the limited range of frequencies. (Related experiments by
Barkhofen et al [13] confirmed the pressure gaps of Theorem 9, see Figs. 10 and
26). Fractal Weyl laws have been considered (and numerically checked) for var-
ious open chaotic quantum maps—see [74,199] and references given there. The
have also been proposed in other types of chaotic systems, ranging from dielectric
cavities to communication and social networks—see recent review articles by Cao–
Wiersig [42] and Ermann–Frahm–Shepelyansky [83] respectively. Fractal Weyl laws
for mixed systems and localization of resonant states have been investigated by Körber
et al [158,159].

So far, the only rigorous lower bound which agrees with the fractal upper bound
was obtained by Nonnenmacher–Zworski in a special toy model quantum map [200,
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Theorem 1]. Nevertheless the evidence seems encouraging enough to reiterate the
following conjecture [170], [123, (4.7)]:

Conjecture 5 Suppose that N (�) := NP(h)(�) is defined in (3.53) and δE is given
by (3.55). If dim M = 2, then

lim
h→0

hδE N ([E − h, E + h] − ih[0, γ ]) = vE (γ ), (3.57)

where vE (γ ) > 0 for γ large enough. When dim M > 2 then

lim sup
h→0

hδE N ([E − h, E + h] − ih[0, γ ]) > 0, (3.58)

when γ is large enough.

Numerical investigation of fractal Weyl laws lead to the observation that imaginary
parts of resonances (that is resonance widths) concentrate at Im z ≈ 1

2PE (1)h where
PE (s) is defined by (3.29). The value |PE (1)| gives the classical escape rate on the
energy surface p−1(E)—see [196, (17)]. The point made by Gaspard–Rice [103] was
that the gap is given by |PE ( 12 )|h < 1

2 |PE (1)|h (with the latter being a more obvious
guess). However most of resonances want to live near Im z = 1

2PE (1)h—see also
Fig. 21.

The first rigorous result indicating lower density away from Im λ = 1
2PE (1) was

obtained by Naud [192] who improved on the fractal bound in Theorem 13 for
γ < |PE (1)|/2 in the case of convex co-compact surfaces. Dyatlov [70] provided
an improved bound for convex co-compact hyperbolic quotients in all dimensions.
We state his result in the case of dimension two and in the non-semiclassical setting
(resonances as poles of (−�2

g − 1
4 − λ2)−1—see (3.7), (3.27) and (3.31)):

Theorem 14 Let M = �\H2 be a convex co-compact quotient (see Fig. 19) and
define N (r, β) to be the number of poles of the continuation of (−�g − 1

2 − λ2)−1 in

r < Re λ ≤ r + 1, Im λ > − 1
2 + (1− β)δ,

where δ is defined in (3.31). Then for any β and ε > 0 there exists C such that

N (r, β) ≤ Crmin(2βδ+ε,δ). (3.59)

The bound r δ comes from [122] and the improvement is in strips Im λ > −γ >

− 1
2 (1−δ). A comparison between (3.59) and numerically fitted exponents was shown

in Fig. 21 (for themore robust counting fuction N (R, β) =∑[R]
k=1N (R−k, β)). These

numerical experiments of Borthwick–Dyatlov–Weich [70, Appendix] again suggest
that Conjecture 5 (perhaps in a weaker form) holds, while the optimality of (3.59) is
unclear. Some lower bounds in strips have been obtained by Jakobson and Naud [146]
but they are far from the upper bounds.
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Dyatlov–Jin [74] proved an analogue of Theorem 14 for open quantummaps of the
form shown in Fig. 23. That paper can be consulted for more numerical experiments
and interesting conjectures.

Here we make a weak (and hopefully accessible) conjecture which in the case of
quotients follows from Theorem 14:

Conjecture 6 In the notation of (3.57) and for general operators satisfying (3.50)

γ < 1
2 |PE (1)| �⇒ vE (γ ) = 0.

Jakobson and Naud [147] made a bolder conjecture that for convex co-compact
hyperbolic surfaces there are only finitely many resonances with Im λ > − 1

2 (1−δ)—
see Fig. 21. We make an equally bold but perhaps more realistic

Conjecture 7 Suppose that N (�) := NP(h)(�) is defined in (3.53). Then for every
γ > PE (1)/2, there exists ε0 > 0 such that for every ε < ε0,

lim
h→0

N
(
[E − h, E + h]− 1

2 ih [PE (1)− ε,PE (1)+ ε]
)

N
(
[E − h, E + h]− ih

[
0, γ

]) = 1, (3.60)

where PE (s) is the topological pressure defined in (3.29).

In the case of convex co-compact hyperbolic quotientsTheorem14andConjecture 5
imply that, for γ large enough,

lim
h→0

N
(
[E − h, E + h]− 1

2 ih
[
0,PE (1)− ε, γ

])

N ([E − h, E + h]− ih[0, γ ]) = 1.

That could be a weaker but already very interesting substitute for (3.60).

