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Abstract We review the developments in the Lie theory for non-associative products
from 2000 to date and describe the current understanding of the subject in view of the
recent works, many of which use non-associative Hopf algebras as the main tool.

1 Introduction: Lie groups, Lie algebras and Hopf algebras

Non-associative Lie theory, that is, Lie theory for non-associative products, appeared
as a a subject of its own in the works of Malcev who constructed the tangent structures
corresponding toMoufang loops. Its general development has been slow; nevertheless,
by now many of the basic features of the theory have been understood, with much of
the progress happening in the last 10 years or so. In the present paper we outline the
non-associative Lie theory in general and review the recent developments.
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130 J. Mostovoy et al.

The history of the subject before 2000 has been summarized in the paper of Sabinin
[51]. Probably, the singlemost important advance to that date has been the definition of
a Sabinin algebra by Mikheev and Sabinin in 1986 (they use the term hyperalgebra).
Sabinin algebras are the structures tangent to general non-associative unital local
products; under some convergency conditions one can recover the product from a
Sabinin algebra. Lie, Malcev, Bol, Lie–Yamaguti algebras and Lie triple systems are
all particular instances of Sabinin algebras.

Classical Lie theory relates three kinds of objects: Lie groups, Lie algebras and
cocommutative Hopf algebras. Until recently, however, Hopf algebras had little, if
any, role in the non-associative Lie theory. To a certain extent, this gap has now been
filled, and herewe shall give an outline of the theory of local loops and Sabinin algebras
from the point of view of non-associative Hopf algebras. We shall be guided by the
analogy with the theory of Lie groups and Lie algebras, so first we recall the basics of
the classical theory.

At the heart of Lie theory lies the equivalence of the following three categories:

• simply-connected finite-dimensional Lie groups;
• finite-dimensional Lie algebras;
• irreducible cocommutative finitely generated Hopf algebras.

Let us describe explicitly the functors that establish this equivalence. In what follows
all the vector spaces, Lie algebras etc will be defined over a field of characteristic zero.

1.1 Lie groups → Lie algebras

There are several ways to produce the Lie algebra of a Lie group. Let G be a Lie group
with the unit element e. The most common construction identifies the tangent space
TeG with the vector space of left-invariant vector fields on G. The commutator of two
such fields (considered as derivations acting on functions) is again left-invariant, and
defines the Lie bracket on TeG.

This definition can be stated in different terms. On the tangent bundle T G there
exists a canonical flat connection ∇. It can be defined by the associated parallel trans-
port: for any path between a, b ∈ G it sends TaG to TbG by the differential of the left
multiplication by ba−1. The curvature tensor of ∇ is identically zero and the torsion
tensor T is covariantly constant, that is ∇T = 0 on G. This implies that the torsion
tensor T is defined completely by its value on TeG, which is a linear map

TeG ⊗ TeG → TeG.

This map coincides, up to sign, with the Lie bracket on TeG.

1.2 Lie algebras → Lie groups

Oneway to obtain aLie group fromaLie algebra is via theBaker–Campbell–Hausdorff
formula which expresses the formal power series

log(exp x exp y) (1)

123



Hopf algebras in non-associative Lie theory 131

in terms of iterated commutators in x and y. For finite-dimensional Lie algebras, the
Baker–Campbell–Hausdorff series always has a non-zero radius of convergence and,
hence, defines a local Lie group.

It can be shown that finite-dimensional local Lie groups can always be extended
to global Lie groups, but the proof of this fact is somewhat mysterious and uses the
facts that seem to come from outside of Lie theory, such as the Ado theorem. The
Ado theorem claims that every finite-dimensional Lie algebra is isomorphic to a Lie
subalgebra of the algebra of the matrices. Therefore, it integrates to a local Lie group
which is embedded as a local subgroup into the group of invertible matrices. Then it
can be shown that this local subgroup generates a subset in the group ofmatrices which
is an image of a smooth injective Lie group homomorphism. This last step is far from
being trivial and uses in a crucial way the associativity of the matrix multiplication.

1.3 Lie algebras → Hopf algebras

Each Lie algebra g can be embedded into an associative algebra A in such a way
that the bracket in g is induced by the commutator in A. Among all such embedding
one is universal. The corresponding algebra (called universal enveloping algebra) is
constructed as the quotient of the unital tensor algebra on g by the relations

x ⊗ y − y ⊗ x − [x, y]

for all x, y ∈ g and is denoted by U (g). The Lie algebra g is naturally embedded into
the tensor algebra on g and this embedding descends to the embedding

g → U (g)

into the universal enveloping algebra.
The algebra U (g) can be given a coproduct

δ : U (g) → U (g) ⊗ U (g)

which turns it into a Hopf algebra. It is defined by declaring all the elements of
g ⊂ U (g) to be primitive:

δ(x) = x ⊗ 1 + 1 ⊗ x .

Since the coproduct in a Hopf algebra is an algebra homomorphism, this is sufficient
to determine δ completely. According to the Poincaré–Birkhoff–Witt theorem, as a
coalgebraU (g) is isomorphic to the symmetric algebra k[g]. This latter can be thought
of as the universal enveloping algebra of the abelian Lie algebra which coincides with
g as a vector space and whose Lie bracket is identically zero.

It is immediate that as a coalgebra U (g) is cocommutative. Also, by construction,
it is primitively generated (that is, generated by primitive elements). The antipode S
on U (g) is uniquely determined; in particular, on each x ∈ g we have S(x) = −x .
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132 J. Mostovoy et al.

1.4 Hopf algebras → Lie algebras

A straightforward calculation shows that the subspace of primitive elements in a Hopf
algebra is always closed under the commutator. In particular, there is a functor that
assigns to each Hopf algebra the Lie algebra of its primitive elements. It is not hard
to prove that it gives an equivalence of the category of cocommutative primitively
generated Hopf algebras to that of Lie algebras (of not necessarily finite dimension).

1.5 Lie groups → Hopf algebras

Let DeG be the space of distributions (that is, linear functionals on functions) on the
Lie group G, supported at the unit e. In other words, DeG is the space spanned by
the delta function supported at e and all of its derivatives. The multiplication on G
gives rise to a convolution product on DeG; the diagonal map G → G × G induces a
coproduct on DeG. It can be seen that DeG is a Hopf algebra; moreover, it is precisely
the universal enveloping algebra of the Lie algebra of G.

1.6 Hopf algebras → Lie groups

To recover a Lie group from a Hopf algebra, one uses the fact that any cocommutative
Hopf algebra generated by its primitive elements is a universal enveloping algebra
of some Lie algebra. In particular, by the Poincaré–Birkhoff–Witt theorem, it can be
thought of as the symmetric algebra k[V ] on some vector space V over the base field
k with a modified product

μ : k[V ] ⊗ k[V ] → k[V ].

Consider the composition of this product with the projection k[V ] → V onto the
space of primitive elements. The resulting map

Fμ : k[V ] ⊗ k[V ] → V

can be interpreted as follows. Choose a basis e1, . . . , en in V . Then k[V ] is the algebra
of the polynomials in the ei . Each coordinate of the map Fμ is a formal power series in
xi and y j , where x1, . . . , xn and y1, . . . , yn are the coordinates dual to the ei in the first
and the second copy of V respectively. It turns out that for any Hopf algebra such that
V is of finite dimension these formal power series all converge in a neighbourhood U
of the origin in V × V and thus give an analytic map

V × V ⊇ U → V .

This map is, in fact, a finite-dimensional local Lie group and these are always locally
equivalent to simply-connected Lie groups.
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Hopf algebras in non-associative Lie theory 133

1.7 The Ado theorem

The fundamental triangle of Lie theory is remarkably robust: it can be generalized to a
variety of situations. For instance, finite-dimensional Lie algebras can be replaced by
infinite-dimensional Lie algebras, Lie algebras in tensor categories other than vector
spaces, or, aswe shall see, can be substituted formore general kinds of tangent algebras.
There is only one construction that does not always survive into the more general
context.

Note that while recovering a Lie group either from its Lie algebra or from its Hopf
algebra of distributions we first construct a formal Lie group, that is, a collection of
power series which a priori may not converge. In order to see that this formal Lie
group comes from an actual Lie group we need the Ado theorem, which states that
every finite-dimensional Lie algebra has a faithful finite-dimensional representation.
In particular, it follows that any finite-dimensional formal Lie group can be obtained
from a local subgroup in a matrix group. A further argument is then needed to see that
every such local subgroup extends to an injective homomorphism of a Lie group to
the group of invertible matrices.

This proof breaks down already in the case of infinite-dimensional Lie groups.
It also fails in the case of general finite-dimensional loops. Nevertheless, there are
situations (Moufang loops, nilpotent loops) where each formal multiplication extends
to a global loop. In these situations we have an analogue of the Ado theorem, though
we should point out that this theorem alone does not guarantee the globalizability of
formal products.

1.8 Nilpotent groups

Lie algebras and Hopf algebras also appear in the theory of discrete nilpotent groups.
Let G be a discrete group. Write QG for the group algebra of G over the rationals

and let � ⊂ QG be the augmentation ideal. The i th dimension subgroup Di G (or
Di (G,Q)) consists of all those g ∈ G for which

g − 1 ∈ �i .

The dimension subgroups form a descending central series which is closely related to
the lower central series γi G defined inductively by γ1G = G and γi G = [γi−1G, G]
for i > 1. Namely, Di G consists of all g ∈ G for which there exists n ≥ 1 with the
property that gn ∈ γi G.

The graded abelian group

LG =
⊕

i>0

Di G/Di+1G

associated with the dimension series is actually a Lie ring with the Lie bracket induced
by the group commutator

[a, b] = a−1b−1ab.
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Tensored with the rational numbers, this Lie ring becomes a Lie algebra and its uni-
versal enveloping algebra can be explicitly identified with the graded algebra

⊕

i≥0

�i/�i+1

associated with the filtration on QG by the powers of the augmentation ideal.
In general, a discrete group G cannot be recovered from the Lie algebra LG ⊗

Q coming from the dimension series (equivalently, from the lower central series).
However, if G is a finitely generated nilpotent group, LG ⊗ Q is finite-dimensional
and can be integrated to a Lie group into which G embeds as a discrete subgroup if it
is torsion-free.

One group for which the dimension series and the lower central series can
be described explicitly is the free group Fn on n generators x1, . . . , xn . Let
Z〈〈X1, . . . , Xn〉〉 be the ring of formal power series in n non-commuting variables.
The group of invertible elements in this ring consists of power series which start with
±1. We denote this group by Z〈〈X1, . . . , Xn〉〉∗. There is a homomorphism

M : Fn → Z〈〈X1, . . . , Xn〉〉∗,
xi �→ 1 + Xi , (2)

which is, in fact, injective. The mth terms of the dimension and of the lower central
series of Fn coincide and consist of those elements which map underM to the power
series of the form

1 + terms of degree at least m.

This, together with the injectivity of M, shows that the free group Fn is residually
nilpotent.

For the results on dimension subgroups and powers of the augmentation ideal we
refer the reader to [44] (Chapter 3, Section 4) and to [31].

