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Abstract We present some recent stability results concerning the isoperimetric
inequality and other related geometric and functional inequalities. The main tech-
niques and approaches to this field are discussed.
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1 Introduction

The isoperimetric inequality is probably one of the most beautiful and at the same
time one of the most powerful tools of modern mathematics. Despite the fact that the
isoperimetric property of the circle among all planar figures was already well known
in ancient times, the first rigorous proofs of this fact have been only obtained at the
beginning of last century. In particular Hurwitz proved in 1901 that given a simple,
closed curve γ ⊂ R

2 of length L enclosing an area A, then

L2 ≥ 4π A, (1.1)

with equality holding if and only if γ is a circle. His proof, see [86], used the Gauss–
Green formula andWirtinger inequality that is the one-dimensional Sobolev–Poincaré
inequality with the sharp constant. This is not surprising since in higher dimension
the connections of the isoperimetric inequality with the divergence theorem and with
the Sobolev inequality are even more evident.

Passing to higher dimensions was not an easy task for the mathematicians of last
century, also because it was clear that proving the isoperimetric inequality in full
generality would require a deeper understanding of the concept of surface measure.
In the end, three main directions were followed to this purpose. The first one, and
maybe the simplest, was based on the Brunn–Minkowski inequality, see for instance
[29, Th. 8.1.1], stating that if H, K ⊂ R

n are compact sets then

|H + K | 1n ≥ |H | 1n + |K | 1n . (1.2)

From this inequality one gets easily that if K ⊂ R
n is compact then

σ(∂K ) ≥ σ(∂ Br ), (1.3)

where Br is a ball of the same volume as K and σ(∂K ) denotes the outer Minkowski
content of the boundary of K , defined as

σ(∂K ) := lim inf
ε↓0

|K + ε B̄| − |K |
ε

,

where B̄ is the closed unit ball. Note that if K is the closure of a bounded smooth open
set, then σ(∂K ) coincides with the usual measure of the surface ∂K . Therefore (1.3)
can be viewed as a generalized version of the classical isoperimetric inequality.

Another approach to the isoperimetric inequality comes from Calculus of Varia-
tions. Provided that an isoperimetric set exists and is a smooth bounded open set, by
taking small variations of this set one immediately sees that its boundary must have
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constant mean curvature. This observation led people to prove that the ball is the only
smooth open set inRn whose boundary has constant mean curvature, a result that was
eventually obtained by Aleksandrov in 1958, see [2].

A third approachwas followed byDeGiorgi in his celebrated paper [53] of 1958.He
used an observation going back to Steiner: the surface area of a set E , ormore generally
its perimeter P(E), decreases under Steiner symmetrization, see Theorem 2.7. The
isoperimetric property of balls then follows, since they are the only sets that are
invariant under Steiner symmetrization in every direction. The formulation given by
De Giorgi in the framework of the theory of sets of finite perimeter is the most general
one. It states that if E ⊂ R

n is a Lebesgue measurable set with the same volume as a
ball Br then

P(E) ≥ P(Br ), (1.4)

with the equality holding if and only if E is a ball.
Other proofs of the isoperimetric inequality have been proposed more recently.

Among them we shall discuss the one given by Gromov in [100], see Sect. 5.1, which
uses ideas related to mass transportation and ultimately reduces the isoperimetric
inequality to the divergence theorem and the arithmetic-geometric mean inequality.
Finally, an elegant and short proof has been given by Cabré in [30] using the properties
of solutions of the Neumann problem for the Laplacian. We cannot pursue here the
history of all proofs and formulations of the isoperimetric inequality, but we refer
the interested reader to the survey paper of Ossermann [104] and to the book of
Chavel [37].

Let us go back to the isoperimetric inequality in the plane. In the 1920’s Bonnesen
obtained a series of improved versions of (1.1), later on named by Osserman [105]
Bonnesen type inequalities, of the form

L2 − 4π A ≥ d,

where the quantity d on the right hand side is a nonnegative geometrically significant
expression vanishing if and only if γ is a circle. In particular in 1924 Bonnesen [21]
proved the following sharp and elegant estimate.

Theorem 1.1 (Bonnesen) Given a closed, simple curve γ ⊂ R
2 enclosing a convex

set C of area A, there exist two concentric circles C1 ⊂ C ⊂ C2 of radii r1 and r2,
respectively, such that

(r2 − r1)
2 ≤ L2 − 4π A

4π
.

This inequality has the feature of being sharp, since the constant 4π at the denomina-
tor cannot be increased, and of having an elementary proof. It provides a nice example
of quantitative isoperimetric inequality, i.e., an inequality where a suitable distance
of a set E from a ball of the same volume is controlled in terms of the difference of
the perimeter of E and the perimeter of the ball.

It was only in 1989 that Fuglede extended this result to convex sets in higher
dimension. Indeed, he proved in [72] that given a convex body K with the same
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volume as the unit ball B one can always measure the Hausdorff distance of a translate
of K from B by a suitable power of the isoperimetric deficit of K , i.e., the difference
P(K ) − P(B), see Theorem 3.2.

His result was the starting point of modern investigations on the stability of isoperi-
metric inequality. In fact only a fewyears later Fuglede’s result was extended to general
sets of finite perimeter in R

n in two papers by Hall et al. [84] and by Hall [82]. Pre-
cisely, in the last paper it was proved that if E ⊂ R

n is a measurable set with the same
volume as the unit ball B, then

min
x∈Rn

{|(x + E)�B|}4 ≤ C(n)[P(E) − P(B)], (1.5)

where C(n) is a positive constant depending only on the dimension. Note that in
dealing with general sets one has to replace the Hausdorff distance with the weaker
one given by the measure of the symmetric difference between a translated of the
set E and B. This is unavoidable if one thinks that by adding to B some long thin
spikes the volume and the perimeter of the resulting set change very little while its
Hausdorff distance from B goes to infinity. Note also that in (1.5) the power 4 on the
left hand side is independent of the dimension, though Hall suggested in [82] that it
should be replaced with the optimal power 2, see the discussion at the beginning of
Sect. 4.

Inequality (1.5) with the power 2 was proved in [76] by Maggi, Pratelli and the
author using symmetrization arguments. This result was not the end of the story. On
the contrary it initiated a series of papers where other proofs of the same inequality
were given or similar stability results were obtained for other inequalities such as the
Sobolev, the Faber–Krahn, the Brunn–Minkowski and the isodiametric inequalities,
see Sects. 5 and 6.

The aim of this paper is to present the results, the techniques and the main ideas
developed in this context. Three different approaches are now available if one wants
to study these stability issues: a first one using symmetrization, another one via mass
transportation and a third one based on the regularity theory for minimal surfaces and
other PDEs.

The paper is organized as follows. After quickly recalling some basic tools from
De Giorgi’s theory of sets of finite perimeter and from Geometric Measure Theory,
in Sect. 3 we present Fuglede’s proof of the quantitative isoperimetric inequality for
convex sets and for nearly spherical sets, that are sets close to a ball in C1 sense.
In rewriting the original proofs of [72] we have tried to simplify some unnecessar-
ily complicated parts and to highlight some ideas contained therein that have been
successfully used later by various authors in different contexts.

In Sect. 4 we present the proof of the quantitative isoperimetric inequality via sym-
metrization given in [76], with some simplifications introduced by Maggi in [94].
Although a shorter proof has been given later by Cicalese and Leonardi [45] using the
regularity theory for area minimizing sets of finite perimeter, the proof by symmetriza-
tion uses no deep results from geometric and functional analysis, is geometrically
intuitive and can be adapted to other situations where a complete regularity theory is
not available.
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The stability proofs via mass transportation and via regularity are presented in
Sect. 5. Not all the details of the proofs are given, but we have tried to explain the main
ideas and the novel techniques. In this sectionwediscuss also several generalizations of
the quantitative isoperimetric inequality to higher codimension, to non local perimeters
and to non Euclidean settings such as the Gauss space.

Finally, Sect. 6 gives an account on how the techniques developed for the isoperi-
metric inequality have been successfully applied to study the stability of other related
inequalities. The quantitative versions of the Sobolev inequality and of the Faber–
Krahn inequality for the first eigenvalue of the Laplacian are discussed with some
details. Reference to other inequalities are given in the last section. But at that point
we had to stop since for some of them new developments are foreseen in the next
years.

2 Notation and preliminary results

In the following we denote by Br (x) the ball with radius r > 0 and center x and we
use the following simplified notation

Br := Br (0), B(x) := B1(x), B := B(0).

The measure of the unit ball B will be denoted by ωn .
Though most of the results that we are going to present could be given first for

smooth sets and then extended to sets of finite perimeters via the approximation The-
orem 2.4 below, we have preferred to state them in full generality. However the reader
who is not familiar with the theory of sets of finite perimeter may still read the state-
ments and the proofs without problems by simply pretending that all sets involved are
smooth. For the basic properties of sets of finite perimeter and related results we refer
to [8,59]. We start by recalling the definition. Let 	 be an open set in Rn and E ⊂ R

n

a measurable set. The perimeter of E in 	 is defined as

P(E;	) := sup

{∫
E
divϕ dx : ϕ ∈ C∞

c (	; Rn), ||ϕ||∞ ≤ 1

}
. (2.1)

If E is smooth we can use the classical divergence theorem to find that

∫
E
divϕ dx =

∫
∂ E∩	

ϕ · νdHn−1,

thus, taking the supremum over all ϕ as in the definition, we get

P(E;	) = Hn−1(∂ E ∩ 	).
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Note that if P(E;	) < +∞ the map

ϕ ∈ C1
c (	,Rn) 	→

∫
E
divϕ dx

is linear and continuous, so by means of Riesz’s theorem, we can find a vector valued
Radon measure μ = (μ1, . . . , μn) such that

∫
E
divϕ dx =

∫
	

ϕ · dμ =
n∑

i=1

∫
	

ϕi dμi .

Thusμ = −Dχ E , where Dχ E is the distributional derivative ofχ E and the above
formula can be rewritten as

∫
E
divϕ dx =

∫
	

χ E divϕ dx = −
∫

	

ϕ · d Dχ E . (2.2)

So, E has finite perimeter in 	 if and only if Dχ E is a Radon measure with values
in Rn and finite total variation. In fact, from the definition we immediately get that

P(E;	) = |Dχ E |(	).

Recalling Besicovitch differentiation theorem, we also have that for |Dχ E |-a.e.
x ∈ supp|Dχ E |, there exists

νE (x) := − lim
r→0

Dχ E (Br (x))

|Dχ E |(Br (x))
and |νE (x)| = 1. (2.3)

We shall denote by ∂∗E the set of all points in supp|Dχ E |where (2.3) holds. The set
∂∗E is called the reduced boundary of E , while the vector νE (x) is the generalized
exterior normal at x . From (2.3) we have that the measure Dχ E is obtained by
integrating −νE with respect to |Dχ E |, i.e.,

Dχ E = −νE |Dχ E |.

Thus (2.2) can be rewritten as

∫
E∩	

divϕdx =
∫

∂∗ E∩	

ϕ · νE d|Dχ E |, ∀ϕ ∈ C1
c (	,Rn). (2.4)

Since ∂∗E ⊂ supp|Dχ E | ⊂ ∂ E , the reduced boundary of E is a subset of the
topological boundary. The next result (see e.g. [59, Sect. 5.7] or [8, Th. 3.59]) describes
the structure of sets of finite perimeter. Here and in the sequel byHk , k = 0, 1, . . . , n,
we denote the k-dimensionalHausdorff measure inRn . For the definition and the basic
properties of rectifiable sets see [8, Ch. 2].

123



The quantitative isoperimetric inequality. . . 523

In the following the perimeter of E in Rn will be denoted by P(E). If P(E) < ∞
we say that E is a set of finite perimeter.

Theorem 2.1 (De Giorgi) Let E ⊂ R
n be a measurable set of finite perimeter, then

the following hold:

(i) ∂∗E is countably (n−1)-rectifiable, i.e., ∂∗E = ⋃
i Ki ∪N0, whereHn−1(N0) =

0 and Ki are compact subsets of C1 manifolds Mi of dimension n − 1;
(ii) |Dχ E | = Hn−1 ∂∗E, in particular P(E;	) = Hn−1(∂ E∗ ∩ 	) for any open

set 	 ⊂ R
n;

(iii) for Hn−1-a.e. x ∈ Ki , the generalized exterior normal νE (x) is orthogonal to
the tangent hyperplane to the manifold Mi at x;

(iv) for all x ∈ ∂∗E,
|E∩Br (x)|

Br (x)
→ 1

2 as r → 0;

(v) for all x ∈ ∂∗E, limr→0
Hn−1(∂∗ E∩Br (x))

ωn−1rn−1 = 1.

From (ii) above we have that (2.4) can we rewritten as

∫
E
divϕ dx =

∫
∂∗ E∩	

ϕ · νE dHn−1 for all ϕ ∈ C1
c (	,Rn).

Another characterization of the reduced boundary is contained in the following
result. To this aim we recall that if E ⊂ R

n is a measurable set E has density t ∈ [0, 1]
at a point x ∈ R

n if

D(E; x) := lim
r→0+

|E ∩ Br (x)|
|Br | = t.

We shall denote by E (t) := {x ∈ R
n : D(E; x) = t}. Then the measure theoretic

boundary of E is defined as ∂M E := R
n\(E (0) ∪ E (1)). For the proof of the next

theorem see [8, Th. 3.61].

Theorem 2.2 (Federer) Let E be a set of finite perimeter in R
n. Then

∂∗E ⊂ E (1/2) ⊂ ∂ M E and Hn−1(Rn\(E (0) ∪ ∂∗E ∪ E (1)) = 0.

Let Eh be a sequence of measurable subsets ofRn . We say that the sets Eh converge
in measure to a set E ⊂ R

n in an open set 	 ⊂ R
n if χ Eh

→ χ E in L1(	). The

local convergence in measure is defined accordingly. Note that from the definition
(2.1) of perimeter it follows immediately that the perimeter is lower semicontinuous
with respect to the local convergence in measure, i.e. if the sets Eh converge locally
in measure in 	 to a set E , then P(E;	) ≤ lim infh P(Eh;	). Note also, as a
consequence of Rellich–Kondrachov theorem, that sets of finite perimeter are compact
with respect to the convergence in measure, see [8, Th. 3.39].

Theorem 2.3 Let Eh be a sequence of measurable subsets of R
n such that

suph P(Eh;	) < ∞. Then, there exists a subsequence Ehk locally converging in
measure in 	 to a set E of finite perimeter in 	. Moreover,
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524 N. Fusco

P(E;	) ≤ lim
k→∞ P(Ehk ;	).

Another useful property of sets of finite perimeter is stated in the next approximation
result.

Theorem 2.4 Let E be a set of finite perimeter in 	. Then there exists a sequence
of smooth, bounded open sets Eh ⊂ R

n such that Eh → E in measure in 	 and
P(Eh;	) → P(E;	).

Note also that in Theorem 2.4 one may replace the smooth sets Eh with polyhedra,
i.e. bounded open sets obtained as the intersection of finitely many half-spaces.

The next result is a special case of the coarea formula for rectifiable sets, see [8,
Th. 2.93]. To this aim, given k = 1, . . . , n − 1, we set x = (x ′, y) ∈ R

n−k × R
k .

Similarly, given a vector v = (v1, . . . , vn) ∈ R
n we set vx ′ = (v1, . . . , vn−k), vy =

(vn−k+1, . . . , vn), and given a measurable set E ⊂ R
n we denote the section of E

over x ′ ∈ R
n−k by Ex ′ := {y ∈ R

k : (x ′, y) ∈ E}.
Theorem 2.5 Let E be a set of finite perimeter in R

n. Given k ∈ {1, . . . , n − 1},
for Hn−k-a.e. x ′ ∈ R

n−k the slice Ex ′ is a set of finite perimeter in R
k and

Hk−1(∂∗(Ex ′)�(∂∗E)x ′) = 0. Moreover if g : Rn → [0,+∞] is a Borel function we
have

∫
∂∗ E

g(x)νE
y (x)dHn−1(x) =

∫
Rn−k

dx ′
∫

(∂∗ E)x ′
g(x ′, y)dHk−1(y).

Fix k and a measurable set E ⊂ R
n . Let vE : Rn−k → [0,∞) be the function

measuring the k-dimensional slices of E , i.e.,

vE (x ′) := Hk(Ex ′) for Hn−k-a.e. x ′ ∈ R
n−k . (2.5)

Note that vE is Hn−k-measurable. Moreover, if E is a set of finite perimeter, vE

is a function of bounded variation (BV -function) and even a Sobolev function if the
reduced boundary of E has no vertical parts. For the definition and themain properties
of BV functions we refer to [8, Ch. 3]. The following result is a consequence of
Lemma 3.1 and Propositions 3.4 and 3.5 of [11].

Theorem 2.6 Let E be a set of finite perimeter with finite measure and k ∈
{1, . . . , n −1}. Then the function vE defined in (2.5) belongs to BV (Rn−k). Moreover
if Hn−1({(x ∈ ∂∗E : νE

y (x) = 0}) = 0, then vE ∈ W 1,1(Rn−k). In addition, if

U ⊂ R
n−k is a Borel set

P(E; U × R
k) ≥

∫
U

√
pE (x ′)2 + |∇vE (x ′)|2 dx ′ + |DsvE |(U ),

where ∇vE and DsvE are the absolutely continuous part and the singular part, respec-
tively, of the gradient measure DvE with respect to Lebesgue measure in Rn−k and
for Hn−k-a.e. x ′ ∈ R

n−k we have set pE (x ′) := Hk−1(∂∗(Ex ′)).
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Given a measurable set E ⊂ R
n and k ∈ {1, . . . , n − 1} we define the essential

projection of E over the first n − k coordinate hyperplanes by setting

π(E)+ := {x ′ ∈ R
n−k : vE (x ′) > 0}.

If x ′ ∈ π(E)+ we denote by rE (x ′) the radius of a k-dimensional ball with Hk-
measure equal to the one of Ex ′ . Then the Steiner symmetral of E of codimension k
with respect to the subspace {y = 0} is defined by setting

E S := {(x ′, y) ∈ R
n−k × R : x ′ ∈ π(E)+, |y| < rE (x ′)}.

Note that by definition vE (x ′) = vE S (x ′) for Hn−k-a.e. x ′ ∈ R
n−k , hence |E | =

|E S|. On the other hand perimeter decreases under Steiner symmetrization. Precisely,
we have the following result whose proof can be found for instance in [11, Section 3].

Theorem 2.7 Let E ⊂ R
n be a set of finite perimeter and E S its Steiner symmetral

with respect to to first n−k coordinate hyperplanes. Then E S is a set of finite perimeter
and for any Borel set U ⊂ R

n−k we have

P(E S; U × R
k) ≤ P(E; U × R

k). (2.6)

Moreover,

P(E S; U × R
k) =

∫
U

√
pEs (x ′)2 + |∇vE S (x ′)|2 dx ′ + |DsvE S |(U ).

Let us apply the above formula to a set of finite perimeter E , axially symmetric
with respect to the xn axis and let us set v(t) := Hn−1({x ′ ∈ R

n−1 : (x ′, t) ∈ E}).
For any open set U ⊂ R we have

P(E;Rn−1 × U ) =
∫

U

√
(n − 1)2ω

2
n−1
n−1v(t)

2(n−2)
n−1 + v′(t)2 + |Dsv|, (2.7)

provided n ≥ 3 or n = 2 and v > 0 in U .
A characterization of the equality cases in the perimeter inequality (2.6), under

suitable assumptions on the set E , has been given in [38] for the case k = 1 and in
[11] for the higher codimension case. The complete characterization of the equality
cases for the codimension 1 case has been recently proven in [33].

We conclude this section by recalling the coarea formula for functions. Though
it holds more generally for functions of bounded variations, we are going to apply it
only to Sobolev functions. In this case we have, see for instance [8, Th. 3.40].

Theorem 2.8 Let 	 ⊂ R
n be an open set and f ∈ W 1,1

loc (	). Then, for every Borel
function g : 	 → [0,∞] we have

∫
	

g(x)|∇ f | dx =
∫ ∞

−∞
dt

∫
{ f =t}

g(x) dHn−1(x). (2.8)

123



526 N. Fusco

3 The Fuglede’s approach

3.1 Nearly spherical sets

In this section, following Fuglede [72], we consider a nearly spherical set, that is a
set E ⊂ R

n whose boundary can be written as a graph over the boundary of the ball
with the same volume and the same barycenter as E . Thus, up to a translation and a
dilation, we shall assume that there exists a Lipschitz function u : Sn−1 → (−1, 1)
such that

E = {y ∈ R
n : y = t x(1 + u(x)), with x ∈ S

n−1, 0 ≤ t < 1}, (3.1)

that |E | = |B| and that E has barycenter at the origin.
Fuglede’s result states that if E is sufficiently close to B, then the isoperimetric

deficit, that is the difference between P(E) and P(B), controls the L2 norm of the
tangential gradient ∇τ u.

Theorem 3.1 There exists ε(n) > 0 such that if E is as in (3.1), |E | = |B|, the
barycenter of E is the origin and ‖u‖W 1,∞(Sn−1) ≤ ε, then

P(E) − P(B) ≥ 1

4
‖∇τ u‖2L2(Sn−1)

≥ 1

8ωn
|E�B|2. (3.2)

Proof Step 1 Let us prove that if E is as in (3.1) then

Hn−1(∂ E) =
∫
Sn−1

√
(1 + u)2(n−1) + (1 + u)2(n−2)|∇τ u|2 dHn−1. (3.3)

In fact, from the area formula we have that

Hn−1(∂ E) =
∫
Sn−1

Jn−1ϕ dHn−1, (3.4)

where Jn−1ϕ is the (n − 1)-dimensional Jacobian of the map ϕ(x) = x(1 + u(x)),
x ∈ S

n−1. Recall that, if TxS
n−1 is the tangential plane to S

n−1 at x , then Jn−1ϕ =√
det((dxϕ)∗ ◦ dxϕ), where the linear map dxϕ : TxS

n−1 	→ R
n is the tangential

differential ofϕ at x and (dxϕ)∗ : Rn 	→ TxS
n−1 denotes the adjoint of the differential.

Since for any τ ∈ TxS
n−1 we have dxϕ(τ) = τ(1+u(x))+ x Dτ u(x), the coefficients

of the matrix dxϕ relative to an orthonormal base {τ1, . . . , τn−1} of TxS
n−1 and to

the standard base {e1, . . . , en} are τi · eh(1 + u(x)) + xh Dτi u, for i = 1, . . . , n −
1, h = 1, . . . , n. Thus, for all i, j ∈ {1, . . . , n − 1} the coefficients ai j of the matrix
(dxϕ)∗ ◦ dxϕ are given by

ai j =
n∑

h=1

(τi · eh(1 + u) + xh Dτi u)(τ j · eh(1 + u) + xh Dτ j u)

= δi j (1 + u)2 + Dτi u Dτ j u,
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where in the last equality we have used the fact that τi · τ j = δi j and τi · x = 0 for all
i, j = 1, . . . , n−1.Hence, recalling that fora, b ∈ R

k onehas det(I+a⊗b) = 1+a·b,
we have that

Jn−1ϕ =
√
det(ai j ) =

√
(1 + u)2(n−1) + (1 + u)2(n−2)|∇τ u|2

and thus (3.3) follows immediately from (3.4). Let us extend u by setting u(x) :
u(x/|x |) for all x �= 0. Then E = �(B), where � : B → E is the map defined by
setting �(x) := x(1 + u(x)). Note that D�(x) = (1 + u(x))I + x ⊗ Du and that
x · Du(x) = 0 for all x �= 0. Thus, we conclude that the n-dimensional Jacobian of
� is given by (1 + u(x))n . Hence, the assumptions |E | = |B| and ∫E y dy = 0 can
be rewritten as follows

1

n|B|
∫
Sn−1

(1 + u(x))n dHn−1 = 1,
∫
Sn−1

x(1 + u(x))n+1 dHn−1 = 0. (3.5)

Step 2 Using (3.3) we have

P(E) − P(B) =
∫
Sn−1

⎡
⎣(1 + u)n−1

√
1 + |∇τ u|2

(1 + u)2
− 1

⎤
⎦ dHn−1

=
∫
Sn−1

[(1 + u)n−1 − 1]dHn−1

+
∫
Sn−1

(1 + u)n−1

⎡
⎣
√
1 + |∇τ u|2

(1 + u)2
− 1

⎤
⎦ dHn−1.

From the Taylor expansion of the square root it follows that for t > 0 sufficiently
small

√
1 + t ≥ 1+ t

2 − t2
7 . Hence from the smallness assumption ‖u‖W 1,∞(Sn−1) < ε

we get

P(E) − P(B) ≥
∫
Sn−1

[(1 + u)n−1 − 1]dHn−1

+
∫
Sn−1

(1 + u)n−1
[
1

2

|∇τ u|2
(1 + u)2

− 1

7

|∇τ u|4
(1 + u)4

]
dHn−1

≥
∫
Sn−1

[(1 + u)n−1 − 1]dHn−1 +
(
1

2
− Cε

)∫
Sn−1

|∇τ u|2dHn−1.

(3.6)

Note that the first equation in (3.5), that is the assumption |E | = |B|, implies that

∫
Sn−1

[(1 + u)n − 1]dHn−1 = 0,
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that is ∫
Sn−1

(
nu +

n∑
h=2

(
n

h

)
uh

)
dHn−1 = 0. (3.7)

From this identity, recalling again that ‖u‖L∞(Sn−1) < ε, we have

∫
Sn−1

udHn−1 ≥ −n − 1

2

∫
Sn−1

u2dHn−1 − Cε

∫
Sn−1

u2dHn−1.