4 Pollicott–Ruelle resonances from a scattering theory viewpoint

Suppose that M is amanifold and X a smooth vector field on M . The flowϕt := exp t X
gives a group of diffeomorphisms ϕt : M → M and a large branch of the theory of
dynamical systems is concerned with long time properties of the evolution under ϕt .
One way to measure this evolution is by considering correlations: for f, g ∈ C∞c (M)

we define

ρ f,g(t) :=
∫

M
f (ϕ−t (x)) g(x)dm(x), (4.1)

with respect to a measure on M . (Sometimes (
∫

M f )× (
∫

M g) is subtracted from ρ f,g

in the definition; it also interesting to consider less regular f and g). What measure
one should take is of great interest and invariant measures are the most natural ones.
The particularly interesting Sinai–Ruelle–Bowen (SRB)measures (see [154]) have the
property that

ρ f,g(t) = lim
T→∞

1

T

∫ T

0
f (ϕs−t (x)) g(ϕs(x))ds,
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for almost every x ∈ M with respect to a smooth (Lebesgue) measure. This allows a
computation of ρ f,g(t) using one “randomly chosen” orbit of the flow.

With U (t) f := f ◦ ϕ−t this is the set-up discussed in Fig. 3 and we expect that
for chaotic flows we have a picture shown there. That is, we expect an expansion of
correlations in terms of suitably defined resonances of the dynamical systems,

ρ f,g(t) ∼
∑

Im λ j>−γ
e−iλ j t u j ( f )v j (g)+O f,g(e

−γ t ), (4.2)

where u j , v j ∈ D′(M) andλ j are independent of the test functions f and g. Ifwe know
that the number of λ j ’s with Im λ j > −γ is finite and λ0 = 0 (with u0 = v0 = dm)
is the only real resonance then we have an exponential decay of correlations:

ρ f,g(t)−
∫

M
f (x)dm(x)

∫

M
g(x)dm(x) = O(e−αt ). (4.3)

Hence we see that the questions encountered here are similar to the questions asked
in the study of scattering resonances: existence of resonance expansions (Sects. 2.5,
3.3) and of resonance free regions (gaps) (Sects. 2.4, 3.2). One can also ask general
questions about the distribution of λ j ’s.

As signatures of a chaotic systems the dynamical resonances λ j ’s were introduced
byPollicott [213] andRuelle [227]—seeFig. 13 for an example inmodeling of physical
phenomena. They can also be studied in the simpler setting of maps, that is for systems
with discrete time—see Baladi–Eckmann–Ruelle [8] for an early study and Baladi
[5,6] for later developments.

The explicit analogy with scattering theory was emphasized by Faure–Sjöstrand
[84] following earlier works by Faure–Roy–Sjöstrand [86] and Faure–Roy [85] in the
case of maps. Semiclassical methods for the study of decay of correlations were also
introduced by Tsujii [261] who applied FBI transform techniques to obtain precise
bounds on the asymptotic gaps for certain flows (see Sect. 4.4 below). This led to rapid
progress some of which is described below—to see the extent of this progress one can
compare the current state of affairs to that in the early review by Eckmann [81]. For
some other recent developments see also Faure–Tsujii [89].

In this section we first give a precise definition of chaotic dynamical systems and
then define Pollicott–Ruelle resonances. We concentrate to the case of M compact but
give indicationswhat happens in the non-compact case.We then explain the connection
to dynamical zeta functions and survey results on resonance free strips and on ounting
of resonances.

4.1 Anosov dynamical systems

Let M be a compact manifold and ϕt = exp t X : M → M a C∞ flow generated by
X ∈ C∞(M; T M).

In this article the precise meaning of being chaotic is that the flow is an Anosov
flow. That means that the tangent space to M has a continuous decomposition
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Tx M = E0(x) ⊕ Es(x) ⊕ Eu(x) which is invariant, dϕt (x)E•(x) = E•(ϕt (x)),
E0(x) = RXx , and for some C and θ > 0 fixed

|dϕt (x)v|ϕt (x) ≤ Ce−θ |t | |v|x , v ∈ Eu(x), t < 0,

|dϕt (x)v|ϕt (x) ≤ Ce−θ |t | |v|x , v ∈ Es(x), t > 0.
(4.4)

where | • |y is given by a smooth Riemannian metric on X . This should be compared
to Definition 4: in the case when M is compact all of M is “trapped” and Anosov flows
are hyperbolic everywhere.

Following Faure–Sjöstrand [84] we exploit the analogy between dynamical sys-
tems and quantum scattering, with the fiber ξ -infinity playing the role of x-infinity
in scattering theory. The pullback map can be written analogously to the Schrödinger
propagator:

ϕ∗−t = e−i t P : C∞(M)→ C∞(M),

ϕ∗−t f (x) := f (ϕ−t (x)), P := 1
i X. (4.5)

Sometimes it is convenient to make the seemingly trivial semiclassical modification
and write Ph = h

i X , ϕ∗−t = e−i t Ph/h . In either case the symbol of P and its Hamilto-
nian flow

σ(P) =: p(x, ξ) = ξ(Xx ), et Hp (x, ξ) =
(
ϕt (x), (

T dϕt (x))
−1ξ

)
. (4.6)

Here Hp denotes the Hamilton vector field of p: ω(•, Hp) = dp, where ω = d(ξdx)
is the symplectic form on T ∗M . This should be compared to (3.22) and (3.23), noting
that ϕt mean a different thing in Sect. 3. For us the classical flow ϕt on M is the
“quantum propagation” e−i t P and the corresponding Hamiltonian flow exp t Hp is the
symplectic lift of ϕt to T ∗X (see Fig. 27).