The non-associative versions of the above constructions and statements are the
subject of the present paper. There are fundamental (and vast) parts of Lie theory
which have not been understood yet in the non-associative context, most notably
the representation theory. By no means we want to suggest that there are inherent
obstructions to this, apart from time and effort.

2 Local, infinitesimal and formal loops

The non-associative Lie theory deals with the following three equivalent categories:

• formal loops;
• Sabinin algebras;
• irreducible cocommutative and coassociative non-associative Hopf algebras.
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Hopf algebras in non-associative Lie theory 135

In contrast to the usual finite-dimensional Lie theory, there is no procedure to extend
formal loops to global multiplications onmanifolds. This, however, should not be seen
as a problem since many non-associative products are inherently of local nature. The
true analogue of a Lie group in the non-associative Lie theory is not a smooth loop,
but, rather, a local loop, or a germ of a local loop (We shall use the term “infinitesimal
loops” for germs of local loops). A formal loop produces a local loop whenever the
power series that define it converge in some neighbourhood of the origin; verifying
this is a problem from analysis and we shall not discuss it here.

2.1 Local loops and smooth loops

Let M be a smooth finite-dimensional manifold.1 A local multiplication on M (or,
more precisely, on a non-empty open subset U ⊆ M) is a smooth map

F : U × U → M.

If there exists e ∈ U with the property that

F |e×U = Id(U ) = F |U×e,

the local multiplication F is called unital, or a local loop. The point e is referred to as
the unit; if the unit exists, it is necessarily unique. Often, when working with a fixed
local loop F , we shall write F(x, y) simply as x · y or xy.

For any local loop there exist two local multiplications V × V → M with V ⊆ U ,
denoted by x/y and y\x . They are defined by

x/y · y = x

and

y · y\x = x

for all x, y ∈ V , and, for obvious reasons, are called the right and the left division,
respectively. The existence of both divisions follows from the fact that the right and
left multiplication maps

Ry = F |U×y : U → M

and

L y = F |y×U : U → M

are the identity when y = e. We take V to be the largest neighbourhood on which
both divisions are defined.

1 we assume that dim M > 0 is part of the definition of a smooth manifold.

123



136 J. Mostovoy et al.

In general, there is no reason to expect that the right and the left divisions would
be expressed as multiplications by an inverse of any kind.

A local loop is called a smooth loop ifU = V = M in the above definitions. Recall
that a discrete loop, or, simply, a loop, is a set M with a globally defined product for
which there exists a unit element, and such that the left and the right multiplications
by a fixed element of M are bijections. In particular, for each loop there are globally
defined right and left divisions. In these terms, a smooth loop can be defined as a
loop which, at the same time, is a smooth manifold, with the multiplication and the
divisions being smooth maps.

2.2 Example: invertible elements in algebras

Call an elementa of a unital non-associative algebra invertible if both equationsax = 1
and ya = 1 have a unique solution. The invertible elements of a finite-dimensional
algebra over the real numbers form a local loop.

This local loop is not necessarily a smooth loop. Consider, for instance, the Cayley–
Dickson algebras An on R2n

. When n > 3 there exist pairs of invertible elements in
An whose product is not invertible.

2.3 Example: homogeneous spaces

Recall that a smooth manifold M is a homogeneous space for a Lie group G if G acts
transitively on M and the action is smooth. Choose a point e ∈ M . Then we have a
smooth map

p : G → M,

which sends g ∈ G to g(e) ∈ M . This map identifies M , as a smooth manifold, with
the left coset space G/Ge, where Ge is the stabilizer of e. Conversely, if G is a Lie
group and H is a closed subgroup, the set G/H of left cosets of G by H is a smooth
manifold and a homogenous space for G.

Let M be a homogeneous space for G and U ⊆ M a neighbourhood of a point
e ∈ M . Assume that we are given a section of p over U , that is, a smooth map
i : U → G such that i(e) is the unit in G and p ◦ i = Id(U ). Then M is a local loop,
with the multiplication U × U → M defined as

(x, y) �→ p (i(x)i(y)) .

When p is actually a homomorphism of Lie groups, that is, when Ge is a normal
subgroup in G, this local loop structure is the same thing as the product on M restricted
to U × U .

There are many important examples of homogeneous spaces, among them spheres,
hyperbolic spaces and Grassmannians.
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Hopf algebras in non-associative Lie theory 137

2.4 Infinitesimal loops

Let F and F ′ be two local loops on U ⊆ M and U ′ ⊆ M ′ respectively. A morphism
F → F ′ is a smooth map f : M → M ′ such that f (U ) ⊆ U ′ and such that

F ′( f (x), f (y)) = f (F(x, y))

for all x, y ∈ U . With this notion of a morphism local loops form a category.
If a morphism f from F to F ′ is an open embedding, we shall say that F is a

restriction of F ′. In this situation, the local loops F and F ′ may be thought of as being
“locally the same” near the unit. Certainly, they should not be distinguished by any
infinitesimal algebraic structure at the unit, such as those arising in the classical Lie
theory (think of formal groups or Lie algebras). With this in mind, we define local
equivalence as the equivalence relation on the category of local loops generated by
open embeddings. An equivalence class of local loops is called an infinitesimal loop.

Strictly speaking, it is the infinitesimal loops and not the local loops that are the
main subject in the non-associative Lie theory. However, for the sake of simplicity,
we shall speak of local loops rather than infinitesimal loops, wherever possible. This
should not lead to confusion.

2.5 Analytic local loops and formal loops

Examples of local loops are very easy to construct via power series, since the only
condition a multiplication of a local loop has to satisfy is the existence of the unit.
Consider an n-tuple of power series

Fi ∈ R[[x1, . . . , xn, y1, . . . , yn]]

where 1 ≤ i ≤ n, and assume that all of them converge in some neighbourhood of the
origin in R2n . The map

(x1, . . . , xn, y1, . . . , yn) �→ (F1(x j , yk), . . . , Fn(x j , yk))

defines a local loop on Rn , with the origin as the unit, if and only if for all i

Fi = xi + yi +
n∑

k,l=1

xk yl · Pkl
i (3)

with Pkl
i ∈ R[[x1, . . . , xn, y1, . . . , yn]].

A local loop on an analytic manifold whose multiplication can be written in this
form in some coordinate chart is called analytic. Similarly, an infinitesimal loop is
analytic if it has an analytic representative.

The convergence of the power series Fi that specify an analytic loop is often irrele-
vant. For instance, a power series with no constant term can be substituted into another
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power series instead of a variable, and thus we do not need convergence in order to
speak of the algebraic identities, such as associativity or Moufang identities, satisfied
by an analytic loop. In what follows we shall refer to an n-tuple of formal power series
Fi of the form (3) as a formal loop.

Let us state this definition in the form that does not make reference to any explicit
basis inRn , nor to the fact that n is finite. For a vector space V and a field k write k[V ]
for the symmetric algebra of V over k. A formal map from V to a vector space W is
a linear map k[V ] → W which annihilates the constants. A formal multiplication is
a formal map from V × V to V . Given that k[V × V ] is canonically isomorphic to
k[V ] ⊗ k[V ], this is the same as a linear map

k[V ] ⊗ k[V ] → V .

A formal multiplication F is a formal loop if

F |1⊗k[V ] = πV = F |k[V ]⊗1,

where πV : k[V ] → V is the projection of a polynomial onto its linear part.
Since k[V ]∗ is the algebra of formal power series in V , a choice of coordinates in

V specifies a formal loop as an n-tuple of formal power series in 2n variables, where
n = dim V is not necessarily finite.

2.6 The canonical connection and geodesic loops

Let F be a local loop on U ⊆ M and let V ⊆ U be a neighbourhood on which the
left division is well-defined. The canonical connection ∇ on the tangent bundle T V
has virtually the same definition as for the Lie groups (apart from the fact that it is not
defined on the whole of M): for a, b ∈ G the corresponding parallel transport sends
TaG to TbG by the differential of the smooth map

x �→ b(a\x).

It is clear that ∇ is flat. There is no reason, however, for the torsion tensor of ∇ to be
constant.

It can be seen that each flat connection on a neighbourhood of a point comes from
a local loop, called the geodesic loop of the connection. Indeed, a connection ∇ on a
manifold M gives rise to the exponential map

expa : Ta M ⊇ Ua → M,

defined on a neighbourhood Ua of the origin in Ta M , for each a ∈ M . If Ua is chosen
to be small enough, this map has an inverse, denoted by loga . Fix a point e ∈ M . Then
there is a neighbourhood U ⊆ M of e such that

a · b = expa (a loge b), (4)
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Hopf algebras in non-associative Lie theory 139

is well defined for all a, b ∈ U . Here a loge b stands for the parallel transport of the
vector loge b ∈ Te M to Ta M . The operation · defines a local loop on U ⊆ M and it
is a straightforward check that ∇ is its canonical connection. This loop is called the
geodesic loop of ∇. In order to be precise, we should consider the geodesic loop as an
infinitesimal rather than local loop since there is a choice involved in the construction
of the neighbourhood U .

It can be shown that the necessary condition for an infinitesimal loop (which is also
sufficient in the case of analytic loops) to be a geodesic loop of a flat connection is
that it should satisfy the right alternative property. Namely, it should be represented
by a local loop such that

(a · b) · b = a · (b · b)

whenever both sides are defined. In particular, each local loop F gives rise to a right
alternative infinitesimal loop, which is the geodesic loop of the canonical connection
of F . One can recover a local loop F from the corresponding geodesic loop with the
help of the additional operation Φ defined by

a · b = a × Φ(a, b). (5)

Here · denotes the multiplication in F and × is the product in the geodesic loop. Φ
here can be any function of a and b that satisfies Φ(e, b) = b and Φ(a, e) = e.

The construction of the geodesic loop associated with a flat connection is due to
Kikkawa [24] and Sabinin [49].

There is also a corresponding formal notion of a canonical connection. Given a
formal loop F on a vector space V , the formal canonical connection of F is the
restriction of F to the subspace

k[V ] ⊗ V ⊂ k[V ] ⊗ k[V ].

Among all the formal loops that give rise to the same formal connection there is exactly
one right alternative formal loop.

The notion of a geodesic loop is of crucial importance in non-associative Lie theory.
Indeed, there are two constructions of the tangent structure to a local (infinitesimal,
formal) loop and both are based on the fact that there is a flat connection associated
with a local loop, see the next section. In fact, in the approach to the Lie theory
taken by Sabinin in [52] the role of non-associative analogues of Lie groups is played
not by loops but by affinely connected manifolds. This involves additional algebraic
structures such as odules; at the moment of the writing of the present paper the theory
of odules has not noticeably advanced beyond the results of [52].

3 Sabinin algebras

Many of the well-known generalizations of Lie algebras involve only one or two
operations: Malcev algebras have one binary bracket, Lie triple systems one ternary
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bracket, Bol, Lie-Yamaguti and Akivis algebras one binary and one ternary bracket. In
contrast, Sabinin algebras which are the most general form of the tangent structure for
loops, have an infinite set of independent operations, and, as a consequence, admit an
infinite number of axiomatic definitions.At themoment there are three different natural
constructions for the set of operations in a Sabinin algebra. Two of these constructions
are due to Sabinin and Mikheev and we shall review them in this section. The third
set of operations, which appeared for the first time in [57] in the study of the primitive
elements in non-associative bialgebras, will be considered in the next section. Finding
a complete set of relations satisfied by this third set of operations is presently an open
problem.