Therefore, using this last inequality and the smallness assumption, wemay estimate

∫
Sn−1

[(1 + u)n−1−1]dHn−1 = (n − 1)
∫
Sn−1

udHn−1+
n−1∑
h=2

(
n − 1

h

)∫
Sn−1

uhdHn−1

≥ (n − 1)
∫
Sn−1

udHn−1 + (n − 1)(n − 2)

2

∫
Sn−1

u2dHn−1 − Cε

∫
Sn−1

u2dHn−1

≥ −n − 1

2

∫
Sn−1

u2dHn−1 − Cε

∫
Sn−1

u2dHn−1.

In conclusion, recalling (3.6), we have proved that if ‖u‖W 1,∞(Sn−1) ≤ ε, then

P(E)−P(B) ≥
(
1

2
− Cε

)∫
Sn−1

|∇τ u|2dHn−1−
(

n − 1

2
+ Cε

)∫
Sn−1

u2dHn−1.

(3.8)

Step 3 Now, for any integer k ≥ 0, let us denote by yk,i , i = 1, . . . , G(n, k), the
spherical harmonics of order k, i.e., the restriction to S

n−1 of the homogeneous har-
monic polynomials of degree k, normalized so that ||yk,i ||L2(Sn−1) = 1, for all k
and for i ∈ {1, . . . , G(n, k)}. For instance, since ∫

Sn−1 1dHn−1 = nωn and, for
i = 1, . . . n,

∫
Sn−1 x2i dHn−1 = n−1

∫
Sn−1 |x |2dHn−1 = ωn , we have y0 = 1/

√
nωn

and y1,i = xi/
√

ωn , respectively. The functions yk,i are eigenfunctions of theLaplace–
Beltrami operator on S

n−1 and for all k and i

−�Sn−1 yk,i = k(k + n − 2)yk,i .

Therefore if we write

u =
∞∑

k=0

G(n,k)∑
i=1

ak,i yk,i , where ak,i =
∫
Sn−1

uyk,i dHn−1,

we have

||u||2L2(Sn−1)
=

∞∑
k=0

G(n,k)∑
i=1

a2
k,i , ||∇τ u||2L2(Sn−1)

=
∞∑

k=1

k(k +n −2)
G(n,k)∑

i=1

a2
k,i . (3.9)

123



The quantitative isoperimetric inequality. . . 529

Observe that from formula (3.7) we have

a0 = 1√
nωn

∫
Sn−1

udHn−1 = − 1

n
√

nωn

n∑
h=2

(
n

h

)∫
Sn−1

uhdHn−1,

hence

|a0| ≤ C ||u||22 ≤ Cε||u||2.

Similarly, from the second equality in (3.5), that is the assumption that the barycen-
ter of E is at the origin, using the equality

∫
Sn−1 xi = 0, we immediately get that for

all i = 1, . . . , n,

|a1,i | =
∣∣∣∣ 1√

ωn

∫
Sn−1

uxi dHn−1
∣∣∣∣ ≤ Cε||u||2.

Therefore, from (3.9) we get

||u||22 ≤ Cε2||u||22 +
∞∑

k=2

G(n,k)∑
i=1

|ak,i |2 �⇒ ||u||22 ≤ 1

1 − Cε

∞∑
k=2

G(n,k)∑
i=1

|ak,i |2.

But since for k ≥ 2, k(k + n − 2) ≥ 2n, from (3.9) we have

||u||22 ≤ 1

2n(1 − Cε)
||∇τ u||22

and thus, recalling (3.8) and choosing ε sufficiently small, in dependence on n, we get

P(E) − P(B) ≥
(
1

2
− Cε

)∫
Sn−1

|∇τ u|2dHn−1−
(

n − 1

2
+Cε

)
1

2n(1 − Cε)
||∇τ u||22

≥ 1

4

∫
Sn−1

|∇τ u|2dHn−1 ≥ n

3
||u||2L2(Sn−1)

≥ 1

3ωn
||u||2L1(Sn−1)

.

(3.10)

This proves the first inequality in (3.2). To get the second inequality we observe
that, choosing again ε sufficiently small

|E�B| = 1

n

∫
Sn−1

|(1 + u(x))n − 1| dHn−1 ≤ n + 1

n

∫
Sn−1

|u| dHn−1.

Therefore, from the last inequality of (3.10) we conclude that

P(E) − P(B) ≥ 1

3ωn
||u||2L1(Sn−1)

≥ n2

3(n + 1)2ωn
|E�B|2 ≥ 1

8ωn
|E�B|2.

��
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3.2 Convex sets

We shall now discuss the case of convex sets for which Fuglede in [72] proved a
quantitative estimate where the distance from a ball is measured in terms of the Haus-
dorff distance. To this aim we recall that if E, F are any two sets in Rn the Hausdorff
distance between E, F is defined as

dH (E, F) := inf{ε > 0 : E ⊂ F + Bε, F ⊂ E + Bε}.

In this section we shall always assume that K is a closed convex set with non empty
interior and |K | = |B|. For such a set we define the isoperimetric deficit D(K ) and
the asymmetry index A(E) as

D(K ) := P(K ) − P(B), A(K ) := min
x∈Rn

dH (K , B(x)),

respectively. With these definitions in hand the result proved in [72, Th. 2.3] reads as
follows.

Theorem 3.2 (Fuglede) Let n ≥ 2. There exist δ, C, depending only on n, such that
if K is convex, |K | = |B|, and D(K ) ≤ δ, then:

A(K ) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
√D(K ), n = 2√
D(K ) log

(
1

D(K )

)
, n = 3

CD(K )
2

n+1 , n ≥ 4.

(3.11)

To be precise, in his paper [72] Fuglede only deals with the case n ≥ 3, since when
n = 2 the result was already known with a better estimate and a more elementary
proof. Indeed, the case of planar convex sets was already studied by Bernstein [13]
in 1905 and by Bonnesen [21] in 1924, see Theorem 1.1 in Sect. 1. Note that the
estimates (3.11) are sharp with respect to the order of magnitude as D(K ) → 0, see
[72, Sect. 3].

The proof of Theorem 3.2 is based on the quantitative estimate proved in the pre-
vious section. The key point is the observation that a convex sets K with the same
volume as the unit ball and small isoperimetric deficit is nearly spherical. Indeed, the
boundary of K can be written as the graph of a Lipschitz function u over the boundary
of the sphere centered at the barycenter of K with ‖u‖W 1,∞ small. This is precisely
the content of the next lemma.

Lemma 3.3 For all ε > 0, there exists δε > 0 such that if K is a closed convex,
|K | = |B|, the barycenter of K is the origin and D(K ) < δε, then there exists a
Lipschitz function u : Sn−1 → (0,∞), with ‖u‖W 1,∞(Sn−1) ≤ ε, such that

K = {t x(1 + u(x)) : x ∈ S
n−1, 0 ≤ t ≤ 1}. (3.12)
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Proof Note that if K is any closed convex set with barycenter at the origin and non-
empty interior, then K can be always represented as in (3.12) for some Lipschitz
function u : Sn−1 → (0,∞). The point here is to show that the W 1,∞ norm of u is
small when D(K ) is small.

Step 1 We start by proving a weaker statement, namely that for any ε > 0 there exists
δε > 0 such that if K is a closed convex set with barycenter at 0, |K | = |B| and
D(K ) < δε, then K can be represented as in (3.12) for some Lipschitz function u with
‖u‖L∞(Sn−1) ≤ ε.

To prove this we argue by contradiction assuming that there exist ε > 0 and a
sequence of closed convex sets K j such that |K j | = |B|, the barycenter of K j is the
origin, D(K j ) → 0, but ||u j ||L∞(Sn−1) ≥ ε0, where u j is the function representing
K j as in (3.12).

The following fact is well known, see for instance [58, Lemma 4.1]. If n ≥ 2 there
exists C(n) such that for any convex set K with non empty interior

diam(K ) ≤ C(n)
P(K )n−1

|K |n−2 .

Using this inequality we deduce that the sets K j are equibounded and so, up to a not
relabeled subsequence, wemay assume that they converge in the Hausdorff distance to
a closed set K . Note that K is convex and that |K j�K | → 0 as j → ∞. Therefore, by
the lower semicontinuity of the perimeter we have that P(K ) ≤ lim inf j→∞ P(K j ).
Therefore, since D(K j ) → 0, we conclude that P(K ) = P(B) and thus that K is the
closed unit ball centered at the origin. This gives a contradiction, since it is not possible
that the sets K j converge in the Hausdorff sense to B̄, while ||u j ||L∞(Sn−1) ≥ ε0 for
all j .

Step 2 Let us now assume that ‖u‖L∞(Sn−1) ≤ ε for some ε < 1/2. To conclude
the proof of the lemma we show that if this is the case, then the following stronger
inequality holds

‖∇τ u‖∞ ≤ 2
√‖u‖∞

1 + ‖u‖∞
1 − ‖u‖∞

. (3.13)

To prove this estimate we observe that if K is represented as in (3.12), then it is not
too hard to show that for Hn−1-a.e. x ∈ S

n−1 the exterior normal νK (y(x)) to ∂K at
the point y(x) = x(1 + u(x)) is given by

νK (y(x)) = x(1 + u(x)) − ∇τ u(x)√
(1 + u(x))2 + |∇τ u(x)|2 . (3.14)

Thus, if x ∈ S
n−1 is a point where u is differentiable from the previous equality we

have that

x · νK (y(x)) = 1 + u(x)√
(1 + u(x))2 + |∇τ u(x)|2 ,
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O

z(x)

νK(y(x))

νB(x)

x

Fig. 1 The construction in Lemma 3.3

where we used the fact that x · ∇τ u(x) = 0. Then, denoting by z(x) the projection of
the origin on the tangent plane to K at y(x), the triangle with vertices 0, z(x), y(x) is
rectangle at z(x) and the angle at the origin is equal to the angle formed by the vectors
x and νK (y(x)), see Fig. 1. Therefore |z(x)| = |y(x)|(x · νK (y(x))). Observe also
that

|y(x)| ≤ 1 + ||u||∞, |z(x)| ≥ 1 − ||u||∞,

where the last inequality follows from the convexity of K , and thus

1 − ||u||∞
1 + ||u||∞ ≤ x · νK (y(x)) = 1 + u(x)√

(1 + u(x))2 + |∇τ u(x)|2 ,

from which we get

|∇τ u(x)|2
(1 + u(x))2

≤
(
1 + ||u||∞
1 − ||u||∞

)2

− 1 = 4||u||∞
(1 − ||u||∞)2

,

thus concluding

|∇τ u(z)|2 ≤ 4||u||∞
(
1 + ||u||∞
1 − ||u||∞

)2

,

whence (3.13) follows. ��
The proof of Theorem 3.2 now follows quite easily from the lemma we have just

proved and from the next interpolation result, whose proof is given in [72, Lemma 1.4].
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Lemma 3.4 If v ∈ W 1,∞(Sn−1) and
∫
Sn−1 v = 0, then

||v||n−1
L∞(Sn−1)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π ||∇τ v||2, n = 2

4||∇τ v||22 log
8e||∇τ v||∞

||∇τ v||22
, n = 3

C(n)||∇τ v||22||∇τ v||n−3∞ , n ≥ 4,

where the constant C(n) depends only on the dimension and e is the Neper number.

Proof of Theorem 3.2 Fix ε > 0. Thanks to Lemma 3.3 we may assume that K is a
convex set represented as in (3.12) by means of a function u such that ‖u‖W 1,∞ < ε.
Set v := (1+u)n−1

n . From the volume constraint |K | = |B| we have, see the first
equality in (3.5),

∫
Sn−1

v dHn−1 = 1

n

∫
Sn−1

[(1 + u)n − 1]dHn−1 = 0.

Moreover, since

v = u + 1

n

n∑
h=2

(
n

h

)
uh,

if ε > 0 is small enough we have

1

2
|u| ≤ |v| ≤ 2|u|, 1

2
|∇τ u| ≤ |∇τ v| ≤ 2|∇τ u|.

Assume now, to fix the ideas, that n ≥ 4. If ε is smaller than or equal to the one
provided by Theorem 3.1, from the interpolation Lemma 3.4 and (3.13) we have

‖u‖∞ ≤ 2‖v‖∞ ≤ C(n)‖∇τ v‖
2

n−1
2 ‖∇vτ‖

n−3
n−1∞

≤ C(n)‖∇uτ‖
2

n−1
2 ‖∇τ u‖

n−3
n−1∞ ≤ C(n)‖∇τ u‖

2
n−1
2 ‖u‖

n−3
2(n−1)∞ ,

hence ‖u‖∞ ≤ C(n)‖∇τ u‖
4

n+1
2 . Thus, recalling the first inequality in (3.2), we may

conclude that

A(K ) ≤ dH (K , B) = ‖u‖∞ ≤ CD(E)
2

n+1 .

The cases n = 2, 3 are proved in the same way. ��
When passing from a convex set to a general set E of finite perimeter one cannot

expect to estimate the isoperimetric deficit with the Hausdorff distance from a ball,
see the discussion at the beginning of the next section. However, this is still possible
if some additional structure is imposed on the set E . At this regard we mention two
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results that have been recently obtained in this direction. The first one, proved in
[73], deals with sets satisfying a uniform interior cone condition at the boundary. To
simplify the statement we shall assume as before that E is a set with the same volume
as the unit ball. The general case can be recovered by suitably rescaling all the relevant
quantities, see [73, Theorem 1.1].

Given x ∈ R
n , r > 0 and ν ∈ S

n−1 the spherical sector with vertex at x , axis of
symmetry parallel to ν, radius r and aperture π/2 is defined as

Sν,r (x) = {y ∈ R
n : |y − x | < r,

√
2〈y − x, ν〉 > |y − x |}.

Then, we say that a closed set E satisfies the interior cone condition at the boundary
with radius r and aperture π/2 if for any x ∈ ∂ E , there exists νx ∈ S

n−1 such that
Sνx ,r (x) ⊂ E and we denote by Cr the family of all closed sets E , with |E | = |B|,
satisfying the interior cone condition at the boundary with radius r . It can be easily
checked [73, Lemma 2.9], that if E ∈ Cr and D(E) is sufficiently small then E is
compact.

The interior cone condition at the boundary is a rather mild regularity condition.
In fact, given any � > 0 and any θ ∈ (0, π/2) one may construct a set E ∈ Cr which
does not satisfy the standard interior cone condition with height � and aperture θ ,
see [73, Example 2.3]. On the other hand, a set in Cr has always finite perimeter [73,
Prop. 2.4], but the Hn−1-measure of its topological boundary may be strictly larger
than its perimeter, [73, Example 2.6]. The main result proved in [73] then reads as
follows.

Theorem 3.5 For any r > 0 there exist δ, C, depending only on n and r, such that if
E ∈ Cr and D(E) ≤ δ, then:

A(E) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
√D(E), n = 2√
D(E) log

(
1

D(E)

)
, n = 3

CD(E)
2

n+1 , n ≥ 4.

(3.15)

We observe that the powers appearing in (3.15) are the same as in Theorem 3.2.
Another estimate with the same powers has been also obtained by Rajala and Zhong
in [106, Th. 1.5] for John domains whose complement with respect to a suitable ball
is also a John domain. Note that though the sets considered in [106] do not necessarily
belong to Cr , they cannot have singularities such as inward cusps, which are instead
admissible for sets in Cr .

4 The quantitative isoperimetric inequality: the approach via
symmetrization

We now discuss the quantitative isoperimetric inequality for general sets of finite
perimeter. In this case it is clear that we cannot use the Hausdorff distance to measure
the asymmetry of a set. Think for instance of a set which is the union of a large ball

123



The quantitative isoperimetric inequality. . . 535

and a far away tiny one. For this reason we replace the asymmetry index considered
in the previous section with an L1-type distance, the so-called Fraenkel asymmetry,
which is defined for a measurable set E , as the minimum of the symmetric difference
between E and any ball with the same measure

α(E) := min
x∈Rn

{ |E�Br (x)|
|Br | : |E | = |Br |

}
. (4.1)

We shall refer to a ball minimizing α(E) as to an optimal ball. Note that an optimal
ball needs not to be unique. Note also that α(E) is scaling invariant. It is convenient
to define the isoperimetric deficit of a set E also in a scaling invariant way by setting

D(E) := P(E) − P(Br )

P(Br )
,

where again r is the radius of a ball with the same measure of E .
The first quantitative estimate for sets of finite perimeter was obtained in 1992

by Hall [82]. Using some previous results proved in collaboration with Hayman and
Weitsman [84], he showed that there exists a constantC(n) such that for all measurable
sets of finite measure

α(E)4 ≤ C(n)D(E). (4.2)

It is interesting to observe that the power 4 on the left hand side of this estimate
does not depend on the dimension, while in Fuglede’s Theorem 3.2 it does. However,
in his paper Hall conjectured that the right power should be 2 and actually proved
that (4.2) holds with the exponent 2 if E is an axially symmetric set, see [82, Th. 2].
Moreover he observed that one cannot expect a power smaller than 2. To see this, take
ε > 0 and consider in any dimension n ≥ 2 the ellipsoid

Eε =
{

x21
1 + ε

+ x22 (1 + ε) + x23 + · · · + x2n ≤ 1

}
.

It can be proved, see Proposition 4.3, that α(Eε) = |Eε�B|. Then one can show
that

D(Eε)

α2(Eε)
→ γ > 0, as ε → 0+.

In 2008 Maggi, Pratelli and the author proved in [76] the following quantitative
isoperimetric inequality with the sharp exponent.

Theorem 4.1 There exists a constant γ (n) such that for any measurable set E of finite
measure

α(E)2 ≤ γ (n)D(E). (4.3)
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Note that inequality (4.3) can be rewritten in the following equivalent way: if
|E | = |Br |,

P(E) ≥ P(Br )

(
1 + α(E)2

γ (n)

)
.

Thus the asymmetry index α(E) can be viewed as a quantity estimating the second
order term in the Taylor expansion of P(E) around P(Br ). This point of view has
been exploited in the proof of Theorem 3.1 where the idea is precisely to view the
perimeter of E as an integral functional over the sphere depending on the function u
and then to write the second order Taylor expansion of that functional.

In this section we will present the proof of the quantitative isoperimetric inequality
given in [76] which is mostly based on symmetrization arguments. Though different
and even shorter proofs can be given, based on completely different strategies, the one
we present here has the advantage of not using any sophisticate technical tool, it is
geometrically intuitive and can be adapted to other contexts where symmetry plays
a fundamental role. Other proofs of the quantitative isoperimetric inequality will be
discussed in the Sect. 5.

Let us now give a short description of how the proof goes. The main idea is to
reduce the problem, by means of suitable geometric constructions, to the case of more
and more symmetric sets, namely to axially symmetric sets that are also symmetric
with respect to n orthogonal hyperplanes. For these sets one may either use the already
mentioned result by Hall [82, Th. 2], or simpler ad hoc arguments.

Observe that both the asymmetry and the isoperimetric deficit are scaling invariant.
Therefore, throughout all this sectionwewill only dealwith setswith the samemeasure
of the unit ball B and with small isometric deficit. In fact, since α(E) is always smaller
than 2 inequality (4.3) becomes trivial when D(E) is large.

The first step in the proof is to reduce to sets that are confined in a sufficiently large
cube. This step is needed in order to take advantage of the compactness properties of
bounded sets with equibounded perimeter. This first reduction is achieved by using the
concavity property of the isoperimetric function which is the function that associates
to every t > 0 the perimeter nω1/nt (n−1)/n of the ball of measure t , see Lemma 4.2.

The second step in the proof is to reduce to the case of n-symmetric sets. We say
that E is n-symmetric if E is symmetric with respect to all coordinate hyperplanes.
This reduction is the most delicate part the proof. On the other hand, when restricted
to n-symmetric sets, the proof of (4.3) will be relatively easy. The reason is that while
in general it can be be quite hard to find an optimal ball, when E is n-symmetric the
ball centered at the center of symmetry of E plays the same role of the optimal ball,
even if it is not optimal. Indeed, if E is n-symmetric and |E | = |B|, Lemma 4.4 states
that if B(x0) is an optimal ball then

|E�B(x0)| ≤ |E�B| ≤ 3|E�B(x0)|,

a simple, but very useful property.
The next step is to pass from an n-symmetric to an axially symmetric set. This

further reduction is achieved by proving, see Proposition 4.9, that if E is n-symmetric
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and E∗ denotes its Steiner symmetral with respect to an axis passing through its center
of symmetry, then we have

α(E) ≤ α(E∗) + C
√

D(E) (4.4)

for some positive constant C depending only on n, provided that n = 2 or n ≥ 3 and
the quantitative isoperimetric inequality holds true in dimension n − 1. To conclude
the proof one has only to show that (4.3) holds true for the axially symmetric and
n-symmetric set E∗, i.e.

α(E∗)2 ≤ C(n)D(E∗).

Then, (4.3) for E follows at once by combining this inequality with (4.4) and
recalling that D(E∗) ≤ D(E), see Theorem 2.7.

4.1 Reduction to n-symmetric sets

As we said before the first step is to reduce to the case where the set E is contained in
a cube of fixed edge length. To this aim, given l > 0 we denote be Ql the open cube
(−l, l)n . Thus, we may state the following result, proved in [76, Lemma 5.1].

Lemma 4.2 There exist two constants, l, C > 0 depending only on n with the follow-
ing property: given a measurable set E ⊂ R

n, with |E | = |B|, it is possible to find a
new set F ⊂ Ql, such that |F | = |B| and

D(F) ≤ C D(E), α(E) ≤ α(F) + C D(E). (4.5)

Proof By rotating E a little if necessary, we may assume that

Hn−1
({

x ∈ ∂∗E : νE (x) = ±en

})
= 0. (4.6)

Thus, Theorem 2.6 applied with k = n − 1 yields that the function

vE (t) := Hn−1({x ′ ∈ R
n−1 : (x ′, t) ∈ E}) for t ∈ R,

belongs to W 1,1(R). Hence, vE is continuous. Set E−
t = {x ∈ E : x1 < t} for all

t ∈ R and recall that if F is a set of finite perimeter, then by Theorem 2.2 we have
Hn−1(F (1/2)\∂∗F) = 0. Therefore from (4.6) we have that for H1-a.e. t ∈ R

P(E−
t ) ≤ P(E; {xn < t}) + vE (t), P(E\E−

t ) ≤ P(E; {xn > t}) + vE (t). (4.7)

Let us now define a function g : R → R
+ as

g(t) := |E−
t |

ωn
.
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From Fubini’s theorem it follows that g is a non-decreasing absolutely continuous
function such that g′(t) = vE (t)/ωn for H1-a.e. t ∈ R. Therefore there exist −∞ ≤
a < b ≤ +∞ such that {t : 0 < g(t) < 1} = (a, b). Fix any t ∈ (a, b) and note that
by definition

|g(t)−
1
n E−

t | = |B|.

Therefore, by the isoperimetric inequality (1.4) P(g(t)−1/n E−
t ) ≥ P(B), hence

P(E−
t ) = g(t)

n−1
n P

(
g(t)−

1
n E−

t

)
≥ g(t)

n−1
n P(B).

Similarly,

P(E\E−
t ) ≥ (1 − g(t))

n−1
n P(B).

Therefore, from (4.7) we get that

P(E) + 2vE (t) ≥ P(B)
(

g(t)
n−1

n + (1 − g(t))
n−1

n

)

for all t ∈ (a, b). On the other hand, from the definition of isoperimetric deficit we
have P(E) = P(B)(1 + D(E)), and thus

vE (t) ≥ 1

2
P(B)

(
g(t)

n−1
n + (1 − g(t))

n−1
n − 1 − D(E)

)
. (4.8)

Let us now define a function ψ : [0, 1] → R
+ as

ψ(t) := t
n−1

n + (1 − t)
n−1

n − 1.

Note thatψ(0) = ψ(1) = 0 and thatψ is a concave function attaining its maximum
at 1/2, ψ(1/2) = 21/n − 1. Therefore,

ψ(t) ≥ 2(21/n − 1) t for all 0 ≤ t ≤ 1

2
. (4.9)

We may assume, without loss of generality, that 2D(E) < ψ(1/2). Otherwise,
since α(E) ≤ 2, the assertion immediately follows by choosing F = B and C =
4/ψ(1/2). Then, let a < t1 < t2 < b be two numbers such that g(t1) = 1− g(t2) and
ψ(g(t1)) = ψ(g(t2)) = 2D(E); therefore,

ψ(g(t)) ≥ 2D(E) for all t ∈ (t1, t2) (4.10)

and by (4.9)

g(t1) = 1 − g(t2) ≤ D(E)

21/n − 1
. (4.11)

123



The quantitative isoperimetric inequality. . . 539

Thanks to (4.8) and (4.10), for H1-a.e. t1 ≤ t ≤ t2 we have

vE (t) ≥ 1

2
P(B)(ψ(g(t)) − D(E))

≥ 1

4
P(B)ψ(g(t)) + 1

4
P(B)(ψ(g(t)) − 2D(E)) ≥ nωn

4
ψ(g(t)).

(4.12)

Therefore, recalling that vE (t) = ωng′(t),

t2 − t1 ≤ 4

n

∫ t2

t1

g′(t)
ψ(g(t))

dt = 4

n

∫ g(t2)

g(t1)

1

ψ(s)
ds ≤ 4

n

∫ 1

0

1

ψ(s)
ds = α (4.13)

for some constant α = α(n). Let us now set

τ1 = max

{
t ∈ (a, t1] : vE (t) ≤ nωn D(E)

2

}
,

τ2 = min

{
t ∈ [t2, b) : vE (t) ≤ nωn D(E)

2

}
.

