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Abstract The purpose of this survey article is to give an introduction to double oper-
ator integrals and multiple operator integrals and to discuss various applications of
such operator integrals in perturbation theory. We start with the Birman–Solomyak
approach to define double operator integrals and consider applications in estimating
operator differences f (A)− f (B) for self-adjoint operators A and B. Next, we present
the Birman–Solomyak approach to the Lifshits–Krein trace formula that is based on
double operator integrals. We study the class of operator Lipschitz functions, operator
differentiable functions, operator Hölder functions, obtain Schatten–von Neumann
estimates for operator differences. Finally, we consider in Chapter 1 estimates of
functions of normal operators and functions of d-tuples of commuting self-adjoint
operators under perturbations. In Chapter 2 we define multiple operator integrals in
the case when the integrands belong to the integral projective tensor product of L∞
spaces. We consider applications of such multiple operator integrals to the problem of
the existence of higher operator derivatives and to the problem of estimating higher
operator differences. We also consider connections with trace formulae for functions
of operators under perturbations of class Sm , m ≥ 2. In the last chapter we define
Haagerup-like tensor products of the first kind and of the second kind and we use
them to study functions of noncommuting self-adjoint operators under perturbation.
We show that for functions f in the Besov class B1∞,1(R

2) and for p ∈ [1, 2] we
have a Lipschitz type estimate in the Schatten–von Neumann norm Sp for functions
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16 V. V. Peller

of pairs of noncommuting self-adjoint operators, but there is no such a Lipschitz type
estimate in the norm of Sp with p > 2 as well as in the operator norm. We also use
triple operator integrals to estimate the trace norms of commutators of functions of
almost commuting self-adjoint operators and extend the Helton–Howe trace formula
for arbitrary functions in the Besov space B1∞,1(R

2).

1 Introduction

In this survey article we study the role of double operator integrals and multiple oper-
ator integrals in perturbation theory. Double operator integrals appeared in the paper
[24] by Daletskii and Krein. In that paper they considered the problem of differenti-
ating the operator-valued function t �→ f (A + t K ), where A and K are self-adjoint
operators on Hilbert space. They discovered the following formula that expresses the
derivative in terms of double operator integrals:

d

dt
( f (A + t K ))|t=0 =

∫∫

R×R

f (x) − f (y)

x − y
d E A(x)K d E A(y)

for sufficiently nice functions f . Here E A stands for the spectral measure of A.
That time there was no rigorous theory of double operator integrals. Such a theory

was developed later by Birman and Solomyak [17,18,20].
In general double operator integrals are expressions of the form

∫∫
�(x, y) d E1(x)T d E2(y),

where � is a measurable function, T is a linear operator, and E1 and E2 are spectral
measures on Hilbert space.

The Birman–Solomyak approach allows one to define such integrals in the case
when T is a Hilbert–Schmidt operator and � is an arbitrary bounded measurable
function. This, in turn, permits us to define double operator integrals for arbitrary
bounded linear operators T and for functions � satisfying certain assumptions (such
functions are called Schur multipliers).

It turned out that double operator integrals play a very important role in perturbation
theory. They appear naturally when estimating various norms of operator differences
f (A) − f (B), where A is an unperturbed operator and B is a perturbed operator.
In particular, double operator integrals are very helpful when studying the class of
operator Lipschitz functions, i.e., functions f on R, for which

‖ f (A) − f (B)‖ ≤ const ‖A − B‖. (1.1)

It turns out that if inequality (1.1) holds for all bounded self-adjoint operators A and
B, then the same inequality holds for unbounded A and B once A − B is bounded.

Roughly speaking, a functions f onR is operator Lipschitz if and only if the divided
difference (x, y) �→ f (x)− f (y)

x−y is a Schur multiplier.
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Multiple operator integrals in perturbation theory 17

It is obvious that operator Lipschitz functions f must be Lipschitz, i.e., the inequal-
ity | f (x) − f (y)| ≤ const |x − y| must hold for x, y ∈ R. The question whether the
converse is true was resolved in negative by Farforovskaya [25]. Later McIntosh [45]
and Kato [35] proved that the function x �→ |x | is not operator Lischitz. Then in [34]
it was shown that operator Lipschitz functions must be differentiable everywhere onR
(but not necessarily continuously differentiable, see [38]. Later in [51] necessary con-
ditions for operator Lipschitzness were found in terms of Besov spaces and Carleson
measures (see also [54]).

In Chapter 1 we give an introduction to the theory of double operator integrals
and define and characterize the class of Schur multipliers. Then we consider var-
ious applications of double operator integrals in perturbation theory. Namely, we
study operator Lipschitz functions, operator Hölder functions, operator differentiable
functions. We obtain sharp estimates for Schatten–von Neumann norms of operator
differences f (A) − f (B) for functions f in the Hölder class �α(R). We present
the Birman–Solomyak approach to the Lifshits–Krein trace formula that is based on
double operator integrals. We also consider similar problems for functions of normal
operators and for functions of m-tuples of commuting self-adjoint operators.

In Chapter 2 we proceed to multiple operator integrals, i.e., expressions of the form

∫
· · ·
∫

︸ ︷︷ ︸
m

�(x1, x2, . . . , xm) d E1(x1)T1 d E2(x2)T2 · · · Tm−1 d Em(xm).

We follow the approach to multiple operator integrals given in [57] and define such
multiple operator integrals in the case when the integrand � belongs to the (integral)
projective tensor products of the spaces L∞(E j ), 1 ≤ j ≤ m. We use this approach
to study the problem of the existence of higher operator derivatives of the function
t �→ f (A + t K ) and express higher operator derivatives in terms of multiple operator
integrals. We also use multiple operator integrals to obtain sharp estimates of higher
operator differences

m∑
j=0

(−1)m− j
(

m
j

)
f (A + j K ).

Finally, in the last section of Chapter 2 we apply multiple operator integrals to trace
formulae for functions of self-adjoint operators of class Sm with m ∈ Z, m ≥ 2.

Analternative approach tomultiple operator integrals is given in [33]. That approach
is based on the Haagerup tensor product of L∞ spaces. We define in Chapter 3 triple
operator integralswhose integrands belong to theHaaherup tensor product of three L∞
spaces. We study Schatten–von Neumann properties of such triple operator integrals
and we see that their Schatten–von Neumann properties are not as nice as in the case
of triple operator integrals with integrands in the integral projective tensor product.

We are going to use triple operator integrals to estimate functions of pairs of non-
commuting self-adjoint operators under perturbation. It turns out that for our purposes
none of the approaches based on the integral projective tensor product and on the
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18 V. V. Peller

Haagerup tensor product of L∞ spaces works. We define new tensor products and call
them Haagerup-like tensor products of the first kind and of the second kind. Then we
define triple operator integrals with integrands in such Haagerup-like tensor products
and use them to estimate the norms ‖ f (A1, B1) − f (A2, B2)‖, where (A2, B2) is a
perturbation of (A1, B1) and f is a function in the Besov space B1∞,1(R

2).
Note that functions f (A, B) for not necessarily commuting self-adjoint operators

are defined as double operator integrals

f (A, B) =
∫∫

f (x, y) d E A(x) d EB(y).

We show that for p ∈ [1, 2], we have a Lipschitz type estimate in the Schatten–von
Neumann norm Sp, but such Lipschitz type estimates do not hold in Sp with p > 2 as
well as in the operator norm. We conclude the chapter with estimating commutators
of almost commuting self-adjoint operators (A and B are called almost commuting is
AB − B A ∈ S1). Such estimates allow us to extend the Helton–Howe trace formula
for arbitrary functions in the Besov class B1∞,1(R

2). The results of the last chapter
were obtained recently in [1–3,12].

I am grateful to A. B. Aleksandrov for helpful remarks.

2 Preliminaries

In this sectionwe collect necessary information on function spaces and operator ideals.

2.1 Besov classes of functions on Euclidean spaces and Littlewood–Paley type
expansions

The technique of Littlewood–Paley type expansions of functions or distributions on
Euclidean spaces is a very important tool in harmonic analysis.

Let w be an infinitely differentiable function on R such that

w ≥ 0, supp w ⊂
[
1

2
, 2

]
, and w(s) = 1 − w

( s

2

)
for s ∈ [1, 2]. (2.1)

We define the functions Wn , n ∈ Z, on R
d by

(FWn)(x) = w

(‖x‖
2n

)
, n ∈ Z, x = (x1, . . . , xd), ‖x‖ def=

⎛
⎝ d∑

j=1

x2j

⎞
⎠

1/2

,

where F is the Fourier transform defined on L1(Rd) by

(F f )(t) =
∫

Rd

f (x)e−i(x,t) dx, x = (x1, . . . , xd ), t = (t1, . . . , td ), (x, t)
def=

d∑
j=1

x j t j .
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Multiple operator integrals in perturbation theory 19

Clearly,

∑
n∈Z

(FWn)(t) = 1, t ∈ R
d\{0}.

With each tempered distribution f ∈ S ′(Rd), we associate the sequence { fn}n∈Z,

fn
def= f ∗ Wn . (2.2)

The formal series
∑

n∈Z fn is a Littlewood–Paley type expansion of f . This series
does not necessarily converge to f . Note that in this paper a significant role is played by
the Besov spaces B1∞,1(R

d) (see the definition below). For functions f ∈ B1∞,1(R
d),

we have

f (x) − f (y) =
∑
n∈Z

(
fn(x) − fn(y)

)
, x, y ∈ R

d ,

and the series on the right converges uniformly.
Initially we define the (homogeneous) Besov class Ḃs

p,q(Rd), s > 0, 1 ≤ p,

q ≤ ∞, as the space of all f ∈ S ′(Rn) such that

{2ns‖ fn‖L p }n∈Z ∈ �q(Z) (2.3)

and put

‖ f ‖Bs
p,q

def= ‖{2ns‖ fn‖L p }n∈Z‖�q (Z).

According to this definition, the space Ḃs
p,q(Rd) contains all polynomials and all

polynomials f satisfy the equality ‖ f ‖Bs
p,q

= 0. Moreover, the distribution f is
determined by the sequence { fn}n∈Z uniquely up to a polynomial. It is easy to see that
the series

∑
n≥0 fn converges in S ′(Rd). However, the series

∑
n<0 fn can diverge

in general. It can easily be proved that the series

∑
n<0

∂r fn

∂xr1
1 · · · ∂xrd

d

, where r j ≥ 0, for 1 ≤ j ≤ d,

d∑
j=1

r j = r, (2.4)

converges uniformly on R
d for every nonnegative integer r > s − d/p. Note that in

the case q = 1 the series (2.4) converges uniformly, whenever r ≥ s − d/p.
Now we can define the modified (homogeneous) Besov class Bs

p,q(Rd). We say
that a distribution f belongs to Bs

p,q(Rd) if (2.3) holds and

∂r f

∂xr1
1 · · · ∂xrd

d

=
∑
n∈Z

∂r fn

∂xr1
1 · · · ∂xrd

d

, whenever r j ≥ 0, for 1 ≤ j ≤ d,

d∑
j=1

r j = r.
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20 V. V. Peller

in the spaceS ′(Rd), where r is theminimal nonnegative integer such that r > s−d/p
(r ≥ s − d/p if q = 1). Now the function f is determined uniquely by the sequence
{ fn}n∈Z up to a polynomial of degree less than r , and a polynomial g belongs to
Bs

p,q(Rd) if and only if deg g < r .
In the case when p = q we use the notation Bs

p(R
d) for Bs

p,p(R
d).

Consider now the scale �α(Rd), α > 0, of Hölder–Zygmund classes. They can be

defined by�α(Rd)
def= Bα∞(Rd). We need a description of�α in terms of convolutions

with de la Vallée Poussin type kernel Vn .
To define a de la Vallée Poussin type kernel Vn , we define the C∞ function v on R

by

v(x) = 1 for x ∈ [−1, 1] and v(x) = w(‖x‖) if ‖x‖ ≥ 1, (2.5)

where w is the function defined by (2.1). We define Vn , n ∈ Z, by

FVn(x)
def= v

(‖x‖
2n

)
, n ∈ Z, x ∈ R

d .

In the definition of the classes�α(Rd),α > 0, we can replace the condition ‖ fn‖L∞ ≤
const 2−nα , n ∈ Z, with the condition

‖ f − f ∗ Vn‖L∞ ≤ const 2−nα, n ∈ Z. (2.6)

In the case of Besov classes Bs∞,q(Rd) the functions fn , defined by (2.2) have the
following properties: fn ∈ L∞(Rd) and suppF f ⊂ {ξ ∈ R

d : ‖ξ‖ ≤ 2n+1}. Such
functions can be characterized by the following Paley–Wiener–Schwartz type theorem
(see [63], Theorem 7.23 and exercise 15 of Chapter 7):

Let f be a continuous function on R
d and let M, σ > 0. The following statements

are equivalent:

(i) | f | ≤ M and suppF f ⊂ {ξ ∈ R
d : ‖ξ‖ ≤ σ };

(ii) f is a restriction to R
d of an entire function on C

d such that

| f (z)| ≤ Meσ‖ Im z‖

for all z ∈ C
d .

Besov classes admit many other descriptions. We give here the definition in terms
of finite differences. For h ∈ R

d , we define the difference operator 
h ,

(
h f )(x) = f (x + h) − f (x), x ∈ R
d .

It is easy to see that Bs
p,q(Rd) ⊂ L1

loc(R
d) for every s > 0 and Bs

p,q(Rd) ⊂ C(Rd)

for every s > d/p. Let s > 0 and let m be the integer such that m − 1 ≤ s < m. The
Besov space Bs

p,q(Rd) can be defined as the set of functions f ∈ L1
loc(R

d) such that
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Multiple operator integrals in perturbation theory 21

∫
Rd

|h|−d−sq‖
m
h f ‖q

L p dh < ∞ for q < ∞

and

sup
h �=0

‖
m
h f ‖L p

|h|s < ∞ for q = ∞.

However, with this definition the Besov space can contain polynomials of higher
degree than in the case of the first definition given above.

We refer the reader to [49,66] for more detailed information on Besov spaces.

2.2 Besov classes of periodic functions

Studying periodic functions on R
d is equivalent to studying functions on the d-

dimensional torus T
d . To define Besov spaces on T

d , we consider a function w

satisfying (2.1) and define the trigonometric polynomials Wn , n ≥ 0, by

Wn(ζ )
def=
∑
j∈Zd

w

( | j |
2n

)
ζ j , n ≥ 1, W0(ζ )

def=
∑

{ j :| j |≤1}
ζ j ,

where

ζ = (ζ1, . . . , ζd) ∈ T
d , j = ( j1, . . . , jd), and | j | = (| j1|2 + · · · + | jd |2)1/2.

For a distribution f on T
d we put

fn = f ∗ Wn, n ≥ 0,

and we say that f belongs the Besov class Bs
p,q(Td), s > 0, 1 ≤ p, q ≤ ∞, if

{2ns‖ fn‖L p }n≥0 ∈ �q . (2.7)

Note that locally the Besov space Bs
p,q(Rd) coincides with the Besov space Bs

p,q

of periodic functions on Rd .

2.3 Operator ideals

For a bounded linear operator T on Hilbert space, we consider its singular values
s j (T ), j ≥ 0,

s j (T )
def= inf{‖T − R‖: rank R ≤ j}.

Let Sp, 0 < p < ∞, be the Schatten–von Neumann class of operators T on Hilbert
space such that
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22 V. V. Peller

‖T ‖Sp

def=
⎛
⎝∑

j≥0

(
s j (T )

)p

⎞
⎠

1/p

< ∞.

This is a normed ideal for p ≥ 1. The class S1 is called trace class. For a linear
operators T on a Hilbert space H its trace is defined by

trace T
def=
∑
j≥0

(T e j , e j ),

where {e j } j≥0 is an orthonormal basis inH . The right-hand side does not depend on
the choice of a basis.

The class S2 is called the Hilbert–Schmidt class. It is a Hilbert space with inner
product

(T, R)S2
def= trace(T R∗).

For p ∈ (1,∞), the dual space (Sp)
∗ can be isometrically identified with Sp′ with

respect to the pairing

〈T, R〉 def= trace(T R).

The dual space to S1 can be identified with the space of bounded linear operators,
while the dual space to the space of compact operators can be identified with S1 with
respect to the same pairing.

We refer the reader to [32] for detailed information on singular values and operator
ideals.

Chapter 1

Applications of double operator integrals in perturbation theory

In the first chapterwe give an introduction to the theory of double operator integrals that
was developed by Birman and Solomyak. We discuss the problem of a representation
for operator differences f (A) − f (B) in terms of double operator integrals. This
allows us to obtain necessary conditions and sufficient conditions for a function on
the real line to be operator Lipschitz. In particular, we show that if f belongs to
the Besov class B1∞,1(R), then f is operator Lipschitz. It turns out that the same

condition f ∈ B1∞,1(R) is also sufficient for operator differentiability.Next,wepresent
the Birman–Solomyak approach to the Lifshits–Krein trace formula. Their approach
is based on double operator integrals. We also discuss Hölder type estimates and
Schatten–von Neumann estimates for operator differences.

Finally, we consider perturbations of functions of normal operators and perturba-
tions of functions of m-tuples of commuting self-adjoint operators.
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Multiple operator integrals in perturbation theory 23

1.1 An introduction to double operator integrals

Double operator integrals appeared in the paper [24] by Daletskii and Krein. It was
Birman and Solomyak who developed later the beautiful theory of double operator
integrals in [17,18,20].

Let (X , E1) and (Y , E2) be spaces with spectral measures E1 and E2 on a Hilbert
spaceH . The idea of Birman and Solomyak is to define first double operator integrals

∫

X

∫

Y

�(x, y) d E1(x)T d E2(y) (1.1.1)

for bounded measurable functions � and operators T of Hilbert–Schmidt class S2.
Consider the spectralmeasureE whosevalues are orthogonal projections on theHilbert
space S2, which is defined by

E (� × 
)T = E1(�)T E2(
), T ∈ S2,

� and 
 being measurable subsets of X and Y . Obviously, left multiplication by
E1(�) commutes with right multiplication by E2(
). It was shown in [22] that E
extends to a spectral measure onX × Y and if � is a bounded measurable function
onX × Y , by definition,

∫

X

∫

Y

�(x, y) d E1(x)T d E2(y)
def=
⎛
⎜⎝

∫

X ×Y

� dE

⎞
⎟⎠ T .

Clearly,
∥∥∥∥∥∥
∫

X

∫

Y

�(x, y) d E1(x)T d E2(y)

∥∥∥∥∥∥
S2

≤ ‖�‖L∞‖T ‖S2 .

If
∫

X

∫

Y

�(x, y) d E1(x)T d E2(y) ∈ S1

for every T ∈ S1, we say that� is a Schur multiplier of S1 associated with the spectral
measures E1 and E2.

To define double operator integrals of the form (1.1.1) for bounded linear operators
T , we consider the transformer

Q �→
∫

Y

∫

X

�(y, x) d E2(y) Q d E1(x), Q ∈ S1,
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24 V. V. Peller

and assume that the function (y, x) �→ �(y, x) is a Schur multiplier of S1 associated
with E2 and E1.