Remark 1 The fact that the definition of Mikheev and Sabinin involved an infinite
number of operations may have contributed to its slow acceptance. For some time
Akivis algebras were considered as possible analogues of Lie algebras. The definition
of an Akivis algebra involves two operations: an antisymmetric binary bracket and a
ternary bracket, with only one identity that relates the two operations and generalizes
the Jacobi identity. In spite of the elegance and simplicity of this definition, the category
of Akivis algebras is not equivalent to that of formal loops and, hence, is not suitable
as a basis for non-associative Lie theory.We shall consider the Akivis algebras in more
detail in Sect. 4.7.

Both ways of deriving the structure of a Sabinin algebra from a non-associative
product that were proposed byMikheev and Sabinin consist of two steps. First, a local
loop is replaced by the corresponding geodesic loop (which, in the analytic case is the
same as a right alternative local loop), and then the tangent operations for a geodesic
loop are extracted from its canonical connection. This results in two infinite sets of
completely independent operations. Mikheev and Sabinin used the term “hyperalge-
bra” for the algebraic structure tangent to a geodesic loop and “hyperalgebra with
multioperators” for the general tangent structure. In our terminology hyperalgebras
with multioperators will be called Sabinin algebras, and hyperalgebras (which are the
same as hyperalgebras with the trivial multioperator) will be called flat Sabinin alge-
bras. The adjective “flat” here is supposed to reflect the fact that these are the tangent
structures to general flat connections.

3.1 Flat Sabinin algebras from the torsion tensor of a connection

Let k be a field of characteristic zero. A flat Sabinin algebra is a vector space V over
k together with a set of maps

V ⊗n+2 → V

X1 ⊗ · · · ⊗ Xn ⊗ Y ⊗ Z �→ 〈X1, . . . , Xn; Y, Z〉

for all integers n ≥ 0, satisfying the following identities:

〈X1, . . . , Xn; Y, Z〉 = −〈X1, . . . , Xn; Z , Y 〉,
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Hopf algebras in non-associative Lie theory 141

〈X1, . . . , Xr , A, B, Xr+1, . . . , Xn; Y, Z〉−〈X1, . . . , Xr , B, A, Xr+1, . . . , Xn; Y, Z〉

+
r∑

k=0

∑

α

〈Xα1 , . . . , Xαk , 〈Xαk+1 , . . . , Xαr ; A, B〉, Xr+1, . . . , Xn; Y, Z〉 = 0,

σX,Y,Z

(
〈X1, . . . , Xr , X; Y, Z〉

+
r∑

k=0

∑

α

〈Xα1 , . . . , Xαk ; 〈Xαk+1 , . . . , Xαr ; Y, Z〉, X〉
)

= 0.

Here α varies over the set of all bijections {1, . . . r} → {1, . . . r}, i → αi such that
α1 < α2 < · · · < αk, αk+1 < · · · < αr , k = 0, 1, . . . , r, r ≥ 0, and σX,Y,Z denotes
the sum over all cyclic permutations of X, Y, Z .

The above definition may seem complex, but it has the following geometric mean-
ing.

Consider an affine connection ∇ at a point e of a manifold M . It is characterized by
two tensors: the curvature tensor and the torsion tensorwhich are related by theBianchi
identities. If∇ is flat (as it is in the case of a canonical connection) the curvature tensor
is identically zero. If we assume that ∇ is analytic, the torsion tensor T is uniquely
determined in a neighbourhood of e by its value and the values of all its covariant
derivatives at this point. These derivatives are multilinear operations on Te M . Set

〈Y, Z〉 = T(Y, Z)

and

〈X1, . . . , Xn; Y, Z〉 = ∇X1 . . . ∇XnT(Y, Z)

for all n > 0. Then the brackets defined in this way are antisymmetric in Y and Z ,
since the torsion tensor is antisymmetric, and satisfy the identities which come from
the Bianchi identities and their derivatives, and from the fact that the curvature is
zero. These identities are precisely those that appear in the definition of a flat Sabinin
algebra.

From this construction it is clear that given a flat Sabinin algebra l one can recon-
struct, locally, the corresponding flat connection, and, hence, the infinitesimal loop,
provided that the operations of l define converging power series. The convergence
conditions are explicitly stated by Mikheev and Sabinin in [34,50]. In general, even if
the convergence conditions are not satisfied, the geometric reasoning can be applied
so as to produce a formal loop from any flat Sabinin algebra.

3.2 Flat Sabinin algebras from pairs of Lie algebras

An alternative approach to flat Sabinin algebras is to define them as the algebraic
structure that exists on a complement to a subalgebra in a Lie algebra.

123



142 J. Mostovoy et al.

Start with a direct sum decomposition of vector spaces

g = h ⊕ l, (6)

where g is a Lie algebra and h is a subalgebra. Let πl be the linear projection map
πl : g → lwith h as the kernel. It will be convenient to introduce a simplified notation
for the right-normed iterated bracket in g:

[X1, X2, . . . , Xn] = [X1, [X2, [. . . , Xn] . . .]].

Define a sequence of multilinear operations2 on l by setting for each n ≥ 2 and
X1, . . . , Xn ∈ l

(X1, . . . , Xn) := πl[X1, . . . , Xn].

There are two kinds of relations satisfied by these operations. The relations of the first
kind reflect the fact that they come from Lie brackets. Namely, the anti-symmetry of
the Lie bracket gives

(X1, X2) + (X2, X1) = 0, (7)

and the Jacobi identity translates into the following identity:

(X1, X2, X3) + (X2, X3, X1) + (X3, X1, X2) = 0. (8)

The identities of the second kind express the fact that h is a subalgebra and not just a
vector subspace. If A, B ∈ g are arbitrary elements, then

πl[πlA − A, πlB − B] = 0.

Setting A = [X1, . . . , Xn] and B = [Y1, . . . , Ym] we get

πl[[X1, . . . , Xn], [Y1, . . . , Ym]] + ((X1, . . . , Xn), (Y1, . . . , Ym))

= ((X1, . . . , Xn), Y1, . . . , Ym) − ((Y1, . . . , Ym), X1, . . . , Xn).

Now, the first term in this expression can be rewritten iteratively using the Jacobi
identity in terms of the right-normed brackets so that the last relation takes the form

−((X1, . . . , Xn), (Y1, . . . , Ym)) + ((X1, . . . , Xn), Y1, . . . , Ym)

−((Y1, . . . , Ym), X1, . . . , Xn) =
∑

α

(−1)h(α)(Xα1 , . . . Xαn , Y1, . . . , Ym), (9)

where the summation is taken over all permutations α of the set {1, . . . , n} for which
there exists s such that αi < αi+1 for i < s, and αi > αi+1 for i ≥ s, and h(α) = n−s
(Clearly, for any such α we have that αs = n).

2 Our notation may be potentially confusing where it concerns the trilinear operation (·, ·, ·). Here this is
not the associator.
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We can now define a flat Sabinin algebra as a vector space with a sequence of
multilinear operations (X1, . . . , Xn) for all n ≥ 2 satisfying the relations (7–9). It can
be shown that if l is a flat Sabinin algebra in this sense, there exists a decomposition
(6) which gives rise to the operations on l, [40].

The relation between flat Sabinin algebras in this sense and germs of flat affine
connections is quite straightforward. Given such a connection∇ in the neighbourhood
of a point e on a manifold M , we can identify the tangent space Te M with the space of
all ∇-parallel vector fields. Set g to be the Lie subalgebra generated by the ∇-parallel
vector fields inside the Lie algebra of all vector fields, and h to be the subalgebra
of g consisting of the vector fields that vanish at e. Then we have the direct sum
decomposition

g = h ⊕ Te M,

and Te M acquires the structure of a flat Sabinin algebra.
One can, in fact, write down explicit formulae relating the two sets of operations

in Sabinin algebras, see [34,50].

3.3 Multioperators

Let F be a right alternative local loop F on U ⊆ M and

Φ : U × U → M

a smooth function such that Φ(e, b) = b, Φ(a, e) = e and such that the Jacobian
matrix of Φ(a, b) with respect to b is the identity when b = e. Define a new local
loop FΦ by setting

FΦ(a, b) = F(a, Φ(a, b)).

The canonical connection of FΦ coincides with that of F ; in particular, F is the geo-
desic loop associated with FΦ (Strictly speaking, FΦ is defined on a smaller neigh-
bourhood than U . As usual, one can replace local loops here by infinitesimal loops).

If Φ is analytic, one can write

Φ(a, b) = b +
∑

m≥1,n≥2

Φm,n(a, . . . , a; b, . . . , b), (10)

where Φm,n(X1, . . . , Xm; Y1, . . . , Yn) is linear in each X j and Y j and invariant with
respect to all the permutations of the Xi and of the Y j :

Φm,n(X1, . . . , Xm; Y1, . . . , Yn) = Φm,n(Xσ(1), . . . , Xσ(m); Yτ(1), . . . , Yτ(n))

(11)
for all σ ∈ 
m, τ ∈ 
n .
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This motivates the following definition. A Sabinin algebra is a flat Sabinin algebra
l together with a set of operations

�m,n : l⊗m+n → l

for m ≥ 1, n ≥ 2, satisfying the symmetry conditions (11). Given all that has been
said about the flat Sabinin algebras, it is not hard to show that Sabinin algebras form
a category which is equivalent to the category of all formal loops.

3.4 Free Sabinin algebras

The free Sabinin algebra on a set of generators S is the universal Sabinin algebra
generated by S. It can be constructed as the vector space spanned by the symbols
corresponding to all the possible operations 〈·, . . . , · ; ·, ·〉 andΦm,n(·, . . . , · ; ·, . . . , ·)
and their compositions, whose arguments are elements of S, with the relations of a
Sabinin algebra imposed. Another way to construct the free Sabinin algebras is by
using the techniques described in the next section. Namely, the free Sabinin algebra
on a set of generators S is the set of primitive elements in the free non-associative
algebra on the same set of generators.

Several types of bases in free Lie algebras are known: Hall bases, Lyndon–Shirshov
bases [48], right normed bases of Chibrikov [11]. The construction of Lyndon–
Shirshov bases was extended by Chibrikov [12] to free Sabinin algebras. The dimen-
sions of the graded summands of a free Sabinin algebra on n generatorswere calculated
in [6].

Free Sabinin algebras enjoymany other properties characteristic of freeLie algebras
[12]. In particular, the variety of Sabinin algebras is Schreier (every subalgebra of a free
Sabinin algebra is free). This implies that all automorphisms of finitely generated free
Sabinin algebras are tame, and that the occurrence problem for free Sabinin algebras is
decidable. Also, finitely generated subalgebras of free Sabinin algebras are residually
finite and the word problem is decidable for the variety of Sabinin algebras.

3.5 Further remarks

Just as in the associative case, there exists a Baker–Campbell–Hausdorff formula for
Sabinin algebras. We shall discuss it in the next section.

