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1 Introduction

We survey those aspects of the theory of singular integral operators which have been
obtained since the pioneering work of Zygmund, Calderón and Mikhlin, concern-
ing the Calderón program as developed by Coifman and Meyer. Key results in this
development include the Calderón commutator theorem, L2 bounds on the higher com-
mutators and on the Cauchy integral on Lipchitz curves, the solutions of the Painlevé
problem on analytic capacity and the Kato square root problem for elliptic operators,
along with further applications to analytic capacity and partial differential equations.

Our emphasis is on L2 boundedness criteria for singular integrals, commonly known
as T 1, T b and local Tb theorems, which have arisen from and contributed to the above-
mentioned program. We conclude the survey with a discussion of some recent progress
and applications.

For the classical theory of singular integrals and square functions, we refer the
reader to the excellent monographs of Stein [86,87], and of Christ [32].

1.1 Singular integrals

A singular integral operator (SIO) in R
n (in the generalized sense of Coifman and

Meyer) [37], is a linear mapping T from test functions D(Rn) := C∞
0 (Rn) into dis-

tributions D′(Rn), which is associated to a Calderón-Zygmund kernel K (x, y), in the
sense that

〈T ϕ,ψ〉 =
∫∫

ψ(x) K (x, y) ϕ(y) dydx (1.1)

whenever ϕ,ψ ∈ C∞
0 (Rn) with disjoint supports. A Calderón-Zygmund kernel is one

which satisfies the standard size and Hölder bounds

|K (x, y)| ≤ C |x − y|−n and (1.2)

|K (x, y + h) − K (x, y)| + |K (x + h, y) − K (x, y)| ≤ C
|h|α

|x − y|n+α
(1.3)

for some α ∈ (0, 1], whenever 2|h| ≤ |x − y|. For now, let us take the point of view
that K : R

n × R
n\{x = y} → C, although in the sequel we shall also mention the

case that the range of K is, more generally, a Hilbert space.
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Singular integrals and square functions 203

We remark that, given a closed cube Q ⊂ R
n, T extends to a bounded linear

mapping from L2(Q) into L2(Rn\Q), with the representation

T f (x) =
∫

Q
K (x, y) f (y) dy (1.4)

for all f ∈ L2(Q) and all x ∈ R
n\Q. Indeed, this follows readily from the kernel

estimate (1.2), and the Hardy inequality

∫
Rn\Q

∣∣∣∣
∫

Q

1

|x − y|n | f (y)| dy

∣∣∣∣
2

dx ≤ Cn

∫
Rn

| f (x)|2dx,

along with (1.1) and a density argument.
The theory can be extended to settings other than Euclidean space, and there are

worthwhile reasons for doing so, but for most of this survey we shall just consider
functions defined on R

n, for the sake of simplicity of exposition.
Let us now mention several examples. The Hilbert transform

H f (x) := p.v.
1

π

∫
R

1

x − y
f (y) dy := lim

ε→0

1

π

∫
|x−y|>ε

1

x − y
f (y) dy, (1.5)

relates the real and imaginary parts of a holomorphic function F in the half-space
C+ := R

2+ := {(x, t) ∈ R × (0,∞)}, by the formula H(
e F(·, t)) = −�m F(·, t),
assuming adequate integrability of F on horizontal slices (say F(·, t) is uniformly in
L p(R) for some p ∈ (1,∞)). Here, the convergence of the principal value limit holds
pointwise a.e. and in L p, for f ∈ L p, 1 < p < ∞. We shall not explore pointwise
convergence further in the present survey, but see, e.g., [86], Chapters II–III, and [87],
Chapter I, Section 7.

In higher dimensions, the operators analogous to H are the Riesz transforms

R j f (x) := p.v.
2

σn

∫
Rn

x j − y j

|x − y|n+1 f (y) dy, j = 1, 2, . . . , n, (1.6)

where σn is the volume of the unit n-sphere in R
n+1. The Riesz transforms relate the

tangential and normal derivatives of a harmonic function u in the half-space R
n+1+ :=

{(x, t) ∈ R
n × (0,∞)}, via the formula R j (∂t u(·, t)) = ∂x j u(·, t), assuming, say,

u(·, t) ∈ L p(Rn). They also arise naturally in the study of W 2,p regularity of solutions
of Poisson’s equation 	u = f in R

n (see [86], Chapter III).
We observe that the two examples (1.5) and (1.6) are both of convolution type, i.e.,

K (x, y) = K (x − y). We shall discuss convolution operators further in Section 3.1.
We now mention some examples that are not of convolution type. The Calderón

Commutators are the operators

Ck
A f (x) := p.v.

i

2π

∫
R

(
A(x) − A(y)

x − y

)k 1

x − y
f (y) dy (1.7)
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where A is a Lipschitz function. Observe that, up to normalization, the case k = 0 is
the Hilbert transform, and that at least formally, C1

A is a commutator:

C1
A f = i

2

[ d
dx H, A

]
f := i

2

( d
dx (H A f ) − A d

dx (H f )
)

(1.8)

while Ck
A is a higher commutator (k = 2, 3, . . .):

Ck
A f = i

k!2
[
. . .