In this case the transformer

T �→
∫

X

∫

Y

�(x, y) d E1(x)T d E2(y), T ∈ S2, (1.1.2)

extends by duality to a bounded linear transformer on the space of bounded linear
operators onH and we say that the function � is a Schur multiplier (with respect to
E1 and E2) of the space of bounded linear operators. We denote the space of such
Schur multipliers by M(E1, E2). The norm of � in M(E1, E2) is, by definition, the
norm of the transformer (1.1.2) on the space of bounded linear operators.

The function � in (1.1.2) is called the integrand of the double operator integral.
Note that the term Schur multiplier in the context of double operator integrals was

introduced in [51]. This is a generalization of the notion of a matrix Schur multiplier.
Indeed, consider the very special case when the Hilbert space is the sequence space
�2 and both spectral measures E1 and E2 are defined on the σ -algebra of all subsets
of Z+ as follows: E1(
) = E2(
) is the orthogonal projection onto the closed linear
span of the vectors en , n ∈ 
, where {en}n≥0 is the standard orthonormal basis of �2.
In this case a function � on Z+ × Z+ is a Schur multiplier if and only if the matrix
{�(m, n)}m,n≥0 (for which we keep the notation �) is a matrix Schur multiplier, i.e.,

T = {t jk} j,k≥0 ∈ B �⇒ � � T ∈ B,

where B is the space of matrices that induce bounded linear operators on �2 and �� T
is the Hadamard–Schur product of the matrices � and T . Recall that the Hadamard–
Schur product A � B of matrices A = {a jk} j,k≥0 and B = {b jk} j,k≥0 is defined by

(A � B) jk = a jkb jk, j, k ∈ Z+.

It is easy to see that if a function � on X × Y belongs to the projective tensor
product L∞(E1)⊗̂L∞(E2) of L∞(E1) and L∞(E2) (i.e., � admits a representation

�(x, y) =
∑
n≥0

ϕn(x)ψn(y),

where ϕn ∈ L∞(E1), ψn ∈ L∞(E2), and

∑
n≥0

‖ϕn‖L∞‖ψn‖L∞ < ∞),

then � ∈ M(E1, E2). For such function � we have

∫

X

∫

Y

�(x, y) d E1(x)T d E2(y) =
∑
n≥0

⎛
⎝
∫

X

ϕn d E1

⎞
⎠ T

⎛
⎝
∫

Y

ψn d E2

⎞
⎠ .
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Multiple operator integrals in perturbation theory 25

More generally, � ∈ M(E1, E2) if � belongs to the integral projective tensor
product L∞(E1)⊗̂iL∞(E2) of L∞(E1) and L∞(E2), i.e., � admits a representation

�(x, y) =
∫

�

ϕ(x, w)ψ(y, w) dλ(w), (1.1.3)

where (�, λ) is a σ -finite measure space, ϕ is a measurable function onX × �, ψ is
a measurable function on Y × �, and

∫
�

‖ϕ(·, w)‖L∞(E1)‖ψ(·, w)‖L∞(E2) dλ(w) < ∞. (1.1.4)

If � ∈ L∞(E1)⊗̂iL∞(E2), then

∫

X

∫

Y

�(x, y) d E1(x)T d E2(y)

=
∫

�

⎛
⎝
∫

X

ϕ(x, w) d E1(x)

⎞
⎠ T

⎛
⎝
∫

Y

ψ(y, w) d E2(y)

⎞
⎠ dλ(w).

Clearly, the function

w �→
(∫

X
ϕ(x, w) d E1(x)

)
T

(∫
Y

ψ(y, w) d E2(y)

)

is weakly measurable and

∫

�

∥∥∥∥∥∥

⎛
⎝
∫

X

ϕ(x, w) d E1(x)

⎞
⎠ T

⎛
⎝
∫

Y

ψ(y, w) d E2(w)

⎞
⎠
∥∥∥∥∥∥ dλ(w) < ∞.

It is easy to see that

‖�‖M(E1,E2) ≤ ‖�‖L∞(E1)⊗̂iL∞(E2)
,

where ‖�‖L∞⊗̂iL∞ is, by definition, the infimum of the left-hand side of (1.1.4) over
all representations of � of the form (1.1.3).

It turns out that all Schur multipliers can be obtained in this way (see Theorem 1.1.1
below).

Another sufficient condition for a function to be a Schur multiplier can be stated in
terms of the Haagerup tensor products of L∞ spaces. The Haagerup tensor product
L∞(E1) ⊗h L∞(E2) can be defined as the space of functions � of the form

�(x, y) =
∑
n≥0

ϕn(x)ψn(y), (1.1.5)
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26 V. V. Peller

where ϕn ∈ L∞(E1), ψn ∈ L∞(E2) and

{ϕn}n≥0 ∈ L∞
E1

(�2) and {ψn}n≥0 ∈ L∞
E2

(�2).

The norm of � in L∞(E1) ⊗h L∞(E2) is defined as the infimum of

∥∥{ϕn}n≥0
∥∥

L∞
E1

(�2)

∥∥{ψn}n≥0
∥∥

L∞
E2

(�2)

over all representations of � of the form (1.1.5). Here

‖{ϕn}n≥0‖L∞
E1

(�2)
def=
∥∥∥∥∥∥
∑
n≥0

|ϕn |2
∥∥∥∥∥∥
1/2

L∞(E1)

and ‖{ψn}n≥0‖L∞
E1

(�2)
def=
∥∥∥∥∥∥
∑
n≥0

|ψn |2
∥∥∥∥∥∥
1/2

L∞(E2)

.

It can easily be verified that if � ∈ L∞(E1) ⊗h L∞(E2), then � ∈ M(E1, E2) and

∫∫
�(x, y) d E1(x)T d E2(y) =

∑
n≥0

(∫
ϕn d E1

)
T

(∫
ψn d E2

)
.

It is also easy to see that the series on the right converges in the weak operator topology
and

‖�‖M(E1,E2) ≤ ‖�‖L∞(E1)⊗hL∞(E2).

As the following theorem says, the condition � ∈ L∞(E1)⊗h L∞(E2) is not only
sufficient, but also necessary.

Theorem 1.1.1 Let � be a measurable function onX ×Y and let μ and ν be positive
measures on X and Y that are mutually absolutely continuous with respect to E1
and E2. The following are equivalent:

(i) � ∈ M(E1, E2);
(ii) � ∈ L∞(E1)⊗̂iL∞(E2);
(iii) � ∈ L∞(E1) ⊗h L∞(E2);
(iv) there exist measurable functions ϕ on X ×� and ψ on Y ×� such that (1.1.3)

holds and

∥∥∥∥∥
(∫

�

|ϕ(·, w)|2 dλ(w)

)1/2
∥∥∥∥∥

L∞(E1)

∥∥∥∥∥
(∫

�

|ψ(·, w)|2 dλ(w)

)1/2
∥∥∥∥∥

L∞(E2)

< ∞;

(1.1.6)

(v) if the integral operator f �→ ∫
k(x, y) f (y) dν(y) from L2(ν) to L2(μ)

belongs to S1, then the same is true for the integral operator f �→∫
�(x, y)k(x, y) f (y) dν(y).
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The implications (iv) ⇒ (i)⇔ (v) were established in [20]. In the case of matrix
Schur multipliers the fact that (i) implies (ii) was proved in [15]. We refer the reader
to [51] for the proof of the equivalence of (i), (ii), and (iv) and to [60] for the proof of
the fact that (i) is equivalent to (iii).

Suppose that F1 and F2 are closed subsets of R. We denote by MF1,F2 the space
of functions that belong to M(E1, E2) for arbitrary Borel spectral measures E1 and
E2 such that supp E1 ⊂ F2 and supp E2 ⊂ F2.

It is well known (see [37,39]) that if � is a continuous function on F1 ×F2 and E1
and E2 are Borel spectral measures such that supp E1 = F2 and supp E2 = F2, then
� ∈ MF1,F2 if and only if � ∈ M(E1, E2). The same conclusion under the weaker
assumption that � is continuous in each variable was established in [8].

It is easy to see that conditions (i)–(iv) are also equivalent to the fact that � is a
Schur multiplier of S1. It follows that if I is an operator ideal that is an interpolation
ideal between the space of bounded linear operators and trace class S1 and � satisfies
one of the conditions (i)–(iv), then � is a Schur multiplier of I, i.e.,

T ∈ I �⇒
∫∫

�(x, y) d E1(x)T d E2(y) ∈ I.

In particular, this is true when I is the Schatten–von Neumann class Sp, 1 < p < ∞.
If I is a separable (symmetrically normed) operator ideal (see [32]) , we say that a

function � is a Schur multiplier of I if the transformer T �→ ∫∫
� d E1T d E2 defined

on S1 admits an extension to a bounded linear operator on I. In the case when I is an
operator ideal dual to separable, we can define Schur multiplier of I by duality. We
denote the space of Schur multipliers of I with respect to E1 and E2 byMI(E1, E2).

Consider now the case when E1 = E2 = E and T ∈ S1. It follows easily from
Theorem 1.1.1 that functions in the space M(E, E) of Schur multipliers have traces
on the diagonal

� �→ �
∣∣{(x, x) : x ∈ X }

and the traces of functions inM (E, E) belong to L∞(E).
The following useful fact was established in [20].

Theorem 1.1.2 Let E be a spectral measure and � ∈ M(E, E). Suppose that T ∈ S1.
Then

trace

(∫∫
�(x, y) d E(x)T d E(y)

)
=
∫

�(x, x) dμ(x), (1.1.7)

where μ is the complex measure defined by

μ(
) = trace(T E(
)).

Proof It follows easily from Theorem 1.1.1 that it suffices to establish formula (1.1.7)
in the case �(x, y) = ϕ(x)ψ(y), ϕ, ψ ∈ L∞(E). We have
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trace

(∫∫
�(x, y) d E(x)T d E(y)

)
= trace

((∫
ϕ d E

)
T

(∫
ψ d E

))

= trace

((∫
ψ d E

)(∫
ϕ d E

)
T

)

= trace

((∫
ϕψ d E

)
T

)
=
∫

�(x, x) dμ(x).

��

1.2 A representation of operator differences in terms of double operator integrals

In the paper [24] by Daletskii and Krein under certain assumptions on a function f
on R the following formula was discovered:

f (A) − f (B) =
∫

R

∫

R

f (s) − f (t)

s − t
d E A(s)(A − B) d EB(t) (1.2.1)

for bounded self-adjoint operators A and B. Here E A and EB are the spectral measures
of A and B. Later in Birman and Solomyak [20] proved formula (1.2.1) in a much
more general situation.

Consider first the casewhen A−B belongs to theHilbert–Schmidt class S2. Suppose
that f is a Lipschitz function on R, i.e.,

| f (s) − f (t)| ≤ const |s − t |, s, t ∈ R, ‖ f ‖Lip def= sup
s �=t

| f (s) − f (t)|
|s − t | .

Consider the divided difference D f defined by

(D f )(s, t) = f (s) − f (t)

s − t
, s �= t.

It was established in [20] that in the case A − B ∈ S2, formula (1.2.1) holds for
arbitrary Lipschitz functions f . To understand the right-hand side of (1.2.1) for
Lipschitz functions, we have to define the divided difference D f on the diagonal



def= {(x, x) : x ∈ R}. It turns out that no matter how we can define D f on

the diagonal, formula (1.2.1) holds. If f is differentiable, it is natural to assume
that (D f )(s, s) = f ′(s). We can also define D f to be zero on the diagonal.
Put

(D0 f )(s, t) =
{

(D f )(s, t), s �= t,

0, s = t.
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Theorem 1.2.1 Suppose that A and B are (not necessarily bounded) self-adjoint
operators such that A − B ∈ S2. Let f be a bounded Borel function on R

2 such that
f
∣∣
R2\
 = D f

∣∣
R2\
. Then

f (A) − f (B) =
∫

R

∫

R

f(s, t) d E A(s)(A − B) d EB(t). (1.2.2)

Corollary 1.2.2 If A and B are self-adjoint operators such that A − B ∈ S2 and f
is a Lipschitz functions on R, then f (A) − f (B) ∈ S2 and

‖ f (A) − f (B)‖S2 ≤ ‖ f ‖Lip‖A − B‖S2 .

Proof It suffices to put f = D0 f . ��
We refer the reader to [20] for the proof of Theorem 1.2.1. Here we prove an analog

of Theorem 1.2.1 in the case when A − B is a bounded operator.

Theorem 1.2.3 Suppose that A and B are (not necessarily bounded) self-adjoint
operators such that the operator A − B is bounded. Let f be a function on R

2 such
that f ∈ M(E A, EB) and f

∣∣
R2\
 = D f

∣∣
R2\
. Then formula (1.2.2) holds and

‖ f (A) − f (B)‖ ≤ ‖f‖M(E A,EB )‖A − B‖.

Proof Consider first the case when A an B are bounded operators. We have

∫∫
f(s, t) d E A(s)(A − B) d EB(t) =

∫∫
f(s, t) d E A(s)A d EB(t)

−
∫∫

f(s, t) d E A(s)B d EB(t).

It is easy to see from the definition of double operator integrals in the Hilbert–Schmidt
case that

∫∫
f(s, t) d E A(s)A d EB(t) =

∫∫
sf(s, t) d E A(s) d EB(t)

and

∫∫
f(s, t) d E A(s)B d EB(t) =

∫∫
tf(s, t) d E A(s) d EB(t).

Thus

∫∫
f(s, t) d E A(s)(A − B) d EB(t) =

∫∫
(s − t)f(s, t) d E A(s) d EB(t).
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Clearly, (s − t)f(s, t) = f (s) − f (t) for all s, t ∈ R. It follows that

∫∫
f(s, t) d E A(s)(A − B) d EB(t) =

∫∫
f (s) d E A(s) d EB(t)

−
∫∫

f (t) d E A(s) d EB(t) = f (A) − f (B).

Suppose now that A and B are unbounded self-adjoint operators.
Clearly, f must be a Lipschitz function. It follows easily that the domain of f (A)

contains the domain of A and the same is true for the operator B. Hence, f (A)− f (B)

is a densely defined operator. Let us prove that it extends to a bounded operator and
its extension (for which we keep the same notion f (A) − f (B)) satisfies (1.2.2).

Consider the orthogonal projections

PN
def= E A([−N , N ]) and QN

def= EB([−N , N ])

and define bounded self-adjoint operators A[N ] and B[N ] by

A[N ] = PN A and B[N ] = QN B.

Obviously,

lim
N→∞ PN

(∫∫
f(s, t) d E A(s)(A − B) d EB(t)

)
QN

=
∫∫

f(s, t) d E A(s)(A − B) d EB(t)

in the strong operator topology.
On the other hand, it is easy to see that

PN

(∫∫
f(s, t) d E A(s)(A − B) d EB(t)

)
QN

= PN

(∫∫
f(s, t) d E A[N ](s)(AN − BN ) d EB[N ](t)

)
QN

= PN
(

f (A[N ]) − f (B[N ])
)
QN

because equality (1.2.2) holds for bounded self-adjoint operators. It remains to observe
that

PN
(

f (A[N ]) − f (B[N ])
)
QN x

= PN
(

f (A) − f (B)
)
QN x → ( f (A) − f (B))x as N → ∞

for all vectors x in the dense subset
⋃

N Range EB([−N , N ]). ��
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Remark 1 Suppose now that I is a separable (or dual to separable) operator ideal of
B(H ) equippedwith a norm thatmakes it a Banach space. Let A and B be self-adjoint
operators such that A − B ∈ I and let f be a Lipschitz function on R. As above one
can show that if the divided differenceD f can be extended to the diagonal 
 and the
resulting function f on R

2 belongs to the space MI(E A, EB) of Schur multipliers of
I, then formula (1.2.2) holds,

f (A) − f (B) ∈ I and ‖ f (A) − f (B)‖I ≤ ‖f‖MI (E A,EB )‖A − B‖I.

We refer the reader to [20] for more detail.

Remark 2 Note also that the significance of formula (1.2.1) is in the fact that it allows
us to linearize the nonlinear problem of estimating f (A) − f (B). Indeed, one can
obtain desired estimates of f (A) − f (B) by studying properties of the linear trans-
former

T �→
∫∫

(D f )(s, t) d E1(s)T d E2(t).

Remark 3 Similar results hold for functions of unitary operators, see [20]. Analogs
of the above results can also be obtained for analytic functions of contractions and of
dissipative operators, see [9,52,58]. However, in the case of contractions and in the
case of dissipative operators one has to consider double operator integrals with respect
to semi-spectral measures.

1.3 Commutators and quasicommutators

In the previous section we have seen that operator differences f (A) − f (B) can be
represented as double operator integrals with integrand equal to the divided difference
D f . Birman and Solomyak observed (see [23]) that similar formulae hold for com-
mutators f (A)Q − Q f (A) and quasicommutators f (A)Q − Q f (B). The proof of
the following result is practically the same as the proof of Theorem 1.2.3.

Theorem 1.3.1 Suppose that A and B are (not necessarily bounded) self-adjoint
operators and Q is a bounded linear operator such that the operator AQ − Q B is
bounded. Let f be a a function in MR,R such that f

∣∣
R2\
 = D f

∣∣
R2\
. Then the

quasicommutator f (A)Q − Q f (B) is bounded,

f (A)Q − Q f (B) =
∫

R

∫

R

f(s, t) d E A(s)(AQ − Q B) d EB(t) (1.3.1)

and

‖ f (A)Q − Q f (B)‖ ≤ const ‖f‖MR,R
‖AQ − Q B‖.
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Note that in the special case A = B we obtain commutators f (A)Q − Q f (A),
while in the special case Q = I we obtain operator differences f (A) − f (B).

Similar result holds in the case when AQ − Q B belongs to the Hilbert–Schmidt
class or other operator ideals.

In the rest of the paper we discuss in details estimates of f (A) − f (B). Practically
all the results are also valid for commutators and quasicommutators though we are not
going to dwell on them.

1.4 Operator Lipschitz functions

In Sect. 1.2 we have observed that if f is a differentiable function on R such that
the divided difference D f belongs to the space of Schur multipliers MR,R, then f
is operator Lipschitz. It turns out that the converse is also true. First of all, if f is
an operator Lipschitz function on R, then f is differentiable everywhere on R which
was established in [34] (but not necessarily continuously differentiable: the function
x �→ x2 sin(1/x) is operator Lipschitz, see [38]). On the other hand, it was shown
in [51] (see also [53]) that if f is a differentiable operator Lipschitz function, then
D f ∈ MR,R. Similar results hold for functions on the unit circle.

In this section we discuss some necessary conditions and sufficient conditions for
a function to be operator Lipschitz.

We start with necessary conditions for functions on the unit circle. The following
result was established in [51].

Theorem 1.4.1 Let f be an operator Lipschitz function on T. Then f belongs to the
Besov class B1

1 (T).

Proof As we have discussed in Sect. 1.2, the divided difference

(ζ, τ ) �→ f (ζ ) − f (τ )

ζ − τ

belongs to the space of SchurmultipliersMT,T. Trivially, this implies that the function

(ζ, τ ) �→ f (ζ ) − f (τ )

1 − τζ

belongs toMT,T.
Consider the rank one operator P on L2(T) defined by

(Ph)(ζ ) =
∫
T

h(τ ) dm(τ ).