The two sets of multilinear operations in a Sabinin algebra are completely inde-
pendent and can be considered as Taylor expansions of two non-linear operations.
Sabinin in [52] takes this approach pointing out that it can be applied to non-analytic
loops, and branding the constructions of [34] and [50] as obsolete. The book [52] was
written before it was discovered that Sabinin algebras are important in the theory of
non-associative bialgebras; in this latter context non-linear operations are not easy to
deal with.

4 Non-associative Hopf algebras

It would be fair to say that most of the constructions and results on Sabinin algebras
mentioned in the previous section were the product of a quest for a Lie theory of flat
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connections. The subject of non-associative Hopf algebras has been developed in the
context of the long-standing problem of finding an alternative enveloping algebra for
an arbitraryMalcev algebra.While the existence of such an alternative envelope is still
an open question, it turned out [42] that Malcev algebras have universal enveloping
algebras which are very similar in their properties to usual cocommutative Hopf alge-
bras. Later, it turned out that a similar construction can be carried out for Bol algebras
[45] and, more generally, all Sabinin algebras [46].

Another motivation for the development of the machinery of non-associative Hopf
algebras was the question of whether the commutator and the associator are the only
primitive operations in a non-associative bialgebra. It appeared as a conjecture in
[20]; if it were true, it would imply an important role for the Akivis algebras in
non-associative Lie theory. This conjecture was answered in the negative in [57]:
in non-associative bialgebras, apart from the commutator and the associator, there
exists an infinite series of independent primitive operations. These operations, called
the Shestakov–Umirbaev operations, are obtained from the associator by means of a
procedure resembling linearization; they are closely related to the associator deviations
in the nilpotency theory of loops (see Sect. 8.1).

The role of the non-associative Hopf algebras in the fundamental questions of Lie
theory such as integration was clarified in [39]. Hopf algebraic techniques are also
relevant in other problems, such as the Ado theorem, which will be discussed in
Sect. 7.4.

4.1 The definition and basic properties

Inwhat followswe shall consider algebras and coalgebras over afield k of characteristic
zero.

A unital bialgebra is a unital algebra which, at the same time, is a counital coalgebra
in such a way that the coproduct is an algebra homomorphism (or, equivalently, such
that the product is a coalgebra morphism). It will be convenient to use Sweedler’s
notation in which the coproduct is written as

δ(x) =
∑

x(1) ⊗ x(2).

Aunital bialgebra H with the coproduct δ and the counit ε is called a (non-associative)
Hopf algebra if is endowed with two additional bilinear operations, the right and the
left division

/ : H × H → H, \ : H × H → H,

(x, y) �→ x/y, (x, y) �→ x\y,

such that

∑
(yx(1))/x(2) = ε(x)y =

∑
(y/x(1))x(2)
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and

∑
x(1)\(x(2)y) = ε(x)y =

∑
x(1)(x(2)\y).

When the product in a Hopf algebra is associative and the coproduct is coassociative
we get the usual notion of a Hopf algebra. In this case the antipode S can be defined
as S(x) = 1/x and, generally, we have

x\y = S(x)y and x/y = x S(y)

for all x, y.
The subspace of a Hopf algebra generated by the unit is a simple subcoalgebra. If

this subspace is the only simple subcoalgebra, the Hopf algebra is called irreducible.
In irreducible Hopf algebras the right and left division are uniquely determined.

While non-associativity is an essential property of Hopf algebras that appear in
Lie theory, the coproduct in many interesting cases is, actually, coassociative. For
instance, the loop algebra kL of a loop L is always a coassociative Hopf algebra. In
what followsby aHopf algebrawe shall understand a cocommutative and coassociative
Hopf algebra, unless explicitly stated otherwise.

4.2 Primitive elements and Shestakov–Umirbaev operations

In any associative bialgebra the set of primitive elements is closed under the algebra
commutator. This can be expressed by saying that the commutator is a primitive
operation. Any other primitive operation can be written in terms of the commutators,
in the following sense: if an associative bialgebra H is generated by a set {xi } where
each xi is primitive, then each primitive element in H is a linear combination of
iterated commutators in the xi . We express this by saying that the commutator forms
a complete set of primitive operations.

In non-associative bialgebras there are other primitive operations, most notably the
algebra associator

(a, b, c) = (ab)c − a(bc).

As discovered by Shestakov and Umirbaev in [57], the set of primitive operations
obtained from commutators and associators is not complete. For instance, in the free
unital non-associative algebra on one primitive generator x the element

(x2, x, x) − 2x(x, x, x) = (x2x)x − x2x2 − 2x(x2x) + 2x(xx2)

is primitive, yet cannot be obtained from x by taking linear combinations and compo-
sitions of commutators and associators.

For m, n ≥ 1 let u = x1, . . . , xm and v = y1, . . . , yn be sequences of primi-
tive elements in a bialgebra and write u = ((x1x2) . . .)xm and v = ((y1y2) . . .)yn
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for the corresponding left-normed products. The Shestakov–Umirbaev operations
p(x1, . . . , xm; y1, . . . , yn; z) are defined inductively by

(u, v, z) =
∑

u(1)v(1) · p(u(2); v(2); z),

where (x, y, z) denotes the associator and z is primitive. Here Sweedler’s notation is
extended so as to mean that the sum is taken over all decompositions of the sequences
u and v into pairs of subsequences u(1), u(2) and v(1), v(2); the expressions u(1) and
v(1) are the left-normed products of the elements of u(1) and v(1), respectively. The
subsequences u(i), v(i) are allowed to be empty, in which case we write u(i) = 1 and
v(i) = 1; and, by definition, we have

p(1; v; z) = p(u; 1; z) = 0.

For instance, the operation which corresponds to m = n = 1 is just the associator.
The operations corresponding to m = 2, n = 1 and m = 1, n = 2 are

p(x1, x2; y; z) = (x1x2, y, z) − x1(x2, y, z) − x2(x1, y, z)

and

p(x; y1, y2; z) = (x, y1y2, z) − y1(x, y2, z) − y2(x, y1, z),

respectively.
When the bialgebra in question is a Hopf algebra, the Shestakov–Umirbaev oper-

ations can be written with the help of the left division:

p(x1, . . . , xm; y1, . . . , yn; z) =
∑

(u(1)v(1))\(u(2), v(2), z).

This form of the definition may be preferable since it expresses each operation directly
via the associator.

In [57] it is shown that all Shestakov–Umirbaev operations are primitive, and that
together with the commutator they form a complete set of primitive operations.

In associative algebras the commutator satisfies the Jacobi identity; in particular, the
primitive elements of a bialgebra A form a Lie subalgebra of the commutator algebra
of A. In the non-associative case, the Lie algebras are replaced by Sabinin algebras.
Indeed, set

〈1; y, z〉 = 〈y, z〉 = −[y, z] = −yz + zy

〈x1, . . . , xm; y, z〉 = 〈u; y, z〉 = −p(u; y; z) + p(u; z; y)

ΦSU (x1, . . . , xm; y1, . . . , yn) =
1

m!
1

n!
∑

τ∈
m ,σ∈
n

p(xτ(1), . . . , xτ(m); yσ(1), . . . , yσ(n−1); yσ(n))
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with u = ((x1x2) . . .)xm, 
m the symmetric group on m letters and m ≥ 1, n ≥ 2.
Then the identities of a Sabinin algebra are satisfied for all xi , y j , z in an arbitrary
non-associative algebra, [57].

In particular, we get a functor from non-associative algebras to Sabinin algebras

A �→ UX(A)

that assigns to an algebra A the Sabinin algebra UX(A) on the same vector space. In
the case when A is a bialgebra, the primitive elements of A form a Sabinin subalgebra

Prim(A) ⊂ UX(A),

and we have a functor

A → Prim(A)

generalizing the corresponding functor from associative bialgebras (or Hopf algebras)
to Lie algebras.

4.3 Universal enveloping algebras for Sabinin algebras

It was proved in [46] that each Sabinin algebra l can be realized as the subspace of prim-
itive elements in a certain non-associative irreducible Hopf algebra U (l). Moreover,
the correspondence

l → U (l)

is functorial.
When l is a Lie algebra, the Hopf algebra U (l) is the usual universal enveloping

algebra of l. The properties ofU (l) also closelymirror those of the associative envelop-
ing algebras. There is a version of the Poincaré–Birkhoff–Witt theorem which says
that U (l), as a coalgebra, is isomorphic to the symmetric algebra k[l]. As a corollary,
if l is given a basis (ei ), the algebra U (l) is additively spanned by the left normed
products (. . . (ei1ei2) . . .)ein with ik ≤ ik+1. As a consequence, Hopf algebras U (l)
are right and left Noetherian for finite-dimensional l and have no zero divisors.

Most importantly, we have the Milnor–Moore theorem which states that each irre-
ducible Hopf algebra A is the universal enveloping algebra of the Sabinin algebra of
its primitive elements:

A = U (Prim(A)).

This implies that the universal enveloping algebra functor is an equivalence of the
category of Sabinin algebras with that of irreducible Hopf algebras.

An explicit construction of U (l) can be found in [46] or in Section 4.3 of [39].
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It seems plausible that for a flat Sabinin algebra l represented as complement to a
Lie sub algebra h in a Lie algebra g the algebraU (l) should have an explicit description
in terms of U (g) and U (h). At the moment we only have a description of this kind for
Malcev algebras and Lie triple systems (Sect. 6).

4.4 Loops and Hopf algebras of distributions

A distribution on a manifold M is a linear functional on the functions on M . A dis-
tribution is said to be supported at a point if its value on a function only depends on
the germ of the function at this point. Write De M be the space of distributions on a
manifold M supported at the point e ∈ M . Under some reasonable conditions, which
we shall assume to be satisfied, De M as a vector space is spanned by the Dirac delta
function at e and all of its (higher) derivatives.

The space De M has the natural structure of a coalgebra with the coproduct induced
by the diagonal map M → M × M . As a coalgebra, it is isomorphic to the symmetric
algebra k[Te M], and the space of primitive elements in De M consists of all the deriv-
atives along some vector in Te M . In particular, it is cocommutative, coassociative and
irreducible, since all these properties hold in k[Te M].

A local loop structure U × U → M in a neighbourhood of e induces a product

DeU ⊗ DeU → De M = DeU.

This product is readily seen to be a coalgebra homomorphism, and, hence, DeU =
De M is a Hopf algebra. If L is a local loop onU , the notation De L will stand for DeU
with this Hopf algebra structure.

In the case when a local loop L is analytic, the product on De L can be expressed
in terms of the coefficients of the power series that define L . In particular, this makes
it possible to define the Hopf algebra of distributions for any formal loop, and the
explicit formulae in the formal case are quite straightforward.

Indeed, any formal map

θ : k[V ] → W

can be lifted to a unique coalgebra morphism

θ ′ : k[V ] → k[W ],

which is defined as

θ ′(μ) =
∞∑

n=0

1

n!θ(μ(1)) · · · θ(μ(n)) = ε(μ)1 + θ(μ) + · · · .

Note that this is always a finite sum since the terms with n greater than the degree of
μ vanish.
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In particular, any formal loop

F : k[V × V ] = k[V ] ⊗ k[V ] → V

lifts to a product

F ′ : k[V ] ⊗ k[V ] → k[V ],

which gives k[V ] the structure of a non-associative Hopf algebra. If the series that
define F converge, this Hopf algebra coincides with the Hopf algebra of the distribu-
tions De F .