[[
dk

dxk
H, A

]
A

]
. . . A

]
f.

The operator C1
A (and its higher dimensional analogues) arose in Calderón’s construc-

tion of an algebra of SIOs suitable for the treatment of partial differential operators
with merely Lipschitz coefficients, thus, a sort of pseudo-differential calculus which,
in contrast to the classical pseudo-differential calculus, was applicable to operators
with rather minimally smooth coefficients [26].

Moreover, the family of operators Ck
A arise in the power series expansion of the

operator

CA f (x) := p.v.
i

2π

∫
R

1

x − y + i(A(x) − A(y))
f (y) dy, (1.9)

namely

CA =
∞∑

k=0

(−i)kCk
A,

at least when ‖A′‖∞ < 1. In turn, the operator CA arises when writing the parametric
representation of the Cauchy singular integral operator on a Lipschitz graph. More
precisely, set

Cγ g(z) := p.v.
i

2π

∫
γ

1

z − v
g(v) dv.

If γ is a Lipschitz curve in the complex plane C parametrized by z = x + i A(x), then

CA f (x) = Cγ g(x + i A(x)) , where (1.10)

f (y) := (1 + i A′(y))g(y + i A(y)).

Of course, the role of the Cauchy integral in complex function theory is well known.
We observe that, for A Lipschitz, the kernels K (x, y) = (A(x) − A(y))k/(x − y)k+1

and K (x, y) = (x − y + i(A(x) − A(y)))−1, corresponding to the operators Ck
A and

CA respectively, satisfy the Calderón-Zygmund kernel conditions (1.2) and (1.3), as
the reader may readily verify.
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Singular integrals and square functions 205

Calderón’s lecture at the International Congress of Mathematicians in Helsinki in
1978 contains a clear account of the state of the art at that time concerning commuta-
tors, Cauchy integrals on Lipschitz curves and applications [28].

Let us note that for all of the operators (1.5), (1.6), (1.7) and (1.9), the kernel
K (x, y) is anti-symmetric, i.e.,

K (x, y) = −K (y, x). (1.11)

For all anti-symmetric kernels which satisfy the pointwise kernel bound (1.2)
|K (x, y)| ≤ C |x − y|−n, the associated principal value operator is always well
defined, at least in the sense of distributions. Indeed, in that case, one may extend
the representation (1.1) as follows. For all ϕ, ψ ∈ C∞

0 (Rn) (with supports that are
not necessarily disjoint), the principal value

〈T ϕ,ψ〉 := lim
ε→0

∫∫
|x−y|>ε

ψ(x) K (x, y) ϕ(y) dydx (1.12)

exists. Moreover it satisfies the Weak Boundedness Property (WBP), i.e. there exists
C = C(K , n) such that

|〈T ϕ,ψ〉| ≤ C Rn{‖ϕ‖∞ + R‖∇ϕ‖∞}{‖ψ‖∞ + R‖∇ψ‖∞}. (1.13)

for all R > 0 and x ∈ R
n, and all test functions ϕ,ψ supported in the ball

B(x, R) := {y ∈ R
n : |x − y| < R}.

Indeed, to verify (1.12) and (1.13), we use (1.11) and then a re-labelling of the
variables to write

〈Tε ϕ, ψ〉 :=
∫∫

|x−y|>ε

ψ(x) K (x, y) ϕ(y) dydx

= −
∫∫

|x−y|>ε

ψ(x) K (y, x) ϕ(y)dydx =−
∫∫

|x−y|>ε

ψ(y) K (x, y) ϕ(x) dxdy,

and thus

〈Tε ϕ, ψ〉 = 1

2

∫∫
|x−y|>ε

K (x, y) (ψ(x)ϕ(y) − ψ(y)ϕ(x)) dydx .