By Theorem 1.1.1, the integral operator C f defined by

(C f h)(ζ ) =
∫
T

f (ζ ) − f (τ )

1 − τζ
h(τ ) dm(τ )
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belongs to trace class S1. An elementary calculation shows that

C f h = P− f h+ − P+ f h−,

where P+ is the orthogonal projection from L2 onto the Hardy class H2, P− is the

orthogonal projection onto H2−
def= L2 � H2, h+

def= P+h, and h−
def= P−h (see [55],

Ch. 1, § 1). It is easy to see that both Hankel operators H f and H f belong to S1. Recall

that the Hankel operator H f : H2 → H2− is defined by H f ϕ = P− f ϕ.
By the trace class criterion for Hankel operators [50] (see also [55], Ch. 6, § 1), we

find that f ∈ B1
1 (T). ��

The following stronger necessary condition was also obtained in [51] by using the
trace class criterion for Hankel operators.

Theorem 1.4.2 Let f be an operator Lipschitz function on T. Then the Hankel oper-
ators H f and H f map the Hardy class H1 into the Besov space B1

1 (T).

Note that Semmes observed (see the proof in [52] that the Hankel operators H f

and H f map H1 into B1
1 (T) if and only if the measure μ defined by

dμ(ζ ) = (|( f+)′′(ζ )| + |( f +)′′(ζ )|) dm2(ζ )

is a Carleson measure on the unit disk D.
Theorem 1.4.1 implies easily that a continuously differentiable function on T does

not have to be operator Lipschitz. Indeed, it follows from (2.7) that the lacunary Fourier
coefficients of the derivative of a function f in B1

1 (T) must satisfy the condition

∑
k≥0

| f̂ ′(2k)| < ∞,

while it is well known that an arbitrary sequence in �2 can be the sequence of lacunary
coefficients of the derivative of a continuously differentiable function.

The above results can be extended to functions on R. The analog of Theorem 1.4.1
is that if f is an operator Lipschitz function on R, then f belongs to the Besov space
B1
1 locally. An analog of Theorem 1.4.2 also holds as well as the characterization of

the last necessary condition in terms of Carleson measures. We refer the reader to
[52,53].

We proceed now to sufficient conditions for operator Lipschitzness. The following
result was obtained in [51].

Theorem 1.4.3 Let f be a function on T of Besov class B1∞,1(T). Then f is operator
Lipschitz.

We give here an idea of the proof of Theorem 1.4.3. It is easy to see that it suffices
to prove the following inequality: suppose that ϕ is an analytic polynomial (i.e., a
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polynomial of z) of degree m, then the norm of Dϕ in the projective tensor product
C(T)⊗̂C(T) admits the following estimate:

‖Dϕ‖C(T)⊗̂C(T) ≤ const m‖ϕ‖C(T). (1.4.1)

Note that the projective tensor product C(T)⊗̂C(T) can be defined in the same way
as the projective tensor product of L∞ spaces.

It can easily be verified that

(Dϕ)(z1, z2) =
∑
j,k≥0

ϕ̂( j + k + 1)z j
1zk

2.

Clearly,

∑
j,k≥0

ϕ̂( j + k + 1)zi
1z j

2 =
m−1∑
k=0

⎛
⎝∑

j≥0

α jk ϕ̂( j + k + 1)z j
1

⎞
⎠ zk

2

+
m−1∑
j=0

⎛
⎝∑

k≥0

β jk ϕ̂( j + k + 1)zk
2

⎞
⎠ z j

1,

where

α jk =
{ 1

2 , j = k = 0,

j
j+k , j + k �= 0,

and β jk =
{ 1

2 , j = k = 0,

k
j+k , j + k �= 0.

It can be shown that

∥∥∥∥∥∥
∑
j≥0

α jk ϕ̂( j + k + 1)z j

∥∥∥∥∥∥
C(T)

≤ const ‖ϕ‖C(T)

and

∥∥∥∥∥∥
∑
k≥0

β jk ϕ̂( j + k + 1)z j

∥∥∥∥∥∥
C(T)

≤ const ‖ϕ‖C(T)

(see [51,57] for details). This implies easily inequality (1.4.1).
A similar fact holds for functions on R. The following result was obtained in [57].

Theorem 1.4.4 If f belongs to the Besov class B1∞,1(R), then f is an operator Lip-
schitz function on R.
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It follows from the definition of B1∞,1(R) (see (2.3)) that to prove Theorem 1.4.4,
it suffices to establish the following fundamental inequality:

‖D f ‖MR,R
≤ const σ‖ f ‖L∞ (1.4.2)

for an arbitrary bounded function f onRwith Fourier transform supported in [−σ, σ ].
Inequality (1.4.2) together with formula (1.2.1) implies that

‖ f (A) − f (B)‖ ≤ const σ‖ f ‖L∞‖A − B‖ (1.4.3)

for arbitrary self-adjoint operators A and B with bounded A − B and for an arbitrary
function f in L∞(R) whose Fourier transform is supported in [−σ, σ ]. In [7] it was
shown that inequality (1.4.3) holds with constant 1 on the right.

To prove inequality (1.4.2) we introduce the functions ru , u > 0, whose Fourier
transformsFru are defined by

(Fru)(s) =
{
1, |s| ≤ u,

u
|s| , |s| > u.

It is easy to show that ru ∈ L1(R) and ‖ru‖L1 ≤ const. It follows that the function
1 − ru is the Fourier transform of finite signed measure. We denote this measure by
μu . We have

(Fμu)(s) =
{
0, |s| ≤ u,

|s|−u
|s| , |s| > u.

To prove inequality (1.4.2), we establish the following integral representation for
the divided difference D f :

Lemma 1.4.5 Let f be a bounded function onRwhose Fourier transform has compact
support in [0,∞). Then the following representation holds:

(D f )(s, t) = i
∫
R+

(
f ∗ μu)(s)e−isueitu du + i

∫
R+

(
f ∗ μu)(t)e−itueisu du.

(1.4.4)

To prove identity (1.4.4), we can first consider the special casewhen f is the Fourier
transform of an L1 function, in which case this is an elementary exercise, and then
consider suitable approximation, see [53,57] for details.

Corollary 1.4.6 Let f be a bounded function on R whose Fourier transform is sup-
ported in [0, σ ]. Then inequality (1.4.2) holds.
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Proof Clearly, f ∗ μu = 0 for u > σ . Representation (1.4.4) gives us the following
estimates:

‖D f ‖L∞⊗̂iL∞ ≤ 2
∫ σ

0
‖ f ∗ μu‖L∞ du ≤ 2

∫ σ

0
(‖ f ‖L∞ + ‖ f ∗ ru‖L∞) du

≤ const σ‖ f ‖L∞ .

��
To prove inequality (1.4.2) in the general case we represent f as the sum of fn =

f ∗ Wn (see (2.2)). Consider now the function ( fn)+ whose Fourier transform is equal
to χR+F fn . It remains to observe that ‖( fn)+‖L∞ ≤ const ‖ fn‖L∞ , see [53,57] for
details.

Proof of Theorem 1.4.4 By (1.4.2), we have

‖D f ‖MR,R
≤
∑
n∈Z

‖D fn‖MR,R
≤ const

∑
n∈Z

2n‖ fn‖L∞ ,

where, as usual, fn
def= f ∗ Wn . ��

Note that inequality (1.4.3) and its version for Schatten–von Neumann norms will
play a very important role in Hölder type inequalities, in Schatten–von Neumann
estimates of operator differences, see Sects. 1.7 and 1.8.

To conclude the section, I would like to mention that similar results also hold for
functions of contractions and functions of dissipative operators, see [9,40,52].

1.5 Operator differentiable functions

In the previous section we have shown that the condition f ∈ B1∞,1(R) is sufficient

for f to be operator Lipschitz on R. It turns out that the same condition f ∈ B1∞,1(R)

is also sufficient for operator differentiability.

Definition A function f on R is called operator differentiable if the limit

lim
t→0

t−1( f (A + tK ) − f (A))

exists in the operator norm for an arbitrary self-adjoint operator A and an arbitrary
bounded self-adjoint operator K .

The following result can be found in [53,57].

Theorem 1.5.1 Let f be a function in B1∞,1(R). Then f is operator differentiable
and

lim
t→0

t−1( f (A + t K ) − f (A)) =
∫∫

f (s1) − f (s2)

s1 − s2
d E A(s1)K d E A(s2)

(1.5.1)

whenever A is a self-adjoint operator and K is a bounded self-adjoint operator.
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Formula (1.5.1) is called the Daletskii–Krein formula. It was established in [24]
under considerably stronger assumptions. Later Birman and Solomyak proved in [20]
formula (1.5.1) under less restrictive assumptions.

Let me give an idea of the proof of Theorem 1.5.1. Under the hypotheses of the
theorem, we have

f (A + t K ) − f (A) = t
∫∫

f (s1) − f (s2)

s1 − s2
d E At (s1)K d E A(s2),

where At
def= A + t K (see Sect. 1.2). To establish formula (1.5.1), we can represent

the divided difference D f as an element of the integral projective tensor product

(D f )(s1, s2) =
∫

ϕx (s1)ψx (s2) dσ(x),

where σ is a σ -finite measure and

∫
‖ϕx‖L∞‖ψx‖L∞ dσ(x) < ∞.

Moreover, the functions ϕx satisfy the following:

lim
t→0

‖ϕx (A + t K ) − ϕx (A)‖ = 0

for all x . This can be deduced easily from Lemma 1.4.5, see [53] for details.
We have

∫∫
f (s1) − f (s2)

s1 − s2
d E At (s1)K d E A(s2) =

∫
ϕx (At )Kψx (A) dσ(x).

Clearly, the above conditions easily imply that

lim
t→0

∫
ϕx (At )Kψx (A) dσ(x) =

∫
ϕx (A)Kψx (A) dσ(x)

=
∫∫

f (s1) − f (s2)

s1 − s2
d E A(s1)K d E A(s2)

which implies (1.5.1).

Remark 1 The problem of differentiability of the function t �→ f (A + t K ) is the
problem of the existence of the Gâteaux derivative of the map K �→ f (A+ K )− f (A)

defined on the real space of bounded self-adjoint operators. We have proved that
this map is differentiable in the sense of Gâteaux for functions f in B1∞,1(R). The
reasoning given above allows one to prove that under the same assumptions this map
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is differentiable in the sense of Fréchet and the differential of this map is the double
operator integral

∫∫
f (s1) − f (s2)

s1 − s2
d E A(s1)K d E A(s2).

Remark 2 The above argument shows that under the hypotheses of Theorem 1.5.1,
the function t �→ f (At ) is actually continuously differentiable in the operator norm.

Finally, I would like to mention that similar results hold for functions of unitary
operators, functions of contractions and functions of dissipative operators, see [9,51,
58]. In particular, in the case of functions of unitary operators we can consider the
problem of differentiability of the function t �→ f

(
eit AU ), t ∈ R, where f is a

function on the unit circle T, U is a unitary operator and A is a bounded self-adjoint
operator. It was proved in [51] that under the assumption f ∈ B1∞,1(T), the function

t �→ f
(
eit AU ) is differentiable in the operator norm and its derivative is equal to the

following double operator integral:

i

(∫∫
ϕ(ζ ) − ϕ(τ)

ζ − τ
d EU (ζ )A d EU (τ )

)
U.

1.6 The Lifshits–Krein trace formula

The notion of the spectral shift functionwas introduced by Lifshits [43]. He discovered
in that paper a trace formula for f (A) − f (B) where A is the initial operator and
B is a perturbed operator that involves the spectral shift function. Later Krein [42]
generalized the trace formula to a considerably more general situation when A is an
arbitrary self-adjoint operator and B is a trace class perturbation of A.

Let A be a self-adjoint operator on Hilbert space and let B be a perturbed self-
adjoint operator with A − B ∈ S1. It was shown in [42] that there exists a unique real
function ξ in L1(R) such that

trace( f (B) − f (A)) =
∫
R

f ′(s)ξ(s) ds, (1.6.1)

whenever f is a differentiable function onRwhose derivative is the Fourier transform
of an L1 function. The function ξ is called the spectral shift function associated with
the pair (A, B).

Moreover, it was shown in [42] that under the same assumptions

‖ξ‖L1 = ‖B − A‖S1 and
∫
R

ξ(s) ds = trace(B − A).

The right-hand side of formula (1.6.1) is well defined for an arbitrary Lipschitz
function f . Krein asked in [42] whether formula (1.6.1) holds for an arbitrary Lip-
schitz function f . It turns out, however, that the Lipschitzness of f does not imply that
the operator f (A)− f (B) ∈ S1 whenever A− B ∈ S1. This was first observed in [26].
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On the other hand, it can be shown that a function f preserves trace class pertur-
bations, i.e.,

A − B ∈ S1 �⇒ f (A) − f (B) ∈ S1 (1.6.2)

if and only if f is operator Lipschitz (the operators A and B do not have to be bounded).
This implies that the necessary conditions for operator Lipschitzness mentioned in
Sect. 1.4 are also necessary for property (1.6.2).

On the other hand, it was proved in [53] that the condition f ∈ B1∞,1(R), sufficient
for operator Lipschitzness (see Sect. 1.4), is also sufficient for trace formula (1.6.1)
to hold.

In this section we use the Birman–Solomyak approach [19] that is based on double
operator integrals. Actually, their approach allows to prove the existence of a finite
real signed Borel measure ν such that

trace( f (A) − f (B)) =
∫
R

f ′(s) dν(s), and ‖ν‖ ≤ ‖T ‖S1 (1.6.3)

for sufficiently nice functions f . It follows from the results of [42] that ν is absolutely
continuous with respect to Lebesgue measure and dν = ξ dm, where ξ is the spec-
tral shift function. Moreover, we combine the Birman–Solomyak approach with the
observation that for f ∈ B1∞,1(R), the function t �→ f (A + t (B − A)), t ∈ R, is
continuously differentiable in the trace norm (this can be proved in the same way as
Theorem 1.5.1) and the Daletskii–Krein formula holds for the derivative of this opera-
tor function. This allows us to prove the following extension of the Birman–Solomyak
result:

Theorem 1.6.1 Let A and B be self-adjoint operators on Hilbert space such that
B − A ∈ S1. Then there exists a real signed Borel measure ν on R such that formula
(1.6.3) holds for an arbitrary function f in B1∞,1(R).

Recall that under the hypotheses of the theorem, f (A) − f (B) ∈ S1.

Proof Put At
def= A + t (B − A). Then the function t �→ f (At ) is differentiable in the

trace norm and

d

dt
f (At )

∣∣∣∣
t=u

=
∫∫

(D f )(s1, s2) d E Au (s1)(B − A) d E Au (s2).

This can be proved in exactly the same way as Theorem 1.5.1.
Since D f is a Schur multiplier (see Sect. 1.4), it follows that

∫∫
(D f )(s1, s2) d E Au (s1)(B − A) d E Au (s2) ∈ S1.

By Theorem 1.1.2 , we have

trace

(∫∫
(D f )(s1, s2) d E Au (s1)(B − A) d E Au (s2)

)
=
∫

f ′(s) dνu(s),
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where the signed measure νs is defined on the Borels sets by

νu(
) = trace(E Au (
)T ).

Clearly, ‖νu‖ ≤ ‖T ‖S1 .
It is easy to verify that

trace( f (A) − f (B)) =
∫

trace

(
d

dt
f (At )

∣∣∣∣
t=u

)
du =

∫
f ′(s) dν(s),

where the signed measure ν is defined by

ν =
∫ 1

0
νu du.

Note that the function u �→ νu is continuous in the space of measures equipped with
the weak-∗ topology, and so integration makes sense. Clearly, ‖ν‖ ≤ ‖T ‖S1 . ��

We have already mentioned that dν = ξ dm, where ξ is the spectral shift function.
This implies the following extension of the Krein theorem.

Theorem 1.6.2 Let A and B be self-adjoint operators such that B − A ∈ S1. Suppose
that f ∈ B1∞,1(R). Then trace formula (1.6.1) holds.

The original proof of Theorem 1.6.2 by a different method was obtained in [53].

1.7 Operator Hölder functions: arbitrary moduli of continuity

In this section we obtain norm estimates for f (A) − f (B), where A and B are self-
adjoint operators and f is a Hölder function of order α, 0 < α < 1. Then we consider
the more general problem of estimating f (A) − f (B) in terms of the modulus of
continuity of f .

By analogy with the notion of operator Lipschitz functions. We say that a function
f on R is operator Hölder of order α, 0 < α < 1, if

‖ f (A) − f (B)‖ ≤ const ‖A − B‖α.

The problem of whether a Hölder function of order α (recall that the class of such
functions is denoted by �α(R), see Sect. 2) is necessarily operator Hölder of order
α remained open for 40 years and it was solved in [4] (see also [5] for a detailed
presentation). The solution is given by the following theorem:

Theorem 1.7.1 Let α ∈ (0, 1). Then

‖ f (A) − f (B)‖ ≤ const(1 − α)−1‖A − B‖α,

whenever A and B are self-adjoint operators with bounded A − B.

123



Multiple operator integrals in perturbation theory 41

Thus the term “an operator Hölder function of order α” turns out to be short-lived.
We prove here Theorem1.7.1 for bounded self-adjoint operators and refer the reader

to [7] for details how to treat the case of unbounded operators.

Proof of Theorem 1.7.1 Let N be an integer. Then f (A) − f (B) admits a represen-
tation

f (A) − f (B)=
N∑

n=−∞
( fn(A) − fn(B)) + (( f − f ∗ VN )(A) − ( f − f ∗ VN )(B))

(1.7.1)

and the series converges absolutely in the operator norm. Here fn = f ∗Wn (see (2.2))
and VN is the de la Vallée Poussin type kernel defined by (2.5). Suppose that M < N .
It is easy to see that

f (A) − f (B) −
(

N∑
n=M+1

( fn(A) − fn(B)) + (( f − f ∗ VN )(A) − ( f − f ∗ VN )(B))

)

= ( f ∗ VM )(A) − ( f ∗ VM )(B).

Clearly, the Fourier transform of f ∗ VM is is supported in [−2M+1, 2M+1]. Thus it
follows from fundamental inequality (1.4.3) that for M ≤ 0,

∥∥( f ∗ VM )(A) − ( f ∗ VM )(B)
∥∥ ≤ const 2M‖ f ∗ VM‖L∞‖A − B‖

≤ const 2M‖ f ∗ V0‖L∞‖A − B‖ → 0 as M → −∞.

Suppose now that N is the integer satisfying

2−N < ‖A − B‖ ≤ 2−N+1.

By (2.6), we have

‖( f − f ∗ VN )(A) − ( f − f ∗ VN )(B)‖ ≤ 2‖ f − f ∗ VN ‖L∞

≤ const ‖ f ‖�α(R)2
−Nα ≤ const ‖ f ‖�α(R)‖A − B‖α.

On the other hand, it follows from fundamental inequality (1.4.3) and from (2.3) that

N∑
n=−∞

‖ fn(A) − fn(B)‖ ≤ const
N∑

n=−∞
2n‖ fn‖L∞‖A − B‖

≤ const
N∑

n=−∞
2n2−nα‖ f ‖�α(R)‖A − B‖
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= const 2N (1−α)
∑
k≥0

2−k(1−α)‖ f ‖�α(R)‖A − B‖

= const 2N (1−α)(1 − α)‖ f ‖�α(R)‖A − B‖
≤ const (1 − α)‖ f ‖�α(R)‖A − B‖α.