By the Milnor–Moore and the Poincaré–Birkhoff–Witt theorems, each irreducible
Hopf algebra can be considered as a product on k[V ] for some vector space V . Taking
the primitive part of this product we get a formal loop:

k[V ] ⊗ k[V ] → k[V ] → Prim(k[V ]) = V .

This establishes an equivalence between the category of formal loops and that of
irreducible Hopf algebras.

4.5 The two structures of a Sabinin algebra on the tangent space to a loop

Given a local loop L on a manifold M , there are two ways to obtain the operations
of a Sabinin algebra on Te M . The first way was described by Sabinin and Mikheev:
the brackets are the derivatives of the torsion tensor of the canonical connection of
L and the multioperator Φ measures the failure of L to be right alternative. The
second possibility is to use the Sabinin algebra operations, as defined by Shestakov
and Umirbaev, on the space of primitive elements in the Hopf algebra De L .

It turns out that these two Sabinin algebra structures are almost, though not quite,
the same. Namely, the brackets in both Sabinin algebras coincide, while the Mikheev–
Sabinin multioperator Φ is different from the Shestakov–Umirbaev multioperator
ΦSU . At the moment it is not known how to express the Mikheev–Sabinin multioper-
ator in terms of the Shestakov–Umirbaev primitive operations.

4.6 Exponentials, logarithms and the Baker–Campbell–Hausdorff formula

In the associative case, the exponential map is the unique, up to a rescaling, power
series that sends the primitive elements of a complete Hopf algebra bijectively onto its
group-like elements. Since the group-like elements in a Hopf algebra form a group,
the Baker–Campbell–Hausdorff formula (1) endows the Lie algebra of the primitive
elements with the structure of a group. This construction can be applied to any Lie
algebra so as to obtain the corresponding formal Lie group.

Complete Hopf algebras can be defined in the non-associative context as well;
the exponential and logarithmic power series in this situation are series in one non-
associative variable. In contrast with the associative case, however, the exponential
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and the logarithm are not defined uniquely by the condition that they interchange the
primitive and the group-like elements. In fact, this condition is satisfied by an infinite-
dimensional affine family of power series all of which can be used to define a functor
from Sabinin algebras to formal loops via a formula of Baker–Campbell–Hausdorff
type. For instance, there exists a unique non-associative exponential series with the
additional property that

exp 2x = exp x exp x

and whose linear term is x . The first few terms of the corresponding Baker–Campbell–
Hausdorff formula were calculated explicitly byGerritzen andHoltkamp in [14]. They
do not speak of Sabinin algebras and, in particular, do not discusswhether their formula
provides any kind of integration.

A different exponential series was considered in [39]. Replace in the usual expo-
nential series the term xn with the left-normed product of n copies of a non-associative
variable x :

exp x = 1 + x + 1

2! x2 + 1

3! x2x + 1

4! (x2x)x + · · ·

The exponential defined in thisway is, essentially, the exponentialmap of the canonical
connection on the loop of formal power series in one non-associative variable and non-
zero constant term.

The non-associative logarithm, which is defined as the inverse of the exponential,
can be calculated explicitly and its coefficients involve Bernoulli numbers. Let f :
N → R be a sequence of elements of some ring R, indexed by the natural numbers. It
can be extended to an R-valued function defined on all non-associative monomials in
x . Given a non-associative monomial τ define fτ inductively as follows. For τ = x set
fτ = 1. If τ �= x , there is only one way of writing τ as a product (. . . ((xτ1)τ2) . . .)τk .
Set

fτ = fk · fτ1 · · · · · fτk .

With this notation we have

log(1 + x) =
∑

τ

Bτ

τ ! · τ,

where τ varies over the set of all non-associative monomials in x , and Bτ and τ ! are
the extensions of the Bernoulli numbers and the factorial, respectively, to the set of
non-associative monomials [39].

Rather thanuse (1),wedefine the formal power seriesL(x, y) in twonon-associative
variables x and y by the formula

L(x, y) = log

⎛

⎝
∑

m,n≥0

1

m!n! xm yn

⎞

⎠ ,

123



152 J. Mostovoy et al.

where all the products inside the logarithm are assumed to be left-normed. It can
be seen that this series can be written as an infinite linear combination of primitive
operations in x and y. If applied to a Sabinin algebra l, it gives a formal loop whose
tangent algebra has the same brackets as l butwhosemultioperator is zero. In particular,
it provides formal integration for flat Sabinin algebras [40].

If l is not flat, one defines the Baker–Campbell–Hausdorff series to be

L(x, Φ(x, y)),

whereΦ(x, y) is the power series defined by themultioperator as in (10). This formula
provides formal integration for arbitrary Sabinin algebras.

4.7 Akivis algebras and their envelopes

An Akivis algebra is a vector space with one bilinear and one trilinear operation,
denoted by [·, ·] and (·, ·, ·) respectively, such that

[x, y] = −[y, x]

and

[[x, y], z] + [[y, z], x] + [[z, x], y] = (x, y, z) + (y, z, x) + (z, x, y)

−(x, z, y) − (z, y, x) − (y, x, z)

for all x, y, z. Any algebra is an Akivis algebra, with [·, ·] being the commutator and
(·, ·, ·) the associator. If A is an algebra, denote by Ak(A) the algebra A considered as
an Akivis algebra. Each Sabinin algebra is also automatically an Akivis algebra since
the commutator and the associators are both primitive operations.

It was proved in [55] that for each Akivis algebra a there is a Hopf algebra UAk(a)
togetherwith an injectivemorphismofAkivis algebrasa ↪→ UAk(a)which is universal
in the sense that any Akivis algebra morphism a → Ak(A) lifts to a unique algebra
homomorphism UAk(a) → A.

If a is actually a Sabinin algebra, UAk(a) is, in general, different from U (a). In
particular, the image of a inUAk(a) is contained in the subspace of primitive elements,
but not every primitive element of UAk(a) comes from a.

4.8 Dual Hopf algebras

Inverting the arrows in the categorical definition of an associative Hopf algebra one
arrives to the definition of the same structure. In the non-associative case this is no
longer true.

A unital bialgebra H with the coproduct δ and the counit ε is called a dual Hopf
algebra if is endowed with two additional linear operations H → H ⊗ H , called the
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right and the left codivision

x �→
∑

x/1/ ⊗ x/2/, x �→
∑

x\1\ ⊗ x\2\,

such that

∑
x/1/(1) ⊗ x/1/(2)x/2/ =

∑
x(1) ⊗ ε(x(2)) =

∑
x(1)/1/ ⊗ x(1)/2/x(2)

and

∑
x\1\x\2\(1) ⊗ x\2\(2) =

∑
ε(x(1)) ⊗ x(2) =

∑
x(1)x(2)\1\ ⊗ x(2)\2\.

The dual of a finite-dimensional Hopf algebra is, rather tautologically, a dual Hopf
algebra. In particular, the space of functions on a finite loop is a dual Hopf algebra,
with the codivisions defined as

∑
f/1/(x) ⊗ f/2/(y) = f (x/y) and

∑
f\1\(x) ⊗ f\2\(y) = f (y\x).

It is dual to the loop algebra, which is a cocommutative and and coassociative Hopf
algebra.

A more general example is the space of functions on an algebraic loop.
An (affine) algebraic loop is an affine variety with the structure of a loop for which

the multiplication and both divisions are morphisms (regular functions). Since the
space O(X) of regular functions on any affine variety X has the property that

O(X × X) = O(X) ⊗ O(X),

it follows that for an affine algebraic loop X the space O(X) is a commutative and
associative dual Hopf algebra, with the codivisions defined in the same fashion as
for finite loops. Moreover, over an algebraically closed field k the category of affine
algebraic loops is equivalent to that of finitely generated commutative and associative
dualHopf algebras (Thedetails are, essentially, the sameas for affine algebraic groups).

Remark 2 In principle, one may consider bialgebras with two divisions and two codi-
visions satisfying the identities that hold in Hopf algebras and in dual Hopf algebras.
However, it can be shown that, in general, there is no way to introduce codivisions
on the Hopf algebras that are of main interest here, namely, the universal enveloping
algebras of Sabinin algebras.

5 Identities and special classes of loops

5.1 Identities in Hopf algebras coming from identities in loops

Informally speaking, a non-associative word is an expression formed from several
indeterminates by applying the multiplication and the right and the left divisions (In
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particular, a monomial is a non-associative word formed using multiplication only).
If w is such a word, a local loop on M is said to satisfy the identity w = e if for all the
values of the indeterminates in M for which w is defined, the result of performing all
the operations in w is the unit. More generally, one can speak of the identities of the
form w1 = w2 where w1 and w2 are two words. As we already pointed out, identities
also make sense in formal loops.

An identity satisfied by a local (formal) loop can be lifted to an identity in its
algebra of distributions. If we start with a formal loop F on a vector space V , then a
non-associative word w in n variables gives rise to a formal map w : k[V ]⊗n → V
which can be lifted to a coalgebra map w′ : k[V ]⊗n → k[V ]. Then the identity

w1 = w2 (12)

holds in F if and only if we have
w′
1 = w′

2 (13)

with any choice of arguments in k[V ]. The identity (13) in the algebra of distributions
is referred to as the linearization of the identity (12).

The simplest example is the associativity in a formal loop which is necessary and
sufficient for the associativity of its algebra of distributions. An analogous statement
holds for the commutativity. A less trivial example is the left Moufang identity

x(y(xz)) = ((xy)x)z.

It translates into the identity

∑
μ(1)(ν(μ(2)η)) =

∑
((μ(1)ν)μ(2))η (14)

in the corresponding algebra of distributions. Non-associative Hopf algebras in which
(14) is satisfied are called Moufang–Hopf algebras.

Geodesic loops are right alternative; their algebras of distributions satisfy

∑
μ(ν(1)ν(2)) =

∑
(μν(1))ν(2). (15)

5.2 Identities in Sabinin algebras coming from identities in loops

Identities in loops also produce identities in Sabinin algebras. In principle, there is
a straightforward way to find all the identities in a Sabinin algebra that are implied
by a given loop identity. Namely, the Baker–Campbell–Hausdorff formula expresses
the loop product in terms of the operations in the corresponding Sabinin algebra;
imposing an identity on a loop, therefore, imposes an infinite set of identities on its
Sabinin algebra. This set can be hugely redundant and choosing a subset consisting
of independent identities is difficult in practice. Nevertheless, this is not necessarily
an impossible task: Kuzmin [26] used this method to show that a Malcev algebra
integrates to a local Moufang loop.

123



Hopf algebras in non-associative Lie theory 155

Since loop identities translate into identities in Hopf algebras and in Sabinin alge-
bras one can state various specializations of the general Lie theory for loops that satisfy
a given set of identities. The most fundamental example of this is the Lie theory for
right alternative loops which relates them to flat Sabinin algebras and Hopf algebras
satisfying (15). There are many other such Lie theories for loops with identities; we
describe some of them below.