Note that τ1 and τ2 are well defined since vE is continuous and vE (a) = vE (b) = 0
and that by (4.10) and (4.12) vE (τ1) = vE (τ2) = (nωn D(E))/2. Moreover,
from (4.11), we have

t1 − τ1 ≤ 2

nωn D(E)

∫ t1

τ1

vE (t) dt = 2

nD(E)

∫ t1

τ1

g′(t) dt ≤ 2g(t1)

nD(E)
≤ 2

n(21/n − 1)

and a similar estimate holds for τ2 − t2.
Let us now set Ẽ = E ∩ {x : τ1 < x1 < τ2}. From the above estimate and (4.13),

we have that τ2 − τ1 < β(n). Moreover, (4.11), the definition of τ1, τ2 and (4.7)
immediately yield

|Ẽ | ≥ |B|
(
1 − 2

D(E)

21/n − 1

)
, P(Ẽ) ≤ P(E) + nωn D(E). (4.14)

Let us now assume that D(E) < (21/n − 1)/4 and set

σ :=
( |B|

|Ẽ |
)1/n

, F := σ Ẽ .

Clearly, |F | = |B| and F is contained in a strip {τ ′
1 < x1 < τ ′

2}, with τ ′
2 − τ ′

1 ≤ β ′,
where β ′ is a constant depending only on n. Let us now show that F satisfies (4.5) for
a suitable constant C depending only on n.
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Fig. 2 The optimal ball of a
n-symmetric set is not always
centered at the origin

To this aim, note that since we are assuming D(E) small, from (4.14) we get that
1 ≤ σ ≤ 1 + C0D(E), with C0 = C0(n). Thus, from (4.14), we get

P(F) = σ n−1P(Ẽ) ≤ σ n−1(P(E) + P(B)D(E))

= σ n−1P(B)(1 + 2D(E)) ≤ P(B)(1 + C(n)D(E)).

Hence, the first inequality in (4.5) follows. To prove the second inequality, let us
denote by B(x) an optimal ball for F . From the first inequality in (4.14), we then get

|B|α(E) ≤ |E�B(x/σ)| ≤ |E�Ẽ | + |Ẽ�B1/σ (x/σ)| + |B1/σ (x/σ)�B(x/σ)|
= |E\Ẽ | + |B|α(F)

σ n
+ |B\B1/σ |

≤ C(n)D(E) + |B|α(F) + C(n)(σ − 1) ≤ |B|α(F) + C D(E).

Thus, the set F satisfies (4.5). Starting from this set, we may repeat the same
construction with respect to the xn−1 axis, thus getting a new set, still denoted by
F , uniformly bounded with respect to the first two coordinate directions and satisfy-
ing (4.5) with a new constant, still depending only on n. Thus, the assertion follows
by repeating this argument with respect to all remaining coordinate directions. ��

The next step is to show that we may reduce to a n-symmetric set. To this aim,
following the terminology introduced in [76] we say that E ⊂ R

n is an n-symmetric
set if it is symmetric with respect to the n coordinate hyperplanes. Note that for an n-
symmetric set it is not true in general that the optimal ball for the Fraenkel asymmetry
is the one centered at the center of symmetry, see Fig. 2. However, this is true if the
set E is convex as shown in the next result that was proved in [11, Lemma 5.9].
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Proposition 4.3 Let E ⊂ R
n be an n-symmetric bounded convex set with |E | = |Br |.

Then
min
x∈Rn

|E�Br (x)| = |E�Br |. (4.15)

Proof Given F, G ⊂ R
n , consider their Steiner symmetral F S , GS with respect to any

coordinate hyperplane. Then, it is easily checked that |F S ∩ GS| ≥ |F ∩ G|. Since E
is n-symmetric and convex, E is stable under the Steiner symmetrization with respect
to any coordinate hyperplane. Hence for any x ∈ R

n we have

|E ∩ Br (x)| ≤ |E ∩ Br (x1, . . . , xn−1, 0)| ≤ · · · ≤ |E ∩ Br |.

from which (4.15) immediately follows. ��
On the other hand, though for n symmetric sets the ball centered at the origin is not

always a minimizer for the Fraenkel asymmetry, yet it is ‘optimal’ up to a constant.

Lemma 4.4 Let E be n-symmetric, |E | = |Br |. Then

min
x∈Rn

|E�Br (x)| ≤ |E�Br | ≤ 3 min
x∈Rn

|E�Br (x)|

Proof Let Br (x0) be an optimal ball for E . Since E is n-symmetric, also Br (−x0) is
optimal. Thus, using twice the triangular inequality and the inequality |Br (x0)�Br | ≤
|Br (x0)�Br (−x0)|, we have

|E�Br | ≤ |E�Br (x0)| + |Br (x0)�Br | ≤ |E�Br (x0)| + |Br (x0)�Br (−x0)|
≤ |E�Br (x0)| + |Br (x0)�E | + |E�Br (−x0)| = 3|E�Br (x0)|.

��
Remark 4.5 The same argument used to prove the above lemma, shows that if E is
symmetric with respect to k orthogonal hyperplanes H1, . . . , Hk, k = 1, . . . , n, and
H = ∩k

i=1Hi , then

min
x∈Rn

|E�Br (x)| ≤ min
y∈H

|E�Br (y)| ≤ 3 min
x∈Rn

|E�Br (x)|. (4.16)

The next theorem is the key point of thewhole proof of the quantitative isoperimetric
inequality via symmetrization.

Theorem 4.6 There exist δ and C, depending only on n, such that if E ⊂ Ql, |E | =
|B|, D(E) ≤ δ, then there exists an n-symmetric set F such that F ⊂ Q2l , |F | = |E |
and

α(E) ≤ Cα(F), D(F) ≤ 2n D(E). (4.17)

The proof of Theorem4.6 is quite tricky. In order to explain the strategywe startwith
some definitions. Given a hyperplane H , we consider the two half spaces H+, H−
in which R

n is divided by H and denote by rH the reflection about H . Let E be
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Fig. 3 Construction of E+ and E−

Fig. 4 Counterexample to (4.20)

a measurable set divided by the hyperplane H in two parts of equal volume. Then
consider the two halves in which E is divided by H : E ∩ H+ and E ∩ H− and the
sets obtained by adding to each half its symmetral with respect to H , i.e.,

E+ := (E ∩ H+) ∪ rH (E ∩ H+), E− := (E ∩ H−) ∪ rH (E ∩ H−). (4.18)

The construction is illustrated in Fig. 3. By construction, |E+| = |E−| = |E |.
Moreover, using Theorem 2.2 it is not too hard to show that

P(E+) + P(E−) ≤ 2P(E), hence D(E±) ≤ 2D(E), (4.19)

with the first inequality possibly being strict. Thus, if for some universal constantC(n)

one had
α(E) ≤ C(n)α(E+) or α(E) ≤ C(n)α(E−), (4.20)

iterating this estimate we would immediately get (4.17). Unfortunately, (4.20) is false,
as shown by the example in Fig. 4, where we have α(E) > 0, but α(E+) = α(E−) =
0.

The following proposition provides the right strategy in order to deal with such
unpleasant situation.

Proposition 4.7 There exist δ0, C0 > 0 such that if E is a measurable set with finite
measure and D(E) ≤ δ0, given any two orthogonal hyperplanes H1, H2 dividing E

123



The quantitative isoperimetric inequality. . . 543

Fig. 5 A different symmetrization may give a bigger asymmetry

in four parts of equal measure and the four sets E±
1 , E±

2 defined as in (4.18) with
H replaced by H1 and H2, respectively, we have that at least one of them, call it Ẽ ,
satisfies the estimate

α(E) ≤ C0α(Ẽ). (4.21)

In other words, even if some of the sets E±
i have a small asymmetry (or even zero

asymmetry as in Fig. 4), at least one of themmust have a sufficiently large asymmetry,
compared to the one of E . To convince oneself that indeed this is the case, observe
that if we symmetrize the set of the previous example in the horizontal direction we
get a larger asymmetry, see Fig. 5.

Before proving Proposition 4.7 let us show the continuity of the asymmetry index
with respect to the isoperimetric deficit which is a simple consequence of the com-
pactness properties of sets of finite perimeter.

Lemma 4.8 Let l > 0. For any ε > 0 there exists δ > 0 such that if E ⊂ Ql,
|E | = |B|, and D(E) ≤ δ then α(E) ≤ ε.

Proof We argue by contradiction. If the assertion is not true, there exist ε > 0 and
a sequence of sets E j ⊂ Ql , with |E j | = |B|, D(E j ) → 0 and α(E j ) ≥ ε > 0
for all j ∈ N. Since the sets E j are all contained in Ql , thanks to Theorem 2.3 we
may assume that up to a subsequence the E j converge in measure to some set E∞ of
finite perimeter. Thus |E∞| = |B|, and by the lower semicontinuity of the perimeters
P(E∞) ≤ P(B), so E∞ is a ball. However the convergence in measure of E j to E∞
immediately implies that |E j�E∞| → 0, against the assumption α(E j ) ≥ ε. The
contradiction concludes the proof. ��

Following [94, Th. 6.1] we may now give the proof of Proposition 4.7.

Proof of Proposition 4.7 Step 1 Without loss of generality we may assume |E | = |B|.
Let E+

1 , E−
1 , E+

2 , E−
2 , be the four sets obtained by reflecting E around the two

orthogonal hyperplanes H1 , H2 dividing E in parts of equal measure. For i = 1, 2 let
B±

i four balls of radius one such that

|E±
i �B±

i | = min
x∈Hi

|E±
i �B(x)|.

Observe that for i = 1, 2, from the definition of B±
i and the triangular inequality

we have
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min
x∈Rn

|E�B(x)| ≤ |E�B+
i | = |(E�B+

i ) ∩ H+
i | + |(E�B+

i ) ∩ H−
i |

≤ |(E�B+
i ) ∩ H+

i | + |(E�B−
i ) ∩ H−

i | + |(B+
i �B−

i ) ∩ H−
i |

= 1

2
|E+

i �B+
i | + 1

2
|E−

i �B−
i | + 1

2
|B+

i �B−
i |. (4.22)

To conclude the proof it is enough to show that if D(E) is sufficiently small at least
one of the following two inequalities

|B+
1 �B−

1 | ≤ 16[|E+
1 �B+

1 | + |E−
1 �B−

1 |]
or |B+

2 �B−
2 | ≤ 16[|E+

2 �B+
2 | + |E−

2 �B−
2 |] (4.23)

holds. Indeed, if for instance the first inequality is true, from (4.22) applied with i = 1,
recalling the definition of B±

1 and (4.16), we get

min
x∈Rn

|E�B(x)| ≤ 9[|E+
1 �B+

1 | + |E−
1 �B−

1 |]

≤ 27

[
min
x∈Rn

|E+
1 �B(x)| + min

x∈Rn
|E−

1 �B(x)|
]

,

thus proving (4.21) with C0 = 54 and Ẽ equal to E+
1 or E−

1 .

Step 2 To prove (4.23) we argue by contradiction assuming that

|E+
1 �B+

1 | + |E−
1 �B−

1 | <
|B+

1 �B−
1 |

16
and |E+

2 �B+
2 | + |E−

2 �B−
2 |< |B+

2 �B−
2 |

16
(4.24)

and introduce the following unions of half balls

S1 = (B+
1 ∩ H+

1 ) ∪ (B−
1 ∩ H−

1 ), S2 = (B+
2 ∩ H+

2 ) ∪ (B−
2 ∩ H−

2 ).

Then, by (4.24) we get that

|S1�S2| ≤ |S1�E | + |E�S2|=1

2

2∑
i=1

(|E+
i �B+

i | + |E−
i �B−

i |)< 1

32

2∑
i=1

|B+
i �B−

i |.

The contradiction will be achieved if we show that

max{|B+
1 �B−

1 |, |B+
2 �B−

2 |} < 16|S1�S2|, (4.25)

provided D(E) is sufficiently small. To this aim, recall that given ε > 0, Lemma 4.8,
(4.16) and the second inequality in (4.19) yield that there exists δ0 > 0 such that if
D(E) < δ0, then

max{α(E), |E±
i �B±

i | : i = 1, 2} < ε.
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Note that this inequality tells us that E is close in the sense of convergence in
measure to its optimal balls. Similarly, also the balls B±

i are close to the sets E±
i in

the same sense. Hence the centers of these balls are all close to each other and to the
center of an optimal ball for E which in turn is close to the ball of radius 1 centered at
the intersection of H1 and H2. Therefore all the four regions H±

1 ∩ H±
2 contain almost

one quarter of the balls B±
i . Therefore we may choose ε so small, and δ0 accordingly,

that for all possible choices of the σ, τ ∈ {+,−} we have

|(Bσ
1 �Bτ

2 ) ∩ (Hσ
1 ∩ H τ

2 )| >
|Bσ

1 �Bτ
2 |

8
.

Thus, recalling the definition of S1 and S2, we have

|S1�S2| ≥ |(S1�S2) ∩ (Hσ
1 ∩ H τ

2 )| = |(Bσ
1 �Bτ

2 ) ∩ (Hσ
1 ∩ H τ

2 )| >
|Bσ

1 �Bτ
2 |

8
.

From this inequality we have in particular that

|B+
1 ∩ B−

1 | ≤ |B+
1 ∩ B+

2 | + |B+
2 ∩ B−

1 | < 16|S1�S2|

and in a similar way that |B+
2 ∩ B−

2 | < 16|S1�S2|, thus proving the desired contra-
diction (4.25). ��

At this point we have all the ingredients for the proof of Theorem 4.6.

Proof of Theorem 4.6 Take δ1 = δ02−(n−1), where δ0 is chosen as in Proposition 4.7.
By applying this proposition n − 1 times to different pairs of orthogonal directions
and recalling (4.19) we find a set Ẽ , with |Ẽ | = |B| such that

α(E) ≤ Cn−1
0 α(Ẽ), D(Ẽ) ≤ 2n−1D(E).

Moreover, by translating Ẽ and relabeling the coordinate axes, if needed, we may
assume without loss of generality that Ẽ is symmetric about all the coordinate hyper-
planes {x1 = 0}, . . . , {xn−1 = 0}. In order to get the last symmetry we take a
hyperplane H orthogonal to en and dividing Ẽ into two parts of equal measure and
consider the corresponding sets Ẽ+, Ẽ−. Again, by translating Ẽ in the direction of
en , if necessary, we may assume that H = {xn = 0}. As before we have

D(Ẽ±) ≤ 2D(Ẽ) ≤ 2n D(E).

To control the asymmetry of Ẽ± observe that since Ẽ is symmetric with respect to
the first n − 1 coordinate hyperplanes, Ẽ+ and Ẽ− are both n-symmetric so we can
use Lemma 4.4 to get

|B|α(Ẽ) ≤ |Ẽ�B| = |(Ẽ�B) ∩ {xn > 0}| + |(Ẽ�B) ∩ {xn < 0}|
= 1

2
[|Ẽ+�B| + |Ẽ−�B|] ≤ 3|B|

2
[α(Ẽ+) + α(Ẽ−)].
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Thus, at least one of the sets Ẽ± has asymmetry index greater than 1
3α(Ẽ). There-

fore, denoting by F this set, we have

D(F) ≤ 2D(Ẽ) ≤ 2n D(E) and α(E) ≤ Cn−1
0 α(Ẽ) ≤ 3Cn−1

0 α(F).

Finally, the inclusion F ⊂ Q2l follows immediately from the construction per-
formed in the proof of Proposition 4.7 and the one performed here. ��

4.2 Reduction to axially symmetric sets

From the results obtained in the previous section it is clear that in order to prove the
quantitative isoperimetric inequality (4.3) we may assume without loss of generality
that there exist δ0 ∈ (0, 1) and l > 0 such that

|E | = |B|, E ⊂ Ql , D(E) ≤ δ0, E is n-symmetric. (4.26)

In fact, since α(E) ≤ 2 it is clear that if D(E) ≥ δ0 (4.3) follows immediately
with γ (n) = 4/δ0. Thus, if δ0 is sufficiently small Lemma 4.2 and Theorem 4.6 tell
us that we may assume without loss of generality that E is contained in some cube
of fixed size and that it is n-symmetric. Therefore, throughout this section we shall
always assume that E satisfies the above assumptions (4.26).

The next step consists in reducing the general case to the case of anaxially symmetric
set, i.e., a set E having an axis of symmetry such that every non-empty cross section of
E perpendicular to this axis is an (n − 1)-ball. To this aim we recall that the Schwarz
symmetral of a measurable set E with respect to the xn axis is defined as

E∗ = {(x ′, t) ∈ R
n−1 × R : t ∈ R, |x | < rE (t)},

where rE (t) is the radius of the (n − 1)-dimensional ball having the same measure of
the section Et , that is Hn−1(Et ) = ωn−1rE (t)n−1. Note that E∗ coincides with the
Steiner symmetral of E with respect to the line {x ′ = 0}. Therefore, from Theorem 2.7
we have that P(E∗) ≤ P(E). Moreover the properties stated in Theorems 2.6 and
2.7 apply to the functions defined for H1-a.e. t ∈ R as vE (t) := Hn−1(Et ) and
pE (t) := Hn−2(∂∗Et ).

Proposition 4.9 Let E satisfy assumptions (4.26). If n = 2 or if n ≥ 3 and the quan-
titative isoperimetric inequality (4.3) holds true in R

n−1, then there exist a constant
C(n) such that

|E�E∗| ≤ C
√

D(E) and D(E∗) ≤ D(E). (4.27)

Proof The second inequality in (4.27) follows immediately from the fact that |E∗| =
|E | and P(E∗) ≤ P(E). In order to prove the first inequality in (4.27) we start by
assuming that

Hn−1({x = (x ′, t) ∈ ∂∗E : νE
x ′(x) = 0}) = 0. (4.28)
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Thus, from Theorem 2.6 we have that vE is an absolutely continuous function in
R. We use Theorem 2.6 again and Theorem 2.7 to estimate

P(E) − P(B) ≥ P(E) − P(E∗) ≥
∫
R

(√
p2E + v′2

E −
√

p2E∗ + v′2
E

)
dt

=
∫
R

p2E − p2E∗√
p2E + v′2

E +
√

p2E∗ + v′2
E

dt

≥
(∫

R

√
p2E − p2E∗ dt

)2 1∫
R

(√
p2E + v′2

E +
√

p2E∗ + v′2
E

)
dt

≥
(∫

R

√
p2E − p2E∗ dt

)2 1

P(E) + P(E∗)
,

where the inequality before the last one follows from Hölder’s inequality. Since
D(E) ≤ δ0 < 1, we have P(E∗) ≤ P(E) ≤ 2P(B). Therefore we get, observ-
ing that pE ≥ pE∗ ,

√
D(E) ≥ c

∫
R

√
p2E − p2E∗ dt = c

∫
R

√
pE + pE∗

√
pE∗

√
(pE − pE∗)/pE∗ dt

≥ √
2c

∫
R

pE∗
√

(pE − pE∗)/pE∗ dt, (4.29)

for some constant c depending only on n. Now assume that n ≥ 3 and observe that
since (E∗)t is a (n − 1)-dimensional ball of radius rE (t) withHn−1 measure equal to
Hn−1(Et ), the ratio

pE (t) − pE∗(t)

pE∗(t)

is precisely the isoperimetric deficit in R
n−1 of Et . Since by assumption, the quanti-

tative isoperimetric inequality (4.3) holds true in R
n−1, we have

√
γ (n − 1)

√
pE (t) − pE∗(t)

pE∗(t)
≥ αn−1(Et ),

where αn−1(Et ) is the (n − 1)-dimensional Fraenkel asymmetry of Et . But Et is an
(n −1)-symmetric set inRn−1 and (E∗)t is the ball centered at the center of symmetry
of Et . Therefore from Lemma 4.4 we get

√
γ (n − 1)

√
pE (t) − pE∗(t)

pE∗(t)
≥ αn−1(Et ) ≥ 1

3

Hn−1(Et�(E∗)t )

Hn−1((E∗)t )
.

Inserting this inequality in (4.29) we then get
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√
D(E) ≥ c′

∫
R

Hn−1(Et�E∗
t )

rE (t)
dt ≥ c′

l

∫ l

−l
Hn−1(Et�E∗

t ) dt = c′

l
|Et�E∗

t |,

where the inequality before the last one follows from the inclusion E ⊂ Ql and the
last equality is just Fubini’s theorem. This proves (4.27). Hence the assertion follows
when n ≥ 3.

If n = 2, since E is 2-symmetric, either Et is a symmetric interval (hence Et = E∗
t )

or Et is the union of at least two intervals with no endpoints in common, hence
pE (t) ≥ 4, while pE∗(t) = 2. Moreover, since E ⊂ Ql , then H1(Et�E∗

t ) ≤ 2l for
all t ∈ R. Therefore, from (4.29) we get

√
D(E) ≥ 2c

∫
{t : Et �=E∗

t }
√

pE − pE∗ dt ≥ 2c
∫

{t : Et �=E∗
t }

√
2 dt

≥
√
2c

l

∫
{t : Et �=E∗

t }
H1(Et�E∗

t )dt =
√
2c

l
|E�E∗|,

thus concluding the proof also in this case.
Finally, if (4.28) does not hold, we approximate E in measure by a sequence of

sets Eh obtained by rotating a little E so that (4.28) holds true for each Eh . Then,
the conclusion follows by observing that also E∗

h converge to E∗ in measure and that
(4.27) holds for all the sets Eh . ��

For an axially symmetric set the proof of the quantitative isoperimetric inequality
was given by a direct argument in [82, Th. 2]. A different proof can be also found
in [76, Th. 4.2]. However both proofs are technically a bit complicate. Here we shall
give a third proof due to Maggi [94, Sec. 7.2]. This last proof has two interesting
features. First, it is based on a further and very natural reduction argument, which
was not exploited in the original proof of (4.3) given in [76], the reduction to a
connected set. This further reduction, is again a consequence of the strict concavity of
the isoperimetric function. Another interesting feature is the use of some ideas from
the mass transportation argument of Gromov’s proof of the isoperimetric inequality,
to which we will come back in the next section. So, let us start with the reduction
lemma proved in [94, Th. 4.4].

Lemma 4.10 There exists two positive constants, δ and C, depending only on the
dimension n, such that if E is a bounded open set of class C∞ with D(E) ≤ δ there
exists a connected component F of E such that |F | > |E |/2,

α(E) ≤ α(F) + C D(E), D(F) ≤ C D(E). (4.30)

Proof Without loss of generality we may assume |E | = |B|. Since E is a smooth
bounded open set, if E is not connected we may decompose it as the union of finitely
many connected components Eh , h ∈ I ⊂ N. Moreover, P(E) = ∑

h∈I P(Eh). From
the isoperimetric inequality (1.4) we have
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D(E) = 1

n|B|

(∑
h∈I

P(Eh) − P(B)

)
≥ 1

n|B|

(
n|B|1/n

∑
h∈I

|Eh | n−1
n − n|B|

)

=
∑
h∈I

a
n−1

n
h − 1,

where ah := |Eh |/|B|. Observe that∑h∈I ah = 1 and assume that the ah are arranged
in decreasing order. If a1 > 1/2, from inequality (4.9) we have

D(E) ≥ a
n−1

n
1 + (1 − a1)

n−1
n − 1 ≥ 2(21/n − 1)(1 − a1), (4.31)

hence |E\E1| ≤ C0D(E), with C0 = ωn/2(21/n − 1). Thus, we set F = E1 and we
have, denoting by r the radius of the ball with the same measure of F ,

P(F) − P(Br )≤P(E) − P(B) + P(B) − P(Br )≤P(E) − P(B) + nωn(1 − rn−1).

From this inequality, since ωn(1 − rn) = |E\E1| ≤ C0D(E) and ωnrn = |F | >

|B|/2, we easily get

D(F) ≤ C D(E)

for some possibly bigger constant, still depending only on n. Similarly, denoting by
Br (x0) an optimal ball for α(F) we get

ωnα(E) ≤ |E�B(x0)| ≤ |E�F | + |F�Br (x0)| + |Br (x0)�B(x0)|
= |F�Br (x0)| + 2|E\F | ≤ |F�Br (x0)| + 2C0D(E).

thus completing the proof of (4.30).
To conclude the proof of the lemma it is enough to show that if δ is sufficiently

small, in dependence on n, then a1 > 1/2. In fact, suppose that a1 ≤ 1/2 and denote
by N ≥ 2 the smallest integer such that

∑
h<N ah ≤ 1/2. Then, using again (4.9) and

arguing as in the proof of (4.31), we have

D(E) ≥
(∑

h<N

ah

) n−1
n

+
⎛
⎝∑

h≥N

ah

⎞
⎠

n−1
n

− 1 ≥ 2(21/n − 1)
∑
h<N

ah

D(E) ≥
⎛
⎝∑

h≤N

ah

⎞
⎠

n−1
n

+
(∑

h>N

ah

) n−1
n

− 1 ≥ 2(21/n − 1)
∑
h>N

ah

Adding up these two inequalities we then conclude that

D(E) ≥ (21/n − 1)
∑
h �=N

ah = (21/n − 1)(1 − aN ) ≥ (21/n − 1)(1 − a1)>
21/n − 1

2
,
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which is impossible if we choose δ < 2/(21/n − 1). ��
We may now proceed to the proof of the quantitative isoperimetric inequality. As

we already said before, for the final argument, i.e. the proof of (4.3) for an axially and
n-symmetric set, we follow the argument of Maggi [94].