��
Suppose now that ω is an arbitrary modulus of continuity, i.e., ω is a continuous

nondecreasing function on [0,∞) such that ω(s + t) ≤ ω(s) + ω(t), s, t ≥ 0 and
ω(0) = 0. We associate with ω the function ω∗ defined by

ω∗(x) = x
∫ ∞

x

ω(t)

t2
dt =

∫ ∞

1

ω(sx)

s2
ds, x > 0.

It is easy to see that if ω∗(x) < ∞ for some x > 0, then ω∗(x) < ∞ for all x > 0 in
which case ω∗ is also a modulus of continuity.

The following result was obtained in [4,5].

Theorem 1.7.2 Let ω be a modulus of continuity. Then

‖ f (A) − f (B)‖ ≤ const ω∗(‖A − B‖)

for arbitrary self-adjoint operators A and B with bounded A − B.

The proof of Theorem 1.7.2 is similar to the proof of Theorem 1.7.1.
Slightly weaker results were obtained independently in [30].
Theorem 1.7.2 implies the following result proved in [5]:

Corollary 1.7.3 Suppose that A and B are self-adjoint operators with spectra in an
interval [a, b]. Then for a continuous function f on [a, b] the following inequality
holds:

‖ f (A) − f (B)‖ ≤ const log

(
e

b − a

‖A − B‖
)

ω f (‖A − B‖).

Theorem 1.7.3 improves earlier estimates obtained in [27].
We refer the reader to [8] for more detailed information and more sophisticated

estimates of f (A) − f (B).
Note that similar results hold for functions of unitary operators, contractions and

dissipative operators, see [5,9].

1.8 Schatten–von Neumann estimates of operator differences

In this section we list several results on estimates of the norms of f (A) − f (B) in
operator ideals and, in particular, in Schatten–von Neumann classes.
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Fundamental inequality (1.4.2) togetherwith formula (1.2.1) allowsus to useMitya-
gin’s interpolation theorem [46] to generalize and generalize inequality (1.4.3) to
arbitrary separable (or dual to separable) ideals I:

‖ f (A) − f (B)‖I ≤ const σ‖ f ‖L∞‖A − B‖I (1.8.1)

for arbitrary self-adjoint operators A and B with bounded A − B and for an arbitrary
bounded function f on R whose Fourier transform is supported in [−σ, σ ].

In particular, inequality (1.8.1) holds in the case I = Sp, p ≥ 1.
This implies the following result (see [51,53]).

Theorem 1.8.1 Let I be a separable (symmetrically normed) operator ideal or an
operator ideal dual to separable and let f be a function in the Besov class B1∞,1(R).
Suppose that A and B are self-adjoint operators such that A − B ∈ I. Then f (A) −
f (B) ∈ I and

‖ f (A) − f (B)‖I ≤ const ‖ f ‖B1∞,1
‖A − B‖I.

In the case when I = Sp, 1 < p < ∞, Theorem 1.8.1 was improved significantly
in [61]:

Theorem 1.8.2 Let 1 < p < ∞ and let f be a Lipschitz function on R. Suppose that
A and B are self-adjoint operators such that A − B ∈ Sp. Then f (A) − f (B) ∈ Sp

and

‖ f (A) − f (B)‖Sp ≤ cp‖ f ‖Lip‖A − B‖Sp ,

where cp is a positive number that depends only on p.

We proceed now to estimating Schatten–von Neumann norms of f (A) − f (B) for
functions f in the Hölder class �α(R), 0 < α < 1. For a nonnegative integer l and
for p ≥ 1, we define the following norm on the space of bounded linear operators on
Hilbert space:

‖T ‖Sl
p

def=
⎛
⎝ l∑

j=0

(s j (T ))p

⎞
⎠

1/p

,

where s j (T ) is the j th singular value of T .
The following result obtained in [6] is crucial.

Theorem 1.8.3 Let 0 < α < 1. Then there exists a positive number c > 0 such that
for every l ≥ 0, p ∈ [1,∞), f ∈ �α(R), and for arbitrary self-adjoint operators A
and B on Hilbert space with bounded A − B, the following inequality holds:

s j ( f (A) − f (B)) ≤ c ‖ f ‖�α(R)(1 + j)−α/p‖A − B‖α

Sl
p

for every j ≤ l.
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Proof Put fn
def= f ∗ Wn , n ∈ Z, and fix an integer N . We have by (1.8.1) and (2.3),

∥∥∥∥∥
N∑

n=−∞
( fn(A) − fn(B))

∥∥∥∥∥
Sl

p

≤
N∑

n=−∞

∥∥ fn(A) − fn(B)
∥∥
Sl

p

≤ const
N∑

n=−∞
2n‖ fn‖L∞‖A − B‖Sl

p

≤ const ‖ f ‖�α(R)

N∑
n=−∞

2n(1−α)‖A − B‖Sl
p

≤ const 2N (1−α)‖ f ‖�α(R)‖A − B‖Sl
p
.

On the other hand,

∥∥∥∥∥
∑
n>N

(
fn(A) − fn(B)

)∥∥∥∥∥ ≤ 2
∑
n>N

‖ fn‖L∞

≤ const ‖ f ‖�α(R)

∑
n>N

2−nα ≤ const 2−Nα‖ f ‖�α(R).

Put

RN
def=

N∑
n=−∞

( fn(A) − fn(B)) and QN
def=
∑
n>N

( fn(A) − fn(B)).

Clearly, for j ≤ l,

s j ( f (A) − f (B)) ≤ s j (RN ) + ‖QN ‖ ≤ (1 + j)−1/p‖ f (A) − f (B)‖Sl
p
+ ‖QN ‖

≤ const
(
(1 + j)−1/p2N (1−α)‖ f ‖�α(R)‖A − B‖Sl

p
+ 2−Nα‖ f ‖�α(R)

)
.

To obtain the desired estimate, it suffices to choose the number N so that

2−N < (1 + j)−1/p‖A − B‖Sl
p

≤ 2−N+1.

��

The following result can be deduced from Theorem 1.8.3. We refer the reader to
[6] for details.
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Theorem 1.8.4 Let 0 < α < 1 and 1 < p < ∞ and let f ∈ �α(R). Supposed
that A and B are self-adjoint operators such that A − B ∈ Sp. Then the operator
f (A) − f (B) belongs to Sp/α and

∥∥ f (A) − f (B)
∥∥
Sp/α

≤ cα,p ‖ f ‖�α(R)‖A − B‖α
Sp

,

where cα,p depends only on α and p.

Note that for p = 1, the conclusion of Theorem 1.8.4 does not hold, see [6]. The
example given in [6] is based on the Sp criterion for Hankel operators, see [50,55].

Nevertheless, the conclusion of Theorem 1.8.4 can be obtained under stronger
assumptions on f . The following result was obtained in [6].

Theorem 1.8.5 Let 0 < α ≤ 1 and let f be a function in the Besov class Bα∞1(R).
Supposed that A and B are self-adjoint operators such that A − B ∈ S1. Then the
operator f (A) − f (B) belongs to S1/α and

‖ f (A) − f (B)‖S1/α ≤ cα ‖ f ‖Bα∞1(R)‖A − B‖α
S1 .

where cα depends only on α.

Note that in [6] the above results were generalized to the case of considerably more
general operator ideals.

Remark As before, I would like to mention that similar results hold for functions of
unitary operators, contractions and dissipative operators, see [6,9].

1.9 Functions of normal operators

We proceed now to the study of functions of normal operators under perturbation. The
results of this section were obtained in [13]. Earlier weaker results were obtained in
[29].

The spectral theorem allows us to define functions of a normal operator as integrals
with respect to its spectral measure:

f (N ) =
∫
C

ζ d EN (ζ ).

Here N is a normal operator and EN is its spectral measure.
We are going to study estimates of f (N1) − f (N2) in terms of N1 − N2.
As in the case of functions of self-adjoint operators we can consider the divided

difference

(D f )(ζ1, ζ2) = f (ζ1) − f (ζ2)

ζ1 − ζ2
, ζ1, ζ2 ∈ C,

and prove the formula

f (N1) − f (N2) =
∫∫

(D f )(ζ1, ζ2) d E1(ζ1)(N1 − N2) d E2(ζ2), (1.9.1)
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whenever N1 and N2 are normal operators with N1 − N2 ∈ S2 and f is a Lipschitz
function. Again, it does not matter how we define D f on the diagonal of C × C.

If f is a function on C such that the divided difference D f can be extended to
the diagonal and the extension belongs to the space of Schur multipliers MC,C, then
formula (1.9.1) as soon as N1 and N2 are normal operators with bounded difference.
Moreover, such functions are necessarily operator Lipschitz, i.e.,

‖ f (N1) − f (N2)‖ ≤ const ‖N1 − N2‖.

The trouble is that such functions are necessarily linear which follows from the results
of [34].

In [13] we used the following representation for f (N1) − f (N2):

f (N1) − f (N2) =
∫∫

C2

(
Dy f

)
(z1, z2) d E1(z1)(B1 − B2) d E2(z2)

+
∫∫

C2

(Dx f )(z1, z2) d E1(z1)(A1 − A2) d E2(z2), (1.9.2)

where

A j = Re N j , B j = Im N j , x j = Re z j , y j = Im z j , j = 1, 2,

and the divided differences Dx f and Dy f are defined by

(Dx f )(z1, z2)
def= f (x1, y2) − f (x2, y2)

x1 − x2
, z1, z2 ∈ C,

and

(Dy f )(z1, z2)
def= f (x1, y1) − f (x1, y2)

y1 − y2
, z1, z2 ∈ C.

It was established in [13] that for a function f in the Besov class B1∞,1(R
2), both

divided differences Dx f and Dy f belong to the space of Schur multipliers MC,C.
This follows from the following analog of fundamental inequality (1.4.2).

Theorem 1.9.1 Let f be a bounded function on R
2 whose Fourier transform is sup-

ported in [−σ, σ ] × [−σ, σ ]. Then both Dx f and Dy f are Schur multipliers and

‖Dx f ‖MC,C
+ ‖Dy f ‖MC,C

≤ const σ‖ f ‖L∞ . (1.9.3)

The proof of Theorem 1.9.1 is based on the following lemma whose proof can be
found in [13].
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Lemma 1.9.2 Let f be a bounded function onRwhose Fourier transform is supported
in [−σ, σ ]. Then

f (x) − f (y)

x − y
=
∑
n∈Z

σ
f (x) − f (πnσ−1)

σ x − πn
· sin(σ y − πn)

σ y − πn
.

Moreover,

∑
n∈Z

| f (x) − f (πnσ−1)|2
(σ x − πn)2

≤ 3‖ f ‖2L∞(R) and
∑
n∈Z

sin2 σ y

(σ y − πn)2
= 1, x, y ∈ R.

(1.9.4)

Proof of Theorem 1.9.1 Clearly, it suffices to consider the case σ = 1. By Lemma
1.9.2, we have

(Dx f )(z1, z2)= f (x1, y2) − f (x2, y2)

x1 − x2
=
∑
n∈Z

f (πn, y2) − f (x2, y2)

πn − x2
· sin(x1 − πn)

x1 − πn

and

(Dy f )(z1, z2) = f (x1, y1) − f (x1, y2)

y1 − y2

=
∑
n∈Z

f (x1, y1) − f (x1, πn)

y1 − πn
· sin(y2 − πn)

y2 − πn
.

By Lemma 1.9.2, we have

∑
n∈Z

| f (x1, y1) − f (x1, πn)|2
(y1 − πn)2

≤ 3‖ f (x1, ·)‖2L∞(R) ≤ 3‖ f ‖2L∞(C),

∑
n∈Z

| f (πn, y2) − f (x2, y2)|2
(πn − x2)2

≤ 3‖ f (·, y2)‖2L∞(R) ≤ 3‖ f ‖2L∞(C),

and

∑
n∈Z

sin2(x1 − nπ)

(x1 − πn)2
=
∑
n∈Z

sin2(y2 − nπ)

(y2 − πn)2
= 1.

It remains to observe that (1.9.4) gives us desired estimates of the norms of Dx f
and Dy f in the Haagerup tensor product L∞ ⊗h L∞. The result follows now from
Theorem 1.1.1. ��

Theorem 1.9.1 implies the following result:
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Theorem 1.9.3 Let f ∈ B1∞,1(R
2). Then both Dx f and Dy f belong to MC,C and

‖Dx f ‖MC,C
+ ‖Dy f ‖MC,C

≤ const σ‖ f ‖B1∞,1
.

Moreover, if N1 and N2 are normal operators with bounded N1 − N2, then formula
(1.9.2) holds and

‖ f (N1) − f (N2)‖ ≤ const ‖ f ‖B1∞,1
‖N1 − N2‖.

In other words, if f ∈ B1∞,1(R
2), then f is an operator Lipschitz function.

To prove that Dx f, Dy f ∈ MC,C, it suffices to apply Theorem 1.9.1 to each
function f ∗ Wn (see (2.3)). Formula (1.9.2) can be proved by analogy with the proof
of formula (1.2.1) for functions of self-adjoint operators. The operator Lipschitzness
of f follows immediately from formula (1.9.2). We refer the reader to [13] for details.

As in the case of functions of self-adjoint operators, fundamental inequality (1.9.3)
allows us to establish for functions of perturbed normal operators analogs of all the
results of Sects. 1.4–1.8 except for Theorem 1.8.2. In particular, a Hölder function of
order α, 0 < α < 1, onR2 must be operator Hölder of order α. An analog of Theorem
1.8.2 was obtained in [36].

We refer the reader to [11] for more results on estimates of operator differences and
quasicommutators for functions of normal operators.

1.10 Functions of commuting self-adjoint operators

In the previous section we considered the behavior of functions of normal operators
under perturbation. This is equivalent to considering functions of pairs of commuting
self-adjoint operators. Indeed, if N is a normal operator, then Re N and Im N are
commuting self-adjoint operators. On the other hand, if A and B are commuting self-
adjoint operators, then A + iB is a normal operator.

In this sectionwe are going to study functions of d-tuples of commuting self-adjoint
operators. It is natural to try to use the approach for functions of normal operators that
has been used in the previous section. However, it turns out that it does not work for
d ≥ 3.

Indeed, a natural analog of formula 1.9.2 for functions of triple of commuting
self-adjoint operators would be the following formula:

f (A1, A2, A3) − f (B1, B2, B3) =
∫∫

(D1 f )(x, y) d E A(x)(A1 − B1) d EB(y)

+
∫∫

(D2 f )(x, y) d E A(x)(A2 − B2) d EB(y)

+
∫∫

(D3 f )(x, y) d E A(x)(A3 − B3) d EB(y),

(1.10.1)
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where

(D1 f )(x, y) = f (x1, x2, x3) − f (y1, x2, x3)

x1 − y1
,

(D2 f )(x, y) = f (y1, x2, x3) − f (y1, y2, x3)

x2 − y2
,

(D3 f )(x, y) = f (y1, y2, x3) − f (y1, y2, y3)

x3 − y3
, x = (x1, x2, x3), y = (y1, y2, y3),

and E A and EB are the joint spectral measures of the triples (A1, A2, A3) and
(B1, B2, B3) on the Euclidean space R3.

It can easily be shown that (1.10.1) holds if the functions D1 f , D2 f , and D3 f
belong to the space of Schur multipliers MR3,R3 which would imply that f is an
operator Lipschitz function.

The methods of [13] that were outlined in Sect. 1.9 allow us to prove that if f is a
bounded function on R

3 with compactly supported Fourier transform, then D1 f and
D3 f do belong to the space of SchurmultipliersMR3,R3 . However, it turns out that the
functionD2 f does not have to be inMR3,R3 , and so formula (1.10.1) cannot be used
to prove that bounded functions on R

3 with compactly supported Fourier transform
must be operator Lipschitz. This was established in [47] where the following result
was proved:

Theorem 1.10.1 Suppose that g is a bounded continuous function on R such that
the Fourier transform of g has compact support and is not a measure. Let f be the
function on R

3 defined by

f (x1, x2, x3) = g(x1 − x3) sin x2, x1, x2, x3 ∈ R. (1.10.2)

Then f is a bounded function on R
3 whose Fourier transform has compact support,

but D2 f /∈ MR3,R3 .

To construct a function g satisfying the hypothesis of Theorem 1.10.1, one can take,
for example, the function g defined by

g(x) =
∫ x

0
t−1 sin t dt, x ∈ R.

Obviously, g is bounded and its Fourier transformF g satisfies the equality:

(F g)(t) = c

t

for a nonzero constant c and sufficiently small positive t . It is easy to see that this
implies that F g is not a measure.

Nevertheless, it was proved in [47] by a different method that functions in the Besov
class B1∞,1(R

d) are operator Lipschitz in the sense that

f (A1, . . . , Ad) − f (B1, . . . , Bd) ≤ const max
1≤ j≤d

‖A j − B j‖.

123



50 V. V. Peller

The following result proved in [47] plays the same role as fundamental inequality
(1.4.2) in the case of functions of one self-adjoint operator.

Lemma 1.10.2 Let f be a bounded function on R
d whose Fourier transform is sup-

ported in [−σ, σ ]d . Then there are Schur multipliers � j , 1 ≤ j ≤ d, such that

‖� j‖M
Rd ,Rd ≤ const σ‖ f ‖L∞

and

f (x1, . . . , xd) − f (y1, . . . , yd) =
d∑

j=1

(x j − y j )� j (x1, . . . , xd , y1, . . . , yd).

Lemma 1.10.2 implies the following result (see [47]) that considerably improves
earlier estimates obtained in [28].

Theorem 1.10.3 Let f be a function in the Besov class B1∞,1(R
d). Then there are

Schur multipliers � j , 1 ≤ j ≤ d, such that

‖� j‖M
Rd ,Rd ≤ const σ‖ f ‖B1∞,1

and

f (x1, . . . , xd) − f (y1, . . . , yd) =
d∑

j=1

(x j − y j )� j (x1, . . . , xd , y1, . . . , yd).

If (A1, . . . , Ad) and (B1, . . . , Bd) are d-tuples of commuting self-adjoint operators,
then

f (A1, . . . , Ad) − f (B1, . . . , Bd) =
d∑

j=1

∫∫
� j (x, y) d E A(x)(A j − B j ) d EB(y),

where E A and EB are the joint spectral measures of the (A1, . . . , Ad) and
(B1, . . . , Bd).

Corollary 1.10.4 Let f ∈ B1∞,1(R
d). Then f is operator Lipschitz.

Lemma 1.10.2 allows us to obtain analogs of all the results of Sects. 1.4–1.8 except
for Theorem 1.8.2. An analog of Theorem 1.8.2 for d-tuples of commuting self-adjoint
operators was obtained in [36].

Chapter 2

Multiple operator integrals with integrands in projective tensor products and
their applications

Multiple operator integrals were considered by several mathematicians, see [48,64].
However, those definitions required very strong restrictions on the classes of functions
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that can be integrated. In [57] multiple operator integrals were defined for functions
that belong to the (integral) projective tensor product of L∞ spaces. Later in [33]
multiple operator integrals were defined for Haagerup tensor products of L∞ spaces.

In this chapter we consider applications of multiple operator integrals with inte-
grands in the integral projective tensor product of L∞ spaces. Such multiple operator
integrals have nice Schatten–von Neumann properties. In Chapter 3 we shall see that
multiple operator integrals with integrands in the Haagerup tensor product of L∞
spaces do not possess such properties.

We consider in this chapter applications of multiple operator integrals to higher
operator derivatives and estimates of higher operator differences. We also consider
connections between multiple operator integrals and trace formulae for perturbations
of class Sm , where m is positive integer greater than 1.