5.3 Moufang loops and Malcev algebras

Historically, the first generalization of the Lie theory to non-associative products was
the theory of Moufang loops and Malcev algebras. Recall that a Malcev algebra is a
vector space with an antisymmetric bracket that satisfies

[J (a, b, c), a] = J (a, b, [a, c])

where

J (a, b, c) = [[a, b], c] + [[b, c], a] + [[c, a], b].

In this setup, we have the following three equivalent categories: simply-connected
finite-dimensional Moufang loops, finite-dimensional Malcev algebras, and finitely
generated irreducible Moufang-Hopf algebras. The equivalence of first two categories
was established in the works of Malcev [30], Kuzmin [26] and Kerdman [23], while
the third category was introduced only recently in [42].

An important feature of this case is the fact that finite-dimensional Malcev algebras
always integrate to globally defined Moufang loops. While the original proof of this
fact [23] is rather inaccessible, the modern argument uses the theory of groups and
algebras with triality and consists in translating the problem into the context of Lie
groups and Lie algebras, see Sect. 6 for more details. The Ado theorem also holds for
finite-dimensional Malcev algebras [42], see more in Sect. 7.

Moufang loops provide an example of how one can pass from loop identities to
Sabinin algebra identities via the identities in the bialgebra of distributions. Given a
Moufang loop M , the Moufang–Hopf identity (14), which holds in De M , implies that
the tangent space Te M = Prim(De M) belongs to the generalized alternative nucleus
of De M . For an algebra A the generalized alternative nucleus is defined as

Nalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) = (x, y, a) for all x, y ∈ A}.

It is a Malcev algebra with the bracket given by [a, b] = ab − ba. The rest of the
Sabinin algebra operations in Te M can be expressed via the Malcev bracket [46]; as a
consequence, the Malcev algebra structure is sufficient to reconstruct a local Moufang
loop.

A long-standing open problem proposed by Kuzmin [26] is whether all Malcev
algebras are special, that is, whether each Malcev algebra can be embedded into the
commutator algebra of an alternative algebra. The formal integration procedure gives
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an embedding of a Malcev algebra into the generalized alternative nucleus of its uni-
versal enveloping algebra. However, the universal enveloping algebra of a Malcev
algebra is not alternative, in general. One can define the universal alternative envelop-
ing algebra of aMalcev algebram as themaximal alternative quotient ofU (m). Explicit
calculations of both kinds of enveloping algebras for specific Malcev algebras can be
found in [7,9,59].

5.4 Bol loops and Bol algebras

The variety of left Bol loops is defined by the left Bol identity

x(y(xz)) = (x(yx))z.

Its linearization is the identity

∑
μ(1)(ν(μ(2)η)) =

∑
(μ(1)(νμ(2)))η. (16)

A (left) Bol algebra is a vector space with one bilinear antisymmetric bracket and one
trilinear bracket that satisfy the following identities:

[a, a, b] = 0,

[a, b, c] + [b, c, a] + [c, a, b] = 0,

[x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]]

and

[a, b, [x, y]] = [[a, b, x], y] + [x, [a, b, y]] + [x, y, [a, b]] + [[a, b], [x, y]].

The category of infinitesimal analytic finite-dimensional Bol loops is equivalent to
the category of finite-dimensional left Bol algebras and to the category of irreducible
Hopf algebras satisfying (16). While the correspondence between Bol loops and Bol
algebras is well-studied (see [34,41,52]), the Hopf algebras in this context were first
considered in [45].

Similarly to the case of Moufang loops, one can arrive to the Bol algebra identities
via the distribution bialgebras. The identity (16) satisfied in the bialgebra of distribu-
tions shows that the primitive elements always belong to the left alternative nucleus of
the distribution bialgebra, where the left alternative nucleus of an algebra A is defined
as

LNalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) for all x, y ∈ A}.

Any subspace of LNalt(A) which is closed under the operations

[a, b] = ab − ba
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and

[a, b, c] = a(bc) − b(ac) − c[a, b]

is a (left) Bol algebra. This is the case, in particular, for Te M inside LNalt(De M),
where M is a Bol loop [45]. All the other Sabinin algebra operations can be expressed
in terms of these two brackets and, thus the structure of a Bol algebra is sufficient to
reconstruct a local left Bol loop.

The speciality problem for Malcev algebras has its generalization to Bol algebras.
Namely, onemay askwhether eachBol algebra is contained in a left alternative algebra
as a Bol subalgebra. Hentzel and Peresi [19] have shown that this is not the case. Using
computer-aided computations, they found an identity of degree eight which is satisfied
in the Bol algebra of any left alternative algebra, but not in the free Bol algebra.

An important property that holds for Malcev algebras but not for general Bol alge-
bras is the Ado theorem: it was proved in [47] that it fails for Lie triple systems (which
are Bol algebras with the trivial binary bracket).

5.5 Nilpotent loops and nilpotent Sabinin algebras

Let us say that a loop L is nilpotent of class n if the n + 1st term of the commutator-
associator filtration (see Sect. 8.1) of L is trivial:

γn+1L = {e}.

This is not the standard definition of nilpotency in loops; however, there are strong
indications that it is the correct one [18,35,36,40]. Since the commutator-associator
filtration is defined in terms ofwords (namely, commutators, associators and associator
deviations, which are defined in Sect. 8.1, and their compositions) nilpotent loops of
class n form a variety.

The corresponding Sabinin algebras, unsurprisingly, are the nilpotent Sabinin alge-
bras of class n. Define a bracket of weight k in a Sabinin algebra to be a multilinear
operation in k arguments formed by composing the brackets and the operations Φm,n .
Then a Sabinin algebra is nilpotent of class n if all the brackets of weight greater than
n vanish in it. For a flat Sabinin algebra, nilpotency is the same as the nilpotency of
the Lie algebra in which it is a summand according to the construction of Sect. 3.2,
see [40].

The Lie theory of nilpotent loops and nilpotent Sabinin algebras exhibits various
features typical of Lie and Malcev algebras. In particular, a nilpotent Sabinin algebra
always integrates to a globally defined simply-connected nilpotent loop of the same
class. This is due to the fact that the Baker–Campbell–Hausdorff series in this case
consists of a finite number of terms and, hence, always converges. Also, the Ado
theoremholds, both for Sabinin algebras and (globally) for simply-connected nilpotent
loops (see Sect. 7.4 formore details on theAdo theorem in the non-associative setting).
While in the case of Malcev algebras one may think that these good properties are
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a consequence of Malcev algebras being “close” to Lie algebras, nilpotent Sabinin
algebras may have an arbitrarily big (though finite) number of independent operations.

5.6 Connections with quasigroups

In various contexts in geometry where non-associative algebra proves to be useful,
it is quasigroups rather than loops that appear naturally. While we do not intend to
discuss this subject in detail, there are two points that we should mention here.

One important application of quasigroups is the theory of symmetric spaces as
developed by Loos [27]; this is where bialgebras first appeared within non-associative
Lie theory. A symmetric space can be defined algebraically as a manifold M with a
product ◦ that satisfies, for all x, y ∈ M , the following identities:

x ◦ x = x,

x ◦ (x ◦ y) = y,

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z)

and such that the map Sx : y �→ x ◦ y has the unique fixed point y = x in some
neighbourhood of x . Geometrically, the product x ◦ y is the reflection of the point
y about the point x . The fact that each e ∈ M is idempotent is sufficient to define
a bialgebra structure on De M for each e and linearize the identities in M to obtain
identities in De M . For instance, if M is a symmetric space, in each De M we have:

∑
μ(1)μ(2) = μ,

∑
μ(1)(μ(2)ν) = ε(μ)ν, μ(ην) =

∑
(μ(1)η)(μ(2)ν). (17)

The local uniqueness of the fixed point for the multiplication map Se implies that the
right multiplication in De M by the only group-like element

e : f �→ f (e)

is bijective. This, together with the identities (17), can be used to deduce algebraically
that the tangent space Te M = Prim(De M) is a Lie triple system with the product
[a, b, c] = a(bc) − b(ac).

The second point is related to the terminology concerning the identities in loops.
Given a local quasigroup, that is, a locally invertible map M × M → M defined in a
neighbourhood of a point (a, b), one can define a local loop on a neighbourhood of
a · b ∈ M by

xy = (x/b) · (a\y),

where ·, \ and / are the product and the two divisions in the quasigroup. This construc-
tion associates with a local quasigroup a family of local loops, and it may be useful to
compare the identities that hold in each local loop. It turns out that the Moufang iden-
tity is satisfied at the same time in each of its local loops; in particular, it is sufficient
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to verify this identity in one of the local loops in order to conclude that it holds in all
of them. In contrast, the monoassociativity identity

(xx)x = x(xx) (18)

may be satisfied in one of the local loops but not in the others. A monoassociative
quasigroup is defined as a local quasigroup all of whose local loops satisfy (18) (This
definition is of importance in web theory where monoassociative quasigroups corre-
spond to hexagonal three-webs). As a consequence, a monoassociative local loop is
sometimes defined as a local loop of a monoassociative quasigroup [1,8]. This is a
much stronger condition on a loop than just the identity (18). In particular, each right
alternative local loop satisfies (18); note that flat Sabinin algebras have an infinite
number of independent operations. On the other hand, Sabinin algebras tangent to
monoassociative loops have three independent operations: one bilinear, one trilinear
and one quadrilinear [33,54]. The complete set of relations for these operations is not
known.

6 Constructions involving associative Hopf algebras

Since each Sabinin algebra can be thought of a subspace of a Lie algebra, it is not
surprising that non-associative Hopf algebras can be interpreted in terms of associative
Hopf algebras. The construction of the universal enveloping algebra of a Sabinin
algebra given in [46] is based on such an interpretation. In general, this construction
does not produce closed formulae; however, there are important special cases when it
can be significantly simplified. This happens, for instance, forMoufang-Hopf algebras
and for universal enveloping algebras of Bol algebras. More generally, it can be done
whenever we are given a local product on a homogeneous space G/H together with its
lifting to the product in G by means of a local section; in this case the non-associative
algebra of distributions De(G/H) can be expressed in terms of the associative Hopf
algebra DeG.

6.1 Groups with triality

One important step in the study of Malcev algebras was to establish its relation with
groupswith triality [13,15,32]. Each self-mapd of the octonion algebra, antisymmetric
with respect to its standard quadratic form, gives rise to two antisymmetricmaps d ′, d ′′
uniquely defined by the relation

d(xy) = d ′(x)y + xd ′′(y).

This phenomenon is known as the local triality principle and, in general, it is often
related in one or another way with exceptional behaviour such as that of exceptional
Lie algebras or Jordan algebras [21]. Behind it, there is a certain representation of the
symmetric group 
3 on three letters, acting on the Dynkin diagram of the multiplica-
tion Lie algebra of the split octonions, which is a central simple Lie algebra of type D4
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[53]. This symmetry lifts to the corresponding group Spin(8) and gives it the structure
of a group with triality. More generally, an abstract group with triality is a group G
together with two automorphisms σ, ρ such that

σ 2 = ρ3 = id, σρσ = ρ2,

and

P(g)ρ(P(g))ρ2(P(g)) = 1,

where P(g) = gσ(g)−1. The automorphisms σ and ρ define a representation of 
3,
which is independent on a particular choice of the generators σ y ρ of orders 2 and 3,
respectively. If H ⊆ G is the subgroup fixed by σ , the quotient G/H is a Moufang
loop with the product

g1H ∗ g2H = ρ(P(g1))
−1g2H.