Proof of Theorem 4.1 Step 1 As we observed at the beginning of this section, it is
enough to prove the quantitative inequality (4.3) only when E satisfies the assump-
tions (4.26) for a sufficiently small δ0, depending only on the dimension, that will be
specified during the proof. Observe that wemay also assumewithout loss of generality
that E is a bounded open set of class C∞. Otherwise, by a standard approximation
procedure, see for instance the proof of [8, Th. 3.42], we may find a sequence of
n-symmetric smooth open sets Eh converging in measure to E , |Eh | = |E | for all
h, P(Eh) → P(E), satisfying the assumptions (4.26) with l possibly replaced by
2l. Then the quantitative isoperimetric inequality for E will follow from the same
inequality for Eh .

Finally, observe that we may also assume that E is connected. In fact if E were not
connected, taking δ0 sufficiently small we could apply Lemma 4.10 and consider the
open connected component F of E such that |F | > |E |/2, satisfying (4.30). Observe
that also this connected component is n-symmetric. Indeed, consider for instance the
hyperplane H = {x1 = 0} and assume by contradiction that there exists x ∈ F such
that its reflection rH (x) /∈ F . Then F ∩ H = ∅, since otherwise x and rH (x) would
belong to the same connected component of E , hence both would belong to F . Since
E is n-symmetric, also rH (F) is contained in E . However, this is not possible since F
is contained either in H+ or in H− and thus |F ∪ rH (F)| = 2|F | > |E |. This proves
that rH (F) = F . By repeating this argument for all the coordinate hyperplanes, we
conclude that F is n-symmetric. Thus, we may replace E by λF , where λ > 0 is
such that λn|F | = |B|. The set λF is now a bounded, smooth, open and connected set
satisfying all the assumptions in (4.26), with l possibly replaced by 2l.

Consider the strips S = {x : |xn| <
√
2/2} and S′ = {x : |x1| <

√
2/2}. Since

B ⊂ S ∪ S′ one of the two strips must contain at least one half of the measure of
B\E . To fix the ideas, let us assume that S does it, that is |(B\E) ∩ S| ≥ |B\E |/2.
Therefore,

|E�B| ≤ 4|(B\E) ∩ S| (4.32)

Denote by E∗ is the Schwartz symmetral of E with respect to the xn axis. We claim
that if D(E∗) is sufficiently small, then

|(B�E∗) ∩ S| ≤ C(n)
√

D(E∗). (4.33)

Note that the conclusion of the proof will follow immediately from (4.33). Indeed,
assume n = 2 or n ≥ 3 and that (4.3) holds true inRn−1. Then, if D(E) is sufficiently
small, from Lemma 4.4, and (4.27), (4.32) and (4.33) we get

|B|α(E) ≤ 3|E�B| ≤ 12|(B\E) ∩ S|
≤ 12(|(B�E∗) ∩ S| + |E∗�E |) ≤ C(n)

√
D(E∗) ≤ C(n)

√
D(E).
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The rest of the proof will be devoted to prove (4.33).

Step 2 Set v(t) := Hn−1(E∗ ∩ {xn = t}). From our assumptions and Theorem 2.6
we have that v ∈ BV (R), v is symmetric with respect to 0 and {v > 0} = (−a, a)

for some a > 0. Observe that we may also assume without loss of generality that
v ∈ W 1,1(R). Otherwise, we split v as v = va + vs where va and vs are nonnegative,
symmetric with respect to 0, va ∈ W 1,1(R) and vs is purely singular, see [8, Sect. 3.2],
and we approximate vs in L1(R) with a sequence wh ∈ C1

c (R), with wh nonnegative
and symmetric with respect to 0, wh > 0 in an interval (−a′, a′) and such that∫ a
−a |w′

h | → |Dvs |(R) as h → ∞. Then denoting by E∗
h the axially symmetric sets

such that vE∗
h

= va + wh , from (2.7) we get immediately that the E∗
h converge to E∗

in measure and that P(E∗
h ) → P(E∗). Thus we prove (4.33) for E∗

h and then pass to
the limit as h → ∞.

So, let us assume that v ∈ W 1,1(R) and in particular that it is continuous. We first
show that if D(E∗) is sufficiently small, then the strip S contains a fairly large amount
of the mass of E∗. Precisely, we are going to show that there exist c0 and δ0, depending
only on the dimension n such that if D(E∗) ≤ δ0, then

v(t) ≥ c0 for all t ∈
(

−
√
2

2
,

√
2

2

)
. (4.34)

In order to prove this inequality we compare the distribution function v of E∗ with
the distribution function w of B, defined as w(t) := Hn−1(B ∩ {xn = t}).

We set c0(n) = w(4/5)/3 and then argue by contradiction. If (4.34) is not true,
there exists t0 ∈ (−√

2/2,
√
2/2) ⊂ (−4/5, 4/5) such that v(t0) < c0. Then, there

exist t1 < t0 < t2 such that (t1, t2) is the largest interval containing t0, contained in
(−4/5, 4/5) and such that

v(t) ≤ 2c0 for all t ∈ (t1, t2).

By the definition of c0, recalling Lemma 4.4, we immediately have

c0(t2 − t1) ≤
∫
R

|w − v| dx = |E∗�B| ≤ 3|B|α(E∗). (4.35)

Then Lemma 4.8 implies that t2−t1 is small if D(E∗) is small. Therefore the closed
interval [t1, t2] is contained in (−4/5, 4/5) and thus in particular v(t1) = v(t2) = 2c0.
Now we compare E∗ with the axially symmetric set whose distribution function vF

coincides with v outside the interval (t1, t2) and such that vF ≡ 2c0 in (t1, t2). Then,
setting � := R

n−1 × (t1, t2),

P(F) = P(E∗) + P(F;�) − P(E∗;�).

Clearly P(F;�) = c1(n)(t2 − t1) with c1(n) depending only on c0(n) and from
(2.7) we have
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P(E∗;�) ≥
∫ t2

t1
|v′(t)| dt ≥ |v(t2) − v(t0)| + |v(t0) − v(t1)| = 2c0.

Thus, from the above inequalities, observing that |F | ≥ |E∗| = |B| and using the
isoperimetric inequality, we get

P(E∗) ≥ P(F) + 2c0 − c1(n)(t2 − t1) ≥ P(B) + 2c0 − c1(n)(t2 − t1).

Since by (4.35) t2 − t1 → 0 as D(E∗) → 0+, from this inequality we get a
contradiction if D(E∗) is sufficiently small.

Step 3 Recall that {v > 0} = (−a, a) for some a > 0. Observe that (4.34) implies
that a >

√
2/2. Then, we define a function τ : (−a, a) → (−1, 1) which associates

to every sublevel E∗ ∩ {xn < t} the sublevel B ∩ {xn < τ(t)} with the same measure.
Precisely, for all t ∈ (−a, a) we define τ(t) as the unique number in (−1, 1) such
that

∫ t

−∞
v(s) ds =

∫ τ(t)

−∞
w(s) ds.

Note that τ is a strictly increasing C1(−a, a) function and for all t ∈ (−a, a)

τ ′(t) = v(t)

w(τ(t))
. (4.36)

Since v ∈ W 1,1(R) the above equality implies that τ ∈ W 2,1
loc (−a, a). Moreover,

since w is locally Lipschitz in (−1, 1), setting I := (−√
2/2,

√
2/2), we get from

(4.36)

|(E∗�B) ∩ S| =
∫

I
|w(t) − v(t)| dt =

∫
I
|w(t) − w(τ(t))τ ′(t)| dt

≤
∫

I
[|w(t) − w(τ(t))| + |w(τ(t)) − w(τ(t))τ ′(t)|] dt

≤ C(n)

∫
I
[|t − τ(t)| + |1 − τ ′(t)|] dt ≤ C(n)

∫
I
|1 − τ ′(t)| dt,

for some constant C(n) depending only on the Lipschitz constant of w in I . Note that
in the last inequality we have used the fact that since τ(0) = 0 by the n-symmetry of
E , then |t − τ(t)| ≤ ∫

I |1 − τ ′|. Thus, to achieve the proof of (4.33) we only need to
show that ∫

I
|τ ′(t) − 1| dt ≤ C(n)

√
D(E∗). (4.37)

To this aim we introduce the map T : (−a, a) × R
n−1 	→ R

n defined as

T (x) =
n−1∑
i=1

(
w(τ(xn))

v(xn)

) 1
n−1

xi ei + τ(xn)en .
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Note that T maps every level set E∗ ∩ {xn = t} into the level set B ∩ {xn = τ(t)}, and
it is a one-to-one continuous map between the open sets E∗ and B. Moreover for all
0 < b < a, T ∈ W 1,1(E∗ ∩ (Rn−1 × (−b, b)); B). It is also easily checked that for
a.e. x ∈ E∗ ∩ (Rn−1 × (−a, a))

div T (x) = n − 1

τ ′(xn)1/(n−1)
+ τ ′(xn) ≥ n,

wherewe used that the function s → s+(n−1)s−1/(n−1) has a strictminimumat s = 1
for s > 0. Therefore, using the divergence theorem in the sets E∗ ∩ (Rn−1 × (−b, b))

and observing that limb→a− v(±b) = 0, we have

P(E∗) = Hn−1(∂∗E∗) ≥
∫

∂ E∗
T · νE∗

dHn−1

= lim
b→a−

∫
∂ E∗∩(Rn−1×(−b,b))

T · νE∗
dHn−1

= lim
b→a−

[∫
∂(E∗∩(Rn−1×(−b,b))

T · νE∗
dHn−1 − τ(b)v(b) + τ(−b)v(−b)

]

= lim
b→a−

∫
E∗∩(Rn−1×(−b,b))

div T dx =
∫

E∗
div T dx .

Therefore we have by Fubini’s theorem

P(E∗) − P(B) ≥
∫

E∗
(div T − n) dx =

∫
E∗

(
n − 1

τ ′(xn)1/(n−1)
+ τ ′(xn) − n

)
dx

=
∫ a

−a
v(t)

(
n − 1

τ ′(t)1/(n−1)
+ τ ′(t) − n

)
dx

=
∫ a

−a

v(t)

τ ′(t)1/(n−1)

(
n − 1 + τ ′(t)n/(n−1) − nτ ′(t)1/(n−1)

)
dx

≥ n

2

∫ a

−a

v(t)

τ ′(t)1/(n−1)

(
τ ′(t)1/(n−1) − 1

)2
dt,

where we used the elementary inequality n − 1 + tn − nt ≥ n(t − 1)2/2 for all
t > 0 and n ≥ 2. Then from the previous chain of inequalities we get, setting
σ(t) := τ ′(t)1/(n−1),

∫ a

−a
v|σ − 1| dt ≤

√∫ a

−a

v

σ
(σ − 1)2 dt

√∫ a

−a
vσ dt ≤ C(n)

√
D(E∗), (4.38)

where the last inequality follows by observing that, since
∫ a
−a τ ′dt = 2,

∫ a
−a vdt =

|E∗| = |B| and v ≤ (2l)n−1 by assumption (4.26), if n ≥ 3 we have
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∫ a

−a
vσ dt ≤

(∫ a

−a
τ ′dt

) 1
n−1

(∫ a

−a
v(n−1)/(n−2)dt

) n−2
n−1 ≤ C(n).

A similar estimate holds also when n = 2. To conclude the proof we observe that
there exists a constant λ(n) ∈ (0, 1) such that

sup
t∈I

|τ(t)| ≤ λ(n). (4.39)

To this aim, note that

|E∗ ∩ {xn >
√
2/2}| ≥ |B ∩ {xn >

√
2/2}| − 3|B|α(E∗) ≥ c(n) − 3|B|α(E∗) ≥ c2(n),

for some positive constant c2(n), provided that D(E∗), hence α(E∗) is sufficiently
small. On the other hand, by the very definition of τ , we have

|E∗ ∩ {xn >
√
2/2}| = |B ∩ {xn > τ(

√
2/2)}| ≤ c(n)(1 − τ(

√
2/2)).

Combining the twoprevious inequalitiesweget that 1−τ(
√
2/2) ≥ c3(n) for a suitable

positive constant depending only on n, hence τ(
√
2/2) ≤ 1 − c3(n). Since a similar

inequality can be proved for τ(−√
2/2), (4.39) follows. Observe that (4.39), together

with (4.36) implies that supt∈I |τ ′(t)| ≤ C(n) for a suitable constant depending only
on n. Then, recalling (4.34) and (4.38) we may conclude that

∫
I
|τ ′ − 1| dt ≤ C

∫
I

∣∣(τ ′)1/(n−1) − 1
∣∣ dt = C

∫
I
|σ − 1| dt

≤ C
∫

I
v|σ − 1| dt ≤ C

√
D(E∗),

thus proving (4.37). ��

5 Other proofs and extensions

5.1 Isoperimetric inequality via mass transport

In the previous section we have presented the proof of the the quantitative isoperimet-
ric inequality given in [76]. As we have seen, that proof was based on symmetrization
arguments. The same approach has been used in several other papers to obtain quan-
titative versions of the Sobolev inequality, of the isoperimetric inequality in Gauss
space and of other relevant geometric and functional inequalities, see for instance
[43,44,75,78]. On the other hand there are situations where one considers inequalities
which are realized by non symmetric sets or functions.

This is the case of the anisotropic isoperimetric inequality. In order to state it let us
fix some notation. Let ϕ : Rn → [0,∞) be a positively 1-homogeneous, continuous
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function such that ϕ(x) > 0 for all x �= 0. To the function ϕ we may associate the
anisotropic perimeter, defined for any set E of finite perimeter as

Pϕ(E) :=
∫

∂∗ E
ϕ(νE (x))dHn−1.

It is well known that the isoperimetric sets for Pϕ are the homothetic and translated
of the so called Wulff shape set associated to ϕ which is given by

Wϕ := {x ∈ R
n : 〈x, ν〉 − ϕ(ν) < 0 for all ν ∈ Sn−1}.

Then, the anisotropic isoperimetric inequality states that

Pϕ(E) ≥ Pϕ(Wϕ)

for all sets of finite perimeter such that |E | = |Wϕ |, with equality holding if and only
if E is a translated of the Wulff shape set Wϕ (see [69,70] and also [50] for a proof in
two dimensions). Note that as in the case of the standard euclidean perimeter we have
Pϕ(Wϕ) = n|Wϕ |. However, differently from the usual perimeter, Pϕ is not invariant
under the action of either O(n) or SO(n). Moreover, in general Pϕ(E) �= Pϕ(Rn\E)

unless ϕ, hence Wϕ , is symmetric with respect to the origin.
The quantitative version of the anisotropic isoperimetric inequality is a remarkable

result proved by Figalli et al. in [67]. It states that there exists a constant C , depending
only on n, such that for any set of finite perimeter E such that |E | = rn|Wϕ |

αϕ(E)2 ≤ C Dϕ(E), (5.1)

where

αϕ(E) := min
x∈Rn

{ |E�(x + r Wϕ)

|E |
}
, Dϕ(E) := Pϕ(E) − Pϕ(r Wϕ)

Pϕ(r Wϕ)

denote the anisotropic asymmetry index and the anisotropic isoperimetric deficit,
respectively.

Since the Wulff shape Wϕ can be any bounded open convex set, it is clear that no
symmetrization argument can be used to prove the anisotropic isoperimetric inequality
or its quantitative counterpart (5.1). And in fact the strategy used in [67] is completely
different from the one we have seen in the last section, since it relies on an optimal
mass transportation argument and on the proof of a very general trace inequality.

To simplify even further the presentationof themain ideas used in the proof ofFigalli
et al. we shall only consider the case of the standard perimeter where inequality (5.1)
reduces to the more familiar quantitative isoperimetric inequality (4.3). The starting
point is a variant of Gromov’s proof of the classical isoperimetric inequality where the
Knothe map originally used in [100, App. 1] is replaced by the Brenier map. Its main
properties are stated in the next theorem, which follows from the results in [26,93].
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Theorem 5.1 Let μ and ν be two probability measures on R
n with μ absolutely

continuous with respect to Lebesgue measure. Then there exists a convex function
ϕ : Rn → R, such that the map T := ∇ϕ transports μ onto ν, that is for every Borel
function h : Rn → [0,∞]

∫
Rn

h(y) dν(y) =
∫
Rn

h(T (x)) dμ(x). (5.2)

Observe that (5.2) can be restated by saying that the map T pushes forward the
measure μ onto ν (for the definition of the push forward of a measure see for instance
[8, Sect. 1.5]). In the particular case that E is a set of finite perimeter with |E | = |B|,
setting μ = 1

ωn
χ E dx and ν = 1

ωn
χ B dx , from the above theorem we may conclude

(see also [97, Sect. 2.1]), that there exists a convex function ϕ : Rn → R such that,
setting T := ∇ϕ, then T (x) ∈ B for a.e. x ∈ R

n and for every Borel function
h : B → [0,∞] ∫

B
h(y) dy =

∫
E

h(T (x)) dx . (5.3)

Note that there is a regularity issue here, since ϕ is convex, hence T is defined only a.e.
and it is just a BV map. However, in order to avoid technical complications, see the
discussion in [67, Sect. 2.2], let us assume that T is a Lipschitz map. Under this extra
assumption, by a change of variable, one easily gets from (5.3) that det∇T (x) = 1
for a.e. x ∈ E . Then we can give the

Gromov’s proof of the isoperimetric inequality For every x ∈ E denote by λi (x),
i = 1, . . . , n, the eingenvalues of the symmetric matrix ∇T (x). Using the geometric–
arithmetic mean inequality and the divergence theorem, we have

P(B) = nωn = n
∫

B
dy = n

∫
E
(det∇T )1/ndx = n

∫
E
(λ1 · · · λn)

1/ndx

≤
∫

E
(λ1 + · · · + λn)dx =

∫
E
div T dx =

∫
∂ E

T · νE dHn−1 ≤ P(E).

Observe that if P(E) = P(B) then λ1(x) = λ2(x) = · · · = λn(x) = 1 for a.e. x ∈ E ,
since det∇T (x) = 1. Hence, up to a translation, T is the identity map and E is a ball.

��
Let us try to exploit this argument to prove the quantitative isoperimetric inequality.

Since, by definition,

P(E) = P(B) + |B|D(E),

from the inequalities above we immediately get that

∫
E

[
(λ1 + · · · λn)/n − (λ1 · · · λn)

1/n
]

dx ≤ ωn D(E), (5.4)
∫

∂∗ E
(1 − T · νE )dHn−1 ≤ nωn D(E). (5.5)
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It is not too difficult to show (see [67, Corollary 2.4]) that (5.4) implies that there
exists a constant C depending only on n such that, if D(E) ≤ 1, then

∫
E

|∇T − I | dx ≤ C(n)
√

D(E), (5.6)

where I stands for the identity matrix. Let us assume for a moment that the set E is so
good to satisfy a Poincaré inequality for some universal constant depending only on
n and let us see what information we may deduce from (5.6). Indeed, it can be proved
that if D(E) is smaller than some positive δ depending only on n one may remove
from E a small critical set, whose measure is controlled by D(E), such that outside
this critical set a Poincaré inequality holds true with a constant depending only on n.
Therefore, by a reduction argument, we may assume that

inf
c∈RN

∫
E

| f − c| dx ≤ C(n)

∫
E

|∇ f | dx for all f ∈ C1
c (Rn).

Therefore, by translating E we have from (5.6) that

∫
E

|T (x) − x | dx ≤ C(n)
√

D(E).

Therefore, given ε > 0, from the previous inequality we get

ωnα(E) ≤ |E�B| = 2|E\B| ≤ 2(|E\B1+ε| + |B1+ε\B|)
≤ C

(
ε−1

∫
E

|T x − x | + ε

)
≤ C(n)

(
ε + ε−1

√
D(E)

)
.

Minimizing the right hand side of this inequality with respect to ε we then get

α(E)4 ≤ C(n)D(E),

that is the quantitative isoperimetric inequality with the not optimal exponent 4. Note
however that this argument can never lead to a proof of the quantitative isoperimetric
inequality: firstly, because even if E is a connected open set the constant of the Poincaré
inequality may blow up in presence of small cusps; secondly because in the above
argument we are not taking into account the information contained in the inequality
(5.5) derived from Gromov’s proof.

Indeed the strategy followed in [67] is more subtle. Namely, one can show that if
E has small deficit, then (see [67, Th. 3.4 and Lemma 3.1]), up to removing a small
critical set from E whose measure is controlled by D(E), one may assume that E
satisfies the following trace inequality

inf
c∈Rn

∫
∂∗ E

| f − c| dHn−1 ≤ τ(n)

∫
E

|∇ f | dx for all f ∈ C1
c (Rn),
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Fig. 6 |E�B1| ≤ C
∫
∂∗ E

∣∣1−
|x |∣∣

for some constant τ depending only on n. Then, by applying the previous inequality
to the map T − I d, up to translating E conveniently, we have, recalling (5.6),

∫
∂∗ E

|T (x) − x | dHn−1 ≤ τ(n)

∫
E

|∇T − I | dx ≤ C(n)
√

D(E).

Combining this inequality with (5.5), we obtain, assuming D(E) ≤ 1,

∫
∂∗ E

|1 − |x || dHn−1 ≤
∫

∂∗ E

[∣∣1 − |T (x)|∣∣ + ∣∣|T (x)| − |x |∣∣] dHn−1

≤
∫

∂∗ E

[(
1 − T (x) · νE (x)

)
+ |T (x) − x |

]
dHn−1

≤ C
[

D(E) + √
D(E)

]
≤ C(n)

√
D(E).

The proof of the quantitative isoperimetric inequality (4.3) then immediately follows
from this estimate since, see [67, Lemma 3.5], there exists a constant C(n) such that,
see Fig. 6,

|E�B| ≤ C(n)

∫
∂ E

∣∣1 − |x |∣∣ dHn−1.

Beside providing an alternative proof of the quantitative isoperimetric inequality in the
wider framework of anisotropic perimeter, the paper by Figalli et al. contains several
interesting results. In particular, Theorem 3.4 which states that given any set of finite
perimeter E with small deficit one may always extract from E a maximal set for
which a trace inequality holds with a universal constant. This is a new and deep result
that may have several applications. Moreover, the mass transportation approach used
in [67] has been also successfully used to obtain the quantitative versions of other
important inequalities, see [43,66,68].
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5.2 Quantitative isoperimetric inequality via regularity

Another very interesting proof of the quantitative isoperimetric inequality has been
recently given by Cicalese and Leonardi in [45]. The starting point is the quantitative
inequality (3.2) proved by Fuglede for nearly spherical sets and the observation that
all known examples suggest that the quantitative inequality becomes really critical
only when the set E is a small perturbation of a ball. Therefore their idea is to reduce
the general case to the case of nearly spherical sets via a contradiction argument.
Precisely, they start by assuming that there exists a sequence of sets E j , converging
in measure to the unit ball, for which the quantitative inequality does not hold. Then
they replace it with a different sequence of sets Fj , still not satisfying the quantitative
inequality, but converging to B in C1, thus contradicting Fuglede’s Theorem 3.1 for
nearly spherical sets. The sets Fj are constructed as the solutions of certain minimum
problems and their convergence in C1 to the unit ball is a consequence of the a
priori estimates for perimeter almost minimizers established in the theory of minimal
surfaces.

Though the approach of Cicalese and Leonardi to the quantitative isoperimetric
inequality is based on the results of a difficult and deep theory, it has the advantage
of providing a short proof that has been successfully applied to several other inequal-
ities, see [1,18,19,24,47,48,74]. The proof we are going to present here is a further
simplification of the original proof by Cicalese and Leonardi which has been devel-
oped in a more general context by Acerbi et al. in [1]. To this aim, let us quickly
recall the definition and the regularity properties of the perimeter almost minimiz-
ers.

Let ω, r0 be positive numbers. A set F of finite perimeter is an (ω, r0)-almost
minimizer if, for all balls Br (x) with r < r0 and all measurable sets G such that
F�G ⊂⊂ Br (x), we have

P(F) ≤ P(G) + ωrn, (5.7)

see (Fig. 7). Thus, an almost minimizer locally minimizes the perimeter up to a higher
order error term. The main properties of almost minimizers are contained in the fol-
lowing statement which is essentially due to Tamanini, see [114, Sect. 1.9 and 1.10]
and also [95, Th. 26.5 and 26.6].

Fig. 7 A perimeter almost
minimizer F
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Theorem 5.2 If E is an (ω, r0)-almost minimizer, then ∂∗E is a C1,1/2 manifold,
∂ E\∂∗E is relatively closed in ∂ E and Hs(∂ E\∂∗E) = 0 for all s > n−8. Moreover,
if E j is a sequence of equibounded (ω, r0)-almost minimizers converging in measure
to a C2 open set E, then for j large each E j is of class C1,1/2 and the sequence E j

converges to E in C1,α for all 0 < α < 1/2.

As we said above the starting point of the proof is the Fuglede estimate for nearly
spherical sets. Recall that Theorem 3.1 states that there exist two positive constants
ε(n), c0(n) such that if E is an open set with |E | = |B|, the barycenter of E is at
the origin and ∂ E = {x + u(x) : x ∈ ∂ B} for a Lipschitz function u such that
‖u‖W 1,∞(Sn−1) < ε, then the following estimate holds

P(E) − P(B) ≥ c0(n)|E�B|2. (5.8)

We also need the following simple lemma.

Lemma 5.3 If � > n, the unique solution up to translations of the problem

min
{

P(F) + �
∣∣|F | − |B|∣∣ : F ⊂ R

n} (5.9)

is the unit ball.