2.1 A brief introduction to multiple operator integrals

Multiple operator integrals are expressions of the form
∫

. . .

∫
︸ ︷︷ ︸

m

�(x1, x2, . . . , xm) d E1(x1)T1 d E2(x2)T2 . . . Tm−1 d Em(xm).

Here E1, . . . , Em are spectral measures on Hilbert space, � is a measurable function,
and T1, . . . , Tm−1 are bounded linear operators on Hilbert space. The function � is
called the integrand of the multiple operator integral.

For m ≥ 3, the Birman–Solomyak approach to double operator integrals does not
work. In [57]multiple operator integralswere defined for functions� that belong to the
integral projective tensor product L∞(E1)⊗̂i · · · ⊗̂iL∞(Em). It consists of functions
� of the form

�(x1, . . . , xm) =
∫

�

ϕ1(x1, ω)ϕ2(x2, ω) . . . ϕm(xm, ω) dσ(ω), (2.1.1)

where ϕ1, ϕ2, . . . , ϕm are measurable functions such that

∫
�

‖ϕ1(·, ω)‖L∞(E1)‖ϕ2(·, ω)‖L∞(E2) . . . ‖ϕm(·, ω)‖L∞(Em ) dσ(ω) < ∞. (2.1.2)

If � belongs to L∞(E1)⊗̂i · · · ⊗̂iL∞(Em), clearly, a representation of � in the form
(2.1.1) is not unique. The norm ‖�‖L∞⊗̂i···⊗̂iL∞ is, by definition, the infimum of the
expressions on the left-hand side of (2.1.2) over all representations of � in the form
of (2.1.1).

If � ∈ L∞(E1)⊗̂i . . . ⊗̂iL∞(Em) and � is represented as in (2.1.1), the multiple
operator integral is defined by

∫
. . .

∫
︸ ︷︷ ︸

m

�(x1, . . . , xm) d E1(x1)T1 . . . Tm−1 d Em(xm)
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def=
∫

�

(∫
ϕ1(x1, ω) d E1(x1)

)
T1 . . . Tm−1

(∫
ϕm(xm, ω) d Em(xm)

)
. (2.1.3)

The following result shows that the multiple operator integral is well defined.

Theorem 2.1.1 The expression on the right-hand side of (2.1.3) does not depend on
the choice of a representation of the form (2.1.1).

The following proof is based on the approach of [14].

Proof To simplify the notation, we assume that n = 3. In the general case the proof
is the same. Consider the right-hand side of (2.1.3). It is easy to see that it suffices to
prove its independence on the choice of (2.1.1) for finite rank operators T1 and T2.
It follows that we may assume that rank T1 = rank T2 = 1. Let T1 = (·, u1)v1 and
T2 = (·, u2)v2, where u1, v1, u2 and v2 are vectors in our Hilbert space. Suppose that
w1 and w2 are arbitrary vectors. We are going to use the following notation:

W (T1, T2)

def=
∫
�

(∫
ϕ1(x1, ω) d E1(x1)

)
T1

(∫
ϕ2(x2, ω) d E2(x2)

)
T2

(∫
ϕ3(x3, ω) d E3(x3)

)
.

It is easy to verify that

(W (T1, T2)w1, w2)

=
∫
�

(∫
ϕ1(x1, ω) dν1(x1)

)(∫
ϕ2(x2, ω) dν2(x2)

)(∫
ϕ3(x3, ω) dν3(x3)

)
dσ(ω)

where

ν1
def= (E1v1, w2), ν2

def= (E2v2, u1) and ν3
def= (E3w1, u2).

Thus

(W (T1, T2)w1, w2)

=
∫∫∫ (∫

�

ϕ1(x1, ω)ϕ2(x2, ω)ϕ3(x3, ω) dσ(ω)

)
dν1(x1) dν2(x2) dν3(x3)

=
∫∫∫

�(x1, x2, x3) dν1(x1) dν2(x2) dν3(x3).

It follows that W (T1, T2) does not depend on the choice of a representation of the form
(2.1.1). ��

The following result is an easy consequence of the above definitions.
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Theorem 2.1.2 Let � be a function in L∞(E1)⊗̂i · · · ⊗̂iL∞(Em). Suppose that
T1, . . . , Tm−1 are bounded linear operator. Then

∥∥∥∥∥∥∥∥

∫
. . .

∫
︸ ︷︷ ︸

m

�(x1, . . . , xm) d E1(x1)T1 . . . Tm−1 d Em(xm)

∥∥∥∥∥∥∥∥
≤ ‖�‖L∞⊗̂i···⊗̂iL∞

m−1∏
j=1

‖Tj‖.

To simplify the notation, by S∞ we mean the space of bounded linear operators on
Hilbert space. The proof of the following result is also straightforward.

Theorem 2.1.3 Let � be a function in L∞(E1)⊗̂i · · · ⊗̂iL∞(Em). Suppose that p j ≥
1, 1 ≤ j ≤ m, and 1/p1 + 1/p2 + · · · + 1/pm ≤ 1. If T1, T2, . . . , Tm are linear
operators on Hilbert space such that Tj ∈ Sp j , 1 ≤ j ≤ m, then

∫
. . .

∫
︸ ︷︷ ︸

m

�(x1, . . . , xm) d E1(x1)T1 . . . Tm−1 d Em(xm) ∈ Sr

and

∥∥∥∥∥∥∥∥

∫
. . .

∫
︸ ︷︷ ︸

m

�(x1, . . . , xm) d E1(x1)T1 . . . Tm−1 d Em(xm)

∥∥∥∥∥∥∥∥
Sr

≤ ‖�‖L∞⊗̂i···⊗̂iL∞
m−1∏
j=1

‖Tj ‖Sp j
,

where

1/r
def= 1 − 1/p1 − 1/p2 − · · · − 1/pm .

In particular, all the above facts hold for functions� in the projective tensor product
L∞(E1)⊗̂ · · · ⊗̂L∞(Em) which consists of functions of the form

�(x1, x2, . . . , xm) =
∑
k≥1

ϕ
[k]
1 (x1)ϕ

[k]
2 (x2) . . . ϕ[k]

m (xm),

where ϕ
[k]
j ∈ L∞(E j ), 1 ≤ j ≤ m, and

∑
k≥1

∥∥ϕ[k]
1

∥∥
L∞(E1)

∥∥ϕ[k]
2

∥∥
L∞(E2)

. . .
∥∥ϕ[k]

m

∥∥
L∞(Em )

< ∞.

2.2 Higher operator derivatives

In Sect. 1.4 we studied the problem of differentiability of the function t �→ f (A+t K ),
t ∈ R, for self-adjoint operators A andbounded self-adjoint operators K . In this section
we are going to consider the problem of the existence of higher derivatives of this map.
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In the paper [24] Daletskii and Krein proved that in the case when the self-adjoint
operator A is bounded for nice functions f themap t �→ f (A+t K ) hasm-th derivative
and it can be expressed in terms amultiple operator integral whose integrand is a higher
order divided difference of f .

Later in [57] the existence of higher operator differences was proved under much
less restrictive assumptions.

Definition For a k times differentiable function f the divided differences Dk f of
order k are defined inductively as follows:

D0 f
def= f ;

if k ≥ 1, then

(Dk f )(s1, . . . , sk+1)

def=

⎧⎪⎪⎨
⎪⎪⎩

(Dk−1 f )(s1, . . . , sk−1, sk) − (Dk−1 f )(s1, . . . , sk−1, sk+1)

sk − sk+1
, sk �= sk+1,

∂

∂t

((
Dk−1 f

)
(s1, . . . , sk−1, t)

)∣∣∣
t=sk

, sk = sk+1,

(the definition does not depend on the order of the variables). Note that Dϕ = D1ϕ.

The following result was obtained in [57]. To state it, we denote byB(R) the space
of bounded Borel functions on R endowed with the norm

‖ϕ‖B(R)
def= sup

t∈R
|ϕ(t)|.

Theorem 2.2.1 Let m be a positive integer and let f be a function in the Besov class
Bm∞,1(R). Then Dm f ∈ B(R)⊗̂i · · · ⊗̂iB(R)︸ ︷︷ ︸

m+1

and

∥∥Dm f ‖B(R)⊗̂i···⊗̂iB(R) ≤ const ‖ f ‖Bm∞,1
.

Note that the integral projective tensor product of copies of B(R) can be defined
in the same way as the integral projective tensor product of L∞ spaces.

We sketch the proof of Theorem 2.2.1 in the special case m = 2. In the general case
the proof is the same. Let f be a bounded functions on R whose Fouriesr transform is
a compact subset of [0,∞). The following identity is an analog of formula (1.4.5):

(D2 f )(s1, s2, s3) = −
∫∫

R+×R+

(
f ∗ μu+v

)
(s1)e

−i(u+v)s1eivs2eius3 du dv

−
∫∫

R+×R+

(
f ∗ μu+v

)
(s2)e

−i(u+v)s2eius1eivs3 du dv
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−
∫∫

R+×R+

(
f ∗ μu+v

)
(s3)e

−i(u+v)s3eius1eivs2 du dv. (2.2.1)

This is a simplified version of formula (5.6) in [57].
As in Sect. 1.5, it is easy to deduce from (2.2.1) the following estimate

‖D2 f ‖B(R)⊗̂iB(R)⊗̂iB(R) ≤ const σ 2‖ f ‖L∞ ,

whenever f is a bounded function onRwhose Fourier transform is supported in [0, σ ].
The following theorem about the existence of the mth derivative of the function

t �→ f (At ), where At
def= A + t K , was obtained in [57].

Theorem 2.2.2 Let m be a positive integer. Suppose that A is a self-adjoint operator
and K is a bounded self-adjoint operator. If f ∈ Bm∞1(R)

⋂
B1∞1(R), then the function

t �→ f (At ) has mth derivative that is a bounded operator and

dm

dtm
( f (At ))

∣∣∣∣
t=0

=m!
∫

. . .

∫
︸ ︷︷ ︸

m+1

(Dm f )(s1, . . . , sm+1) d E A(s1)K . . . K d E A(sm+1).

(2.2.2)

We refer the reader to [57] for the proof.

Remark Suppose that f ∈ Bm∞1(R), m ≥ 2, but f does not necessarily belong to
B1∞1(R). In this case we still can define the mth derivative of the function t �→ f (At )

in the following way. We put

dm

dtm
( f (At ))

∣∣∣∣
t=0

=
∑
n∈Z

dm

dtm
( fn(At ))

∣∣∣∣∣
t=0

, (2.2.3)

where fn = f ∗ Wn , see (2.2). Then the series on the right-hand side of (2.2.3)
converges absolutely in the norm. With this (natural) definition it can easily happen
that the function t �→ f (At ) can have mth derivative, but not necessarily the first
derivative. We refer the reader to [57] for details.

In a similar way one can consider the problem of taking higher operator derivatives
for functions of unitary operators. Note that in [57] the formula for the mth derivative
of the function t �→ f (eit A)U has an error. A correct formula is an easy consequence
of the results of Section 5 of [4].

Note also that similar results and similar formulae can be obtained for functions of
contractions and for functions of dissipative operators, see [4,9].

2.3 Higher operator differences

In Chapter 1 we have seen that formula (1.2.1) plays a significant role in estimating
various norms of the operator differences f (A) − f (B). In this section we are going
to study higher order operator differences
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(
m
K f )(A)

def=
m∑

j=0

(−1)m− j
(

m
j

)
f
(

A + j K
)
,

where A and K are self-adjoint operators on Hilbert space. We consider here only
bounded self-adjoint operators A and K and refer the reader to [7] for a detailed study
of the case when A is an unbounded self-adjoint operators.

As in the case of operator differences, an essential role is played by integral formulae
for higher operator differences. In [5] it was shown that higher operator differences
can be represented in terms of multiple operator integrals. This allowed one to obtain
analogs of the results discussed in Chapter 1 for higher operator differences.

Recall that for functions f in the Besov class Bm∞,1(R), the divided difference

Dm f of order m belongs to the integral projective productB(R)⊗̂i · · · ⊗̂iB(R)︸ ︷︷ ︸
m+1

. The

following formula was obtained in [5].

Theorem 2.3.1 Let f ∈ Bm∞,1(R) and let A and K be bounded self-adjoint operators
on Hilbert space. Then

(
m
K f )(A)

= m!
∫

. . .

∫
︸ ︷︷ ︸

m+1

(Dm f )(s1, . . . , sm+1) d E A(s1)K d E A+K (s2)K . . . K d E A+mK (sm+1).

Let us prove Theorem 2.3.1 in the special case m = 2.

Proof Let f ∈ B2∞,1(R). We should prove the following formula:

f (A + K ) − 2 f (A) + f (A − K )

= 2
∫∫∫

(D2 f )(s, t, u) d E A+K (s)K d E A(t)K d E A−K (u).

Put T = f (A + K ) − 2 f (A) + f (A − K ). By (1.2.1),

T = f (A + K ) − f (A) − ( f (A) − f (A − K ))

=
∫∫

(D f )(s, t) d E A+K (s)K d E A(t) −
∫∫

(D f )(s, t) d E A(s)K d E A−K (t)

=
∫∫

(D f )(s, t) d E A+K (s)K d E A(t) −
∫∫

(D f )(s, u) d E A+K (s)K d E A−K (u)

+
∫∫

(D f )(s, t) d E A+K (s)K d E A−K (t)−
∫∫

(D f )(s, t) d E A(s)K d E A−K (t).

We have
∫∫

(D f )(s, t) d E A+K (s)K d E A(t) −
∫∫

(D f )(s, u) d E A+K (s)K d E A−K (u)
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=
∫∫∫

(D f )(s, t) d E A+K (s)K d E A(t) d E A−K (u)

−
∫∫∫

(D f )(s, u) d E A+K (s)K d E A(t) d E A−K (u)

=
∫∫∫

(t − u)(D2 f )(s, t, u)d E A+K (s)K d E A(t)d E A−K (u)

=
∫∫∫

(D2 f )(s, t, u) d E A+K (s)K d E A(t)K d E A−K (u).

Similarly,

∫∫
(D f )(s, t) d E A+K (s)K d E A−K (t) −

∫∫
(D f )(s, t) d E A(s)K d E A−K (t)

=
∫∫∫

(D2 f )(s, t, u)d E A+K (s)K d E A(t)K d E A−K (u).

Thus

T = 2
∫∫∫

(D2 f )(s, t, u) d E A+K (s)K d E A(t)K d E A−K (u).

��
The proof of the following result obtained in [5] is similar to the proof of Theorem

1.7.1.

Theorem 2.3.2 Let 0 < α < m and let f ∈ �α(R). Then there exists a constant
c > 0 such that for every self-adjoint operators A and K on Hilbert space the following
inequality holds:

‖(
m
K f )(A)‖ ≤ c ‖ f ‖�α(R) · ‖K‖α.

In particular, in the case α = 1, Theorem 2.3.2 means the following: let f be a
function in the Zygmund class �1(R), i.e., f is a continuos function on R such that

| f (s − t) − 2 f (s) + f (s + t)| ≤ const |t |,

then

‖ f (A − K ) − 2 f (A) + f (A + K )‖ ≤ const ‖ f ‖�1‖K‖.

We refer the reader to [5] for an analog of Theorem 1.7.2 for higher order moduli
of continuity.

To conclude this section, we also mention that the results of Sect. 1.8 were gener-
alized in [6] to the case higher order operator differences. We state here the following
result whose proved can be found in [6].
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Theorem 2.3.3 Let α > 0, m −1 ≤ α < m, and m < p < ∞. There exists a positive
number c such that for every f ∈ �α(R), for an arbitrary self-adjoint operator A,
and an arbitrary self-adjoint operator K of class Sp, the following inequality holds:

‖(
m
K f )(A)‖Sp/α

≤ c ‖ f ‖�α(R)‖K‖α
Sp

.

Note also that similar results hold for functions of unitary operators, functions of
contractions and functions of dissipative operators, see [5,6,9].

2.4 Trace formulae for perturbations of class Sm , m ≥ 2

In Sect. 1.6 we have considered the Lifshits–Krein trace formula for f (A) − f (B) in
the case when B is a trace class perturbation of A. In [41] Koplienko considered the
case of Hilbert–Schmidt perturbations and he found a trace formula for the second
order Taylor approximation

trace

(
f (A + K ) − f (A) − d

dt
f (A + t K )

∣∣∣
t=0

)
=
∫
R

f ′′(x)η(x) dx . (2.4.1)

Here A is a self-adjoint operator, K is a self-adjoint operator of class S2 and η is a
function in L1 that is determined by A and K . It is called the spectral shift function of
order 2. In [41] formula (2.4.1) was proved for rational functions with poles off R.

Formula (2.4.1) was generalized in [56] to the case when f is an arbitrary function
in the Besov class B2∞,1(R).

In [62] the authors considered the more general problem of perturbation of class
Sm , where m is an arbitrary positive integer and they obtained the following trace
formula for the Taylor approximation T (m)

A,K f of order m:

T (m)
A,K f

def= f (A + K ) − f (A)

− d

dt
f (A + t K )

∣∣∣∣
t=0

− · · · − 1

(m − 1)!
dm−1

dtm−1 f (A + t K )

∣∣∣∣
t=0

.

They proved in [62] that there is a unique function ηm in L1 that depends only on A,
K and m such that

trace(T (m)
A,K f ) =

∫
R

f (m)(s)ηm(s) ds (2.4.2)

for functions f on R such that the derivatives f ( j) are Fourier transforms of L1

functions for 1 ≤ j ≤ m. The function ηm is called the spectral shift function of order
m.

The results of [62] were improved in [10]. First, formula (2.4.2) was extended for
arbitrary functions f in the Besov class Bm∞,1(R). Secondly, much more general trace
formulae for perturbations of class Sm we obtained in [10].
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It was shown in [10] that the Taylor approximation admits the following represen-
tation in terms of the multiple operator integral:

T (m)
A,K f =

∫
. . .

∫
︸ ︷︷ ︸

m+1

(Dm f )(s1, . . . , sm+1) d E A+K (s1)K d E A(s2)K . . . K d E A(sm+1).

Here A is a self-adjoint operator, K is a self-adjoint operator of class S1 and f ∈
Bm∞,1(R). In this formula by T (m)

A,K f we mean

T (m)
A,K f

def=
∑
n∈Z

T (m)
A,K fn,

where as usual fn = f ∗ Wn , see (2.2).
To establish formula (2.4.2), the authors of [62] proved the following inequality:

∣∣∣∣trace
(

dm

dtm
f (At )

∣∣∣
t=0

)∣∣∣∣ ≤ const
∥∥ f (m)

∥∥
L∞‖K‖m

Sm
, (2.4.3)

for functions f whose derivatives f ( j), 1 ≤ j ≤ m, are Fourier transforms of L1

functions. Here At
def= A + t K .

To prove that formula (2.4.2) holds for arbitrary functions f in Bm∞,1(R), we have
to extend inequality (2.4.3) to the class Bm∞,1(R). Recall that for f ∈ Bm∞,1(R), by the
mth derivative of the functions t �→ f (At ), we mean

∑
n∈Z

dm

dtm
fn(At ).

Theorem 2.4.1 Let f ∈ Bm∞1(R) and K ∈ Sm. Then

∥∥∥∥trace
(

dm

dtm
f (At )

)∥∥∥∥
L∞

≤ const
∥∥ f (m)

∥∥
L∞‖K‖m

Sm
. (2.4.4)

Note that the proof of Theorem 2.4.1 given in [10] contains an inaccuracy. We give
here a corrected proof.