Let g and h be the Lie algebras of G and H , respectively; the group 
3 acts on g
with h being fixed by σ . The Malcev algebra m tangent to G/H is the complement
to h in g consisting of the eigenvectors of σ with eigenvalue −1. The bracket in m is
defined by

[x, y]m = [ρ2(x) − ρ(x), y].

This is the construction of a Lie algebra with triality. Each Malcev algebra arises as
the −1-eigenspace of σ in such a Lie algebra.

In order to construct the universal enveloping algebra U (m), embed G/H into G
by means of the map

gH �→ ρ(P(g))−1,

which is a global section of the principal fibration G → G/H . The image of this
embedding is the set ρ(M(G)) where

M(G) = {P(g) | g ∈ G}.

The Moufang product on M(G) which comes from G/H can be expressed directly
in terms of the product on G as

x ∗ y = ρ(x)−1yρ2(x)−1,

see [16]. Linearizing this formula we get that the subcoalgebra

M(U (g)) =
{∑

x(1)σ (S(x(2))) | x ∈ U (g)
}

,
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where S is the antipode of U (g), with the product

x ∗ y =
∑

ρ(S(x(1)))yρ2(S(x(2)))

is isomorphic to U (m), see [3].
One can speak of the categories of Lie groups with triality, Lie algebras with

triality and Hopf algebras with triality. The constructions of this paragraph establish
their equivalence to the categories of analytic Moufang loops, Malcev algebras and
Moufang-Hopf algebras, respectively. In this way, for instance, the global integrability
of finite-dimensional Lie algebras implies global integrability of finite-dimensional
Malcev algebras.

6.2 Bruck loops

A similar construction works for Bruck loops. These are left Bol loops that satisfy the
automorphic inverse identity

(xy)−1 = x−1y−1,

where x−1 is shorthand for e/x . The binary operation in the corresponding Bol algebra
in this case is trivial, and the structure of a Bol algebra reduces to that of a Lie triple
system. This shows that Bruck loops are related to symmetric spaces. Indeed, the
product

x ◦ y = x(y−1x)

endows an arbitrary local Bruck loop with the structure of a locally symmetric space.
Conversely, given a point e in a symmetric space the Bruck loop product is recovered
by means of the relation

xy ◦ e = x ◦ (e ◦ (y ◦ e)).

While the product of a locally symmetric space can be globalized, this is not true for
the corresponding local loop since the map x �→ x ◦ e may be only locally, and not
globally, bijective.

A symmetric space can be considered as a quotient G/H , where G is a Lie group
with an involutive automorphism σ and H is an open subgroup in the fixed set Gσ .
Locally, the quotient G/H can be embedded into G with the help of the map

gH �→ P(g) = gσ(g)−1,

which is a local section of the quotient map G → G/H . The image of this map
coincides, locally, with the set

M(G) = {P(g) | g ∈ G}.
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It can be shown that in a neighbourhood of the unit in M(G) each element has a
unique square root. The product of a local Bruck loop on M(G) can be written then
as

x ∗ y = √
x y

√
x

for x, y ∈ M(G).
Similarly, a Lie triple system can be considered as the −1-eigenspace of an invo-

lutive automorphism in a Lie algebra g. As a consequence, the universal enveloping
algebra of a Lie triple system, viewed as a Sabinin algebra, can be defined in terms of
the Hopf algebra U (g) and the automorphism σ as the coalgebra

M(U (g)) =
{∑

x(1)σ (S(x(2))) | x ∈ U (g)
}

,

with the product

x ∗ y =
∑

r(x(1))yr(x(2))

where r is the map corresponding to the linearization of the square root, see [38].

7 Representation theory

Compared to the representation theory of Lie groups and Lie algebras, the represen-
tation theory of loops and Sabinin algebras is still in its infancy. It is, probably, too
early to give a coherent picture of the field; here we touch only on a few topics.

The theory of loop representations has been put on firm foundations by Smith [58];
the same approach works for Sabinin algebras and non-associative Hopf algebras. It
rests on the observation of Beck [2] that the concept of a split-null extension has a nat-
ural definition in the categorical setting: if X is an object in a category C, an X -module
is an abelian group in the comma category C ↓ X . The objects of this category are
morphisms Y

π→ X and the morphisms are commutative diagrams of the form

This categorical description encompasses all reasonable definitions of modules;
in particular, that of a group representation and that of a module over a Lie algebra.
It has an advantage of producing immediate bijections between the representations
of a formal group, of its Lie algebra and of the universal enveloping algebra of the
latter. The same is true in the non-associative context: the equivalence of the category
of formal loops to that of Sabinin algebras and to the category of irreducible Hopf
algebras identifies that the corresponding sets of representations. Let us spell out what
Beck’s definition means in practice.
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7.1 Loop representations

Let Loops be the category of all loops and let L be an arbitrary loop. Introduce the
following notation:

• L[X ] — the free product of L with the free loop on one generator X ;
• La and Ra — the operators of left and right multiplication, respectively, by a ∈ L
in L[X ];

• U(L)— the group of self-maps of L[X ] generated by the La and Ra for all a ∈ L;
• U(L)e — the stabilizer of the identity in L[X ].

Abelian groups in the category Loops ↓ L are in one-to-one correspondence with the
representations of the group U(L)e. Namely, given a U(L)e-module Ee, define

E = Ee × L

as a set, endowed with the product

(x, a)(y, b) = (ra,b(x) + sa,b(y), ab), (19)

where

ra,b = R−1
ab Rb Ra and sa,b = R−1

ab La Rb.

Then the projection of the loop E onto L is an abelian group in Loops ↓ L . The sum,
inverse and the neutral element that define on E → L the structure of an abelian group
are induced by the corresponding operations in Ee. Each abelian group in Loops ↓ L
arises in this way, with the module Ee defined uniquely up to an isomorphism.

If L belongs to a variety of loops V, the category Loops in this construction can
be replaced by V. The free loop and the free product in this case should be taken
in V; instead of the group U(L)e one obtains a group U(L; V)e. The abelian groups
in V ↓ L are then in correspondence with certain representations of U(L; V)e. For
instance, if V = Groups is the variety of groups, we have

U(L; Groups)e � L .

Given a representation

ρ : L → Aut(V )

the product (19) takes the form

(x, a)(y, b) = (x + ρa(y), ab).

See [58] for further details.
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7.2 Hopf and Sabinin algebra representations

Let H be the category of all irreducible Hopf algebras and H an object in H. Beck’s
definition translates to this context in the manner similar to the case of loops.

An abelian group A
π−→ H in the category H ↓ H is a morphism such that the

Hopf algebra A factorizes as

A ∼= k[V ] ⊗ H,

where k[V ] is the symmetric algebra of a vector space V and the product in A is given
by

(p ⊗ a)(q ⊗ b) =
∑

(ra(1),b(1) (p))(sa(2),b(2) (q)) ⊗ a(3)b(3)

in terms of the action of some operators ra,b, sa,b on V whose action is extended to
k[V ] as

ra,b(pq) =
∑

ra(1),b(1) (p) ra(2),b(2) (q)

and, similarly,

sa,b(pq) =
∑

sa(1),b(1) (p) sa(2),b(2) (q).

The subalgebra k[V ] appears naturally as the equalizer of the coalgebra morphisms
π : A → H and

ε1 : A → H

x �→ ε(x)1.

The sum, inverse and the neutral element in A
π−→ H are given by

where S is the antipode in k[V ]. The categoryH ↓ H has finite products: The product

A1 ⊗H A2 of A1
π1−→ H and A2

π2−→ H is the equalizer of the morphisms π1 ⊗ ε and
ε ⊗ π2.
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Usually, in the associative context it is the vector space V that is called an H -module
and the abelian group A

π−→ H is not given a special name. In this case the action of
ra,b is trivial, that is, ra,b(p) = ε(a)ε(b)p, while sa,b(q) = ε(b)sa,1(q). If we write
a · q = sa,1(q), the formula for the product in A becomes

(p ⊗ a)(q ⊗ b) =
∑

p(a(1) · q) ⊗ a(2)b,

which is nothing but the smash product of the H -module algebra k[V ] with H , where
the H -module algebra structure on k[V ] is induced by the H -module structure on V .

Modules over Sabinin algebras are somewhat easier to describe than modules over
loops and Hopf algebras. Beck’s notion of a module for a Sabinin algebra l coincides
with the usual idea of a split-null extension. In other words, a module over l is a
Sabinin algebra V ⊕ l such that l is a subalgebra and such that each multilinear
operation vanishes if at least two of its arguments belong to V .

7.3 An extended concept of a representation

Sometimes there is rationale for enlarging the class of the extensions considered in the
definition of the modules over a loop (Hopf algebra, Sabinin algebra). For instance,
the requirement that the extension π : E→L lies within the variety M of Moufang
loops leads to conditions on ra,b and sa,b ∈ U(L;M)e; these conditions are expressed
as the vanishing of certain elements of the group algebra of U(L;M)e while acting on
π−1(e). These elements may fail to vanish on a tensor product of U(L;M)e-modules.
As a consequence, in contrast to the case of groups, a tensor product of L-modules
in general will not be a L-module. In the same fashion, a tensor product of Sabinin
algebra representations cannot be expected to be a representation.

The failure of the tensor product of two representations to be a representation is a
basic reflection of non-associativity. In case of the Moufang loops this problem can be
overcome by studying abelian groups E → L such that E is not necessarily aMoufang
loop, but requiring only that the image of the zero section L → E is contained in the
set of Moufang elements of E . These are the elements a such that

a(x(ay)) = ((ax)a))y and ((xa)y)a = x(a(ya))

for all x, y ∈ E ; Moufang elements in any loop form a Moufang loop. In the context
of Hopf algebras this corresponds to studying abelian groups A

π−→ H such that in
the decomposition A ∼= k[V ] ⊗ H the subspace Prim(H) (but not V ) is contained in
the generalized alternative nucleus of A. As for Malcev algebras, representations of
this kind correspond to split-null extensions (V ⊕ m, [ , ]) of the Malcev algebra m
such that the bracket [ , ] is anticommutative and the adjoint map

ra : x �→ ra(x) = [x, a]

satisfies
[[ra, rb], rc] = −[r[a,b], rc] + r[[a,b],c]+[[a,c],b]+[a,[b,c]]. (20)
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Not only the resulting representation theory behaves well with respect to tensor
products but also among its other good properties is the existence of faithful finite-
dimensional representations for finite-dimensional Malcev algebras, see [42].

In general, no clear criterion is known which would determine the adequate class
of abelian groups E

π−→ L for a given loop L . Note that once such class is chosen,
methods of non-associative Lie theory provide us with the classes of extensions for
the corresponding Hopf and Sabinin algebras.

7.4 The Ado theorem

The Ado theorem is usually stated as a result about representations. While this may
be appropriate in the context of Lie algebras, in the more general setting of Sabinin
algebras it is more convenient to use a different wording which does not mention
representations at all.