In the study of P we need the dual decomposition of the cotangent space:

T ∗x X = E∗0 (x)⊕ E∗s (x)⊕ E∗u (x), (4.7)

where E∗0 (x), E∗s (x), E∗u (x) are annhilators of Es(x) ⊕ Eu(x), E0(x) ⊕ Es(x), and
E0(x)⊕ Eu(x). Hence they are dual to to E0(x), Eu(x), Es(x), respectively.

An important special class of Anosov flows is given by contact Anosov flows. In
that case M is a contact manifold, that is a manifold equipped with a contact 1-form
α: that means that if the dimension of M is 2k+ 1 then (dα)∧k ∧α is non-degenerate.
A contact flow is the flow generated by the Reeb vector field X :

α(X) = 1, dα(X, •) = 0. (4.8)

Natural examples of Anosov contact flows are obtained from negatively curved Rie-
mannian manifolds (�, g):

M = S∗� := {
(z, ζ ) ∈ T ∗� : |ζ |g = 1

}
, α = ζdz|S∗�. (4.9)
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x

ξ

ξ2 + V (x) = E

T ∗
R

n

x

ξ T ∗Mξ(X
x )

=
0

Fig. 27 Scattering in R
n and Anosov flows on a compact manifold M : the classical Hamiltonians in

phase space (now a “double phase space” in case of Anosov flow, T ∗M) are p(x, ξ) = |ξ |2 + V (x),
(x, ξ) ∈ T ∗Rn and p(x, ξ) = ξ(Xx ), (x, ξ) ∈ T ∗M (where X generates the Anosov flow). In both cases,
the energy surfaces p = E are non-compact: in scattering x → ∞, in the Anosov case, ξ → ∞. Fig. 28
below should be compared to [183, Figure 2]: it is not surprising that Melrose’s “radial estimates” play a
role in the analysis of both cases. For flows the situation is simpler since the flow is linear in the ξ variables
(see 4.6) and there is no additional infinity (in the scattering case there is also the ξ infinity). When M is
non-compact the situation becomes more complicated as both infinities play a role: see [73, Figure 2]

The scattering theory/microlocal point of view to Anosov flows has already had
applications outside the field: by Dang–Riviére [49] to the analysis of Morse–Smale
gradient flows, by Guillarmou [116,117], Guillarmou–Monard [120], Guillarmou–
Paternain–Salo–Uhlmann [121] to inverse problems and by Faure–Tsujii to the study
of semiclassical zeta functions [88].

4.2 Definition of Pollicott–Ruelle resonances

The intuitive definition should follow Fig. 3. We should consider the power spectrum
of correlations:

ρ̂ f,g(λ) :=
∫ ∞

0
eiλtρ f,g(t)dt, (4.10)

which is well defined for Im λ > 0. If we show that

λ �−→ ρ̂ f,g(λ) continues meromorphically to Im λ > −A, (4.11)

then the poles of the continuation of ρ̂ f,g(λ) are the complex frequencies we expect
to appear in expansions of correlations (4.2).

Let us assume now that the correlations (4.1) are defined using a smooth (not
necessarily invariant) density dm(x). We denote by 〈•, •〉 the distributional pairing
using this density. In the notation of (4.5) and for Im λ > 0,

ρ̂ f,g(λ) =
∫ ∞

0
〈e−i t P f, g〉eiλt dt = 1

i
〈(P − λ)−1 f, g〉 (4.12)
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which means that (4.11) follows from

(P − λ)−1 : C∞(M)→ D′(M) continues meromorphically to Im λ > −A, (4.13)

To obtain this meromorphic continuation one wants to find suitable spaces on which
P − λ is a Fredholm operator. A microlocal construction of such Hilbert spaces
was provided by Faure–Sjöstrand [84] but the origins of the method lie in the works
on anisotropic Banach spaces by Baladi–Tsujii [9], Blank–Keller–Liverani [23],
Butterley–Liverani [41], Gouëzel–Liverani [112], and Liverani [168,169] – see [6]
for a recent account in the setting of maps.

Here we will follow a modified approach of [78, §§3.1,3.2] where the spaces are
defined using microlocal weights. To describe the spaces we denote by �0+(M) the
space of pseudodifferential operators of order ε for any ε > 0, with σ : �m(M) →
Sm(T ∗M)/Sm−1(T ∗M) denoting the symbol map (see (3.22) where we used the semi-
classical symbol, p = σh(P) and [78, Appendix B] for definitions and references).
We then put

HrG(M) := exp (−rG(x, D)) L2(M), G ∈ �0+(M),

σ (G) = (1− ψ0(x, ξ))mG(x, ξ) log |ξ |g , (4.14)

where ψ0 ∈ C∞c (T ∗M, [0, 1]) is 1 near {ξ = 0}, mG(x, ξ) ∈ C∞(T ∗M \ 0, [−1, 1])
is homogeneous of degree 0 and satisfies (see (4.7))

mG(x, ξ) =
{

1 near E∗s
−1 near E∗u

HpmG(x, ξ) ≤ 0, (x, ξ) ∈ T ∗M \ 0. (4.15)

The existence of such mG is shown in [78, Lemma C.1]. Intuitively, it is clear that it
can be done if we look at Fig. 28: the flow lines of Hp go from E∗s to E∗u or towards
the zero section. Hence we can have a function which is 1 near E∗s and −1 near E∗u
and decreases along the flow.