Proof As before, it suffices to consider the case when f is a bounded function on R

whose Fourier transform has compact support in (0,∞). By Theorem 2.2.2, we have

dm

dtm
( f (At ))

∣∣∣∣
t=0

= m!
∫

. . .

∫
︸ ︷︷ ︸

m+1

(Dm f )(s1, . . . , sm+1) d E A(s1)K . . . K d E A(sm+1).
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For simplicity we assume that m = 2. In the general case the proof is the same.
Recall formula (2.2.1):

(D2 f )(s1, s2, s3) = −
∫∫

R+×R+

( f ∗ μu+v)(s1)e
−i(u+v)s1eivs2eius3 du dv

−
∫∫

R+×R+

( f ∗ μu+v)(s2)e
−i(u+v)s2eius1eivs3 du dv

−
∫∫

R+×R+

( f ∗ μu+v)(s3)e
−i(u+v)s3eius1eivs2 du dv.

Thus

d2

dt2
( f (At ))|t=0 = −2

∫∫

R+×R+

( f ∗ μu+v)(A)e−i(u+v)A K eivA K eiu A du dv

−2
∫∫

R+×R+

eiu A K ( f ∗ μu+v)(A)e−i(u+v)A K eivA du dv

−2
∫∫

R+×R+

eiu A K eivA K ( f ∗ μu+v)(A)e−i(u+v)A du dv.

(2.4.5)

Letω be a function inC∞(R) such thatω(0) = 1 andFω is a nonnegative infinitely

differentiable function with compact support. For ε > 0, we put fε(x)
def= ω(εx) f (x).

Then suppF fε is a compact and

F fε ∈ L1(R) ∩ C∞(R).

Hence, by Theorem 2.1 of [62],

∣∣∣∣∣trace
(

d2

dt2
fε(At )

∣∣∣∣
t=0

)∣∣∣∣∣ ≤ const
∥∥ f

′′
ε

∥∥
L∞‖K‖2S2 .

It is easy to see that

‖ f
′′
ε ‖L∞ ≤ C‖ f

′′ ‖L∞ ,

where C depends only on �. Moreover, suppF fε is a compact subset of (0,∞) for
sufficiently small ε. It follows that

‖ fε ∗ μu+v‖L∞ ≤ const ‖ f ∗ μu+v‖L∞ and lim
ε→0

( fε ∗ μu+v)(s) = ( f ∗ μu+v)(s), s ∈ R.
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By the spectral theorem,

lim
ε→0

( fε ∗ μu+v)(A) = ( f ∗ μu+v)(A)

in the strong operator topology. Thus

lim
ε→0

( fε ∗ μu+v)(A)e−i(u+v)A K eivA K eiu A = ( f ∗ μu+v)(A)e−i(u+v)A K eivA K eiu A

in the norm of S1. It follows that

lim
ε→0

∫∫

R+×R+

( fε ∗ μu+v)(A)e−i(u+v)A K eivA K eiu A du dv

=
∫∫

R+×R+

(
f ∗ μu+v

)
(A)e−i(u+v)A K eivA K eiu A du dv

in the norm of S1. The same is true about the second and the third integral on the
right-hand side of (2.4.5). This proves that

lim
ε→0

d2

dt2
( fε(At ))

∣∣∣∣
t=0

= d2

dt2
( f (At ))

∣∣∣∣
t=0

in the norm of S1, and so (2.4.4) holds with m = 2. ��
Note that Theorem 2.4.1 was used in [10] to obtain considerably more general trace

formulae. In particular trace formulae were found for

trace
dm

dtm
( f (At ))

∣∣∣∣
t=0

and trace(
m
K f )(A).

Chapter 3

Triple operator integrals, Haagerup(-like) tensor products and functions of non-
commuting operators

In this chapter we deal with triple operator integrals and we apply triple operator
integrals to estimates of functions of perturbed noncommuting pairs of self-adjoint
operators. It turns out that for this purpose it is not enough to consider triple operator
integral whose integrands belong to the (integral) projective tensor product of L∞
spaces. In [33] multiple operator integrals were defined for functions that belong to
the Haagerup tensor product of L∞ spaces. We define triple operator integrals for
functions in the Haagerup tensor product in Sect. 3.2. However, for our purpose we
have to modify the notion of the Haagerup tensor product. We define in Sect. 3.2
Haagerup-like tensor products of the first kind and of the second kind. We are going to
use the following representation of f (A1, B1)− f (A2, B2) in terms of triple operator
integrals:
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f (A1, B1) − f (A2, B2)

=
∫∫∫

(D[1] f )(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y)

+
∫∫∫

(D[2] f )(x, y1, y2)d E A2(x)d EB1(y1)(B1 − B2)d EB2(y2), (3.0.1)

where the divided differences D[1] f and D[2] f are defined by

(D[1] f )(x1, x2, y)
def= f (x1, y) − f (x2, y)

x1 − x2
and

(D[2] f )(x, y1, y2)
def= f (x, y1) − f (x, y2)

y1 − y2
.

Here f is a function in the Besov class B1∞,1(R
2) and (A1, B1) and (A2, B2) are pairs

of (not necessarily commuting) self-adjoint operators.
It turns out that the divided differences do not have to belong to the integral projec-

tive tensor product of the L∞ spaces. That is why we have to consider triple operator
integrals defined for other classes of functions. In Sect. 3.2 we define the Haagerup
tensor product of L∞ spaces and triple operator integrals for such functions. It turned
out, however, that the divided differences do not have to belong to the Haagerup tensor
product. To overcome the problems, we introduce in Sect. 3.2 Haagerup-like tensor
products of the first kind and of the second kind. We will see in Sect. 3.5 that for
functions f in B1∞,1(R

2), the divided difference D[1] f belongs to the Haagerup-like

tensor product of the first kind, while the divided difference D[2] f belongs to the
Haagerup-like tensor product of the second kind.

We obtain in Sect. 3.6 Lipschitz type estimates for functions of noncommuting self-
adjoint operators in the norm of Sp with p ∈ [1, 2]. It turns out that such Lipschitz
type estimates in the norm of Sp for p > 2 and in the operator norm do not hold.

Finally, we use in Sect. 3.8 triple operator integrals with integrands in Haagerup-
like tensor products to estimates trace norms of commutators of functions of almost
commuting operators.

In the first section of this chapter we define functions of noncommuting self-adjoint
operators.

3.1 Functions of noncommuting self-adjoint operators

Let A and B be self-adjoint operators on Hilbert space and let E A and EB be their
spectral measures. Suppose that f is a function of two variables that is defined at least
on σ(A) × σ(B), where σ(A) and σ(B) are the spectra of A and B. If f is a Schur
multiplier with respect to the pair (E A, EB), we define the function f (A, B) of A and
B by

f (A, B)
def=
∫∫

f (x, y) d E A(x) d EB(y). (3.1.1)
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Note that the map f �→ f (A, B) is linear, but not multiplicative.
If we consider functions of bounded operators, without loss of generality we may

deal with periodic functions with a sufficiently large period. Clearly, we can rescale
the problem and assume that our functions are 2π -periodic in each variable.

If f is a trigonometric polynomial of degree N , we can represent f in the form

f (x, y) =
N∑

j=−N

ei j x

(
N∑

k=−N

f̂ ( j, k)eiky

)
.

Thus f belongs to the projective tensor product L∞⊗̂L∞ and

‖ f ‖L∞⊗̂L∞ ≤
N∑

j=−N

sup
y

∣∣∣∣∣
N∑

k=−N

f̂ ( j, k)eiky

∣∣∣∣∣ ≤ (1 + 2N )‖ f ‖L∞ .

It follows easily from (2.7) that every periodic function f on R2 of Besov class B1∞1
of periodic functions belongs to L∞⊗̂L∞, and so the operator f (A, B) is well defined
by (3.1.1).

Note that the above definitions of functions of noncommuting operators is related
to the Maslov theory, see [44]. If A and B are self-adjoint operators, we can con-
sider the transformer LA of left multiplication by A and the transformer RB of right
multiplication by B:

LAT
def= AT, RB T

def= T B.

Clearly, the transformers LA and RB commute.
We can consider the transformers LA and RB defined on the Hilbert–Schmidt

class S2. In this case they are commuting self-adjoint operators on S2 and the spectral
theorem allows us to define functions f (LA,RB) for all bounded Borel functions f
on R2.

If our Hilbert space is finite-dimensional, the definition of f (A, B) given by (3.1.1)
is equivalent to the following one:

f (A, B) = f (LA,RB)I,

where I is the identity operator, and so the definition of functions of noncommuting
operators can be reduced to the functional calculus for the commuting self-adjoint
operators on the Hilbert–Schmidt class.

If our Hilbert spaceH is infinite-dimensional, we cannot apply f (LA,RB) to the
identity operator, which does not belong to the Hilbert–Schmidt class. In this case we
can consider the transformersLA andRB as commuting bounded linear operators on
the space B(H ) of bounded linear operators on H . However, since B(H ) is not a
Hilbert space and we cannot use the spectral theorem to define functions of LA and
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RB . Nevertheless, if f is a sufficiently nice function, we can define f (LA,RB), in
which case the functions f (A, B) defined by (3.1.1) coincide with f (LA,RB)I .

3.2 Haagerup tensor products and triple operator integrals

We proceed now to the approach to multiple operator integrals based on the Haagerup
tensor product of L∞ spaces.We refer the reader to the book [60] for detailed informa-
tion about Haagerup tensor products of operator spaces. The Haagerup tensor product
L∞(E1) ⊗h L∞(E2) ⊗h L∞(E3) of L∞ spaces is defined as the space of functions
� of the form

�(x1, x2, x3) =
∑
j,k≥0

α j (x1)β jk(x2)γk(x3), (3.2.1)

where α j , β jk , and γk are measurable functions such that

{α j } j≥0 ∈ L∞
E1

(�2), {β jk} j,k≥0 ∈ L∞
E2

(B), and {γk}k≥0 ∈ L∞
E3

(�2), (3.2.2)

where B is the space of matrices that induce bounded linear operators on �2 and this
space is equipped with the operator norm. In other words,

‖{α j } j≥0‖L∞(�2)
def= E1- esssup

⎛
⎝∑

j≥0

|α j (x1)|2
⎞
⎠

1/2

< ∞,

‖{β jk} j,k≥0‖L∞(B)
def= E2- esssup ‖{β jk(x2)} j,k≥0‖B < ∞,

and

‖{γk}k≥0‖L∞(�2)
def= E3- esssup

⎛
⎝∑

k≥0

|γk(x3)|2
⎞
⎠

1/2

< ∞.

The norm of � in L∞⊗h L∞⊗h L∞ is, by definition, the infimum of

‖{α j } j≥0‖L∞(�2)‖{β jk} j,k≥0‖L∞(B)‖{γk}k≥0‖L∞(�2)

over all representations of � of the form (3.2.1).
It is well known that L∞⊗̂L∞⊗̂L∞ ⊂ L∞⊗hL∞ ⊗hL∞. Indeed, suppose that �

admits a representation

�(x1, x2, x3) =
∑

n

ϕn(x1)ψn(x2)χn(x3)

with
∑

n

‖ϕn‖L∞(E1)‖ψn‖L∞(E2)‖χn‖L∞(E3) < ∞.
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Without loss of generality we may assume

cn
def= ‖ϕn‖L∞‖ψn‖L∞‖χn‖L∞ �= 0 for every n.

We define α j , β j,k and γk by

α j (x1) =
√

c j

‖ϕ j‖L∞
ϕ j (x1), γk(x3) =

√
ck

‖χk‖L∞
χ j (x3)

and

β jk(x2) =
{

ψ j (x2)‖ψ j‖−1
L∞ , j = k

0, j �= k.

Clearly, (3.2.1) holds,

‖{α j }‖L∞(�2) ≤
⎛
⎝∑

j

c j

⎞
⎠

1/2

< ∞, ‖{γk}‖L∞(�2) ≤
(∑

k

ck

)1/2

< ∞

and

∥∥{β jk(x2)} j,k≥0
∥∥B ≤ 1.

In [33]multiple operator integrals were defined for functions in theHaagerup tensor
product of L∞ spaces. Suppose that � has a representation of the form (3.2.1) and
(3.2.2) holds and suppose that T and R are bounded linear operators on Hilbert space.
Then the triple operator integral

∫∫∫
�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3) (3.2.3)

can be defined in the following way.
Consider the spectral measure E2. It is defined on a σ -algebra � of subsets ofX2.

We can represent our Hilbert space H as the direct integral

H =
∫

X2

⊕
G (x) dμ(x), (3.2.4)

associated with E2. Here μ is a finite measure on X2, x �→ G (x), is a measurable
Hilbert family. The Hilbert space H consists of measurable functions f such that
f (x) ∈ G (x), x ∈ X2, and

123



66 V. V. Peller

‖ f ‖H def=
⎛
⎜⎝
∫

X2

‖ϕ(x)‖2G (x) dμ(x)

⎞
⎟⎠

1/2

< ∞.

Finally, for 
 ∈ �, E(
) is multiplication by the characteristic function of 
. We
refer the reader to [21], Ch. 7 for an introduction to direct integrals of Hilbert spaces.

Suppose that � belongs to the Haagerup tensor product L∞ ⊗h L∞ ⊗h L∞ and
(3.2.1) holds. The triple operator integral (3.2.3) is defined by

∫∫∫
�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3)

=
∑
j,k≥0

(∫
α j d E1

)
T

(∫
β jk d E2

)
R

(∫
γk d E3

)

= lim
M,N→∞

N∑
j=0

M∑
k=0

(∫
α j d E1

)
T

(∫
β jk d E2

)
R

(∫
γk d E3

)
. (3.2.5)

Let us show that the series on the right converges in the weak operator topology.
Let f and g be vectors inH . Put

uk
def= R

(∫
γk d E3

)
f and v j

def= T ∗
(∫

α j d E1

)
g. (3.2.6)

We consider the vectors v j and uk as elements of the direct integral (3.2.4), i.e., vector
functions onX2.

We have

∣∣∣∣∣∣

⎛
⎝ ∑

j,k≥0

(∫
α j d E1

)
T

(∫
β jk d E2

)
R

(∫
γk d E3

)
f, g

⎞
⎠
∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑

j,k≥0

((∫
β jk d E2

)
uk , v j

)∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∑

j,k≥0

∫

X2

(
β jk(x)uk(x), v j (x)

)
G (x)

dμ(x)

∣∣∣∣∣∣∣

≤
∫

X2

‖{β jk(x)} j,k≥0‖B · ‖{uk(x)}k≥0‖�2 · ‖{v j (x)} j≥0‖�2dμ(x)

≤ ‖{β jk} j,k≥0‖L∞(B)

⎛
⎜⎝
∫

X2

(∑
k≥0

|uk(x)|2
)

dμ(x)

⎞
⎟⎠
1/2⎛
⎜⎝
∫

X2

(∑
j≥0

|v j (x)|2
)

dμ(x)

⎞
⎟⎠
1/2
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= ‖{β jk} j,k≥0‖L∞(B)

⎛
⎝∑

k≥0

‖uk‖2H

⎞
⎠
1/2⎛
⎝∑

j≥0

‖v j ‖2H

⎞
⎠
1/2

.

Keeping (3.2.6) in mind, we see that the last expression is equal to

‖{β jk} j,k≥0‖L∞(B)

⎛
⎝∑

k≥0

∥∥∥∥R

(∫
γk d E3

)
f

∥∥∥∥
2

H

⎞
⎠

1/2⎛
⎝∑

j≥0

∥∥∥∥T ∗
(∫

α j d E1

)
g

∥∥∥∥
2

H

⎞
⎠

1/2

≤ ‖{β jk} j,k≥0‖L∞(B)‖R‖ · ‖T ‖
⎛
⎝∑

k≥0

∥∥∥∥
(∫

γk d E3

)
f

∥∥∥∥
2
⎞
⎠

1/2⎛
⎝∑

j≥0

∥∥∥∥
(∫

α j d E1

)
g

∥∥∥∥
2
⎞
⎠

1/2

.

By properties of integrals with respect to spectral measures,

∑
k≥0

∥∥∥∥
(∫

γk d E3

)
f

∥∥∥∥
2

=
⎛
⎝
∫ ⎛
⎝∑

k≥0

|γk |2
⎞
⎠ (d E3 f, f )

⎞
⎠ ≤ ‖{γk}k≥0‖2L∞(�2)

‖ f ‖2.

Similarly,

∑
j≥0

∥∥∥∥
(∫

α j d E1

)
g

∥∥∥∥
2

=
⎛
⎝
∫ ⎛
⎝∑

j≥0

|α j |2
⎞
⎠ (d E1g, g)

⎞
⎠ ≤ ‖{α j } j≥0‖2L∞(�2)

‖g‖2.

This implies that

∣∣∣∣∣∣

⎛
⎝∑

j,k≥0

(∫
α j d E1

)
T

(∫
β jk d E2

)
R

(∫
γk d E3

)
f, g

⎞
⎠
∣∣∣∣∣∣

≤ ‖{β jk} j,k≥0‖L∞(B) · ‖{α j }k≥0‖L∞(�2) · ‖{γk}k≥0‖L∞(�2)‖ f ‖ · ‖g‖.

It follows that the series in (3.2.5) converges absolutely in the weak operator topology.
The above inequalities show that

∥∥∥∥
∫∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3)

∥∥∥∥
≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖ · ‖R‖. (3.2.7)

Note that the triple operator integral is well defined by (3.2.5), i.e., the sum of the
series in (3.2.5) does not depend on the choice of a representation (3.2.1), see [3,33].

It is easy to verify that if� is a function that belongs to the projective tensor product
L∞(E1)⊗̂L∞(E2)⊗̂L∞(E3), then the above definition coincides with the definition
of the triple operator integral given in Chapter 2.

It turns out, however, that unlike in the case when the integrand belongs to the
projective tensor product L∞⊗̂L∞⊗̂L∞ (see Theorem 2.1.3), triple operator integrals

123



68 V. V. Peller

with integrands in the Haagerup tensor product L∞⊗h L∞⊗h L∞ do not possess the
property

T ∈ Sp, R is bounded �⇒
∫∫∫

� d E1T d E2R d E3 ∈ Sp

with p < 2; this will be established in Sect. 3.8. We will see in Sect. 3.3 that for
integrands � in L∞⊗h L∞⊗h L∞,

T ∈ Sp, R ∈ Sq ,
1

p
+ 1

q
≤ 1

2
�⇒

∫∫∫
� d E1T d E2R d E3 ∈ Sr ,

1

r
= 1

p
+ 1

q
.

We do not know whether this can be true if 1/p + 1/q > 1/2.

3.3 Schatten–von Neumann properties

In this section we study Schatten–von Nemann properties of triple operator integrals
with integrands in the Haagerup tensor product L∞⊗h L∞⊗h L∞. First, we consider
the case when one of the operators is bounded and the other one belongs to the Hilbert–
Schmidt class. Then we use an interpolation theorem for bilinear operators to consider
a more general situation.

The following result was established in [1] and its detailed proof was published in
[3].