Each Sabinin algebra l appears as a Sabinin subalgebra of UX(A) for some non-
associative algebra A; for instance, one can take A to be the universal enveloping
algebra U (l). Let us say that a variety of Sabinin algebras satisfies the Ado theorem
if for each finite-dimensional Sabinin algebra l in that variety A can be chosen to be
finite-dimensional. By the universal property of U (l), this is the same as to say that
the U (l) has an ideal of finite codimension which contains no non-trivial primitive
elements.

We have mentioned before that, while Lie, Malcev and nilpotent Sabinin algebras
satisfy the Ado theorem, this is not the case for all Sabinin algebras, Lie triple systems
being a counterexample. The universal enveloping algebra of a central simple Lie triple
system of finite dimension has no proper right ideals apart from the augmentation ideal
[38,47]. It would be interesting to find criteria for a variety of loops to satisfy the Ado
theorem.

TheAdo theorem can be also considered as a statement about loops rather than their
tangent algebras. Let us say that a local loop Q is locally linear if can be locally embed-
ded as a subloop into the local loop of invertible elements in some finite-dimensional
algebra A. This is equivalent to saying that the Sabinin algebra of Q is isomorphic to
a subalgebra of UX(A), which is the property described by the Ado theorem. Since
the Ado theorem fails for Lie triple systems, local Bruck loops are not locally linear
in general.

We should point out that local linearity is a weaker concept than global linearity.
This has nothing to do with non-associativity since the difference already exists for
groups. For Moufang loops there also are examples which illustrate this phenomenon.
For instance, the seven-dimensional projective plane is a Moufang loop which locally
embeds into the invertible elements of the octonions. This local embedding, however,
cannot be globalized [56].

8 Discrete loops and Sabinin algebras

The definition of a nilpotent loop, and, generally, of the lower central series of a loop,
was given by Bruck in [10]. Since then, the theory of nilpotent groups has made
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significant advances and it became increasingly clear that Bruck’s definition does not
provide an adequate analogue of the associative lower central series. Namely, one
should expect that

• the successive quotients of the lower central series for a finitely generated loop are
finitely generated abelian groups;

• the graded abelian group associated with the lower central series carries an alge-
braic structure similar to that of a Lie ring;

• there exists a close relation to the dimension series.

A lower central series for loops satisfying all the above properties has been defined
and studied in [35–37] and we review this construction in this section. A closely
related definition was also given by Lemieux et al. in [28]. Essentially, the argument
of [28] consists in defining the dimension series for the free loops and then pushing
it to arbitrary loops using the universal property of the free loops. Recently, Hartl
and Loiseau [17,18] defined higher commutators in arbitrary semi-abelian categories
which lead in the case of loops to the same definition as the one discussed here.

8.1 The commutator–associator series

Let L be a loop. The commutator–associator filtration on L is defined in terms of
commutators, associators and associator deviations. The commutator of two elements
a, b of L is

[a, b] = (ab)/(ba)

and the associator of a, b and c is defined by

(a, b, c) = ((ab)c)/(a(bc)).

There is an infinite number of associator deviations. These are functions Ll+3 → L
characterized by a non-negative number l, called level of the deviation, and l indices
α1, . . . , αl with 0 < αi ≤ i + 2. The deviations of level one are

(a, b, c, d)1 = (ab, c, d)/((a, c, d)(b, c, d)),

(a, b, c, d)2 = (a, bc, d)/((a, b, d)(a, c, d)),

(a, b, c, d)3 = (a, b, cd)/((a, b, c)(a, b, d)).

By definition, the deviation (a1, . . . , al+3)α1,...,αl of level l is equal to

A(aαl aαl+1)/(A(aαl )A(aαl+1)),

where A(x) stands for the deviation (a1, . . . , aαl−1, x, aαl+2, . . . , al+3)α1,...,αl−1 of
level l − 1. The associator is thought of as the associator deviation of level zero.

Now, set γ1L = L and for n > 1 define γn L to be the minimal normal subloop of
L containing
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• [γp L , γq L] with p + q ≥ n;
• (γp L , γq L , γr L) with p + q + r ≥ n;
• (γp1 L , . . . , γpl+3 L)α1,...,αl with p1 + · · · + pl+3 ≥ n.

The subloop γn L is called the nth commutator–associator subloop of L . For a group
G the subgroup γnG is the nth term of the lower central series of G.

The commutator–associator subloops of a loop L are normal in L . Moreover, they
are fully invariant, that is, are preserved by all automorphisms of L . If L is finitely
generated, each quotient γi L/γi+1L is a finitely generated abelian group. The crucial
property of the commutator–associator filtration is that for an arbitrary loop L the
commutator, the associator and the associator deviations inducemultilinear operations
on the graded abelian group

Lγ L =
⊕

γi L/γi+1L;

these operations respect the grading. It can be shown that the algebraic structure given
by thesemultilinear operations onLγ L ⊗Q is precisely that of a Sabinin algebra. This,
however, is quite non-trivial and requires an understanding of the relation between the
commutator–associator filtration and the dimension series.

8.2 The dimension series

Let L be a discrete loop andQL its loop algebra over the rational numbers. Denote by
� ⊂ QL the augmentation ideal and by �n its nth power, that is, the submodule of
QL spanned over Q by all products of at least n elements of � with any arrangement
of the brackets. The loop L can be thought of a subset of QL and we define the nth
dimension subloop of L as

Dn L = L ∩ (1 + �n).

It can be shown that Dn L is, indeed, a series of fully invariant subloops of L . The
successive quotients Di L/Di+1L are torsion-free abelian groups, and it turns out that
the commutator, the associator and the associator deviations respect the filtration by
the Dn L . The induced operations on the associated graded group can be identified as
follows.

The loop algebra QL is a bialgebra, with the coproduct defined as δ(g) = g ⊗ g
for g ∈ L . The associated graded algebra

DL =
⊕

i≥0

�i/�i+1

is then a cocommutative non-associative primitively generated Hopf algebra. If we set

LL =
⊕

i>0

Di L/Di+1L ,
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then LL ⊗ Q ⊂ DL and the primitive elements of DL are precisely the elements of
LL ⊗Q. Therefore, LL ⊗Q is a Sabinin algebra. It can be shown that the Shestakov-
Umirbaev operations pm,n on DL coincide with the operations induced by certain
associator deviations on LL ⊗ Q (See [37] for a more precise statement).

These results can be applied to the study of the commutator–associator filtration. For
each n the subloop Dn L contains the commutator–associator subloop γn L . Moreover,
the analogue of the Jennings theorem [22] is true:

Dn L = √
γn L,

that is, Dn L consists of all those elements of L whose kth power, for at least one k and
at least one arrangement of the parentheses, lies in γn L . In particular, we have that

LL ⊗ Q = Lγ L ⊗ Q.

Remark 3 The dimension subloops can be defined with the help of the group algebra
with coefficients in any ring, and the result may depend on this ring. A particularly
interesting case is that of the integer coefficients. Formany years itwas conjectured that
the integer dimension subgroups of a group coincide with its lower central series. The
eventual counterexample published by E. Rips in 1972 was very involved, and while
by now there are more counterexamples to this conjecture, the nature of the difference
between the integer dimension series and the lower central series is still absolutely
mysterious. It might be interesting to find a loop where the difference between the
integer dimension series and the lower central series is due to the non-associative
effects.

8.3 The Magnus map and the dimension series of a free loop

Let Z{{X1, . . . , Xn}} be the non-associative ring of formal power series in n non-
commutative and non-associative variables. The invertible elements in this ring are
the power series which start with ±1. They form a loop, which we denote by
Z{{X1, . . . , Xn}}∗. Let F{n} the free loop on n generators x1, . . . , xn . The homo-
morphism

M : F{n} → Z{{X1, . . . , Xn}}∗,
xi �→ 1 + Xi ,

is the non-associative version of the map (2). As in the associative case, the i th term
of the dimension series of F{n} consists of those elements which are sent byM to the
power series of the form

1 + terms of degree at least i.
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This, however, is not enough to conclude that the loop F{n} is residually nilpotent since
it is not known at the moment whetherM is injective, even in the case of the free loop
on one generator.

A similar construction can be performed for the free commutative loop. It not known
if the corresponding Magnus map is injective in this case, either.

The Magnus map identifies the completion of the Sabinin algebra LF{n} ⊗Q with
the primitive elements in Z{{X1, . . . , Xn}}. In particular, this Sabinin algebra is the
completion of the free Sabinin algebra on n generators.

9 Quantum loops

Ananalogywith associativeHopf algebras suggests that theremight exist deformations
of the universal enveloping algebras for Sabinin algebras which are not necessarily
coassociative or cocommutative. So far, no interesting examples of this kind have been
found. Let us indicate, nevertheless, what one may be looking for.

In view of the fact that the Hopf algebra of distributions supported at the identity of
a loop naturally satisfies the linearizations of the identities satisfied by the loop, one
may assume (rightly or wrongly) that its possible deformations should satisfy the same
linearized identities. Let us illustrate this logic with the variety of Moufang loops.

The left and right Moufang identities can be written as

and

where

and

with δ(x) = (x, x). The same diagrams represent the Moufang-Hopf identities sat-
isfied in the corresponding algebra of distributions, with the difference that in this
case δ(x) = ∑

x(1) ⊗ x(2). One may suspect that the universal enveloping algebra of
the central simple exceptional Malcev algebra of traceless octonions M(α, β, γ ) has
non-cocommutative deformations that satisfy theMoufang–Hopf identities. Given that
Hopf algebras are, in spirit, self-dual objects, it is natural to require that these defor-
mations satisfy not coassociativity but, rather, the identities dual to Moufang–Hopf
identities. These latter can be represented as

(left co-Moufang–Hopf)
and
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(right co-Moufang–Hopf).

These identities can be written in the form of equations as

∑
x(1)x(2)(2)(1) ⊗ x(2)(1) ⊗ x(2)(2)(2) =

∑
x(1)(1)(1)x(1)(2) ⊗ x(1)(1)(2) ⊗ x(2)

and

∑
x(1) ⊗ x(2)(2)(1) ⊗ x(2)(1)x(2)(2)(2) =

∑
x(1)(1)(1) ⊗ x(1)(2) ⊗ x(1)(1)(2)x(2).

They arise in the study of the algebraic seven-dimensional sphere [25].
Surprisingly, U (M(α, β, γ )) turns out to be rigid in the sense that any deformation

which satisfies Moufang-Hopf and co-Moufang–Hopf identities is equivalent to a
trivial deformation. Even universal enveloping algebras of finite-dimensional central
simple Lie algebras exhibit certain rigidity if considered as Moufang–Hopf algebras
since all their deformations are necessarily associative and coassociative; in other
words, are quantized enveloping algebras in the usual sense [29,43].

The rigidity characteristic of non-associativity is still poorly understood and needs
an adequate cohomological interpretation.

Remark 4 There are a number of deformations of non-associative algebras that carry
the adjective “quantum”, such as the quantum octonions of [4] and of [5]. They do not
seem to fit in the framework of hypothetical quantum loops that we discuss here.
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