The properties of mG and hence of the operator G(x, D) show that for r ≥ 0,

Hr (M) ⊂ HrG(M) ⊂ H−r (M).

Moreover, microlocally near E∗s and E∗u the space HrG is equivalent to Hr and H−r

respectively. To explain this rigorouslywe recall the notion ofwave front set,WF(u), of
a distribution u ∈ D′(Rn) (since the notion is local, or rather microlocal, the definition
works for manifolds as well): for (x, ξ) ∈ T ∗Rn\0,

(x, ξ) /∈WF(u)

�
∃ϕ ∈ C∞c (Rn), ϕ(x) �= 0, ε > 0 ∀ N ∃CN

|ϕ̂u| ≤ CN (1+ |η|)−N , η ∈ R
n \ 0,

∣
∣
∣ η
|η| − ξ

|ξ |
∣
∣
∣ < ε,

(4.16)
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0
Q

∂T
∗
M

E∗
u

E∗
s

Fig. 28 A schematic representation of the flow on the compactification of T ∗M , T
∗

M—by compactifi-
cation we mean replacing each fiber T ∗x M by a ball T

∗
x M with the boundary corresponding to the sphere

at infinity. At zero energy, p−1(0) = {(x, ξ) : ξ(Xx ) = 0} the trapped set of the flow is given by the zero
section and the operator X/ i − i Q(x, h D)/h − λ is invertible on spaces HrG (with uniform bounds once
the norms are semiclassical modified by changing G(x, D) to G(x, h D)) for Q ≥ 0 microlocalized to the
shaded region and elliptic in a neighbourhood of the trapped set and Im λ > −r/C0. Since Q(x, h D) is a
compact operator that, and estimates on the adjoint on dual spaces, shows the Fredholm property of X/ i−λ

see [136, Definition 8.1.2] and [137, Theorem 18.1.27] for a useful characterization.
The definition means that the Fourier transform of a localization of u to a neighbour-
hood of x decays rapidly in a conic neighbourhood of ξ . Rapid decay in all directions
would mean that u is smooth at x and hence WF(u) provides a phase space localized
description of smoothness. We also recall [136, Definition 8.2.2]: for a closed conic
subset, �, of T ∗M \ 0 (0 denotes the zero section ξ = 0; conic means the invariance
under the multiplicative action of R+ on the fibers),

D′�(M) := {
u ∈ D′�(M) : WF(u) ⊂ �

}
. (4.17)

With this notation we can say that there exist conic neihbourhoods, �s and �u if E∗u
and E∗s respectively such that for r ≥ 0,

HrG(M) ∩D′�u
(M) = H−r (M) ∩D′�u

(M),

HrG(M) ∩D′�s
(M) = Hr (M) ∩D′�s

(M). (4.18)

Hence, our spaces improve regularity along the flow (see Fig. 28) and that leads to a
Fredholm property (roughly, the inclusion Hr ↪→ H−r , r > 0, is a compact operator).
Such spaces appeared in scattering theory long ago: in the work of Melrose [180] on
the Poisson formula for resonances and, with an explicit use of microlocal weights (in
the analytic setting via the FBI transform), in the work of Helffer–Sjöstrand [125] on
a microlocal version of complex scaling.

The following theorem was first proved by Faure–Sjöstrand [84] for more specific
weights G and by Dyatlov–Zworski [78]. The characterization of resonant states using
awave front set condition is implicit in [84] and is stated inDyatlov–Faure–Guillarmou
[71, Lemma 5.1] and [79, Lemma 2.2]. For non-compact M with hyperbolic trapped
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sets for the flow ϕt a much more complicated analogue was proved by Dyatlov–
Guillarmou [73, Theorem 2].

Theorem 15 Suppose that HrG(M) is defined in (4.14), P = 1
i X , where X is the

generator of the (Anosov) flow. Define DrG(M) := {u ∈ HrG(M) : Pu ∈ HrG(M)}.
There exist constants, C0,C1 such that

P − λ : DrG(M)→ HrG(M), r > C0(Im λ)− + C0, (4.19)

is a Fredholm family of operators, invertible for Im λ > C1. Hence, λ �→ (P −λ)−1 :
HrG → HrG is a meromorphic family of operators in Im λ > −r/C0 and in particular
(4.13) holds for any A. In addition,

1

2π i
trHrG (M)

∮

λ

(ζ − P)−1dζ = dim
{

u ∈ D′E∗u (M) : ∃ 
 (P − λ)
u = 0
}
. (4.20)

Here the integral is over a sufficiently small positively oriented circle centered at λ.

This result remains valid for operators P : C∞(M, E) → C∞(M, E) where E is
any smooth complex vector bundle and P is a first order differential system with the
principal part given by P . That will be important in Sect. 4.3.

Theorem 15 provides a simple definition of Pollicott–Ruelle resonances formulated
in terms of the wave front set condition and action on distributions. We state it only
in the scalar case:

Definition 6 Suppose M is a compact manifold, X ∈ C∞(M; T M) generates an
Anosov flow in the sense of (4.4) and E∗u is defined in (4.7).

We say that λ ∈ C is a Pollicott–Ruelle resonance if

∃ u ∈ D′E∗u (M) (P − λ)u = 0, P := 1
i X, (4.21)

where D′E∗u (M) is defined in (4.17). The multiplicity of the resonance is defined by
the right hand side of (4.20).