Theorem 3.3.1 Let E1, E2, and E3 be spectral measures on Hilbert space and let
� be a function in the Haagerup tensor product L∞(E1)⊗h L∞(E2)⊗h L∞(E3).
Suppose that T is a bounded linear operator and R is an operator that belongs to the
Hilbert–Schmidt class S2. Then

W
def=
∫

X1

∫

X2

∫

X3

�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3) ∈ S2 (3.3.1)

and

‖W‖S2 ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖ · ‖R‖S2 . (3.3.2)

It is easy to see that Theorem 3.3.1 implies the following fact:

Corollary 3.3.2 Let E1, E2, E3, and � satisfy the hypotheses of Theorem 3.3.1. If T
is a Hilbert–Schmidt operator and R is a bounded linear operator, then the operator
W defined by (3.3.1) belongs to S2 and

‖W‖S2 ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖S2‖R‖.

Clearly, to deduce Corollary 3.3.2 from Theorem 3.3.1, it suffices to consider the
adjoint operator W ∗.
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Proof of Theorem 3.3.1 For simplicitywe consider the casewhen E3 is a discrete spec-
tral measure and we refer the reader to [3] for the general case. Under this assumption,
there exists an orthonormal basis {em}m≥0, the spectral measure E3 is defined on the
σ -algebra of all subsets of Z+, and E3({m}) is the orthogonal projection onto the
one-dimensional space spanned by em . In this case the function � has the form

�(x1, x2, m) =
∑
j,k≥0

α j (x1)β jk(x2)γk(m), x1 ∈ X1, x2 ∈ X2, m ∈ Z+,

where

{α j } j≥0 ∈ L∞
E1

(�2), {β jk} j,k≥0 ∈ L∞
E2

(B),

and

sup
m≥1

∑
k≥0

|γk(m)|2 < ∞.

Then

W =
∫∫ ∑

m≥0

�(x1, x2, n) d E1(x1)T d E2(x2)R (·, em)em .

We have
∑
m≥0

‖W em‖2 =
∑
m≥0

‖Zm Rem‖2, (3.3.3)

where

Zm
def=
∫∫

�(x1, x2, m) d E1(x1)T d E2(x2)

=
∫∫∫

�m(x1, x2, m) d E1(x1)T d E2(x2)I dEm .

Here Em is the spectral measure defined on the one point set {m} and the function �m

is defined onX1 × X2 × {m} by

�m(x1, x2, m) = �(x1, x2, m), x1 ∈ X1, x2 ∈ X2.

It is easy to see that

‖�m‖L∞(E1)⊗hL∞(E2)⊗hL∞(Em ) ≤ ‖�‖L∞(E1)⊗hL∞(E2)⊗hL∞(E3), m ≥ 0.

It follows now from (3.2.7) that

‖Zm‖ ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖,
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and by (3.3.3), we obtain

∑
m≥0

‖W em‖2 ≤
∑
n≥0

‖Zm‖2‖Rem‖2

≤ ‖�‖2L∞⊗hL∞⊗hL∞‖T ‖2
∑
m≥0

‖Rem‖2

= ‖�‖2L∞⊗hL∞⊗hL∞‖T ‖2‖R‖2S2 .

It follows that W ∈ S2 and inequality (3.3.2) holds. ��
We are going to use Theorem 4.4.1 from [16] on complex interpolation of bilinear

operators. Recall that the Schatten–von Neumann classes Sp, p ≥ 1, and the space of
bounded linear operators B(H ) form a complex interpolation scale:

(S1,B(H ))[θ] = S 1
1−θ

, 1 < θ < 1. (3.3.4)

This fact is well known. For example, it follows from Theorem 13.1 of Chapter III of
[32].

The following result was established in [1] and its proof was published in [3].

Theorem 3.3.3 Let � ∈ L∞(E1) ⊗hL∞(E2)⊗hL∞(E3). Then the following holds:

(i) if p ≥ 2, T ∈ B(H ), and R ∈ Sp, then the triple operator integral in (3.3.1)
belongs to Sp and

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖ · ‖R‖Sp ; (3.3.5)

(ii) if p ≥ 2, T ∈ Sp, and R ∈ B(H ), then the triple operator integral in (3.3.1)
belongs to Sp and

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖;

(iii) if 1/p + 1/q ≤ 1/2, T ∈ Sp, and R ∈ Sq , then the triple operator integral in
(3.3.1) belongs to Sr with 1/r = 1/p + 1/q and

‖W‖Sr ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖Sq .

We will see in Sect. 3.8 that neither (i) nor (ii) holds for p > 2.

Proof of Theorem 3.3.3 Let us first prove (i). Clearly, to deduce (ii) from (i), it suffices
to consider W ∗.

Consider the bilinear operator W defined by

W (T, R) =
∫∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3).

123



Multiple operator integrals in perturbation theory 71

By (3.2.7), W maps B(H ) × B(H ) into B(H ) and

‖W (T, R)‖ ≤ ‖T ‖ · ‖R‖.

On the other hand, by Theorem 3.3.1, W maps B(H ) × S2 into S2 and

‖W (T, R)‖S2 ≤ ‖T ‖ · ‖R‖S2 .

It follows from the complex interpolation theorem for linear operators (see [16], The-
orem 4.1.2 that) W maps B(H ) × Sp, p ≥ 2, into Sp and

‖W (T, R)‖Sp ≤ ‖T ‖ · ‖R‖Sp .

Suppose now that 1/p + 1/q ≤ 1/2 and 1/r = 1/p + 1/q. It follows from
statements (i) and (ii) (which we have already proved) thatW maps B(H ) × Sr into
Sr and Sr × B(H ) into Sr , and

‖W (T, R)‖Sr ≤ ‖T ‖ · ‖R‖Sr and ‖W (T, R)‖Sr ≤ ‖T ‖Sr · ‖R‖.

It follows from Theorem 4.4.1 of [16] on interpolation of bilinear operators,W maps
(B(H ), Sr )[θ] × (Sr ,B(H ))[θ] into Sr and

‖W (T, R)‖Sr ≤ ‖T ‖(B(H ),Sr )[θ]‖R‖(Sr ,B(H ))[θ] .

It remains to observe that for θ = r/p,

(B(H ), Sr )[θ] = Sp and (Sr ,B(H ))[θ] = Sq ,

which is a consequence of (3.3.4). ��

3.4 Haagerup-like tensor products and triple operator integrals

As we have mentioned in the introduction to this chapter, we are going to use a
representation of f (A1, B1) − f (A2, B2) in terms of triple operator integrals that
involve the divided differencesD[1] f andD[2] f . However, wewill see in Sect. 3.8 that
the divided differencesD[1] f andD[2] f do not have to belong to the Haagerup tensor
product L∞ ⊗hL∞ ⊗hL∞ for an arbitrary function f in the Besov class B1∞,1(R

2).
In addition to this, representation (3.0.1) involves operators of class Sp with p ≤ 2.
However, we will see in Sect. 3.8 that statements (i) and (ii) of Theorem 3.3.3 do not
hold for p < 2.

This means that we need a new approach to triple operator integrals. In this section
we introduce Haagerup-like tensor products and define triple operator integrals whose
integrands belong to such Haagerup-like tensor products. Note that the Haagerup-like
tensor products were defined in [1,12], see also [3].
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Definition 1 A function � is said to belong to the Haagerup-like tensor product
L∞(E1)⊗h L∞(E2)⊗h L∞(E3) of the first kind if it admits a representation

�(x1, x2, x3) =
∑
j,k≥0

α j (x1)βk(x2)γ jk(x3), x j ∈ X j , (3.4.1)

with {α j } j≥0, {βk}k≥0 ∈ L∞(�2) and {γ jk} j,k≥0 ∈ L∞(B). As usual,

‖�‖L∞⊗hL∞⊗hL∞
def= inf ‖{α j } j≥0‖L∞(�2)‖{βk}k≥0‖L∞(�2)‖{γ jk} j,k≥0‖L∞(B),

the infimum being taken over all representations of the form (3.4.1).

Definition 2 Let 1 ≤ p ≤ 2. For� ∈ L∞(E1)⊗hL∞(E2)⊗hL∞(E3), for a bounded
linear operator R, and for an operator T of class Sp, we define the triple operator
integral

W =
∫∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3) (3.4.2)

as the following continuous linear functional on Sp′ , 1/p + 1/p′ = 1 (on the class of
compact operators in the case p = 1):

Q �→ trace

((∫∫∫
�(x1, x2, x3) d E2(x2)R d E3(x3)Q d E1(x1)

)
T

)
. (3.4.3)

Clearly, the triple operator integral in (3.4.3) is well defined because the function

(x2, x3, x1) �→ �(x1, x2, x3)

belongs to the Haagerup tensor product L∞(E2)⊗h L∞(E3)⊗h L∞(E1). It follows
easily from statement (i) of Theorem 3.3.3 that

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖, 1 ≤ p ≤ 2,

(see Theorem 3.4.1).
It is easy to see that in the case when � belongs to the projective tensor product

L∞(E1)⊗̂L∞(E2)⊗̂L∞(E3), the definition of the triple operator integral given above
is consistentwith the definitionof the triple operator integral given inChapter 2. Indeed,
it suffices to verify this for functions � of the form

�(x1, x2, x3) = ϕ(x1)ψ(x2)χ(x3), ϕ ∈ L∞(E1), ψ ∈ L∞(E2), χ ∈ L∞(E3),

in which case the verification is obvious.
We also need triple operator integrals in the casewhen T is a bounded linear operator

and R ∈ Sp, 1 ≤ p ≤ 2.
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Definition 3 A function � is said to belong to the Haagerup-like tensor product
L∞(E1)⊗h L∞(E2)⊗h L∞(E3) of the second kind if � admits a representation

�(x1, x2, x3) =
∑
j,k≥0

α jk(x1)β j (x2)γk(x3) (3.4.4)

where {β j } j≥0, {γk}k≥0 ∈ L∞(�2), {α jk} j,k≥0 ∈ L∞(B). The norm of� in the space
L∞⊗h L∞⊗h L∞ is defined by

‖�‖L∞⊗hL∞⊗hL∞
def= inf

∥∥{α j } j≥0
∥∥

L∞(�2)

∥∥{βk}k≥0
∥∥

L∞(�2)

∥∥{γ jk} j,k≥0
∥∥

L∞(B)
,

the infimum being taken over all representations of the form (3.4.4).

Definition 4 Suppose now that� ∈ L∞(E1)⊗h L∞(E2)⊗h L∞(E3), T is a bounded
linear operator, and R ∈ Sp, 1 ≤ p ≤ 2. The continuous linear functional

Q �→ trace

((∫∫∫
�(x1, x2, x3) d E3(x3)Q d E1(x1)T d E2(x2)

)
R

)

on the class Sp′ (on the class of compact operators in the case p = 1) determines an
operator W of class Sp, which we call the triple operator integral

W =
∫ ∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2)R d E3(x3). (3.4.5)

Moreover,

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖ · ‖R‖Sp .

As above, in the case when � ∈ L∞(E1)⊗̂L∞(E2)⊗̂L∞(E3), the definition of
the triple operator integral given above is consistent with the definition of the triple
operator integral given in Chapter 2.

The following result can easily be deduced from Theorem 3.3.3, see [3].

Theorem 3.4.1 Let � ∈ L∞ ⊗h L∞ ⊗h L∞. Suppose that T ∈ Sp and R ∈ Sq ,
where 1 ≤ p ≤ 2 and 1/p + 1/q ≤ 1. Then the operator W in (3.4.2) belongs to Sr ,
1/r = 1/p + 1/q, and

‖W‖Sr ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖Sq . (3.4.6)

If T ∈ Sp, 1 ≤ p ≤ 2, and R is a bounded linear operator, then W ∈ Sp and

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖. (3.4.7)

In the same way we can prove the following theorem:
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Theorem 3.4.2 Let � ∈ L∞ ⊗h L∞ ⊗h L∞. Suppose that p ≥ 1, 1 ≤ q ≤ 2, and
1/p + 1/q ≤ 1. If T ∈ Sp, R ∈ Sq , then the operator W in (3.4.5) belongs to Sr ,
1/r = 1/p + 1/q, and

‖W‖Sr ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖Sq .

If T is a bounded linear operator and R ∈ Sp, 1 ≤ p ≤ 2, then W ∈ Sp and

‖W‖Sp ≤ ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp‖R‖.

3.5 Conditions for D[1] f and D[2] f to be in Haagerup-like tensor products

As we have already mentioned before, for functions f in B1∞,1(R
2), the divided

differences D[1] f and D[2] f ,

(D[1] f )(x1, x2, y)
def= f (x1, y) − f (x2, y)

x1 − x2
and (D[2] f )(x, y1, y2)

def= f (x, y1) − f (x, y2)

y1 − y2
,

do not have to belong to the Haagerup tensor product L∞⊗hL∞⊗hL∞. This will be
seen in Sect. 3.8.

In this section we will see that for f ∈ B1∞,1(R
2), the divided difference D[1] f

belongs to the tensor product L∞(E1)⊗h L∞(E2)⊗h L∞(E3), while the divided
difference D[2] f belongs to the tensor product L∞(E1)⊗h L∞(E2)⊗h L∞(E3) for
arbitrary Borel spectral measures E1, E2, and E3 on R.

This will allow us to prove in the next section that if (A1, B1) and (A2, B2) are pairs
of self-adjoint operators on Hilbert space, (A2, B2) is an Sp perturbation of (A1, B1),
1 ≤ p ≤ 2, and f ∈ B1∞,1(R

2), then the following integral formula holds:

f (A1, B1) − f (A2, B2)

=
∫∫∫ f (x1, y) − f (x2, y)

x1 − x2
d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y),

+
∫ ∫∫ f (x, y1) − f (x, y2)

y1 − y2
d E A2(x) d EB1(y1)(B1 − B2) d EB2(y2).

The following theorem contains a formula that is crucial for our estimates. It was
established in [1,12], its detailed proof was published in [3].

Theorem 3.5.1 Let f be a bounded function on R
2 whose Fourier transform is sup-

ported in the ball {ξ ∈ R
2 : ‖ξ‖ ≤ 1}. Then
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f (x1, y) − f (x2, y)

x1 − x2
=
∑
j,k∈Z

sin(x1 − jπ)

x1 − jπ
· sin(x2 − kπ)

x2 − kπ
· f ( jπ, y) − f (kπ, y)

jπ − kπ
,

(3.5.1)

where for j = k, we assume that

f ( jπ, y) − f (kπ, y)

jπ − kπ
= ∂ f (x, y)

∂x

∣∣∣∣
( jπ,y)

.

Moreover,

∑
j∈Z

sin2(x1 − jπ)

(x1 − jπ)2
=
∑
k∈Z

sin2(x2 − kπ)

(x2 − kπ)2
= 1, x1 x2 ∈ R, (3.5.2)

and

sup
y∈R

∥∥∥∥∥
{

f ( jπ, y) − f (kπ, y)

jπ − kπ

}
j,k∈Z

∥∥∥∥∥B
≤ const ‖ f ‖L∞(R). (3.5.3)

Formula (3.5.1) can be deduced from Lemma 1.9.2, see [3] for details, identities
(3.5.2) are well-known, see, e.g., [65], 3.3.2, Example IV.

To estimate the operator norm of the matrix

{
f ( jπ, y) − f (kπ, y)

jπ − kπ

}
j,k∈Z

,

we represent this matrix as the sum of the matrices Cy = {c jk(y)} j,k∈Z and Dy =
{d jk(y)} j,k∈Z, where

c jk(y) =
{ f ( jπ,y)− f (kπ,y)

jπ−kπ
, j �= k

0, j = k
and d jk(y) =

⎧⎨
⎩
0, j �= k

∂ f (x,y)
∂x

∣∣∣
( jπ,y)

, j = k.

It is easy to see thatCy is the commutator of the discreteHilbert transformHd and an
operator ofmultiplication by a bounded sequence on �2 and ‖Cy‖ ≤ const ‖ f ‖L∞(R2).

On the other hand,

‖Dy‖ = sup
j∈Z

∣∣∣∣∂ f (x, y)

∂x

∣∣∣
( jπ,y)

∣∣∣∣ ≤ ‖ f ‖L∞(R2)

by Bernstein’s inequality. This completes the proof of (3.5.3).
We refer the reader to [3] for details.
The following result can be deduced easily from Theorem 3.5.1, see [3].
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Corollary 3.5.2 Let f be a bounded function on R
2 such that its Fourier transform

is supported in {ξ ∈ R
2 : ‖ξ‖ ≤ σ }, σ > 0. Then the divided differences D[1] f and

D[2] f have the following properties:

D[1] f ∈ L∞(E1)⊗h L∞(E2)⊗h L∞(E3) and D[2] f ∈ L∞(E1) ⊗h L∞(E2) ⊗h L∞(E3)

for arbitrary Borel spectral measures E1, E2 and E3. Moreover,

∥∥D[1] f
∥∥

L∞⊗hL∞⊗hL∞ ≤ const σ‖ f ‖L∞(R2) (3.5.4)

and

∥∥D[2] f
∥∥

L∞⊗hL∞⊗hL∞ ≤ const σ‖ f ‖L∞(R2). (3.5.5)

Corollary 3.5.2 implies in turn the following theorem that was established in [6].

Theorem 3.5.3 Let f ∈ B1∞,1(R
2). Then

D[1] f ∈ L∞(E1)⊗h L∞(E2) ⊗h L∞(E3) and D[2] f ∈ L∞(E1)⊗h L∞(E2)⊗h L∞(E3)

for arbitrary Borel spectral measures E1, E2 and E3. Moreover,

∥∥D[1] f
∥∥

L∞⊗hL∞⊗hL∞ ≤ const ‖ f ‖B1∞,1

and

∥∥D[2] f
∥∥

L∞⊗hL∞⊗hL∞ ≤ const σ‖ f ‖B1∞,1
.

3.6 Lipschitz type estimates in the case 1 ≤ p ≤ 2

In this section we discuss the results announced in [1,2] whose detailed proofs were
given in [3].

We will see in this section that for functions f in the Besov class B1∞,1(R
2), we

have a Lipschitz type estimate for functions of noncommuting self-adjoint operators
in the norm of Sp with p ∈ [1, 2].

The following integral formula plays an important role.

Theorem 3.6.1 Let f ∈ B1∞,1(R
2) and 1 ≤ p ≤ 2. Suppose that (A1, B1) and

(A2, B2) are pairs of self-adjoint operators such that A2− A1 ∈ Sp and B2−B1 ∈ Sp.
Then the following identity holds:

f (A1, B1) − f (A2, B2)

=
∫∫∫ f (x1, y) − f (x2, y)

x1 − x2
d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y),
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+
∫ ∫∫ f (x, y1) − f (x, y2)

y1 − y2
d E A2(x) d EB1(y1)(B1 − B2) d EB2(y2).

(3.6.1)

Note that by Theorem 3.5.3, the divided differencesD[1] f andD[2] f belong to the
corresponding Haagerup like tensor products, and so the triple operator integrals on
the right make sense.

Proof It suffices to prove that

f (A1, B1) − f (A2, B1)

=
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y) (3.6.2)

and

f (A2, B1) − f (A2, B2)

=
∫ ∫∫ (

D[2] f
)
(x, y1, y2) d E A2(x) d EB1(y1)(B1 − B2) d EB2(y2). (3.6.3)

Let us establish (3.6.2). Formula (3.6.3) can be proved in exactly the same way.
Suppose first that the function D[1] f belongs to the projective tensor product

L∞(E A1)⊗̂L∞(E A2)⊗̂L∞(EB1). In this case we can write

∫∫∫ (
D[1] f

)
(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y)

=
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)A1 d E A2(x2) d EB1(y)

−
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)A2 d E A2(x2) d EB1(y).