Proof By the isoperimetric inequality it follows that in order tominimize the functional
in (5.9), we may restrict to the balls Br . Thus the above problem is equivalent to
minimizing in [0,∞) the function r → nrn−1 + �|rn − 1|, which has a unique
minimum for r = 1, if � > n. ��

We are now ready to give the proof of the quantitative isoperimetric inequality (4.3)
via regularity. Before that we need also to introduce the non-rescaled asymmetry index
by setting for any measurable set E of finite measure

A(E) := min
x∈Rn

{|E�B(x)|}.
Proof of the quantitative isoperimetric inequality via regularity Step 1 Thanks to
Lemma 4.2 we may assume, without loss of generality, that |E | = |B| and that
E ⊂ BR0 , for some R0 depending only on n. As we have already observed in the
previous section, in order to prove (4.3) it is enough to show that

Claim There exists δ0 > 0 such that if E ⊂ BR0 , |E | = |B| and P(E)− P(B) ≤ δ0,
then c0

2
A(E)2 ≤ P(E) − P(B), (5.10)

where c0 is the constant in (5.8).
To this aim we argue by contradiction assuming that there exist a sequence E j ⊂
BR0 , |E j | = |B|, with P(E j ) → P(B) and

P(E j ) < P(B) + c0
2

A(E j )
2. (5.11)
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Since P(E j ) → P(B), by the compactness Theorem 2.3 we may assume that up to
a subsequence the sets E j converge in measure to some set E . Then, by the lower
semicontinuity of the perimeter we get that P(E) = P(B). Thus E is a ball of radius
1 and we may conclude that A(E j ) → 0 as j → ∞. Now, to achieve the proof of
(5.10), we would like to replace the E j with a sequence of sets converging to B in C1

and contradicting inequality (5.8).
To build this new sequence, for every j we consider a minimizer Fj of the problem:

min
{

P(F) + |A(F) − A(E j )| + �
∣∣|F | − |B|∣∣ : F ⊂ BR0

}
, (5.12)

where � > n is a fixed constant. Using again the compactness Theorem 2.3 we may
assume that the sets Fj converge in measure to a set F . Moreover, the lower semicon-
tinuity of the perimeter immediately yields that F is a minimizer of the problem:

min
{

P(E) + A(E) + �
∣∣|E | − |B|∣∣ : E ⊂ BR0

}
.

Therefore by Lemma 5.3 we may conclude that the sequence Fj converge in measure
to a ball B(x0). Let us now show that this convergence holds indeed in C1. To this aim,
by Theorem 5.2 it is enough to prove that each Fj is an (ω, R0)-almost minimizer
for some ω > 0. To prove this take a ball Br (x) with r < R0 and a set G such that
Fj�G ⊂⊂ Br (x). Two cases may occur.

Case 1 G ⊂ B̄R0 . Then, by the minimality of Fj we get

P(Fj ) ≤ P(G) + |A(G) − A(E j )| − |A(Fj ) − A(E j )|
+ �

[∣∣|G| − |B|∣∣ − ∣∣|Fj | − |B|∣∣]
≤ P(G) + |A(G) − A(Fj )| + �

∣∣|G| − |Fj |
∣∣

≤ P(G) + (� + 1)|G�Fj | ≤ P(G) + (� + 1)ωnrn .

Case 2 |G\B̄R0 | > 0. In this case we split G as follows

P(Fj ) − P(G) = [P(Fj ) − P(G ∩ BR0)] + [P(G ∩ BR0) − P(G)].

Since G ∩ BR0 ⊂ BR0 , as before we have

P(Fj ) − P(G ∩ BR0) ≤ (� + 1)ωnrn,

while

P(G ∩ BR0) − P(G) = P(BR0) − P(G ∪ BR0) ≤ 0

by the isoperimetric inequality. Therefore we may conclude that the sets Fj are all
((� + 1)ωn, R0)-almost minimizers and that they converge to a ball B(x0) in C1,α

for all α < 1/2.
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Step 2 By the minimality of the Fj , recalling (5.11) and using Lemma 5.3, we get

P(Fj ) + �
∣∣|Fj | − |B|∣∣ + |A(Fj ) − A(E j )| ≤ P(E j )

≤ P(B) + c0
2

A(E j )
2 ≤ P(Fj ) + �

∣∣|Fj | − |B|∣∣ + c0
2

A(E j )
2. (5.13)

Therefore, we have that |A(Fj ) − A(E j )| ≤ c0
2 A(E j )

2 and since A(E j ) → 0 we get
that A(Fj )/A(E j ) → 1 as j → ∞.

To conclude the proof we need only to adjust the volumes of the sets Fj . For this
reason we set F̃j = λ j Fj , where λ j is chosen so that |F̃j | = |B|. Note that λ j → 1
since the Fj are converging in C1 to B(x0). Observe also that, since P(Fj ) → P(B)

and � > n, for j large we have P(Fj ) < �|Fj |. Therefore for j large we have

|P(F̃j ) − P(Fj )| = P(Fj )|λn−1
j − 1| ≤ P(Fj )|λn

j − 1|
≤ �|λn

j − 1||Fj | = �
∣∣|F̃j | − |Fj |

∣∣.
From this estimate, recalling (5.13) we get that

P(F̃j ) ≤ P(Fj ) + �
∣∣|F̃j | − |Fj |

∣∣ = P(Fj ) + �
∣∣|Fj | − |B|∣∣ ≤ P(B) + c0

2
A(E j )

2.

(5.14)
However, since A(Fj )/A(E j ) → 1 as j → ∞ we have A(E j )

2 < 2A(F̃j )
2 for j

large. Therefore, from (5.14) we obtain

P(F̃j ) − P(B) < c0A(F̃j )
2,

which is a contradiction to (5.8) since, up to translations, the sets F̃j have all barycenter
at the origin and are converging in C1 to the unit ball. This contradiction proves the
Claim, thus concluding the proof of the quantitative inequality. ��

5.3 An improved version of the quantitative isoperimetric inequality

Let E be a nearly spherical set and let us look back at the estimate (3.2) stated in
Fuglede’s Theorem 3.1. Observe that in the previous argument we have only used part
of the information provided by (3.2), since we have not exploited the presence of the
full norm of u in H1(Sn−1).

The fact that in the quantitative isoperimetric inequality (4.3) we are throwing
away some valuable information encoded in the isoperimetric deficit D(E) can be
understood by looking at the two sets E and F in Fig. 8. Indeed, E and F have the
same measure, the same Fraenkel asymmetry, but D(E) << 1, while D(F) >> 1.
Therefore the quantitative inequality (4.3) gives a sharp information on E while it is
useless when applied to F . The reason is that the isoperimetric deficit depends strongly
on the oscillation of the boundary of the set, while the Fraenkel asymmetry only looks
at the distance in measure of a set from a ball.
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Fig. 8 E and F have the same measure and the same asymmetry

This suggests that we should introduce a more precise index which takes into
account also the oscillation of the normals. To this aim, given a set of finite perimeter
E and a ball Br (y) with the same volume as E , we are going to measure the distance
from E to the ball in the following way, see Fig. 9. For every point x ∈ ∂∗E we
take the projection πy,r (x) of x on the boundary of Br (y) and consider the distance
|νE (x) − νr,y(πy,r (x))| from the exterior normal to E at the point x to the exterior
normal to Br (y) at the projection point πy,r (x). Then, we take the L2 norm of this
distance and minimize the resulting norm among all possible balls, thus getting

β(E) := min
y∈Rn

{(
1

2

∫
∂∗ E

|νE (x) − νr,y(πy,r (x))|2 dHn−1(x)

)1/2
}

. (5.15)

We shall refer to β(E) as to the oscillation index (or excess) of the set E .
Observe that Fuglede’s Theorem 3.1 provides indeed an estimate for the oscillation

index. In fact, if E is a nearly spherical set satisfying (3.1), |E | = |B| and the W 1,∞
norm of u is sufficiently small, by (3.14) at every point x ∈ ∂∗E the exterior normal
to E is given by

νE (x) = z(1 + u(z)) − ∇τ u(z)√
(1 + u(z))2 + |∇τ u(z)|2 ,

where z = x/|x | and thus x = z(1 + u(z)). Hence, from (3.2) we have

β(E)2 ≤ 1

2

∫
∂∗ E

∣∣∣∣νE (x) − x

|x |
∣∣∣∣
2

dHn−1 =
∫

∂∗ E

(
1 − νE (x) · x

|x |
)

dHn−1

≤ C
∫
Sn−1

(
1 − 1 + u(z)√

(1 + u)2 + |∇τ u|2
)

dHn−1

= C
∫
Sn−1

√
(1 + u)2 + |∇τ u|2 − (1 + u)√

(1 + u)2 + |∇τ u|2 dHn−1 (5.16)
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y

πy,r(x)

x

Br(y)

E

Fig. 9 The construction of the oscillation index

≤ C
∫
Sn−1

|∇τ u|2 dHn−1 ≤ C̃(P(E) − P(B)),

for some constant C̃ depending only on n. The next result, proved by Julin and the
author in [74], is an improved version of the quantitative isoperimetric inequality.

Theorem 5.4 There exists a constant κ(n), such that for any set of finite perimeter E,
with |E | = |Br | for some r > 0,

β(E)2 ≤ κ(n)(P(E) − P(Br )). (5.17)

Inequality (5.17) is stronger than (4.3), since a Poincaré type inequality shows that
the asymmetry index α is always controlled by β, see Proposition 5.5. Before proving
this, let us give a closer look to the new index. Observe that by the divergence theorem
we immediately have

1

2

∫
∂∗ E

|νE (x) − νr,y(πy,r (x))|2 dHn−1 =
∫

∂∗ E

(
1 − νE (x) · x − y

|x − y|
)

dHn−1

= P(E) −
∫

E

n − 1

|x − y| dx .

Therefore, we may write

β(E)2 = P(E) − (n − 1)γ (E), (5.18)
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where we have set

γ (E) := max
y∈Rn

∫
E

1

|x − y| dx . (5.19)

If y ∈ R
n is the center of an optimal ball for β(E) then y maximizes the integral on the

right hand side of (5.19). Such a point will be called a center for the set E . Note that
in general such a center is not unique. The next result is contained in [74, Prop. 1.2].

Proposition 5.5 There exists a constant C(n) such that if E is a set of finite perimeter,
with |E | = |Br | for some r > 0, then

α(E)2 + D(E) ≤ Cr1−nβ(E)2.

Proof Let E be a set of finite perimeter. Without loss of generality we may assume
that |E | = |B| and that E is centered at the origin, i.e.,

β(E)2 =
∫

∂∗ E

(
1 − νE · x

|x |
)

dHn−1.

Since β(B) = 0, hence P(B) = (n − 1)
∫

E
1
|x |dx , from the equality above and (5.18)

we have

β(E)2 = P(B)D(E) −
∫

E\B

n − 1

|x | dx +
∫

B\E

n − 1

|x | dx . (5.20)

Let us estimate the last two terms in (5.20). Since |E | = |B| we have

|E\B| = |B\E | =: a. (5.21)

Denote by A(R, 1) = BR\B1 and A(1, r) = B1\Br two annuli such that |A(R, 1)| =
|A(1, r)| = a. Hence,

R =
(
1 + a

ωn

)1/n

and r =
(
1 − a

ωn

)1/n

.

By construction |A(R, 1)| = |E\B|. Therefore, since 1
|x | is radially decreasing,

∫
E\B

n − 1

|x | dx ≤
∫

A(R,1)

n − 1

|x | dx .

Similarly, we have

∫
B\E

n − 1

|x | dx ≥
∫

A(1,r)

n − 1

|x | dx .
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Therefore we may estimate (5.20) by

β(E)2 ≥ P(B)D(E) −
∫

A(R,1)

n − 1

|x | dx +
∫

A(1,r)

n − 1

|x | dx

= P(B)D(E) − n
[
ωn(Rn−1 − 1) − ωn(1 − rn−1)

]

= P(B)D(E) + nωn

(
2 −

(
1 + a

ωn

) n−1
n −

(
1 − a

ωn

) n−1
n
)

.

(5.22)

The function f (t) = (1 + t)
n−1

n is uniformly concave in [−1, 1] and there exists a
positive constant c(n) such that for all s, t ∈ [−1, 1]

1

2
( f (t) + f (s)) ≤ f

(
t

2
+ s

2

)
− c(n)|t − s|2.

Therefore, recalling (5.21), we may estimate (5.22) by

β(E)2 ≥ P(B)D(E) + 8nc(n)

ωn
a2 = P(B)D(E) + 2nc(n)

ωn
|E�B|2.

Hence, the assertion follows. ��
The strategy for proving inequality (5.17) is the same that we have seen in the

previous section and the starting point is again Fuglede’s inequality (3.2)which implies
in particular (5.17) if E is a nearly spherical set sufficiently close in W 1,∞ to the unit
ball. However, beside using the regularity properties of perimeter almost minimizers,
we need to introduce another notion of minimality. We say that a set of locally finite
perimeter E is an area (K , r0)-quasi-minimizer if for every F , such that F�E ⊂⊂
Br (x), with r ≤ r0, the following inequality holds

P(E; Br (x)) ≤ K P(F; Br (x)).

We observe that this definition is the counterpart in the framework of sets of finite
perimeter of the notion of quasi-minimum introduced by Giaquinta and Giusti in [79]
in the context of variational integrals. Therefore it is not surprising that although quasi-
minimality is a very weak property, yet area quasi-minimizers have some kind of mild
regularity. This is indeed the content of the next result which was first proved by David
and Semmes in [51] and then extended by Kinnunen et al. [88] to the metric spaces
setting.

Theorem 5.6 Suppose that E is an area (K , r0)-quasi-minimizer. Then there exists
C > 1 such that for any 0 < r < r0 and every x ∈ ∂ E there are points y, z ∈ Br (x)

for which

Br/C (y) ⊂ E and Br/C (z) ⊂ R
n\E .
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We are now ready to prove the main result of this section.

Proof of Theorem 5.4 Step 1 As in the previous section, we start by observing that
in order to prove (5.17) it is enough to assume |E | = |B| and that D(E) is smaller
than a given constant δ0 to be chosen later. Moreover, the same reduction argument
used to prove Lemma 4.2 shows that also in this case we may assume without loss of
generality that E ⊂ BR0 , where the radius R0 depends only on the dimension n, see
[74, Lemma 3.2].
Let c0 > 0 be a constant which will be chosen at the end of the proof. From what we
have just observed it is enough to show that there exists δ0 > 0 such that, if D(E) ≤ δ0,
E ⊂ BR0 and |E | = |B|, then

c0β(E)2 ≤ P(E) − P(B).

We argue by contradiction assuming that there exists a sequence of sets E j ⊂ BR0

such that |E j | = |B|, D(E j ) → 0 and

P(E j ) < P(B) + c0β(E j )
2. (5.23)

By the compactness Theorem 2.3 it follows that, up to a subsequence, E j → E∞ in
measure and by the lower semicontinuity of the perimeter we immediately conclude
that E∞ is a ball of radius one. It is easily checked that the functional γ defined in
(5.19) is continuous with respect to the convergence in measure. Therefore, since the
E j are converging to a ball of radius one and P(E j ) → P(B), we have that

β(E j )
2 = P(E j ) − (n − 1)γ (E j ) → 0.

As in the previous section we replace each set E j by a minimizer Fj of the following
problem

min
{

P(F) + �
∣∣|F | − |B|∣∣ + 1

4
|β(F)2 − β(E j )

2|, F ⊂ BR0

}

for some fixed � > n. It is not too hard to show that the above functional is lower
semicontinuous with respect to the convergence in measure, see [74, Lemma 3.4], and
therefore a minimizer exists. Moreover, up to a subsequence, we may assume that
Fj → F∞ in measure. From the minimality of Fj , (5.23) and Lemma 5.3 we have
that

P(Fj ) + �
∣∣|Fj | − |B|∣∣ + 1

4
|β(Fj )

2 − β(E j )
2| ≤ P(E j ) < P(B) + c0β(E j )

2

≤ P(Fj )+�
∣∣|Fj |−|B|∣∣+c0β(E j )

2.

Hence |β(Fj )
2 − β(E j )

2| ≤ 4c0β(E j )
2, which implies β(Fj ) → 0 and

β(E j )
2 ≤ 1

1 − 4c0
β(Fj )

2. (5.24)
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Therefore F∞ is a minimizer of the problem

min
{

P(F) + �
∣∣|F | − |B|∣∣ + 1

4
β(F)2 : F ⊂ BR0

}
.

Thus from Lemma 5.3 we conclude that F∞ is a ball B(x0), for some x0 ∈ R
n .

Step 2 We claim that for any ε > 0, B1−ε(x0) ⊂ Fj ⊂ B1+ε(x0) for j large enough.
To this aim we show that the sets Fj are area (K , r0)-quasi-minimizers and use The-
orem 5.6. Let G ⊂ R

n be such that G�Fj ⊂⊂ Br (x), r ≤ r0.

Case 1 Suppose that Br (x) ⊂ BR0 . By the minimality of Fj we obtain

P(Fj ) ≤ P(G) + 1

4
|β(Fj )

2 − β(G)2| + �
∣∣|Fj | − |G|∣∣ (5.25)

Assume that β(Fj ) ≥ β(G) (otherwise the argument is similar) and denote by yG a
center of G. Then we get

|β(Fj )
2 − β(G)2| ≤

∫
∂∗ Fj

(
1 − νFj · z − yG

|z − yG |
)

dHn−1(z)

−
∫

∂∗G

(
1 − νG · z − yG

|z − yG |
)

dHn−1(z)

=
∫

∂∗ Fj ∩Br (x)

(
1 − νFj · z − yG

|z − yG |
)

dHn−1(z)

−
∫

∂∗G∩Br (x)

(
1 − νG · z − yG

|z − yG |
)

dHn−1(z)

≤ 2
[
P(Fj ; Br (x)) + P(G; Br (x))].

Therefore, from (5.25) we get

P(Fj ; Br (x)) ≤ 3P(G; Br (x)) + 2�
∣∣|Fj | − |G|∣∣.

From the above inequality the (K , r0)-quasi-minimality immediately follows observ-
ing that

|Fj�G| ≤ ω
1/n
n r1/n|Fj�G| n−1

n ≤ C(n)r1/n[P(Fj ; Br (x)) + P(G; Br (x))]

and choosing r0 sufficiently small.

Case 2 If |Br (x)\BR0 | > 0, we may write

P(Fj ; Br (x)) − P(G; Br (x)) = P(Fj ; Br (x)) − P(G ∩ BR0; Br (x))

+ P(G ∩ BR0; Br (x)) − P(G; Br (x))

= P(Fj ; Br (x)) − P(G ∩ BR0; Br (x))

+ P(BR0) − P(G ∪ BR0)

≤ P(Fj ; Br (x)) − P(G ∩ BR0; Br (x)).

123



The quantitative isoperimetric inequality. . . 569

FromCase 1we have that this term is less than (K −1)P(G∩BR0 ; Br (x))which in turn
is smaller than (K −1)P(G; Br (x)). Hence, all Fj are (K , r0)-quasi-minimizers with
uniform constants K and r0. The claim then follows from the theory of (K , r0)-quasi-
minimizers and the fact that Fj → B(x0) in L1. Indeed, arguing by contradiction,
assume that there exists 0 < ε0 < 2r0 such that for infinitely many j one can find
x j ∈ ∂ Fj for which

x j /∈ B1+ε0(x0)\B1−ε0(x0).

Let us assume that x j ∈ B1−ε0(x0) for infinitely many j (otherwise, the argument
is similar). From Theorem 5.6 it follows that there exist y j ∈ B ε0

2
(x j ) such that

B ε0
2C

(y j ) ⊂ B(x0)\Fj . This implies

|B(x0)\Fj | ≥ |B ε0
2C

| > 0,

which contradicts the fact that Fj → B(x0) in L1, thus proving the claim.

Step 3 Let us now translate Fj , for j large, so that the resulting sets, still denoted by
Fj , are contained in BR0 , have their barycenters at the origin and converge to B. We
are going to use Theorem 5.2 to show that the Fj are C1,1/2 and converge to B in C1,α

for all α < 1/2. To this aim, fix a small ε > 0. From Step 2 we have that for j large

B1−ε ⊂ Fj ⊂ B1+ε. (5.26)

We want to show that when j is large Fj is a (�′, r0)-almost minimizer for some
constants �′, r0 independent of j . To this aim, fix a set G ⊂ R

n such that G�Fj ⊂⊂
Br (y), with r < r0.
If Br (y) ⊂ B1−ε, from (5.26) it follows that G�Fj ⊂⊂ Fj for j large enough. This
immediately yields P(Fj ) ≤ P(G).
If Br (y) �⊂ B1−ε, choosing r0 and ε sufficiently small we have that

Br (y) ∩ B1/2 = ∅. (5.27)

Denote by yFj and yG the centers of Fj and G, respectively. If ε is sufficiently small,
from (5.26) and Lemma 5.7 below we have that for j large

|yFj | ≤ 1

4
and |yG | ≤ 1

4
. (5.28)

By the minimality of Fj we have

P(Fj ) ≤ P(G) + 1

4
|P(Fj ) − P(G)| + �

∣∣|Fj | − |G|∣∣ + n − 1

4
|γ (Fj ) − γ (G)|,

which immediately implies

P(Fj ) ≤ P(G) + 2�|Fj�G| + (n − 1)|γ (Fj ) − γ (G)|. (5.29)
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We may estimate the last term simply by

γ (Fj ) − γ (G) ≤
∫

Fj

1

|x − yFj |
dx −

∫
G

1

|x − yFj |
dx ≤

∫
Fj �G

1

|x − yFj |
dx

and

γ (G) − γ (Fj ) ≤
∫

G

1

|x − yG | dx −
∫

F

1

|x − yG | dx ≤
∫

Fj �G

1

|x − yG | dx .

Therefore, recalling (5.27) and (5.28), we have

|γ (Fj ) − γ (G)| ≤ 4|Fj�G|.

From this estimate and inequality (5.29) we may then conclude that

P(Fj ) ≤ P(G) + (2� + 4(n − 1)) |Fj�G| ≤ P(G) + �′ rn .

Hence, the sets Fj are (�′, r0)- almost minimizers with uniform constants �′ and r0.
Thus, Theorem 5.2 yields that the Fj are C1,1/2 and that, for j large,

∂ Fj = {z(1 + u j (z)) : z ∈ ∂ B}

for some u j ∈ C1,1/2(∂ B) such that u j → 0 in C1(∂ B1).
Step 4 By the minimality of Fk , (5.23) and (5.24) we have

P(Fj ) + �
∣∣|Fj | − |B|∣∣ ≤ P(E j ) < P(B) + c0β(E j )

2 ≤ P(B) + c0
1 − 4c0

β(Fj )
2.

(5.30)

We are almost in a position to use (5.16) to obtain a contradiction. We only need to
rescale the Fj so that the volume constraint is satisfied. Thus, set F ′

j := λ j Fj , where

λ j is such that λn
j |Fj | = |B|. Then λ j → 1 and also the sets F ′

j converge to B in C1

and have their barycenters at the origin. Therefore, since � > n, P(Fj ) → n|B| and
|Fj | → |B|, we have that for j sufficiently large

|P(F ′
j ) − P(Fj )| = |λn−1

j − 1| P(Fj ) ≤ � |λn
j − 1| |Fj | = �

∣∣|F ′
j | − |Fj |

∣∣. (5.31)

Then (5.30) and (5.31) yield

P(F ′
j ) ≤ P(Fj ) + �

∣∣|Fj | − |B|∣∣ < P(B) + c0
1 − 4c0

β(Fj )
2

= P(B) + c0 λ1−n
j

1 − 4c0
β(F ′

j )
2.

which contradicts (5.16) if 2c0/(1 − 4c0) < 1/C̃ and j is large. ��
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Lemma 5.7 For every ε > 0 there exists δ > 0 such that if F ⊂ BR0 and |F�B| < δ,
then |yF | < ε for every center yF of F.

Proof We argue by contradiction and assume that there exist Fj ⊂ BR0 such that
Fj → B in measure and yFj → y0 with |y0| ≥ ε, for some ε > 0. Then we would
have

∫
Fj

1

|x | dx ≤
∫

Fj

1

|x − yFj |
dx .

Letting j → ∞, by the dominated convergence theorem the left hand side converges
to
∫

B
1
|x | dx , while the right hand side converges to

∫
B

1
|x−y0| dx . Thus we have

∫
B

1

|x | dx ≤
∫

B

1

|x − y0| dx .

By the divergence theorem we conclude that

∫
∂ B

1 dx ≤
∫

∂ B
x · x − y0

|x − y0| dx

and this inequality may only hold if y0 = 0, thus leading to a contradiction. ��
We conclude this section quoting a recent paper by Neumayer [103] dealing with

the same kind of improved quantitative estimate that we have discussed here, but in
the case of the anisotropic perimeter. It turns out that if the function ϕ which defines
the anisotropic perimeter is of class C2 and satisfies a suitable form of ellipticity, then
one can prove an inequality of the type (5.17) with β replaced by a suitable anisotropic
oscillation index. In this case, see [103, Th. 1.5] one may get the stability estimate
with the exponent 2 and a constant depending on the function ϕ. In the general case,
i.e., when no assumptions on ϕ are made, a stability estimate is still obtained with a
constant depending only on the dimension, but with a not optimal power [103, Th. 1.1].

5.4 The isoperimetric inequality in higher codimension

The isoperimetric inequality in higher codimension goes back to a celebrated paper
by Almgren [3]. In that paper he proved the manifold counterpart of the classical
isoperimetric inequality established by De Giorgi in [53]. Though stated in the frame-
work of currents, in the particular case of a smooth (n − 1)-dimensional manifolds
� ⊂ R

n+k without boundary, spanning an area minimizing smooth surface M , his
inequality states that

Hn−1(�) ≥ Hn−1(∂ D),

where D is an n-dimensional flat disk with the same area as M . Moreover equality
occurs if and only if � is the boundary of a flat disk. The stability of this inequality has
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been addressed, in the context of currents, in a recent paper by Bögelein et al. [18].
In order to describe the result we restrict to the case of smooth (n − 1)-dimensional
closed surfaces � in R

n+k and give the definitions of the quantities that come into
play.