Our insistence of 1
i in P comes from quantum mechanician’s attachment to self-

adjoint operators: P is self-adjoint on L2(M, dm) if the flow admits a smooth invariant
measure dm. In some conventions, e.g. in [71,118], resonances are given by s = −iλ.

From the physical point of view this definition should be stable when the flow is
randomly perturbed, that is if we change

ẋ(t) = −Xx(t), x(0) = x −→ ẋε(t) = −Xxε(t)+
√
2ε Ḃ(t), xε(0) = x, (4.22)

where where B(t) is the Brownian motion corresponding a Riemannian metric g on
M—see for instance [82]. This corresponds to changing the evolution by P = X/ i :

e−i t P f (x) = f (x(t)) −→ e−i t Pε f (x) = E [ f (xε(t))] , Pε := P+ iε�g. (4.23)
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The operator Pε is elliptic for ε > 0 and hence has a discrete spectrum with L2 eigen-
functions. This spectrum converges to the Pollicott–Ruelle resonances as was shown
in [77]. Stability of Pollicott–Ruelle resonances for Anosovmaps has been established
by Blank–Keller–Liverani [23] and Liverani [169], following a very general argument
of Keller–Liverani [155].

Theorem 16 Suppose that λ0 is a Pollicott–Ruelle resonance of multiplicity m (see
Definition 6). Then there exists r0 > 0, ε0 > 0 such that for 0 < ε < ε0, Pε (defined
in (4.23)) has exactly m eigenvalues {λ j (ε)}mj=1 in D(λ0, r0), and

λ j (ε)→ λ0,

with the convergence uniform for λ0 in a compact set.
Moreover, if (M, α) is a contact manifold and X is its Reeb vector field (see (4.8)),

then for any δ > 0 there exist R > 0 such that for all ε > 0,

Spec(Pε) ∩
([R,∞)− i

[
0, 1

2 (γ0 − δ)
]) = ∅, (4.24)

where

γ0 = lim inf
t→∞

1

t
inf

x∈M
log det

(
dγt |Eu(x)

)
. (4.25)

The last statement means that an asymptotic resonance free region for contact flows
(see Sect. 4.4) is stable under random perturbations. It also comes with polynomial
resolvent bounds (Pε−λ)−1 = (|λ|N0)Hs0→H−s0 . Stability of the gap for certain maps
was established by Nakano–Wittsten [195].

An elliptic perturbation Pε = X/ i + iε�g is natural when there is no addi-
tional structure. However, for Hamiltonian systems, or more specifically, for Anosov
geodesic flows on Riemannian manifolds (�, g)—see (4.9)—a more natural operator
is given by

P̃ε := 1
i X + iε�̃g,

�̃gu(z, ω) :=
n∑

i, j

gi j (z)∂
2
ξi ξ j

[
u(z, ξ/|ξ |g)

]
,

ω = ξ/|ξ |g, u(z, •) ∈ C∞(S∗z �). (4.26)

The operator P̃ε is now only hypoelliptic and the Brownian motion “kick” occurs only
in the momentum variables which is physically natural. The analogue of the first part
of Theorem 16 was recently proved by Drouot [62] and that paper can be consulted
for background information and many references. The proof combined methods of
[77] and semiclassical hypoelliptic estimates inspired by the work of Lebeau [165].
An alternative approach to these estimates was given by Smith [251] who adapted his
earlier paper [250] to the semiclassical setting (Fig. 29).

We formulate the P̃ε analogue of the second part of Theorem 16 as
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Re λ
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Fig. 29 A schematic presentation of the results in Theorems 16. Pollicott–Ruelle resonances of the gener-
ator of the flow X (denoted by red asterisks) are approximated by the eigenvalues of X/ i + iε�g (denoted
by blue circles) uniformly on compact sets. The asymptotic resonance free strip is uniform with respect to ε

(colour figure online)

Conjecture 8 Suppose M = S∗�, where (�, g) is a compact Riemannian manifold
whose geodesic flow is an Anosov flow. Then the second part of Theorem 16 holds with
P̃ε in place of Pε.

4.3 Connections to dynamical zeta functions

In addition to expansions of correlations, the study of Pollicott–Ruelle resonances is
also motivated by their appearance as poles and zeros of dynamical zeta functions.
For motivation and history of that rich subject we refer to [109, §1] and [214]. Here
we will consider the Ruelle zeta function [226] which is defined by analogy with the
Riemann zeta function, ζ(s) = ∏

p(1 − p−s)−1, with primes p replaced by lengths
of primitive closed geodesics

ζR(λ) :=
∏

γ∈G

(
1− eiλ
γ

)
. (4.27)

(We switch to our convention λ = is.) Here G denotes the set of primitive closed
trajectories (that is trajectories on which one “goes around only once”) of ϕt and 
γ
is the length of the trajectory γ .