Note that the above equality does not make sense if D[1] f does not belong to
L∞⊗̂L∞⊗̂L∞ because the operators A1 and A2 do not have to be compact, while
the definition of triple operator integrals with integrands in the Haagerup-like tensor
product L∞⊗h L∞⊗h L∞ assumes that the operators A1 and A2 belong to S2.

It follows immediately from the definition of triple operator integrals with inte-
grands in L∞⊗̂L∞⊗̂L∞ that

∫∫∫ (
D[1] f

)
(x1, x2, y) d E A1(x1)A1 d E A2(x2) d EB1(y)

=
∫∫∫

x1
(
D[1] f

)
(x1, x2, y) d E A1(x1) d E A2(x2) d EB1(y)
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and

∫∫∫ (
D[1] f

)
(x1, x2, y) d E A1(x1)A2 d E A2(x2) d EB1(y)

=
∫∫∫

x2
(
D[1] f

)
(x1, x2, y) d E A1(x1) d E A2(x2) d EB1(y).

Thus

∫∫∫ (
D[1] f

)
(x1, x2, y) d E A1(x1)A1 d E A2(x2) d EB1(y)

−
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)A2 d E A2(x2) d EB1(y)

=
∫∫∫

(x1 − x2)
f (x1, y) − f (x2, y)

x1 − x2
d E A1(x1) d E A2(x2) d EB1(y)

=
∫∫∫

f (x1, y) d E A1(x1) d E A2(x2) d EB1(y)

−
∫∫∫

f (x2, y) d E A1(x1) d E A2(x2) d EB1(y) = f (A1, B1) − f (A2, B1).

Consider the functions fn defined by fn = f ∗ Wn , n ∈ Z, see (2.2). It is easy to
see from the definition of the Besov class B1∞,1(R

2) that to prove (3.6.2), it suffices
to show that

fn(A1, B1) − fn(A2, B1)

=
∫∫∫ (

D[1] fn
)
(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB1(y).

As we have mentioned in Sect. 2, the function fn is a restriction of an entire
function of two variables to R × R. Thus it suffices to establish formula (3.6.2) in
the case when f is an entire function. To complete the proof, we show that for entire
functions f the divided differencesD[1] f must belong to the projective tensor product
L∞(E A1)⊗̂L∞(E A2)⊗̂L∞(EB1).

Let f (x, y) =∑∞
j=0

(∑∞
k=0 a jk x j yk

)
be an entire function and let R be a positive

number such that the spectra σ(A1), σ(A2), and σ(B) are contained in [−R/2, R/2].
Clearly,

‖ f ‖L∞⊗̂L∞ ≤
∞∑
j=0

( ∞∑
k=0

|a jk |R j+k

)
< ∞
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and

‖D[1] f ‖L∞⊗̂L∞⊗̂L∞ =
∥∥∥∥∥∥

∞∑
j=0

⎛
⎝ ∞∑

k=1

( j−1∑
l=0

a jk xl
1x j−1−l

2 yk
)⎞⎠
∥∥∥∥∥∥

L∞⊗̂L∞⊗̂L∞

≤
∞∑
j=0

( ∞∑
k=1

j |a jk |R j+k−1

)
< +∞,

where in the above expressions L∞ means L∞[−R, R]. This completes the proof. ��
Theorem 3.6.2 Let p ∈ [1, 2]. Then there is a positive number C such that

‖ f (A1, B1) − f (A2, B2)‖ ≤ C‖ f ‖B1∞,1
max

{‖A1 − A2‖Sp , ‖B1 − B2‖Sp

}
,

(3.6.4)

whenever f ∈ B1∞,1(R
2), and A1, A2, B1, and B2 are self-adjoint operators such that

A2 − A1 ∈ Sp and B2 − B1 ∈ Sp.

Proof This is an immediate consequence of Theorem 3.6.1 and Theorems 3.4.1 and
3.4.2. ��
Remark Wehave defined functions f (A, B) for f in B1∞,1(R

2) only for bounded self-
adjoint operators A and B. However, formula (3.6.1) allows us to define the difference
f (A1, B1)− f (A2, B2) in the case when f ∈ B1∞,1(R

2) and the self-adjoint operators
A1, A2, B1, B2 are possibly unbounded once we know that the pair (A2, B2) is an
Sp perturbation of the pair (A1, B1), 1 ≤ p ≤ 2. Moreover, inequality (3.6.4) also
holds for such operators.

Note that similar results for functions of unitary operators were obtained in [3] as
well.

3.7 Lipschitz type estimates cannot be extended beyond p ≤ 2

It was shown in [2,3] that there is no Lipschitz type inequality of the form (3.6.2) in
the norm of Sp with p > 2 and in the operator norm for an arbitrary function f in
B1∞,1(R

2). In this section we give the construction of [3].

Theorem 3.7.1 (i) There is no positive number M such that

‖ f (A1, B) − f (A2, B)‖ ≤ M‖ f ‖L∞(R2)‖A1 − A2‖

for all bounded functions f onR2 with Fourier transform supported in [−2π, 2π ]2
and for all finite rank self-adjoint operators A1, A2, B.

(ii) Let p > 2. Then there is no positive number M such that

‖ f (A1, B) − f (A2, B)‖Sp ≤ M‖ f ‖L∞(R2)‖A1 − A2‖Sp
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for all bounded functions f onR2 with Fourier transform supported in [−2π, 2π ]2
and for all finite rank self-adjoint operators A1, A2, B.

Proof Let us first prove (ii). Let {g j }1≤ j≤N and {h j }1≤ j≤N be orthonormal systems
in Hilbert space. Consider the rank one projections Pj and Q j defined by

Pjv = (v, g j )g j and Q jv = (v, h j )h j , 1 ≤ j ≤ N .

We define the self-adjoint operators A1, A2, and B by

A1 =
N∑

j=1

2 j Pj , A2 =
N∑

j=1

(2 j + 1)Pj , and B =
N∑

k=1

k Qk .

Then ‖A1 − A2‖Sp = N
1
p . Put

ϕ(x) = 1 − cos 2πx

2π2x2
.

Clearly, suppFϕ ⊂ [−2π, 2π ], ϕ(k) = 0 for all k ∈ Z such that k �= 0, ϕ(0) = 1.
Put ϕk(x) = ϕ(x − k). Given a matrix {τ jk}1≤ j,k≤N , we define the function f by

f (x, y) =
∑

1≤ j,k≤N

τ jkϕ2 j (x)ϕk(y).

It is easy to see thatϕ2 j (A1) = Pj ,ϕ2 j (A2) = 0,ϕk(B) = Qk provided 1 ≤ j, k ≤ N ,
and

‖ f ‖L∞(R2) ≤ const max
1≤ j,k≤N

|τ jk |.

Clearly,

f (A1, B) =
∑

1≤ j,k≤N

τ jk Pj Qk and f (A2, B) = 0.

Note that

( f (A1, B)hk, g j ) = τ jk(hk, g j ), 1 ≤ j, k ≤ N .

Clearly, for every unitary matrix {u jk}1≤ j,k≤N , there exist orthonormal systems
{g j }1≤ j≤N and {h j }1≤ j≤N such that (hk, g j ) = u jk . Put

u jk
def= 1√

N
exp

(
2π i jk

N

)
, 1 ≤ j, k ≤ N .
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Obviously, {u jk}1≤ j,k≤N is a unitary matrix. Hence, we may find vectors {g j }N
j=1 and

{h j }N
j=1 such that (hk, g j ) = u jk . Put τ jk = √

N u jk . Then

‖ f (A1, B)‖Sp = ‖{|u jk |}1≤ j,k≤N ‖Sp = ‖{|u jk |}1≤ j,k≤N ‖S2 = √
N

because rank{|u jk |}1≤ j,k≤N = 1. So for each positive integer N , we have constructed
a function f and operators A1, A2, B such that | f | ≤ const , suppF f ⊂ [−2π, 2π ]2,
‖A1 − A2‖Sp = N

1
p and ‖ f (A1, B) − f (A2, B)‖Sp = √

N . It remains to observe

that limN→∞ N
1
2− 1

p = ∞ for p > 2.
Exactly the same construction works to prove (i). It suffices to replace in the above

construction the Sp norm with the operator norm and observe that ‖A1 − A2‖ = 1
and ‖ f (A1, B) − f (A2, B)‖ = √

N . ��
Theorem 3.7.1 implies that there is no Lipschitz type estimate in the operator norm

and in the Sp norm with p > 2. Note that in the construction given in the proof the
norms of A1 − A2 cannot get small. The following result shows that we can easily
overcome this problem.

Theorem 3.7.2 There exist a sequence { fn}n≥0 of functions in B1∞,1(R
2) and

sequences of self-adjoint finite rank operators
{

A(n)
1

}
n≥0,

{
A(n)
2

}
n≥0, and

{
B(n)

}
n≥0

such that the norms ‖ fn‖B1∞,1
do not depend on n,

lim
n→∞

∥∥A(n)
1 − A(n)

2

∥∥→ 0, but ‖ fn(A1, B) − fn(A2, B)‖ → ∞.

The same is true in the norm of Sp for p > 2.

Proof The existence of such sequences can be obtained easily from the construction
in the proof of Theorem 3.7.1. It suffices to make the following observation. Let f , A1,

A2 and B be as in the proof of Theorem 3.7.1 and let ε > 0. Put fε(x, y)
def= ε f

( x
ε
,

y
ε

)
.

Then

‖ fε‖B1∞1
= ‖ f ‖B1∞1

, ‖ fε(εA1, εB) − fε(εA2, εB)‖ = εN1/2, and ‖εA1 − εA2‖ = ε.

If p > 2, then

‖ fε(εA1, εB) − fε(εA2, εB)‖Sp = εN 1/2 and ‖εA1 − εA2‖Sp = εN 1/p.

��
Remark The construction given in the proof of Theorem 3.7.1 shows that for every
positive number M there exist a function f onR2 whose Fourier transform is supported
in [−2π, 2π ]2 such that ‖ f ‖L∞(R) ≤ const and self-adjoint operators of finite rank
A1, A2, B such that ‖A1 − A2‖ = 1, but ‖ f (A1, B) − f (A2, B)‖ > M . It follows
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that unlike in the case of commuting self-adjoint operators (see [13]), the fact that f is
a Hölder function of order α ∈ (0, 1) on R2 does not imply the Hölder type estimate

‖ f (A1, B1) − f (A2, B2)‖ ≤ const max
{‖A1 − A2‖α, ‖B1 − B2‖α

}
.

3.8 Counterexamples

Weuse the results of the previous section to show that statements (i) and (ii) of Theorem
3.3.3 do not hold for p ∈ [1, 2). We also deduce from the results of Sect. 3.7 that the
divided differences D[1] f and D[2] f do not have to belong to the Haagerup tensor
product L∞⊗hL∞⊗hL∞ for an arbitrary function f in B1∞,1(R

2). The results of this
sections were obtained in [4–6].

Theorem 3.8.1 Let 1 ≤ p < 2. There exist an operator Q in Sp, spectral measures
E1, E2 and E3 on Borel subsets of R and a function � in the Haagerup tensor product
L∞(E1)⊗h L∞(E2)⊗h L∞(E3) and an operator Q in Sp such that

∫∫∫
�(x1, x2, x2) d E1(x1) d E2(x2)Q d E3(x3) /∈ Sp.

Proof Assume the contrary. Then the linear operator

Q �→
∫∫∫

�(x1, x2, x2) d E1(x1) d E2(x2)Q d E3(x3)

is bounded on Sp for arbitrary Borel spectral measures E1, E2, and E3 and for an
arbitrary function � in L∞(E1)⊗hL∞(E2)⊗hL∞(E3). Suppose now that � belongs
to the Haagerup-like tensor product L∞(E1)⊗hL∞(E2)⊗hL∞(E3) of the first kind.
For a finite rank operator T consider the triple operator integral

W =
∫∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2) d E3(x3).

We define the function � defined by

�(x2, x3, x1) = �(x1, x2, x3).

Let Q ∈ Sp. We have

trace(W Q) = trace

((∫∫∫
�(x1, x2, x3) d E2(x2) d E3(x3)Q d E1(x1)

)
T

)

= trace

((∫∫∫
�(x2, x3, x1) d E2(x2) d E3(x3)Q d E1(x1)

)
T

)

(see the definition of triple operator integrals with integrands in the Haagerup-like
tensor product of the first kind in Sect. 3.2).
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Thus

| trace(W Q)| =
∣∣∣∣trace

((∫∫∫
�(x2, x3, x1) d E2(x2) d E3(x3)Q d E1(x1)

)
T

)∣∣∣∣

≤
∥∥∥∥
(∫∫∫

�(x2, x3, x1) d E2(x2) d E3(x3)Q d E1(x1)

)∥∥∥∥
Sp

‖T ‖Sp′

≤ const ‖�‖L∞⊗hL∞⊗hL∞‖Q‖Sp‖T ‖Sp′

(throughout the proof of this theorem in the case p = 1, the norm in Sp′ has to be
replaced with the operator norm).

It follows that

‖W‖Sp′ =
∥∥∥∥
∫∫∫

�(x1, x2, x3) d E1(x1)T d E2(x2) d E3(x3)

∥∥∥∥
Sp′

≤ const ‖�‖L∞⊗hL∞⊗hL∞‖T ‖Sp′ . (3.8.1)

By Theorem 3.5.3, D[1] f ∈ L∞ ⊗h L∞⊗h L∞ for every f in B1∞,1(R
2) and by

(3.6.2),

f (A1, B) − f (A2, B)

=
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB(y)

for arbitrary finite rank self-adjoint operators A1, A2, and B. It remains to observe
that by inequality (3.8.1),

‖ f (A1, B1) − f (A2, B)‖Sp′ ≤ const ‖D[1] f ‖L∞⊗hL∞⊗hL∞‖A1 − A2‖Sp′

≤ const ‖ f ‖B1∞,1
‖A1 − A2‖Sp′

which contradicts Theorem 3.7.2. ��
If we pass to the adjoint operator, we can see that for p ∈ [1, 2), there exist a

function � in the Haagerup tensor product L∞⊗hL∞⊗hL∞ and an operator Q in Sp

such that

∫∫∫
�(x1, x2, x2) d E1(x1)Q d E2(x2) d E3(x3) /∈ Sp.

The following application ofTheorem3.7.2 shows that for functions f in B1∞,1(R
2),

the divided differencesD[1] f andD[2] f do not have to belong to the Haagerup tensor
product L∞⊗h L∞⊗h L∞. We state the result for D[1] f .
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Theorem 3.8.2 There exists a function f in the Besov class B1∞,1(R
2) such that the

divided difference D[1] f does not belong to L∞⊗h L∞⊗h L∞.

Proof Assume the contrary. Then the map

f �→ D[1] f

is a bounded linear operator from B1∞,1(R
2) to L∞⊗h L∞⊗h L∞.

By (3.6.2),

f (A1, B) − f (A2, B)

=
∫∫∫ (

D[1] f
)
(x1, x2, y) d E A1(x1)(A1 − A2) d E A2(x2) d EB(y)

for arbitrary finite rank self-adjoint operators A1, A2, and B. It follows now from
inequality (3.2.7) that

‖ f (A1, B) − f (A2, B)‖ ≤ ‖D[1] f ‖L∞⊗hL∞⊗hL∞‖A1 − A2‖ ≤ const ‖ f ‖B1∞,1
‖A1 − A2‖

which contradicts Theorem 3.7.2. ��

3.9 Functions of almost commuting operators, an extension of the Helton–Howe
trace formula

Operators A and B are called almost commuting if the commutator

[A, B] def= AB − B A

belongs to S1. In [31] the following trace formula was discovered:

trace(i[(ϕ(A, B), ψ(A, B)]) = 1

2π

∫∫
R2

(
∂ϕ

∂x

∂ψ

∂y
− ∂ϕ

∂y

∂ψ

∂x

)
g(x, y) dx dy,

(3.9.1)

where A and B are almost commuting self-adjoint operators, ϕ andψ are polynomials
and g is the Pincus principal function which is uniquely determined by A and B and
which was introduced in [59].

The problem considered in [54] was to extend the Helton–Howe trace formula for a
reasonably big class of functions. It was shown in [54] that under natural assumptions
it is impossible to extend formula (3.9.1) to the class of all continuously differentiable
functions. On the other hand, a sufficiently big class of functions C was such that
formula (3.9.1) holds for all functions ϕ and ψ in C.

In the paper [12] it was proved that formula (3.9.1) admits an extension to arbitrary
functions ϕ and ψ in the Besov class B1∞,1(R

2) which considerably improved the
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sufficient condition ϕ, ψ ∈ C found in [54]. Themain tools used in [12] are Haagerup-
like tensor products and triple operator integrals.

The following results were obtained in [12].

Theorem 3.9.1 Let A and B be self-adjoint operators and let Q be a bounded linear
operator such that [A, Q] ∈ S1 and [B, Q] ∈ S1. Suppose that ϕ ∈ B1∞,1(R

2). Then[
ϕ(A, B), Q

] ∈ S1,

[
ϕ(A, B), Q

] =
∫∫∫

ϕ(x1, y) − ϕ(x2, y)

x1 − x2
d E A(x1)[A, Q] d E A(x2) d EB(y)

+
∫ ∫∫

ϕ(x, y1) − ϕ(x, y2)

y1 − y2
d E A(x) d EB(y1)[B, Q] d EB(y2)

and

∥∥[ϕ(A, B), Q
]∥∥

S1
≤ const ‖ϕ‖B1∞,1(R

2)

(∥∥[A, Q]∥∥S1 + ∥∥[B, Q]∥∥S1
)
.

If we apply Theorem 3.9.1 to the operator Q = ψ(A, B), we obtain the following
result:

Theorem 3.9.2 Let A and B be almost commuting self-adjoint operators and let ϕ

and ψ be functions in the Besov class B1∞,1(R
2). Then

[
ϕ(A, B), ψ(A, B)

]

=
∫∫∫

ϕ(x1, y) − ϕ(x2, y)

x1 − x2
d E A(x1)[A, ψ(A, B)] d E A(x2) d EB(y)

+
∫ ∫∫

ϕ(x, y1) − ϕ(x, y2)

y1 − y2
d E A(x) d EB(y1)[B, ψ(A, B)] d EB(y2)

and

∥∥[ϕ(A, B), ψ(A, B)
]∥∥

S1
≤ const ‖ϕ‖B1∞,1(R

2)‖ψ‖B1∞,1(R
2)

∥∥[A, B]∥∥S1 .
Theorem 3.9.2 allows us to extend the Helton–Howe trace formula to functions in

the Besov class B1∞,1(R
2).

Theorem 3.9.3 Let A and B be almost commuting self-adjoint operators and let ϕ

and ψ be functions in the Besov class B1∞,1(R
2). Then the following formula holds:

trace(i[(ϕ(A, B), ψ(A, B)]) = 1

2π

∫∫
R2

(
∂ϕ

∂x

∂ψ

∂y
− ∂ϕ

∂y

∂ψ

∂x

)
g(x, y) dx dy,

where g is the Pincus principal function associated with the operators A and B.

We refer the reader to [12] for more detail.
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