Denoting by Q(�) an area minimizing n-dimensional surface with boundary � the
isoperimetric deficit is defined as

D(�) := Hn−1(�) − Hn−1(∂ Dr )

Hn−1(∂ Dr )
,

where Dr is an n-dimensional flat disk in R
n+k with the same area as Q(�), i.e.,

Hn(Dr ) = Hn(Q(�)). Note that the area minimizing surface Q(�) may have singu-
larities even if � is smooth. It is then clear why the use of currents with finite mass
becomes unavoidable even to give the basic definitions. This is even more true in
the case of the asymmetry index α(�) whose precise definition is more technical and
requires the use of a certain seminorm defined for integer multiplicity currents [18,
Sect. 2]. However, the underlying geometric idea is easy to describe. Given any flat
disk Dr with the same area as Q(�), first one considers an area minimizing cylindric
type surface �(Dr ) spanned by the boundary components � and ∂ Dr , and afterwards
one takes the infimum of the surface area Hn(�(Dr )) among all possible disks Dr :

α(�) := r−n inf
{Hn(�(Dr )) : Hn(Dr ) = Hn(Q(�))

}
.

With these definitions in hand we may state the following quantitative isoperimetric
inequality proved in [18, Th. 2.1].

Theorem 5.8 Let n ≥ 2 and k ≥ 0. There exists a constant C = C(n, k) > 0 such
that for any (n − 1)-dimensional closed surface � ⊂ R

n+k the following inequality
holds:

α(�)2 ≤ CD(�). (5.32)

Note that if� is the boundary of a smooth open set E contained in an n-dimensional
hyperplane, then the asymmetry index α(�) coincides with the Fraenkel asymmetry
index α(E) defined in (4.1). Hence, (5.32) reduces to (4.3). In particular this shows
that the exponent 2 on the left hand side of the inequality cannot be improved, since
we know that it is already optimal for (4.3).

As in the two previous sections the strategy to prove Theorem 5.8 is to show first
a Fuglede type inequality and then to reduce the general case to it via a regularity
argument. However, here the situation is more delicate and involved due to the higher
codimension. First of all, the analogue of Fuglede’s result deals with a spherical
graph over S

n−1 in R
n+k , i.e., a manifold � which can be parametrized by a map

X : Sn−1 → R
n+k of the form

X (x) := (1 + u(x))(x, 0) + (0, v(x)) x ∈ S
n−1,

where u ∈ C1(Sn−1) and v ∈ C1(Sn−1,Rk) have both small C1-norms. In the present
case a substantial difficulty arises from the fact that, beside imposing the volume
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constraintHn(Q(�)) = ωn and that the barycenter of � is at the origin, we have also
to fix some second order quantities. This can be done for instance by assuming that
they are all equal to zero, i.e.,

∫
�

zi z j dHn−1 = 0 (5.33)

for any choice of i = 1, . . . , n and j = n + 1, . . . , n + k. Differently from the case
k = 0 considered in Sect. 3, in which v does not appear, the conditions (5.33) play a
crucial role in the estimation of the n · k first order Fourier coefficients of v. Instead,
the bounds on the first order Fourier coefficients of u and the zero order Fourier
coefficient of v follow from the barycenter condition, while the zero order Fourier
coefficient of u is controlled by using the constraint Hn(Q(�)) = ωn . Then, under
the above assumptions on u and v one has the following inequality, see [18, Th. 4.1],

Hn−1(�) − Hn−1(Sn−1) ≥ c(n)
[‖u‖2H1(Sn−1)

+ ‖v‖2H1(Sn−1,Rk )

]
, (5.34)

where c(n) is a constant depending only on n, provided the C1 norms of u and v are
sufficiently small. Note also that

α(�) ≤ c(n)
[‖u‖2L2(Sn−1)

+ ‖v‖2L2(Sn−1,Rk )

]
.

Combining this inequality with (5.34) one then gets the quantitative isoperimetric
inequality (5.32) in this case.

The next step is to reduce the general case to the previous one by the same contra-
diction argument that we have seen in Sect. 5.2. Beside the technical complications
due to the fact that one is now dealing with higher codimension, the main ingredients
come from the theory of currents that ‘almost’ minimize certain elliptic variational
integrals. The regularity results needed in the proof were obtained in [20,54].

5.5 The isoperimetric inequality on the sphere

The isoperimetric property of geodesic balls on the sphere and in hyperbolic spaces
goes back to Schmidt [108]. Before stating it, let us fix some basic notation. Recall
that if x, y are two points in the n-dimensional sphere Sn ⊂ R

n+1, n ≥ 1, the geodesic
distance between them is given by

distSn (x, y) := arccos(x · y).

Thus, the open geodesic ball with center at a point p ∈ S
n and radius ϑ ∈ (0, π) is

defined by setting

Bϑ(p) := {x ∈ S
n : distSn (x, p) < ϑ}.
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We just write Bϑ if the center of the geodesic ball is at the north pole en+1. Then, the
isoperimetric inequality on the sphere states that if E ⊂ S

n is a Borel set such that
Hn(E) = Hn(Bϑ) then

P(Bϑ) ≤ P(E), (5.35)

with the equality occurring if and only if E is a geodesic ball. Here, P(E) denotes
the perimeter of E on the sphere, see the definition below, which coincides with the
Hn−1-measure of the (relative) boundary of E on the sphere if E is a C1 manifold.
Note that from (5.35) we immediately have that if E ⊂ S

n is a set of finite perimeter
such that P(E) = P(Bϑ) for some 0 < ϑ < π , then

|E | ≤ |Bϑ | or |Sn\E | ≤ |Bϑ |.

Also in this case equality occurs if and only if E is a geodesic ball.
We recall that if E ⊂ S

n is a Borel set, the perimeter of E on the sphere can be
defined similarly to the euclidean case by setting

P(E) = sup

{∫
E
divτ ϕ dx : ϕ ∈ C∞(Sn; Rn+1), ϕ(x) · x = 0 for all x ∈ S

n, ||ϕ||∞≤1

}
.

If P(E) < ∞ by Riesz’s representation theorem it follows that the tangential gradient
of χ E can be represented as a vector valued Radon measure Dτχ E . Thus, as in the
euclidean case one may consider the set ∂∗E of all points in Sn such that the following
limit exists

νE (x) := − lim
ϑ↓0

Dτχ E (Bϑ(x))

|Dτχ E |(Bρ(x))

and satisfies |νE (x)| = 1 and νE (x) ∈ TxS
n , where TxS

n stands for the tangential
space to S

n at the point x . Then the De Giorgi structure theorem on the sphere states
that ∂∗E is countably (n − 1)-rectifiable and that the total variation measure |Dτχ E |
coincides with Hn−1 ∂∗E . Moreover, if g is a C1 tangential vector-field on S

n we
have the following Gauss–Green formula, see [110, (7.6)]

∫
E
divSn g dHn =

∫
∂∗ E

g · νE dHn−1. (5.36)

Note that when E is a smooth open subset of Sn , the unit vector νE (x) ∈ TxS
n

coincides with the outer unit normal vector to ∂ E at x . In the case of a geodesic
ball Bϑ(p) it can be easily checked that the outer unit normal vector field along its
boundary is given by

νBϑ (p)(x) = (x · p)x − p√
1 − (x · p)2

. (5.37)
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In view of the results that we have seen in Sect. 4, the natural counterpart of (4.3)
would be the inequality

P(E) − P(Bϑ)

P(Bϑ)
≥ c(n)α(E)2, (5.38)

where now the Fraenkel asymmetry index is defined by

α(E) := min
p∈Sn

{Hn(E�Bϑ(p))

Hn(Bϑ)
: Hn(E) = Hn(Bϑ)

}
.

When compared with (4.3) inequality (5.38), even if it looks similar, has a completely
different nature. In fact (4.3) is scaling invariant while there is no scaling at all on Sn . It
would be quite easy to adapt one of the different arguments that we have seen in Sect. 4
and in Sect. 5.2 in order to prove (5.38) with a constant depending additionally on the
volume of the set E , but possibly blowing up as ϑ ↓ 0. Indeed, the difficult case is
when the set E has a small volume sparsely distributed over the sphere. In this situation
a localization argument aimed to reduce the problem to the flat Euclidean estimate
(4.3) does not work. However, as in Sect. 5.3 one can prove a stronger inequality by
replacing α(E) with an oscillation index which is the counterpart in our new setting
of the one defined in (5.15).

The idea is the same as in the euclidean case. Given a geodesic ball Bϑ(p) with
the sameHn-measure of E , for every point x ∈ ∂∗E we want to measure the distance
betweenνE (x) and the unit normal vector νBϑ (p)(πϑ,p(x)),whereπϑ,p(x) is the closest
point in ∂ Bϑ(p) in the sense of geodesic distance. However, since the two normals
νE (x) and νBϑ (p)(πϑ,p(x)) lie in two different tangent spaces in order to measure
their distance correctly we have to parallel transport the normal νBϑ (p)(πϑ,p(x)) to the
tangent space TxS

n . Since the parallel transport on the sphere is just translation along
great circles, the normal νBϑ (p)(πϑ,p(x)) is thus carried into the normal νBϑ(x)(p)(x) at
the point x to the geodesic ball with center p and radius ϑ(x) := distSn (x, p). So, as
in Sec. 5.3, we measure the L2 distance between the normals νE (x) and νBϑ(x)(p)(x)

and then minimize the resulting norm among all possible geodesic balls having the
same measure of E . This leads to the following definition of oscillation index for the
set E

β(E) := min
p∈Sn

[
1

2

∫
∂∗ E

∣∣νE (x) − νBϑ(x)(p)(x)
∣∣2 dHn−1

] 1
2

.

The quantitative isoperimetric inequality proved in [19, Th. 1.1] reads as follows.

Theorem 5.9 There exists a constant c(n) such that for any Borel set E ⊂ S
n with

Hn(E) = Hn(Bϑ) for some ϑ ∈ (0, π), the following inequality holds

P(E) − P(Bϑ) ≥ c(n)β2(E). (5.39)
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As in the euclidean case, see the discussion made in Sect. 5.3, inequality above
implies (5.38), since a Poincaré type inequality still holds in the case, allowing to
control α(E) by the oscillation index β(E), see [19, Lemma 2.7].

Lemma 5.10 There exists a constant c = c(n) > 0 such that for any Borel set E ⊂ S
n

with Hn(E) = Hn(Bϑ) for some ϑ ∈ (0, π) there holds

β(E)2 ≥ c(n)P(Bϑ)α(E)2.

As in Sect. 5.3 the starting point for the proof of Theorem 5.9 is a Fuglede-type
stability result aimed to establish (5.39) in the special case of sets E ⊂ S

n whose
boundary can be written as a radial graph over the boundary of a geodesic ball Bϑ(p)

with the same volume. To establish such a result one could follow in principle the
strategy used in the euclidean case in Theorem 3.1. However, to deduce (5.39) for
radial graphs with a constant not depending on the volume needs much more care in
the estimations, see the proof of Theorem 3.1 in [19]. The main difficulty arises when
passing from the special situation of radial graphs to arbitrary sets. To deal with this
issue one needs to change significantly the strategies that we have seen in the previous
sections.

To explain where the major difficulties come from, we observe that as in the euclid-
ean case the oscillation index can be re-written as the difference of P(E) and a suitable
potential on E . To this aim, note that

1

2

∫
∂∗ E

∣∣νE (x) − νBϑ(x)(p)(x)
∣∣2 dHn−1 =

∫
∂∗ E

1 − νE (x) · νBϑ(x)(po)(x) dHn−1

= P(E) −
∫

∂∗ E
νE (x) · νBϑ(x)(po)(x) dHn−1.

To proceed further, we recall (5.37) and set

X (x) := νBϑ(x)(p)(x) = (x · p)x − p√
1 − (x · p)2

.

Note that X is a tangential vector field, that is X (x) · x = 0 for all x ∈ ∂∗E . Hence,
by the Gauss–Green formula (5.36) we have

1

2

∫
∂∗ E

∣∣νE (x) − νBϑ(x)(p)(x)
∣∣2 dHn−1 = P(E) −

∫
E
divSn X dHn .

Computing the tangential divergence divSn X we obtain, denoting by {τ1, . . . , τn} an
orthonormal base for TxS

n ,
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divSn X =
n∑

i=1

τi ·
⎡
⎢⎣ (τi · p)x + (x · p)τi√

1 − (x · p)2
+ ((x · p)x − p)

(x · p)(τi · p)(√
1 − (x · p)2

)3
⎤
⎥⎦

=
n∑

i=1

⎡
⎢⎣ x · p√

1 − (x · p)2
− (x · p)(τi · p)2(√

1 − (x · p)2
)3

⎤
⎥⎦ = (n − 1)(x · p)√

1 − (x · p)2
.

Inserting this equality in the formula above, we conclude that

β2(E) = P(E) − γ (E),

where

γ (E) := (n − 1)max
p∈Sn

∫
E

x · p√
1 − (x · p)2

.

From this formula it is clear that the core of the proof is to provide estimates indepen-
dent of the volume of E for the potential

∫
E

x · p√
1 − (x · p)2

dHn−1 (5.40)

and for its maximum with respect to p. This requires some technically involved ideas
and strategies. In particular, in the contradiction argument used to deduce (5.39) for
general sets from the case of a radial graph we need to show that all the constants are
independent of the volume of E . The arguments become particularly delicate when
the volume of E is small. In this case inequality (5.39) shows a completely different
nature depending on the size of the ratio β2(E)/P(Bϑ). In fact, if Hn(E) → 0 and
also β2(E)/P(Bϑ) → 0, then E behaves asymptotically like a flat set, i.e., a set inRn

and inequality (5.39) can be proven by reducing to the euclidean case, rescaling and
then arguing as when E has large volume. However, the most difficult situation to deal
with is when Hn(E) → 0 and β2(E)/P(Bϑ) converge to a strictly positive number.
This case has to be treated with ad hoc estimates for the potential (5.40).

5.6 The fractional perimeter

The fractional s-perimeter has recently attracted the interest of several authors. In
particular, Caffarelli et al. have initiated in [31] the study of Plateau-type problems in
the fractional setting, see also [32]. Recall that for s ∈ (0, 1) and a Borel set E ⊂ R

n ,
n ≥ 2, the fractional s-perimeter is defined by setting

Ps(E) :=
∫

E

∫
Ec

1

|x − y|n+s
dxdy.
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Note that if Ps(E) < ∞, then

Ps(E) = 1

2
[χ E ]p

W σ,p(Rn)
,

for p ≥ 1 and σ p = s, where [χ E ]p
W σ,p(Rn)

denotes the Gagliardo W σ,p-seminorm
of the characteristic function of E . The functional Ps(E) can be thought as a (n −
s)-dimensional perimeter in the sense that Ps(λE) = λn−s Ps(E) for any λ > 0.

Note that since for s ∈ (0, 1) BV (Rn) is imbedded in W
s(n−1)

n−s , n−s
n−1 (Rn), see [81,

Theorem 1.4.4.1], the s-perimeter of E is finite if E has finite (standard) perimeter
and finite measure. On the other hand, Ps(E) can be finite even if the Hausdorff
dimension of ∂ E is strictly greater than n − 1, see for instance [107]. Observe also
that if E, F are two bounded sets of non trivial and finite s-perimeter in general

Ps(E ∪ F) < Ps(E) + Ps(F).

However, the s-perimeter provides an approximation of the standard euclidean perime-
ter since it can be shown that for any bounded set of finite perimeter E

lim
s↑1(1 − s) Ps(E) = ωn−1 P(E). (5.41)

Formula (5.41) originates from a paper by Bourgain, Brezis andMironescu [23, Th. 3’
and Rem 4]. It was completed by Dávila [52], see also [115] for a simpler proof. Sub-
sequently, the same formula was proved in [32] and [7] under additional smoothness
assumptions on E . On the other hand, as a consequence of [98, Th. 3], we have that,
for any set E of finite measure and finite s-perimeter for all s ∈ (0, 1),

lim
s↓0 s Ps(E) = nωn |E |.

Also for the s-perimeter balls are the isoperimetric sets, since it can be proved that if
E ⊂ R

n is a measurable set with |E | = |Br | for some r > 0, then

Ps(Br ) ≤ Ps(E) (5.42)

with equality holding if and only if E is a ball. Inequality (5.42) can be deduced from
a symmetrization result due to Almgren and Lieb [4], while the cases of equality have
been determined in [71]. Note also, see for instance [62, (2.11)], that the s-perimeter
of the unit ball is given by

Ps(B) = 21−sπ
n−1
2 P(B)

s(n − s)
· �

( 1−s
2

)
�
( n−s

2

) ,

where � is the so-called gamma function. In order to state a quantitative version of
the isoperimetric inequality (5.42), if E is a measurable set such that |E | = |Br | and
s ∈ (0, 1), we define the s-isoperimetric deficit as
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Ds(E) := Ps(E) − Ps(Br )

Ps(Br )
.

The next result has been proven in [62, Th. 1.1].

Theorem 5.11 For every n ≥ 2 and s0 ∈ (0, 1) there exists a positive constant
C(n, s0) such that

α(E)2 ≤ C(n, s0)Ds(E), (5.43)

whenever s ∈ [s0, 1] and E has positive, finite measure.

The interesting feature of inequality (5.43) is that it holds uniformly with respect
to s, at least if s is bounded away from zero. Therefore, thanks to (5.41), it implies in
particular the quantitative inequality (4.3) for the standard perimeter. As we have seen
in the previous sections, the starting point is a Fuglede type result, see [62, Th. 2.1],
which now states that there exist two positive constants ε, c0, depending only on n,
such that if E is a nearly spherical set as in Theorem 3.1, with ‖u‖W 1,∞(Sn−1) < ε,
then for all s ∈ (0, 1)

Ps(E) − Ps(B) ≥ c0

(
[u]2

H
1+s
2 (Sn−1)

+ s Ps(B) ‖u‖2L2(Sn−1)

)
, (5.44)

where the Gagliardo seminorm [u]
H

1+s
2 (Sn−1)

is given by

[u]
H

1+s
2 (Sn−1)

:=
(∫∫

Sn−1×Sn−1

|u(x) − u(y)|2
|x − y|n+s

dHn−1
x dHn−1

y

) 1
2

.

Since it can be proved, see [23, Cor. 2] and also [62, (8.4)] for a different proof, that

lim
s↑1(1 − s)[u]2

H
1+s
2 (Sn−1)

= ωn−1

∫
Sn−1

|∇τ u|2,

one immediately recovers the Fuglede’s estimate (3.2) from (5.44). As we have seen
already in different situations, in order to pass from a nearly spherical set to a general
set of finite perimeter one has to use the right notion of perimeter almost minimizer and
the right regularity results. The definition of perimeter almost minimizer given in (5.7)
can be immediately extended to the s-perimeter in the obvious way and the counterpart
in this new setting of Theorem 5.2 has been proved by Caputo and Guillen in [34].
However, in order to prove Theorem 5.11 one needs to show that all the regularity
estimates needed in the proof are in fact independent of s, at least if s is bounded away
from zero. This requires the use of more technically involved arguments and of more
delicates estimates, see Sect. 4 in [62].
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5.7 The isoperimetric inequality in Gauss space

The Gauss space is the space Rn , n ≥ 1, endowed with the measure γ given by

γ (E) = 1

(2π)n/2

∫
E

e− |x |2
2 dx,

for any Lebesgue measurable set E ⊂ R
n . Note that (Rn, γ ) is a probability space,

since γ (Rn) = 1. Clearly, γ is invariant under a rotation around the origin, while is
not invariant under translation. Similarly to what we do in the euclidean space, if E is
measurable and 	 ⊂ R

n is an open set we define the Gaussian perimeter of E in 	

as

Pγ (E;	) = √
2π sup

{∫
E

(
divϕ − x · ϕ

)
dγ : ϕ ∈ C∞

c (	; Rn), ||ϕ||∞ ≤ 1

}
.

It turns out that if E has finite Gaussian perimeter in 	 then it has also locally finite
perimeter in 	 in the Euclidean sense and

Pγ (E;	) = 1

(2π)(n−1)/2

∫
∂∗ E

e− |x |2
2 dHn−1.

The perimeter of E in Rn will be simply denoted by Pγ (E).
The isoperimetric inequality in the Gauss space asserts that among all subsets of

R
n with prescribed Gaussian measure, half-spaces have the least Gaussian perimeter.

Precisely, for any ν ∈ S
n−1 and s ∈ R denote by Hν,s the half space

Hν,s := {x ∈ R
n : x · ν > s}.

Then we have γ (Hν,s) = �(s) and Pγ (Hν,s) = e− s2
2 , where� is the strictly decreas-

ing function defined for all s ∈ R by setting

�(s) = 1√
2π

∫ ∞

s
e− t2

2 dt.

Then the analytic form of the Gaussian isoperimetric inequality states that if γ (E) =
γ (Hν,s) = �(s) for some s ∈ R, then

Pγ (E) ≥ Pγ (Hν,s) or equivalently Pγ (E) ≥ e− s2
2 = e− {�−1(γ (E))}2

2 , (5.45)

with the equality holding if and only if E = Hν,s for some ν ∈ S
n−1. This inequality

was independently established by Borell in [22] and by Sudakov and Cirel’son in
[112]. However, the characterization of half-spaces as the unique minimizers in the
isoperimetric Gaussian problem is a relatively recent result of Carlen and Kerce [36],
relying on the theory of rearrangements aswell as on probabilistic techniques involving
theMehler semigroup of contractions.Adifferent proof has been recently given in [44],
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where the Ehrhard symmetrization [55] plays the same role of Steiner symmetrization
in De Giorgi’s proof [53] of the isoperimetric inequality.

The stability of the isoperimetric property of half spaces in (5.45) has been addressed
for the first time in [44]. In order to state the result proved therein we introduce the
Gaussian isoperimetric deficit Dγ (E) and the Gaussian asymmetry αγ (E) by setting,
respectively,

Dγ (E) := Pγ (E) − e− s2
2 , αγ (E) := min

ν∈Sn−1
γ (E�Hν,s),

whenever E is a measurable set with γ (E) = �(s), n ≥ 1. With this definitions in
hand, the stability result proved in [44, Th. 1.1] reads as follows.

Theorem 5.12 Let n ≥ 2. For any 0 < λ < 1 there exists a positive constant C(n, λ)

depending only on n and λ such that

αγ (E)2 ≤ C(n, λ)Dγ (E). (5.46)

for every measurable set E ⊂ R
n such that γ (E) = λ.

Note that also in (5.46) the power 2 is sharp. To see this one can consider in
dimension 2 the family of sets constructed in [44, Lemma 6.1]. When n = 1, the
quantitative version of the isoperimetric inequality (5.46) takes a somewhat different
form. In fact one can prove that if n = 1, for any 0 < λ < 1 there exists a positive
constant C(λ) such that

αγ (E)

√
log

(
1

αγ (E)

)
≤ C(λ)Dγ (E) (5.47)

for every measurable set E ⊂ R such that γ1(E) = λ. Also in this case the result is
sharp, in the sense that the left hand side of (5.47) cannot be replaced by any function
of αγ (E) decaying slower as αγ (E) → 0, see the sets defined in [44, Lemma 3.5].

As in the proof of (4.3) that we discussed in Sect. 4, the strategy to prove (5.46)
is to reduce, via subsequent simplifications, to classes of sets E enjoying special
additional geometric properties. A first reduction consists in showing that it suffices
to prove (5.46) for (n − 1)-symmetric sets E , namely sets which are symmetric about
(n − 1) mutually orthogonal hyperplanes containing the origin. This is obtained by
proving a counterpart of Theorem 4.6 in the Gaussian setting. Once this reduction is
performed, in order to prove (5.46) in dimension n = 2 it is enough to deal only with
sets that are symmetric with respect to one of the two coordinate axes. In this case
the proof follows by using ad hoc geometric constructions, together with a careful
study of a particular class of almost optimal sets. Finally, by combining Ehrhard
symmetrization with the reduction result to (n − 1)-symmetric sets, one may pass
from a generic set E to a Cartesian product of Rn−2 times an epigraph in R2. Thanks
to the tensorial properties of the Gaussian density, this class of sets can be handled by
the two-dimensional result.

123



582 N. Fusco

The fact that the Gaussian isoperimetric inequality (5.45) is independent of the
dimension suggests that also the constant in the quantitative inequality (5.46) should
only depend on λ. Beside its intrinsic mathematical interest, having a constant inde-
pendent of n in (5.45) would have some interesting applications in probability, as
pointed out in [101, Sect. 1.4]. Indeed in [101] a stability estimate with a non sharp
logarithmic dependence on the isoperimetric deficit Dγ (E) was proven, but with a
dimension free constant. This last result was later on greatly improved by Eldan [56]
who proved inequality (5.46), actually an even stronger one, with a dimensionless con-
stant and an almost optimal dependence on Dγ (E), actually just a logarithm below
the optimal growth. However, it was only a very recent paper by Barchiesi et al. [10]
that settled the issue in a complete and satisfactory way.

To state properly their result we have to introduce a sharper index, which in the
gaussian context plays the role of the one that we have introduced in Sect. 5.3. To this
aim, for any measurable set E ⊂ R

n we define the non-renormalized barycenter of E
by setting b(E) := ∫

E x dγ . Then, following [10] we define a strong asymmetry by
setting

βγ (E) := min
ν∈Sn−1

|b(E) − b(Hν,s)|.