One question, asked by Smale in [249, §II.4] was if ζR admits a meromorphic
continuation to C

12 or to large strips Im λ > −A. When M = S∗� (see (4.9)) where
(�, g) is a compact Riemannian surface of negative curvature, that had already been
known thanks to the Selberg trace formula and the meromorphy of the Selberg zeta
function:

ζS(s) :=
∏

γ∈G

∞∏

m=0

(
1− e−(m+s)
γ

)
, ζR(is) = ζS(s)

ζS(s + 1)
, (4.28)

12 I cannot resist recalling that Smale referred to it as a “wild idea” and wrote “I must admit a positive
answer would be a little shocking!”
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see for instance [173, Theorem 5] for a self-contained presentation.
The first zero of ζR is related to topological entropy (the value of the pressure at 0

in the notation of (3.29)) and the continuation to a small strip past that first zero was
achieved by Parry–Pollicott [204]. To obtain larger strips turns out to be as difficult
as obtaining global meromorphic continuation (which proceeds strip by strip; in the
case of Ck flows the meromorphy only holds in a strip of size depending on k—see
[109]; our microlocal arguments give that as well but with less precision). When the
manifold M and the flow are real analytic that continuation was obtained by Rugh
[228] and Fried [94]. For Anosov flows on smooth compact manifolds it was first
established by Giulietti–Liverani–Pollicott [109] and then by Dyatlov–Zworski [78].
Dyatlov–Guillarmou [73] considered the more complicated non-compact case and
essentially settled the original conjecture of Smale.

We will now explain the proof [78] of the meromorphic continuation of ζR . The
first step [226] is a factorization of the zeta function valid in the case when the stable
and unstable bundles, x �→ Es(x), x �→ Eu(x), respectively, are orientable:13

ζR(λ) =
n−1∏

j=0
ζ j (λ)

(−1) j+q
, ζ j (λ) := exp

⎛

⎝−
∞∑

k=1

∑

γ∈G

eiλk
γ tr∧ jPk
γ

k
∣
∣
∣det

(
I − Pk

γ

)∣∣
∣

⎞

⎠ , (4.29)

where dim M = n, q = dim Es and the Poincaré map is defined by

Pγ := dϕ−
γ (xγ )|Eu(xγ )⊕Es (xγ ), xγ = ϕ
γ (xγ ) ∈ γ. (4.30)

Since we are taking determinants and traces, ζ j ’s do not depend on the choices of xγ .
The factorization essentially follows from det(I − A) = ∑n−1

j=0(−1) j tr∧ j A—see
[78, §2.2].

The relation of the zeta functions ζ j with the flow by the Atiyah–Bott–Guillemin
trace formula (see [78, Appendix B] for a proof):

tr e−i tP j =
∞∑

k=1

∑

γ∈G


γ tr∧ jPk
γ δ(t − k
γ )

∣
∣
∣det

(
I − Pk

γ

)∣∣
∣

, t > 0,

P j = 1
i LX : C∞

(
M; E j

0

)
→ C∞(M; E j

0 ), (4.31)

where E j
0 be the smooth invariant verctor bundle of all differential j-forms u satisfying

ιVu = 0, where ι denotes the contraction operator by a vector field.
The flat trace, tr , is defined using operations on distributions which generalize

integration of the Schwartz kernel over the diagonal: let j : R+×M → R+×M×M
be given by j (t, x) = (t, x, x) and π : R+ × M → R+, by π(t, x) = t . If K ∈
D′(R+ × M × M) is the Schwartz kernel of the operator e−i t P = ϕ∗−t then

tr e−i tP j := π∗j∗K ∈ D′(R+). (4.32)

13 See [109, Appendix B] for the modifications needed in the non-orientable case.
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The push forward of a distributionπ∗ is alwayswell defined in case compactmanifolds
but that is not the case for a pullback by an inclusion j∗ which, if K were smooth
would be

j∗K (t, x) := K (t, x, x) (4.33)

– see [136, Theorem 8.2.4, Corollary 8.2.7]. The condition which justifies (4.33) for
distributional K is

WF(K ) ∩ N∗(R+ ×�) = ∅,
R+ ×� := {(t, x, x) : (t, x) ∈ R+ ×�} , (4.34)

where the wave front setWF was defined in (4.16) and N∗(R+×�) ⊂ T ∗(R+×M×
M) \ 0 is the conormal bundle of R+ ×�, that is, the annihilator of T (R+ × �) ⊂
T (R+ × M × M).

The condition (4.34) is satisfied for K given by the Schwartz kernel of e−i t P = ϕ∗−t ,
t > 0, because for Anosov flows powers of the Poincaré map (4.30), Pk

γ , cannot have
1 as an eigenvalue. Hence (4.32) makes sense and (4.31) holds.

We now observe that for Im λ� 1 and for 0 < t0 < minG 
γ ,

1

i

∫ ∞

t0
tr e−i t(P j−λ)dt = ζ j (λ)

−1 d

dλ
ζ j (λ). (4.35)

In view of (4.29), to show that ζR has a meromorphic extension, it is enough to show
that each ζ j has a holomorphic extension. That in turn follows from a meromorphic
extension of ζ ′j/ζ j with simple poles and integral residues.

Hencewe need to show that the left hand side of (4.35) has ameromorphic extension
to C with poles of finite rank. This is clearly related to (4.13). A formal manipulation
suggests that the left hand side of (4.35) is given by

− eit0λ tr 
(
ϕ∗−t0(P j − λ)−1

)
= −eit0λ〈 j∗ (ϕ−t0 ⊗ id

)∗K j (λ), 1〉, (4.36)

where K j (λ) is the Schwartz kernel of (P j − λ)−1 (which makes sense for all
λ in view of Theorem 15), j (x) = (x, x) and 〈•, •〉 is the distributional pair-
ing D′(M) × C∞(M) → C. Just as in (4.34) this is justified by showing that for
0 < t0 < minγ∈G 
γ ,

WF
((
ϕ−t0 ⊗ id

)∗K j (λ)
) ∩ N∗� = ∅, � := {(x, x) : x ∈ M} . (4.37)

We used the notation (ϕ−t0 ⊗ id)(x, y) := (ϕ−t0(x), y) and the pullback by that
diffeomorphism of M × M is always well defined [136, Theorem 8.2.4]. We have to
be careful at the poles of K j (λ) but a decomposition similar to (2.23) shows that we
can separate a holomorphic and singular parts. On the singular part tr = trHrG which
kills all the higher order poles (nilpotency of Jordan blocks) and gives an integral
residue.
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Condition (4.37) is an immediate consequence of [78, Proposition 3.3] (though it
takes a moment to verify it: the pullback by (ϕ−t0 ⊗ id) shifts things away from the
diagonal):

Theorem 17 Let K j (λ) ∈ D′(M) be the Schwartz kernel of (P j − λ)−1 :
C∞(M, E j

0 )→ D′(M, E j
0 ). Then away from the poles of λ �→ K j (λ),

(x, y; ξ,−η) ∈WF
(
K j (λ)

) �⇒ (x, ξ, y, η) ∈ �(T ∗M) ∪�+ ∪ (E∗u × E∗s ),
(4.38)

where �(T ∗M) := {(ρ, ρ) : ρ ∈ T ∗M} ⊂ T ∗M × T ∗M and

�+ :=
{
(et Hp (x, ξ), x, ξ) : t ≥ 0, p(x, ξ) = 0

}
, p(x, ξ) := ξ(Xx ).

Away from the conic sets E∗u × E∗s this follows from a modification of results of
Duistermaat–Hörmander on propagation of singulaties [78, Proposition 2.5]. Near E∗s
we use a modification of Melrose’s propagation result [183] for radial sources [78,
Proposition 2.6], and near E∗u , his propagation result for radial sinks [78, Proposition
2.7]. The property (4.18) is crucial here and implies the relation between r and Im λ

in Theorem 15. Except for the fact that E∗u and E∗s are typically very irregular as
sets, these are the same estimates that Vasy [263] used to prove Theorem 8 presented
Sect. 3.1.

Retracing our steps through (4.37), (4.36), (4.35) and (4.29) we see that we proved
the theorem of Giulietti–Liverani–Pollicott [109] settling Smale’s conjecture [249,
§II.4] in the case of compact manifolds. For the full conjecture in the non-compact
case proved by a highly nontrivial elaboration of the above strategy, see Dyatlov–
Guillarmou [73]:

Theorem 18 The Ruelle zeta function, ζR(λ), defined for Im λ � 1 by (4.27), con-
tinues meromorphically to C.

What the method does not recover is the order of ζR(λ) in the case when M and X
are real analytic [94,228]. That may be related to issues around Conjecture 2.

Pollicott–Ruelle resonances of P j ’s are exactly the zeros of the entire functions
ζ j (λ)’s. The simple Definition 6 using wave front set characterization led to a short
proof of the following fact [79]: suppose that (�, g) is an oriented negatively curved
Riemannian surface. Then

ζR(λ) = cλ|χ(�)| (1+O(λ)) , c �= 0, λ→ 0, (4.39)

where χ(�) is the Euler characteristic of �. In particular this implies that lengths of
closed geodesics determine the genus of the surface linking dynamics and topology.
Previous to [79] that was known only for surfaces of constant curvature.

Hence (4.39) provides evidence that results valid in rigid (that is, locally symmet-
ric) geometries may be valid in greater generality. Thus, consider a compact oriented
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negatively curved Riemannian manifold (�, g). Following Fried [92,94], for a repre-
sentation α : π1(S∗�)→ GL(N ,C), we define

ζα(λ) :=
∏

γ∈G
det(I − α(γ )eiλ
γ ). (4.40)

The proof of meromorphy of ζR given in [78] and sketched above gives also the
meromorphic continuation of ζα: we only need to change the vector bundles on whose
sections 1

i LX acts. The following statement was proved by Fried [92] in the case of
manifolds of constant negative curvature and conjectured (in an even more precise
form) in [94, p.181] for more general manifolds. We refer to his papers [92,94] for
precise definitions of the objects involved in the statement:

Conjecture 9 Suppose that (�, g) is a negatively curved oriented compact Rieman-
nian manifold of dimension n > 2 and that α is an acyclic unitary representation of
π1(�). Then

|ζα(0)|(−1)n−1 = |Tα(�)|2 , (4.41)

where ζα is defined by (4.40) and Tα(�) is the analytic torsion of �.

The analytic torsion Tα(�) was defined by Ray and Singer using eigenvalues of an
α-twisted Hodge Laplacian. Their conjecture that Tα(�) is equal to the Reidemeister
torsion, a topological invariant, was proved independently by Cheeger and Müller.
Hence (4.41) would link dynamical, spectral and topological quantities. In the case
of locally symmetric manifolds a more precise version of the conjecture was recently
proved by Shen [237, Theorem 4.1] following earlier contributions by Bismut [22]
and Moskovici–Stanton [190].