In [10] the following result is proved.

Theorem 5.13 There exists an absolute constant C such that for every s ∈ R and for
every set E ⊂ R

n with γ (E) = �(s) the following estimate holds

βγ (E) ≤ C(1 + s2)Dγ (E). (5.48)

Observe that this inequality is extremely interesting for several reasons. First, the
constant C is dimension free, second, the dependence on the mass of E through s is
also optimal, see [10, Rem. 1]. Moreover, a Poincaré type inequality shows that for
any measurable set E with γ (E) = �(s) then

βγ (E) ≥ e
s2
2

4
αγ (E)2.

Finally, the new asymmetry index is clearly related to the Gaussian counterpart of the
oscillation index defined in (5.15) since one can prove that

2Dγ (E) + 2
√
2πβγ (E) = min

ν∈Sn−1

1

(2π)(n−1)/2

∫
∂∗ E

|νE (x) − ν|2 dHn−1.

The key point in the proof of Theorem 5.13 is to study the minimization problem

min
{

Pγ (E) + ε

2
|b(E)|2 + �|γ (E) − �(s)| : E ⊂ R

n
}

and to show that for ε sufficiently small, and � large, the only minima are the half
spaces Hν,s . A part from the penalization term that eventually forces the minimizers to
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have mass equal to�(s), the other two terms in the energy functional are somewhat of
opposite nature. Indeed, for a givenmass, half spacesminimize theGaussian perimeter
while maximize the absolute value of the barycenter. The reason why proving that the
half spaces Hν,s minimize the above functional leads to the quantitative inequality

(5.48) can be understood on observing that b(Hν,s) = e− s2
2 ν/

√
2π . Therefore, from

the minimality of Hν,s one has that if γ (E) = �(s), then

Pγ (E) − Pγ (Hν,s) ≥ ε

2

(|b(Hν,s)|2 − |b(E)|2) = ε

2

(|b(Hν,s)| + |b(E)|)βγ (E)

≥ ε

2
√
2π

e− s2
2 βγ (E),

from which is not difficult to deduce (5.48), see the argument at the beginning of
Section 4 of [10].

The proof that half spaces are minimizers of the above problem is based on a PDE
rigidity argument that is certainly new in this context. The idea in [10] is to derive the
second variation for the above functional and then to deduce the minimality of a half
space by a powerful and elegant choice of the test function, see Step 3 of the proof of
the main result contained in Sect. 4 of [10].

We conclude this section by observing that while the result by Barchiesi et al.
proves the quantitative Gaussian isoperimetric inequality with an optimal dependence
on the dimension and on the mass, the dependence on the dimension of the constant
γ (n) which appears in (4.3) is not known. However, inequality (3.2) implies that for
a nearly spherical set E sufficiently close to a ball one has

α(E)2 ≤ 8nD(E).

This suggests that γ (n) should grow like n as n → ∞. Unfortunately, looking more
carefully at the proof of the quantitative isoperimetric inequality (4.3) given in Sect. 4
one gets a constant growing exponentially fastwithn, while the contradiction argument
used in the Sect. 5.2 gives no clue about γ (n). However, in [67, (1.12)] it is observed
that γ (n) has at most a polynomial growth, though the power that one obtains with
their methods, even if one may be possibly improve it a bit, seems still far away from
being optimal. The value of the constant in dimension n = 2 for small values of
the asymmetry was first given by Hall et al. in [83,84] in the convex case, and then
extended by Cicalese and Leonardi in [45] for general sets of finite perimeter. Their
result states that

D(E) ≥ π

8(4 − π)
α(E)2 + o(α(E)2).

Other, interesting estimates of the quantitative isoperimetric constant in dimension 2
for special classes of convex sets, not necessarily with small asymmetry, are studied
in [6,46].
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6 Other functional inequalities

6.1 Stability of Sobolev inequality

In this section we shall discuss the stability of Sobolev inequality, which states that if
n ≥ 2, 1 ≤ p < n and p∗ = np/(n − p), then

S(p, n)‖ f ‖L p∗
(Rn) ≤ ‖∇ f ‖L p(Rn) (6.1)

for every function f in the homogeneous Sobolev space W 1,p(Rn). Throughout this
section by the homogeneous Sobolev space we mean the completion of C1

c (Rn) with
respect to the L p(Rn) norm of the gradient.

If p = 1 it is well known that (6.1) is equivalent to the isoperimetric inequality,
see [59, p. 192], and thus S(1, n) = nω

1/n
n . Indeed, a simple approximation argument

shows that if f is a function in BV (Rn), the homogeneous space of all functions in
L

n
n−1 (Rn) whose distributional gradient is a measure with finite total variation, then

nω
1/n
n ‖ f ‖

L
n

n−1 (Rn)
≤ |D f |(Rn),

where |D f |(Rn) denotes the total variation, with equality holding if and only if f is
the characteristic function of a ball. If p > 1 the best constant in (6.1) was found
independently by Aubin [9] and Talenti [113] and it turns out to be equal to

S(p, n) = √
π n1/p

(
n − p

p − 1

)(p−1)/p (
�(n/p)�(1 + n − n/p)

�(1 + n/2)�(n)

)1/n

.

In this case the family of extremals in (6.1) is given by the functions ga,b,x0 defined as

ga,b,x0(x) = a(
1 + b|x − x0|p′)(n−p)/p

for x ∈ R
n (6.2)

for some a �= 0, b > 0, x0 ∈ R
n , where p′ = p/(p − 1). When p = 2, as a

consequence of a celebrated result by Gidas et al. [80] applied to the Euler equation
of the functional ‖∇ f ‖L2(Rn)

/‖ f ‖L2� (Rn), one can show that the above functions
are the only ones for which equality holds in (6.1). However if p > 1, p �= 2 the
characterization of the functions of the form (6.2) as the only ones attaining equality
in (6.1) was shown much later by Cordero-Erausquin et al. [49] with a proof of the
Sobolev inequality (6.1) via mass transportation in the same spirit of Gromov’s proof
of the isoperimetric inequality that we have seen in Sect. 5.1. We reproduce here their
proof.

Proof of the sharp Sobolev inequality via mass transport Observe that in order to
prove (6.1) it is enough to assume that f is nonnegative since |∇| f || = |∇ f |.
Therefore, if f and g are two nonnegative functions from W 1,p(Rn) such that
‖ f ‖p∗ = ‖g‖p∗ = 1, by applying Theorem 5.1 with μ = f p∗

dx and ν = g p∗
dy we
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find that there exists a convex function ϕ : Rn → R such that, setting T := ∇ϕ one
has ∫

Rn
h(y)g p∗

(y) dy =
∫
Rn

h(T (x)) f p∗
(x) dx, (6.3)

for all nonnegative Borel functions h. To avoid some technical details that could make
the idea of the proof less clear, let us assume that f and g have compact support and
that T is Lipschitz. Then from the above formula we deduce that

f p∗
(x) = g p∗

(T (x)) det∇T (x) for a.e. x ∈ R
n .

From this inequality, using the geometric-arithmetic mean inequality, we have that for
a.e. x in the support of f

g− p∗
n (T (x)) = f − p∗

n (x)(det∇T (x))1/n ≤ 1

n
f − p∗

n (x)Tr (∇T (x))

= 1

n
f − p∗

n (x) div T (x),

where Tr (T ) denotes the trace of T . Multiplying both sides of this inequality by
f p∗

(x) and integrating by parts we get

∫
Rn

g− p∗
n (T (x)) f p∗

(x) dx ≤ 1

n

∫
Rn

f p∗(1−1/n)(x) div T (x) dx

= − p∗(n − 1)

n2

∫
Rn

f
p∗
p′ (x)∇ f (x) · T (x) dx . (6.4)

Using Hölder inequality and recalling (6.3) again we have

∫
Rn

f
p∗
p′ (x)∇ f (x) · T (x) dx ≤ ‖∇ f ‖p

(∫
Rn

f p∗
(x)|T (x)|p′

dx

)1/p′

= ‖∇ f ‖p

(∫
Rn

g p∗
(y)|y|p′

dy

)1/p′

.

Combining this inequality with (6.4) and recalling (6.3) we then conclude that

∫
Rn

g p∗(1−1/n)(y) dy ≤ p(n − 1)

n(n − p)
‖∇ f ‖p

(∫
Rn

g p∗
(y)|y|p′

dy

)1/p′

. (6.5)

Now we take b = 1 and a > 0 such that the function h p := ga,1,0 has L p∗
norm in

R
n equal to 1 and we argue as before, choosing f = g = h p. Since in this case the

map T is just the identity map, the above argument simplifies a lot and one can easily
check that all previous inequalities are indeed equalities. Therefore we conclude by
getting that
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∫
Rn

h p∗(1−1/n)
p (y) dy = p(n − 1)

n(n − p)
‖∇h p‖p

(∫
Rn

h p∗
p (y)|y|p′

dy

)1/p′

.

From this equality, recalling (6.5) one gets that if ‖ f ‖p∗ = ‖h p‖p∗ = 1, then

‖∇ f ‖p ≥ ‖∇h p‖p.

This inequality, as one can check with a few computations is precisely the Sobolev
inequality (6.1) with the sharp constant S(n, p). ��

In the argument above we have chosen to put ourself in the simple situation when
the functions f and g have compact support and T is Lipschitz. With a bit of technical
adjustments, see [49, Sect. 4] the above argument can be justified also in the general
case. Thus, if f and g are two functions for which inequality (6.5) holds as an equality
one can prove [49, Prop. 6], that there exist two positive constants α and λ such
that f (x) = αg(λ(x − x0)) for some x0 ∈ R

n . From this the characterization of the
functions in (6.2) as the only extremals in the Sobolev inequality immediately follows.

In [27, (c) p. 75] Brezis and Lieb raised the following stability problem: ‘is there
a way to bound ‖∇ f ‖2 − S(2, n)‖ f ‖2∗ from below in terms of a ‘distance’ of f
from the set of optimal functions (6.2)?’ The answer to this question was provided a
few years later in a nice paper by Bianchi and Egnell [16]. Given a function f in the
homogeneous Sobolev space W 1,2(Rn) they considered the distance μ from f to the
manifold M made up by all the functions ga,b,x0 given by (6.2) with p = 2:

μ( f ) = inf
a,b,x0

‖∇ f − ∇ga,b,x0‖L2(Rn). (6.6)

They proved the following result.

Theorem 6.1 There exist a positive constant c(n) depending only on n such that for
all f ∈ W 1,2(Rn)

‖∇ f ‖22 − S(2, n)2‖ f ‖22∗ ≥ c(n)μ( f )2. (6.7)

Note that in inequality (6.7) the power 2 is optimal, since it cannot be replaced,
up to a rescaling, by any smaller power. The key point in the proof is a lemma, see
[16, Lemma 1], where they show the inequality when μ( f ) is sufficiently small.
The proof of this lemma is elegant and simple. Given a function f , they consider
the function ga,b,x0 minimizing μ( f ). Due to the Hilbert structure of W 1,2(Rn), one
immediately has that f −ga,b,x0 is orthogonal to the tangent space TMga,b,x0

. Then the
proof consists in relating TMga,b,x0

to the first and second eigenspace of the operator

g2−2∗
a,b,x0

� on the weighted L2 space in Rn with weight g2−2∗
a,b,x0

.
The situation is completely different when dealing with p �= 2, where one cannot

take advantage of the Hilbert structure of the space. Indeed, the results proved in this
case in [43,75] are weaker and not completely satisfactory. Let us first describe the
content of the last paper, where the case 1 < p < n is consider. The first big difference
between the result proved by Bianchi and Egnell and the one proved in [43] is that
one has to replace the distance considered in (6.6) with a weaker kind of distance or
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asymmetry. Indeed, given a function f in the homogeneous Sobolev space W 1,p(Rn)

one sets

λ( f ) = inf
a,b,x0

⎧⎨
⎩

‖ f − ga,b,x0‖p∗
L p∗

(Rn)

‖ f ‖p∗
L p∗

(Rn)

: ‖ga,b,x0‖L p∗
(Rn) = ‖ f ‖L p∗

(Rn)

⎫⎬
⎭ . (6.8)

A part from the rescaling factor at the denominator and the constraint ‖ga,b,x0‖p∗ =
‖ f ‖p∗ , the new distance λ( f ) is clearly controlled from above by μ( f ) due to the
Sobolev inequality itself. Indeed, if one goes back to the asymmetry indices defined
in Sects. 4 and 5, it is clear that λ( f ) and μ( f ) play the role of the indices α(E), see
(4.1), and β(E), see (5.15), respectively. Moreover in the quantitative estimate proved
in [43, Th. 1] the power is far from being optimal.

Theorem 6.2 Let n ≥ 2 and let 1 < p < n. There exist two positive constants α and
κ , depending only on p and n, such that for every f ∈ W 1,p(Rn)

S(p, n)‖ f ‖L p∗
(Rn)

(
1 + κλ( f )α

) ≤ ‖∇ f ‖L p(Rn). (6.9)

The power α in (6.9) can be retrieved from [43, (2.54), Cor. 4, (4.1) and the proof of
Th. 1], but it is clearly non optimal. A comparison with the statement of Theorem 6.1
above and the statement of Theorem 3.3 in [43] suggests that the optimal power could
be α = max{2, p}, but we have no examples in this direction. Observe also that (6.9)
can be rewritten in equivalent way as

κ(n)λ( f )α ≤ ‖∇ f ‖L p(Rn)

S(p, n)‖ f ‖L p∗
(Rn)

− 1 := δ( f ). (6.10)

We shall refer to the term δ( f ) at the right hand side of the previous equation as to the
Sobolev deficit of the function f . Note also that in order to have an inequality of the
type (6.10) both the asymmetry λ( f ) and the deficit δ( f ) must be rescaling invariant.
However we observe that the constraint in definition of λ( f ) is not really needed.
Indeed one could define a smaller asymmetry by setting

λ̃( f ) := inf
a, b, x0

‖ f − ga,b,x0‖p∗
L p∗

(Rn)

‖ f ‖p∗
L p∗

(Rn)

.

Observe that λ̃( f ) ≤ λ( f ) ≤ 2p∗
λ̃( f ), hence we could indifferently use one of the

two asymmetries.
The proof of the inequality follows a strategy very similar to the one used in Sect. 4

aimed to reduce the general case in (6.9) to the case where f is a more and more
symmetric function. But before discussing that proof in more detail, let us recall the
notion of spherically symmetric decreasing rearrangement of a function f : Rn →
[0,∞) such that |{x : f (x) > t}| < ∞ for all t > 0. If f has this property, for every
x ∈ R

n we set
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f �(x) =: sup{t ≥ 0 : |{y ∈ R
n : f (y) > t}| > ωn|x |n}.

Note that f � is a decreasing function depending on the norm of x and that from the
definition it follows that |{ f � > t}| = |{ f > t}|. Thus, in particular, one has that

‖ f �‖L p(Rn) = ‖ f ‖L p(Rn) for all p ≥ 1. (6.11)

Moreover, the Pólya–Szegö principle states that if f is a nonnegative function from
W 1,p(Rn), with p ≥ 1, then also f � belongs to W 1,p(Rn) and moreover, see for
instance [28,87], ∫

Rn
|∇ f �|p dx ≤

∫
Rn

|∇ f |p dx . (6.12)

The proof of this inequality is a simple application of the coarea formula for functions
(2.8) and of the isoperimetric inequality.

Proof of the Pólya–Szegö inequality (6.12) Let f be a nonnegative function from the
homogeneous Sobolev space W 1,p(Rn) and assume without proving it that also f � is
in W 1,p(Rn) (see [92, Th. 73]). We set for all t > 0

μ(t) := |{x ∈ R
n : | f (x)| > t}|. (6.13)

The function μ is called the distribution function of f . Since by construction the level
sets of f and f � have the same measure, the two functions share the same distribution
function μ. Note that μ is a decreasing function. Moreover, an easy application of the
coarea formula (2.8) shows that for a.e. t > 0

− μ′(t) = Hn−1({ f � = t})
|∇ f �||{ f �=t}

, (6.14)

and that

− μ′(t) ≥
∫

{ f =t}
dHn−1

|∇ f | , (6.15)

see for instance [41, Lemmas 2.4 and 2.6]. Note that in (6.14) we have implicitly used
the fact that |∇ f �| is constant on { f � = t}. Then from coarea formula (2.8), (6.14),
the fact that |∇ f �| is constant on { f � = t} and the isoperimetric inequality applied to
the sublevel sets of f , we have

∫
Rn

|∇ f �|p dx =
∫ ∞

0
dt

∫
{ f �=t}

|∇ f �|p−1 dHn−1 =
∫ ∞

0

Hn−1({ f � = t})p

(∫
{ f �=t}

dHn−1

|∇ f �|
)p−1 dt

=
∫ ∞

0

Hn−1({ f � = t})p

(−μ′(t))p−1 dt ≤
∫ ∞

0

Hn−1({ f = t})p

(−μ′(t))p−1 dt.
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Fig. 10 An example showing the necessity of condition (6.16) to deduce that f is a translated of f �

From this inequality, using (6.15), Hölder inequality and coarea formula again we get

∫
Rn

|∇ f �|p dx ≤
∫ ∞

0

Hn−1({ f = t})p

(−μ′(t))p−1 dt ≤
∫ ∞

0

Hn−1({ f = t})p

(∫
{ f =t}

dHn−1

|∇ f |
)p−1 dt

≤
∫ ∞

0
dt

∫
{ f =t}

|∇ f |p−1 dHn−1 =
∫
Rn

|∇ f |p dx,

thus concluding the proof. ��
Note that from the above proof it is clear that when equality holds in (6.12) then

for a.e. t > 0

{ f > t} is equivalent to a ball and |∇ f | = |∇ f �||{ f �=t} Hn−1-a.e. on { f = t}.

However this information is not enough to conclude that f coincides with f ∗ up to a
translation, see Fig. 10. The equality cases in the Pólya–Szegö inequality have been
fully characterized first by Brothers and Ziemer in [28], see also [41,61]. Their result
reads as follows.

Theorem 6.3 Let p > 1 and f ∈ W 1,p(Rn) a nonnegative function such that

|{∇ f � = 0} ∩ {0 < f � < ess sup f }| = 0. (6.16)

If equality holds in (6.12), then there exists x0 ∈ R
n such that f (x) = f �(x − x0) for

all x ∈ R.

We observe that if |{∇ f = 0} ∩ {0 < f < ess sup f }| = 0, then (6.16) holds. The
reverse implication is not in general true.

As we already observed, it may happen that ‖∇ f ‖p almost agrees with ‖∇ f �‖p

without f being close to any translated of f �. The presence of large sets where |∇ f |
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is zero or very small is responsible of this phenomenon. Therefore the quantitative
versions of (6.12) available require either a control on the size of the set where |∇ f | is
small, see [40,42], or further assumptions on the class of functions under consideration,
see [12, Th. 1.3].

Going back to the Sobolev inequality, it is clear the role played by the Pólya–
Szegö inequality (6.12). Indeed observe that we may always assume, without loss of
generality, that f ≥ 0. In fact, replacing f by | f | changes neither the L p norm of the
function nor the L p norm of the gradient, since |∇| f |(x)| = |∇ f (x)| for a.e. x ∈ R

n .
Therefore, if one wants to find the equality cases in the Sobolev inequality it is clear
that these will be realized by spherically symmetric and decreasing functions. Thus
Pólya–Szegö inequality plays in the proof of the quantitative Sobolev inequality given
in [43] the same role played by the perimeter inequality for Schwartz symmetrization
in the proof of (4.3) that we have seen in Sect. 4.

Let us describe briefly how the proof of inequality (6.9) goes. The idea is to reduce
to spherically symmetric decreasing functions exactly as in Sect. 4 we reduced the
proof of the quantitative isoperimetric inequality to axially symmetric sets. Observe
that if f ∈ W 1,p(Rn) is nonnegative, spherically symmetric and decreasing, then there
exists a decreasing function u ∈ W 1,p

loc (R) such that f (x) = u(|x |). In this case the
Sobolev inequality (6.1) is equivalent to the one-dimensional Bliss inequality [17]

S(p, n)

(
nωn

∫ ∞

0
u(r)p∗

rn−1 dr

)1/p∗

≤
(

nωn

∫ ∞

0
(−u′(r))prn−1 dr

)1/p

(6.17)
for every decreasing, locally absolutely continuous function u : [0,∞) → [0,∞).
The extremals in (6.17) are the one dimensional profiles of the functions defined in
(6.2), see for instance [17,49,113], that is

va,b(r) = a

(1 + br p′
)(n−p)/p

for r ≥ 0,

for somea > 0,b > 0.Moreover, ifwe set for ameasurable functionw : (0,∞) → R,

‖w‖p∗,rn−1 :=
(∫ ∞

0
|w|p∗

(r)rn−1dr

) 1
p∗

,

and for every nonnegative function u in (0,∞) we define

λ(u) = inf
a,b>0

{‖u − va,b‖p∗
p∗,rn−1

‖u‖p∗
p∗,rn−1

: ‖u‖p∗,rn−1 = ‖va,b‖p∗,rn−1

}
,

Theorem 6.2 for spherically symmetric functions is equivalent to the following quan-
titative Bliss inequality.
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Theorem 6.4 Let n ≥ 2 and let 1 < p < n. Then there exist constants β and κ ,
depending only on p, n, such that

S(p, n)

(
nωn

∫ ∞

0
u(r)p∗

rn−1 dr

)1/p∗ (
1 + κλ(u)β

)

≤
(

nωn

∫ ∞

0
(−u′(r))prn−1 dr

)1/p

(6.18)

for every decreasing, locally absolutely continuous function u : [0,∞) → [0,∞).

The proof of this theorem is a bit long and technically involved, but the underlying
idea is quite simple. First of all, by an approximation, rescaling and normalization
argument one may always assume that u is a nonnegative decreasing function with
support in [0, 1] such that

nωn

∫ ∞

0
u p∗

(r)rn−1 dr = 1.

Then, one tries to compare this function with the function v := va,1, where a is chosen
in such a way that also

nωn

∫ ∞

0
v p∗

(r)rn−1 dr = 1.

In order to compare the two functions, following the argument that we have seen in the
proof of the Sobolev inequality given above, one defines a transport map T : [0, 1) →
[0,∞) by setting

∫ r

0
u(s)p∗

sn−1ds =
∫ T (r)

0
v(s)p∗

sn−1ds.

From this definition one gets immediately that T is a C1(0, 1) strictly increasing
function such that T (0) = 0, lim

r→1− T (r) = ∞, and

u(r)p∗ = v(T (r))p∗
T (r)n−1T ′(r)r1−n for all r ∈ (0, 1). (6.19)

In particular, Eq. (6.19) implies that

∫ 1

0
h(T (r))u(r)p∗

rn−1 dr =
∫ ∞

0
h(r)v(r)p∗

rn−1 dr,

for every Borel function h : [0,∞) → [0,∞]. Therefore the function T can be
regarded as a transport map carrying the measure u(r)p∗

rn−1dr into v(r)p∗
rn−1dr .

Note that when T (r) = kr for some k > 0, one has u(r) = k(n−p)/pv(kr), thus
proving that u is an extremal function in the Bliss inequality (6.17). Thus, the idea is
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to show that when the difference between the two sides of the Bliss inequality is small,
then an interval [r1, r2] ⊂ [0, 1] can be chosen in such a way that T (r) is close to
some linear function kr for r ∈ [r1, r2], and simultaneously the integral of u(r)p∗

rn−1

outside [r1, r2] is small. These facts lead to conclude that u is close to k(n−p)/pv(kr)

in in the quantitative way stated in (6.18).
As observed in [43, (2.54)] one can in fact choose β in (6.18) to be the (non optimal)

exponent

β = 3 + 4p − 3p + 1

n
. (6.20)

The next step in the proof of Theorem 6.2 is to take advantage of the quantitative Bliss
inequality (6.18) to reduce the general case to the case of a spherically symmetric
and decreasing function, via the Pólya–Szegö inequality (6.12). In fact, from that
inequality, recalling also (6.11), one has

‖∇ f ‖L p(Rn) − ‖∇ f �‖L p(Rn) ≤ ‖∇ f ‖L p(Rn) − S(p, n)‖ f ‖L p∗
(Rn). (6.21)

for every f ∈ W 1,p(Rn). The idea at this point is to estimate from below the difference
between the L p norm of∇ f and∇ f � in terms of the L p∗

distance of f from a suitable
translated of f �. Unfortunately, as we already observed, it is not possible in general
to control the distance between f and f � in terms of the left hand side of (6.21),
since if the measure of the set {∇ f = 0} is large the L p norms of ∇ f and ∇ f � may
be equal, without f or f ∗ being close. However, if f belongs to a sufficiently rigid
class of functions, this estimate is still possible. Indeed, this is the case of n-symmetric
functions, for which it is not too hard to show, see [43, Th. 3], the following stability
result for the Pólya-Szegö inequality.

Theorem 6.5 Let n ≥ 2 and let 1 < p < n. Set q = max{p, 2}. Then a positive
constant C exists such that

∫
Rn

| f − f �|p∗ ≤ C

(∫
Rn

| f |p∗
)p/n (∫

Rn
|∇ f �|p

)1/q ′ (∫
Rn

|∇ f |p −
∫
Rn

|∇ f �|p
)1/q

for every nonnegative f ∈ W 1,p(Rn) which is symmetric with respect to the coordinate
hyperplanes.

The proof of this theorem consists in a careful revisitation of the proof of the
Pólya–Szegö inequality that we have given above, using the quantitative isoperimetric
inequality (4.3) in place of the standard isoperimetric inequality and taking advantage
of the fact that since f is n-symmetric then also the level sets { f > t} are n-symmetric
and thus their asymmetryα({ f > t}) is equivalent to the symmetric differencewith the
ball centered at the origin with the same measure, see Lemma 4.4. As a consequence
of this theorem and of the quantitative Bliss inequality (6.18) one can easily deduce
(6.9).

Proposition 6.6 Let n ≥ 2 and let 1 < p < n. Then there exists a constant κ > 0
such that (6.9) holds for every nonnegative n-symmetric function f ∈ W 1,p(Rn), with
α = β, β as in (6.20).
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Proof As we already observed (6.9) is equivalent to (6.10). To prove this last one,
since both δ( f ) and λ( f ) are invariant by rescaling and multiplication by a constant,
we may assume, without loss of generality, that ‖ f ‖L p∗

(Rn) = 1. Observe also that

λ( f ) ≤ 2p∗
, hence wemay also assume that δ( f ) ≤ 1/S(p, n), since otherwise (6.10)

follows with κ(n) = 1/(2αp∗
S(n, p)). Then, from (6.11) and (6.12) we have

S(p, n) ≤ ‖∇ f �‖p ≤ ‖∇ f ‖p ≤ 1 + S(p, n). (6.22)

We have

λ( f ) ≤ 2p∗−1
(
λ( f �) + ‖ f − f �‖p∗

p∗
)

≤ C
[(‖∇ f �‖p − S(p, n)

)1/β + ‖∇ f �‖p/q ′
p

(‖∇ f ‖p
p − ‖∇ f �‖p

p
)1/q

]
,

(6.23)

for some constant C , where the first inequality is just a consequence of the triangle
inequality, and the second one follows from Theorems 6.4 and 6.5. Inequalities (6.22)
ensure that

‖∇ f ‖p
p − ‖∇ f �‖p

p ≤ C
(‖∇ f ‖p − ‖∇ f �‖p

)
, (6.24)

for some constant C . Combining (6.23), (6.24), and (6.21) yields

λ( f ) ≤ C
(
δ( f )1/β + δ( f )1/q)

for some constant C . Hence, inequality (6.9) follows with α = β, since by (6.20) one
has β > q. ��

At this point the full proof of Theorem 6.2 follows from a reduction argument of the
same kind of the onewe stated in Theorem 4.6. However, the reduction to n-symmetric
functions although related to a similar construction employed in Sect. 4, entails the
overcoming of new serious obstacles in the present setting, mainly due to the nonlinear
growth of the functional ‖∇ f ‖p

L p(Rn)
. The precise statement of the reduction theorem

reads as follows, see [43, Th. 6].

Theorem 6.7 Let n ≥ 2 and let 1 < p < n. There exists a positive constant C,
depending only on n and p such that for every f ∈ W 1,p(Rn) there exists a nonnegative
n-symmetric function f̃ with the property that

λ( f ) ≤ Cλ( f̃ ), δ( f̂ ) ≤ Cδ( f )1/β,

where β is given by (6.20).

We conclude this discussion on the quantitative Sobolev inequality for 1 < p < n
by noting that, in view of the results of [16,75], the question arises of the optimal
exponent α in equality (6.9). Furthermore, the result of [16] also leaves open the
problem of whether the distance of f from the family of extremals in L p∗

(Rn) can be
replaced by the distance in W 1,p(Rn) in Theorem 6.2.
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In the special case p = 1 the Sobolev inequality (6.1) takes the form

nω
1/n
n ‖ f ‖Ln′

(Rn)
≤
∫
Rn

|∇ f | dx

for all f in the homogeneous Sobolev space W 1,1(Rn). Here n′ := n/(n − 1) stands
for the Sobolev exponent 1∗. By approximation it can be readily extended to the
homogenous space BV (Rn). For these functions it takes the form

nω
1/n
n ‖ f ‖Ln′

(Rn)
≤ |D f |(Rn). (6.25)

Aswe already observed, the above inequality is equivalent to the isoperimetric inequal-
ity, Indeed if E is a set of finite measure, taking f = χ E in the inequality above one
gets exactly the isoperimetric inequality. It is well-known that equality holds in (6.25)
if and only if f = aχ Br (x0)

for some a ∈ R, x0 ∈ R
n and r > 0. Therefore, in

analogy with (6.8) it is natural to introduce the asymmetry of a function f ∈ BV (Rn)

by setting

λ( f ) := inf

⎧⎨
⎩

‖ f − aχ Br (x)
‖n′

Ln′

‖ f ‖n′
Ln′

: |a|n′
rnωn = ‖ f ‖n′

Ln′ , a ∈ R, x ∈ R
n

⎫⎬
⎭ .

Indeed, it can be proved that the above infimum is attained, see [75, Lemma B.1].
In the case p = 1 the quantitative version of the Sobolev inequality (6.25) has been
obtained with the sharp exponent 2 [75, Th. 1.1].

Theorem 6.8 There exists a dimensional constant C = C(n) such that

nω
1/n
n ‖ f ‖Ln′

(Rn)

(
1 + λ( f )2

C(n)

)
≤ |D f |(Rn) (6.26)

for every f ∈ BV (Rn).

The proof of this result follows the same pattern of the proof of the quantitative
isoperimetric inequality that we have seen in Sect. 4. A part from a series of technical
difficulties due to the fact that one deals with functions instead of sets, the only point
where the proof really differs from the one we have already seen is when one has to
show inequality (6.26) for a spherically symmetric and decreasing function, see [75,
Sect. 3].

I would like also to point out that very recently Figalli et al. in [68] proved a
similar stability estimate for the anisotropic Sobolev (and log-Sobolev) inequality for
functions of bounded variation. Also in this case the stability estimate is obtained
with the sharp exponent 2, see [68, Th. 1.1]. The proof combines symmetrization
arguments with the Gromov’s idea for proving the isoperimetric inequality, and thus
also the Sobolev inequality for BV functions, with a mass transport argument.
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The Morrey–Sobolev imbedding theorem states that if p > n a function from the
homogeneous Sobolev space W 1,p(Rn) is essentially bounded and actually Hölder
continuous. In particular, if the support of f is bounded the following inequality holds

S(p, n)‖ f ‖L∞(Rn) ≤ |supp f | 1n − 1
p ‖∇ f ‖L p(Rn), (6.27)

where supp f denotes the support of f and the sharp constant S(n, p) is given by

S(p, n) = n1/pω
1/n
n

(
p − n

p − 1

)1/p′

.

In this case the extremals are given by the family of functions

ga,b,x0 :=
{

a
(

b
p−n
p−1 − |x − x0|

p−n
p−1

)
if |x − x0| ≤ b,

0 otherwise,

for some a ∈ R, b ≥ 0 and x0 ∈ R
n . The stability for (6.27) has been proved by

Cianchi and stated in terms of the L∞ distance from the extremals. Precisely, see [39,
Th. 1.1], we have the following quantitative estimate, where δ( f ) is defined as in
(6.10) for p = ∞.

Theorem 6.9 Let n ≥ 2 and p > n. There exist two positive constants α and C,
depending only on p and n, such that for every f ∈ W 1,p(Rn)

(
inf

a,b,x0

‖ f − ga,b,x0‖L∞(Rn)

‖ f ‖L∞(Rn)

)α

≤ Cδ( f ).

6.2 The Faber–Krahn inequality

The Faber–Krahn inequality goes back to Lord Rayleigh who in 1877 in his book
‘The theory of sound’ [111] conjectured that the gravest principal tone of a vibrating
membrane is obtained by a circular one. In other words, if 	 ⊂ R

n is an open set with
|	| = |Br | for some r > 0 then

λ(	) ≥ λ(Br ), (6.28)

with the equality holding if and only if 	 is a ball. Here by λ(	) we denote the first
eigenvalue of the Laplacian which is defined as

λ(	) := min

{∫
	

|∇ f |2 dx : ‖ f ‖L2(	) = 1, f ∈ H1
0 (	)

}
. (6.29)

Note that a function f realizing the minimum on the right hand side is called an
eigenfunction for the Laplacian and satisfies the equation

− � f = λ f in 	, f = 0 on ∂	. (6.30)
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Inequality (6.28) was proved in two dimensions by Faber [60] and extended for any
n ≥ 2 by Krahn [91]. Indeed, it can be proved as an immediate consequence of the
Pólya–Szegö inequality (6.12) by observing that if f is a minimizer in H1

0 (	) of the
above variational problem then

λ(	) =
∫

	

|∇ f |2 dx ≥
∫

Br

|∇ f �|2 dx ≥ λ(Br ). (6.31)

The characterization of the equality cases in (6.28) can be also easily recovered using
Theorem 6.3. Observing that λ(r	) = r−2λ(	), inequality (6.28) may be rewritten
in the following scaling invariant form

|	| 2n λ(	) ≥ |B| 2n λ(B). (6.32)

The stability of balls with respect to this inequality has been investigated by several
authors. As for the quantitative isoperimetric inequality people tried first to understand
the convex case. In particular, it was proved by Melas in [99] that if 	 ⊂ R

n is a
bounded, convex open set then one can find two balls B ′ ⊂ 	 ⊂ B ′′ such that

max{|	\B ′|, |B ′′\	|}
|	|

is controlled by a suitable power, depending on n, of the Faber–Krahn deficit

δ(	) := |	| 2n λ(	) − |B| 2n λ(B). (6.33)

A similar result was later on obtained by Hansen and Nadirashivili in [85] where the
inner and the outer radius of a convex set are used to control the distance from a
ball in terms of the Faber–Krahn deficit. For a general open set, it was conjectured by
Bhattacharya and Weitsman in [15] and by Nadirashvili in [102] that the following
quantitative Faber–Krahn inequality holds

α(	)2 ≤ C(n)δ(	), (6.34)

for any open set 	 ⊂ R
n of finite measure, where α is the Fraenkel asymmetry

index defined in (4.1). An inequality of this kind, dealing with general open sets, was
obtained first in dimension two by Bhattacharya in [14] with the exponent 3 in place of
2 and in any dimension n by Maggi et al. in [77] with the exponent 4. Indeed, in [77] a
more general inequality was proved, related to the first eigenvalue of the p-Laplacian,
p > 1 which is defined, similarly to (6.29), by setting for any open set 	 with finite
measure

λp(	) := min

{∫
	

|∇ f |p dx : ‖ f ‖L p(	) = 1, f ∈ W 1,p
0 (	)

}
.

Note that the same argument used to show Faber–Krahn inequality (6.32) implies that
for any open set of finite measure one has
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|	| p
n λ(	) ≥ |B| p

n λ(B).

Then, the following quantitative estimate was proved in [77, Th. 1].

Theorem 6.10 Let n ≥ 2 and p > 1. There exists a positive constant c(n, p) such
that for every open set 	 ⊂ R

n of finite measure

c(n, p)α(	)2+p ≤ |	| p
n λp(	) − |B| p

n λp(B).

The proof of the above inequalitymakes use of the following observation.Assuming
for the sake of simplicity that p = 2 and that 	 has the same measure of the unit ball
B, let f ∈ H1

0 (	) be the function minimizing the right hand side of (6.29). Then,
recalling (6.31), one has that

∫
	

|∇ f |2 dx −
∫

Br

|∇ f �|2 dx ≤ λ(	) − λ(B).

In turn, denoting as in the previous section by μ the distribution function of f defined
as in (6.13) one has, see [77, (32)],

c(n)

∫ ∞

0
α({ f > t})2μ(t)2(n−1)/n

|μ′(t)| dt ≤
∫

	

|∇ f |2 dx −
∫

Br

|∇ f �|2 dx,

for some positive constant c(n). Therefore, one may conclude that

c(n)

∫ ∞

0
α({ f > t})2μ(t)2(n−1)/n

|μ′(t)| dt ≤ λ(	) − λ(B).

This inequality shows indeed that the Faber–Krahn deficit controls in an integral form
the asymmetry of the level sets of the eigenfunctions. However, to recover from this
information the sharp quantitative estimate of the asymmetry for 	 does not seem
easy.

The above conjecture on the optimal power in inequality (6.34) has been proved in
a recent paper by Brasco et al. [24]. Here is their result.

Theorem 6.11 There exists a positive constant C(n) such that (6.34) holds true for
every open set 	 ⊂ R

n of finite measure.

The proof is deep and technically involved. However, we shall try to explain the
main ideas. The first key point of their strategy is to prove a sharp quantitative estimate
for a weaker inequality related to the torsional rigidity. To explain this inequality we
have to introduce, for an open set 	 of finite measure, the following quantity

E(	) := min

{
1

2

∫
	

|∇ f |2 dx −
∫

	

f dx : f ∈ H1
0 (	)

}
.

123



598 N. Fusco

Note that the function f	 minimizing the integral functional on the right hand side
coincides with the unique solution of the Dirichlet problem

−� f	 = 1 in 	, f	 = 0 on ∂	.

Therefore, multiplying the above equation by f	 and integrating by parts one gets

E(	) = −1

2

∫
	

|∇ f	|2 dx = −1

2

∫
	

f	 dx .

From this equality one easily gets a reformulation of E(	) as

E(	) := −1

2
max

{(∫
	

f dx

)2

: ‖∇ f ‖L2(	) = 1

}
.

The maximum of the integral on the right hand side of the previous formula is the
torsional rigidity of	. Observe that E satisfies the scaling law: E(r	) = r−n−2E(	)

for all r > 0 and all open sets 	 with finite measure. Then, the same argument used
to show inequality (6.28) immediately yields the following inequality

|	|− n+2
n E(	) ≥ |B|− n+2

n E(B). (6.35)

with the equality holding if and only if 	 is a ball. A deeper inequality, due to Kohler-
Jobin, see [89,90], relates the first eigenvalue of the Laplacian to the torsional rigidity.

Theorem 6.12 For every open set 	 ⊂ R
n of finite measure we have

λ(	)(−E(	))
2

n+2 ≥ λ(B)(−E(B))
2

n+2 , (6.36)

with the equality holding if and only if B is a ball.

As we already said, the first key point is to observe that in view of (6.36) one can
deduce (6.34) from a quantitative version of (6.35), see [24, Prop. 2.1].

Proposition 6.13 Assume that there exists a constant c0(n) such that for every open
set 	 ⊂ R

n of finite measure

|	|− n+2
n E(	) − |B|− n+2

n E(B) ≥ c0(n)α(	)2. (6.37)

Then, there exists another constant c1(n) such that one has also

|	| 2n λ(	) − |B| 2n λ(B) ≥ c1(n)α(	)2.

Proof Assume |	| = |B| and observe that from the Kohler-Jobin inequality (6.36)
we have

λ(	)

λ(B)
− 1 ≥

(
E(B)

E(	)

) 2
n+2 − 1. (6.38)
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Since E(	) is a negative quantity, from (6.35) we have that E(B)/E(	) ≥ 1. There-
fore, if the ratio E(B)/E(	) ≥ 2, from (6.38) we get

λ(	)

λ(B)
− 1 ≥ 2

2
n+2 − 1 ≥ 2

2
n+2 − 1

4
α(	)2.

On the other hand, if 1 ≤ E(B)/E(	) ≤ 2, from (6.38) and the assumption (6.37)
we have

λ(	)

λ(B)
− 1 ≥ c(n)

(
E(B)

E(	)
− 1

)
≥ c(n)c0

|E(B)|α(	)2,

where c(n) is such that t
2

n+2 − 1 ≥ c(n)(t − 1) for all t ∈ [1, 2]. ��
With this proposition in hands it is now clear that the strategy followed in [24] is to

prove a stability inequality for E(	) of the type (6.37). Namely they follow the pattern
that we have discussed in Sect. 5.2 of proving first the stability estimate for nearly
spherical sets and then to extend it to general open sets by a contradiction argument
via regularity. The proof for nearly spherical sets is essentially a second variation
argument and it leads to the following Fuglede type result, see [24, Th. 3.3].

Theorem 6.14 Let σ ∈ (0, 1]. There exists a positive constant δ, depending only on
n and γ , such that if 	 is a nearly spherical set as in (3.1), |	| = |B|, the barycenter
of 	 is at the origin and ‖u‖C2,σ (Sn−1) ≤ δ, then

E(	) − E(B) ≥ 1

32n2 ‖u‖H1/2(Sn−1). (6.39)

As for Fuglede’s estimate (3.2) this inequality immediately implies (6.37) for nearly
spherical sets. Note however that the perimeter deficit controls the H1 norm of u, while
the difference E(	) − E(B), hence the Faber–Krahn deficit (6.33), only controls the
weaker H1/2 norm of u. This is not surprising if one thinks that one may easily find
open sets 	h for which the perimeter P(	h) goes to ∞ while the first eigenvalue of
the Laplacian λ(	h) remains bounded. Indeed it is enough to take

	h := {y ∈ R
n : y = t x(1 + uh(x)), with x ∈ S

n−1, 0 ≤ t < 1},

with uh : S
n−1 → (−1, 1) chosen so that ‖uh‖H1/2(Sn−1) is bounded and

‖uh‖H1(Sn−1) → ∞.
Coming to the proof of the stability of the functional E , after proving Theorem 6.14

one would like to argue as we did in Sect. 5.2. So let us try to imitate the contradiction
argument used in Sect. 5.2 by assuming that there exists a sequence 	 j of open sets
with |	 j | = |B|, E(	 j ) → E(B) and

E(	 j ) − E(B) ≤ C0(n)α(	 j )
2, (6.40)
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for some big constant C0 to be chosen later. Then, one would like to replace the sets
	 j with a sequence of sets, say U j , minimizing a functional of the type we introduced
in (5.12)

E(	) + |α(	) − α(	 j )| + �
∣∣|	| − |B|∣∣,

to show that they still satisfy a ‘wrong’ inequality as (6.40) and that they converge in
C2,σ to the a ball, so to get a contradiction to (6.39). This is the point where the proof in
[24] becomes really complicate and requires some new ideas and deep arguments. To
understand why observe that minimizing the functional above is equivalent to finding
a minimizer f j of the functional

1

2

∫
	

|∇ f |2 dx −
∫

	

f dx + |α({ f > 0}) − α(	 j )| + �
∣∣|{ f > 0}| − |B|∣∣ (6.41)

among all functions with a support of finite measure. It turns out that to get the desired
regularity one has to modify in a non trivial way the theory developed by Alt and
Caffarelli in [5]. But even this is not enough. In fact the functional in (6.41) is not
sufficiently smooth to ensure that the support of the minimizers f j are of class C2,σ .
Well, one could replace it with an essentially equivalent and smoother one, such as

1

2

∫
	

|∇ f |2 dx −
∫

	

f dx +
√

α(	 j )2 + (α({ f > 0}) − α(	 j ))2 + �|{ f > 0}|,

but even this functional would notwork. And the reason is that the Fraenkel asymmetry
is not smooth enough. So, another delicate point in [24] is the replacement of the
asymmetry index with a new distance which on one side dominates the square of the
Fraenkel asymmetry, on the other side is much smoother since it behaves like the
square of an L2 norm.

6.3 Further results

In the previous sections we have seen the natural extension of the ideas developed for
the study of the stability of the quantitative isoperimetric inequality to two important
inequalities. Indeed, several other inequalities have been investigated in the last years
in this direction. For instance, in [77] the same argument used to prove Theorem 6.10
is also used to derive a quantitative inequality for the isocapacitary inequality stating
that for any open set of finite measure 	 one has

|	| p−n
n Capp(	) ≥ |B| p−n

n Capp(B),

where the p capacity of 	, for p ∈ (1, n), n ≥ 2 is defined as

Capp(	) := inf

{∫
Rn

|∇ f |p dx : f ≥ χ
	

, f ∈ L p∗
(Rn), |∇ f | ∈ L p(Rn)

}
.
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Quantitative inequalities for the so called Cheeger constant have been also obtained
in [77] as a limit case of Theorem 6.10 and in [65] with the optimal exponent. To this
aim we recall that if 	 is an open set with finite measure, n ≥ 2, and

m >
1

n′ , where n′ = n

n − 1
,

then the m-Cheeger constant of 	 is defined by setting

cm(	) := inf

{
P(E)

|E |m : E ⊂ 	, |E | > 0

}
.

When m = 1 a set E minimizing the right hand side is called a Cheger set of 	. The
Cheeger inequality states that balls minimize the Cheeger constant among all open
sets with the same measure. Thus, taking into account the right scaling factor, we have
that

|	|m− 1
n′ cm(	) ≥ |B|m− 1

n′ cm(B),

with the equality holding if and only if	 is a ball. Using the quantitative isoperimetric
inequality it has been shown by Figalli et al. in [65] that the following stability estimate
holds. Givenm > 1/n′, there exist a positive constant κ(m, n) such that for every open
set 	 of finite measure one has

κα(	)2 ≤ |	|m− 1
n′ cm(	) − |B|m− 1

n′ cm(B).

The results discussed in the previous section have been extended byBrasco and Pratelli
in [25] to the second eigenvalue of the Laplacian. To this aim, we recall that if 	 is an
open set with finite measure the second eigenvalue λ2(	) is defined byminimizing the
Dirichlet integral among all functions that are orthogonal to the first eigenfunctions.
Precisely, denoting by f	 a non trivial eigenfunction, that is a nontrivial solution to
Eq. (6.30). We have

λ2(	) := min

{∫
	

|∇ f |2 dx : ‖ f ‖L2(	) = 1, f ∈ H1
0 (	),

∫
	

f f	 dx = 0

}
.

Then Krahn–Szegö inequality states that among all open sets of given measure the
unique minimizer of λ2 is given by the union of two disjoint balls of equal measure.
In other words, setting � := B ′ ∪ B ′′ where the balls B ′ and B ′′ are disjoint and
|B ′| = |B ′′| = |B|/2 we have, taking into account the rescaling law,

|	| 2n λ2(	) ≥ |B| 2n λ2(�),

with the equality holding if and only if 	 is the union of two disjoint balls of equal
measure. As a consequence of Theorem 6.11 and of [25, Th. 3.5 and Rem. 3.6] one
has

123



602 N. Fusco

Theorem 6.15 There exists a constant κ(n) depending only on the dimension such
that for any open set 	 of finite measure one has

|	| 2n λ2(	) − |B| 2n λ2(�) ≥ κ(n)̃α(	)n+1,

where

α̃(	) := inf

{ |	 ∩ (B ′
r (x ′) ∪ B ′′

r (x ′))|
|	| , B ′

r (x ′) ∩ B ′′
r (x ′) = ∅, |Br | = 1

2
|	|

}
.

It is not knownwhether the power n+1 in the statement of Theorem 6.15 is optimal,
though it is clear that in this case the optimal power must depend on the dimension.

Things are better understood with the second, or the first non trivial, eigenvalue of
the Laplacian under Neumann boundary conditions μ2(	)which is defined by setting
for every open set 	 of finite measure

μ2(	) := min

{∫
	

|∇ f |2 dx : ‖ f ‖L2(	) = 1, f ∈ H1
0 (	),

∫
	

f dx = 0

}
.

In this case the Szegö–Weinberger inequality states that among all open sets of given
measure the unique maximizer of λ2 is given by a ball. This inequality can be written
in a scaling invariant form as

|B| 2n μ2(B) ≥ |	| 2n μ2(	).

It turns out that a quantitative version of this inequality can be proved as well, see [25,
Th. 4.1].

Theorem 6.16 There exists a constant κ(n) depending only on the dimension such
that for every open set with Lipschitz boundary one has

κ(n)α(	)2 ≤ |B| 2n μ2(B) − |	| 2n μ2(	).

It is interesting to observe that in the inequality above the exponent 2 is sharp.
The proof of this inequality uses a simple geometric argument. However proving the
sharpness of the exponent 2 is harder, see [25, Sect. 6].

We conclude this section by quickly quoting a few other inequalities for which
stability results have been obtained recently.

We recall that the Brunn–Minkowski inequality (1.2) states that if H, K ⊂ R
n are

compact sets then

|H + K | 1n ≥ |H | 1n + |K | 1n ,

with the equality holding if and only if: |H + K | = 0, either H or K consists of
a single point, H and K are two convex bodies homothetic to each other, i.e., there
exist x0 ∈ R

n and λ > 0 such that H = x0 + λK , see [29, Th. 8.1.1]. A quantitative
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version of the inequality above, in the case when H and K are convex bodies, has been
obtained in [66] and with an improved constant in [109]. See also a recent paper by
Eldan and Klartag [57]. The general case of measurable sets is still open apart from a
very recent result by Figalli and Jerison [64].

The isodiametric inequality states that among all sets of given diameter the ball is
the one enclosing the biggest volume. Equivalently, if E is a measurable set of finite
measure in Rn then

|E | ≤ ωn

(
diam (E)

2

)n

,

with the equality holding if and only if E is a ball. The stability of this inequality has
been studied by Maggi et al. in [96] where the following result is proved.

Theorem 6.17 If E ⊂ R
n is a set with diam (E) = 2, there exists a ball B(x) such

that

κ(n)|E�B(x)|2 ≤ |B| − |E |
|E | ,

for some positive constant κ depending only on the dimension n.

Paper [63] is devoted to the stability of the relative isoperimetric inequality in
a cone while [11] contains a characterization of the equality cases in the perimeter
inequality for Steiner symmetrization in any codimension, as well as a stability result
for this inequality for a class of convex sets. A similar stability result, concerning
concave and log-concave functions has been proved in [12]. Finally, a quantitative
version of the Gagliardo–Sobolev–Nirenberg inequality, has been recently proved by
Carlen and Figalli in [35], starting from the Bianchi and Egnell stability result that we
have discussed in Sect. 6.1.
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