4.4 Distribution of Pollicott–Ruelle resonances

Exponential decay of correlations (4.3) was established by Dolgopyat [59] for systems
which include geodesic flows on negatively curved compact surfaces and by Liverani
[168] for all contactAnosovflows, hence in particular for geodesics flowsonnegatively
curved compact manifolds—see (4.8), (4.9). These two papers can also be consulted
for the history of the subject. See also Baladi–Demers–Liverani [7] for some very
recent progress in the case of hyperbolic billiards.

Comparing (4.3) and (4.12) shows that if we know a resonance free strip with a
polynomial bound on (P − λ)−1 in that strip then we obtain exponential decay of
correlations. Hence we define the following two spectral (though really “scattering”)
quantities: the spectral gap (for simplicity we consider only the scalar case):

ν1 = sup {ν : Res(P) ∩ {Im λ > −ν} = {0}} , (4.42)

and the essential spectral gap:

ν0 = sup {ν : |Res(P) ∩ {Im λ > −ν}| <∞} . (4.43)
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Here Res(P) denotes the set of resonances of P . Obviously if ν0 > 0 and if we know
that there are no non-zero real resonances, then ν1 > 0.

We have the following result which implies exponential decay of correlations for
contact Anosov flows:

Theorem 19 Suppose that (M, α) is a compact contact manifold and that the Reeb
vector field (4.8) generates an Anosov flow. Then in the notation of (4.43) and (4.25),

1
2γ0 ≤ ν0 <∞. (4.44)

Moreover, for some s

∀ δ > 0 ∃C, N

∥
∥(P − λ)−1

∥
∥

Hs→H−s ≤ C(1+ |λ|)N ,

for |Re λ| > C, Im λ > −ν0 + δ.
(4.45)

One could estimate s more precisely depending on the width of the strip which
would give better decay of correlations results.

The lower bound in (4.44) was proved by Tsujii [261] who improved the result
of Liverani at high energies. It also follows from the very general results of [202]
which apply also in quantum scattering. The method of [202] is crucial in obtaining
the second part of Theorem 16—see also Conjecture 8.

The finiteness of ν0 follows from a stronger statement in Jin–Zworski [153]: for
any Anosov flow there exist strips with infinitely many Pollicott-Ruelle resonances.

One immediate consequence of Theorem 19 is the analogue of Theorems 3 and 12
in the setting of Anosov flows: suppose we enumerate the non-zero resonances so that
Im λ j+1 ≤ Im λ j < 014. There exist distributions u j,k, v j,k ∈ D ′(M), 0 ≤ k ≤ K j ,
such that, for any δ > 0, there exists J (δ) ∈ N such that for any f, g ∈ C∞(M)

ρ f,g(t)=
∫

M
f dm

∫

M
gdm +

J (δ)∑

j=1

K j∑

k=1
tke−i tμ j 〈u j,k, f 〉〈v j,k, g〉+O f,g

(
e−t (ν0−δ)

)
,

(4.46)

for t > 0. Here dm is the invariant density coming from the contact form and normal-
ized to have

∫
M dm = 1 and 〈•, •〉 denotes distributional pairing. This refines (4.3)

and provides a rigorous version of (4.2).
We conclude with a review of counting results for resonances. We put

N (�) := |Res(P) ∩�| , � � C,

and denote n := dim M .

14 There are no non-zero real resonances for Anosov flowswith smooth invariant measures and in particular
for contact Anosov flows—for a direct microlocal argument for that see [79, Lemma 2.3].

123



Mathematical study of scattering resonances 75

The first boundwas proved by Faure–Sjöstrand [84] and it holds for general Anosov
flows on compact manifolds: for any γ > 0,

N
([

r − r
1
2 , r + r

1
2

]
− i[0, γ ]

)
= o

(
rn− 1

2

)
. (4.47)

For Anosov contact flows a sharp bound was proved by Datchev–Dyatlov–Zworski
and it says that

N ([r − 1, r + 1] − i[0, γ ]) = O
(

r
n−1
2

)
, (4.48)

which improves (4.47), giving N ([r − r
1
2 , r + r

1
2 ]− i[0, γ ]) = O(r

n
2 ), in the contact

case. These bounds are sharp in all dimensions as shown by the very precise analysis
of Pollicott–Ruelle resonances on compact hyperbolic quotients by Dyatlov–Faure–
Guillarmou [71]. Although these resonances have been known for a long time in the
case of surfaces, in higher dimensions some new structure was discovered in [71], see
also Guillarmou–Hilgert–Weich [118].

Under a pinching condition onminimal andmaximal expansion rates νmax < 2νmin,
Faure–Tsujii [87] proved a sharp lower bound in the contact case: for any ε > 0 and
any δ > 0 there exists c > 0 such that

N
([

r − rε, r + rε
]− i 12 [0, νmax + δ]

) ≥ cr
n−1
2 +ε. (4.49)

This should be compared to Dyatlov’s Weyl asymptotics shown in Fig. 22—see [67,
§1]. The only, and very weak, bound in the general Anosov case follows from a local
trace formula [153, Theorem 1] (similar in spirit to Sjöstrand’s local trace formula
for resonances [241]): for every 0 < δ < 1 there exists A = Aδ such that in the
Hardy–Littlewood notation,15

N ([0, r ] − i[0, A]) = �(r δ). (4.50)

However, Naud observed [153, Appendix B] that for suspensions of certain Anosov
maps, the bound O(r) holds, in which case (4.50) is not too far off.

This state of affairs shows that many problems remain and the non-compact case
seems to be completely open.
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