Written this way, the integrand is only weakly singular, in the sense that the kernel
bound (1.2) |K (x, y)| ≤ C |x − y|−n has been improved to

|K (x, y)(ψ(x)ϕ(y) − ψ(y)ϕ(x))| ≤ |K (x, y)ψ(x)(ϕ(y) − ϕ(x)) + ϕ(x)(ψ(x) − ψ(y))|
≤ C ′|x − y|−n+1{‖ψ‖∞‖∇ϕ‖∞ + ‖ϕ‖∞‖∇ψ‖∞}
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206 S. Hofmann, A. McIntosh

from which it is easy to deduce convergence of the limit in (1.12), along with the
bound (1.13).

We remark that the weak boundedness property (1.13) holds for any L2 bounded
operator T, with C ≈ ‖T ‖op (by Cauchy-Schwarz), and for an SIO should be viewed
as expressing some cancellation in the operator T .

We remark also that there are L2 bounded singular integral operators T which do
not satisfy (1.12). Indeed some care is needed, for in our definition of an SIO, nothing
is said about the behaviour of K (x, y) when x = y. So the L2 bounded operator T = I
is associated to the kernel K (x, y) ≡ 0, as also is the unbounded operator T = d

dx ,

though the latter does not satisfy WBP.

1.2 Square functions

Closely related to SIOs are the square functions. These can arise in the analysis of
SIOs, and in turn, may be viewed as singular integrals with kernels taking their values
in a Hilbert space. They are also of interest in their own right, especially in applications
to partial differential equations. We describe one particular set-up, but note that there
are several others of interest, as e.g. in [85].

Following Christ and Journé [33] and Christ [32], we say that a family of kernels
{ψt (x, y)}t∈(0,∞), is a standard Littlewood-Paley family if, for some exponent α > 0
and C < ∞, we have

|ψt (x, y)| ≤ C
tα

(t + |x − y|)n+α
and (1.14)

|ψt (x, y + h) − ψt (x, y)| ≤ C
|h|α

(t + |x − y|)n+α
, |h| ≤ t, (1.15)

for all x, y ∈ R
n and t > 0. Often, one may also have local Hölder continuity in the

x variable:

|ψt (x + h, y) − ψt (x, y)| ≤ C
|h|α

(t + |x − y|)n+α
, |h| ≤ t. (1.16)

For any family {ψt } which satisfies (1.14), one can show that

∣∣∣∣
∫
Rn

ψt (x, y) f (y) dy

∣∣∣∣ � M f (x),

where M denotes the Hardy-Littlewood maximal operator which is well known to be
bounded on every L p, 1 < p ≤ ∞. See (1.30). Thus, in particular, the linear operators
�t defined by

�t f (x) :=
∫
Rn

ψt (x, y) f (y)dy
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Singular integrals and square functions 207

are uniformly bounded in L∞(Rn) with

‖�t b‖∞ ≤ Cn,α ‖b‖∞ (1.17)

for all b ∈ L∞(Rn) and all t > 0, and are uniformly bounded in L2(Rn) with

‖�t f ‖2 ≤ Cn,α ‖ f ‖2 (1.18)

for all f ∈ L2(Rn) and all t > 0.
Alternatively, one may observe that (1.14) implies uniform L1 bounds

max

{
sup
y∈Rn

∫
Rn

|ψt (x, y)| dx, sup
x∈Rn

∫
Rn

|ψt (x, y)| dy

}

≤ C
∫
Rn

tα

(t + |z|)n+α
dz = C

∫
Rn

1

(1 + |z|)n+α
dz =: Cn,α, (1.19)

whence (1.17) follows directly, and then (1.18) follows either by duality and interpo-
lation, or else as a consequence of the Schur estimate (1.32) below.

We now define two square function operators:

Gψ f (x) :=
(∫ ∞

0
|�t f (x)|2 dt

t

)1/2

and (1.20)

Sψ f (x) :=
(∫∫

�(x)

|�t f (y)|2 dydt

tn+1

)1/2

, (1.21)

where �(x) := {(y, t) ∈ R
n+1+ : |x − y| < t} is the standard cone with vertex at

x . For obvious reasons, Gψ and Sψ are typically referred to as vertical and conical
square functions, respectively. We remark that they have equivalent L2 norms:

‖Sψ f ‖2
2 =

∫
Rn

∫ ∞

0

∫
|x−y|<t

|�t f (y)|2 dy
dt

tn+1 dx

=
∫ ∞

0

∫
Rn

(
1

tn

∫
|x−y|<t

dx

)
|�t f (y)|2 dy

dt

t
= ωn‖Gψ f ‖2

2 (1.22)

where ωn is the volume of the unit ball in R
n . The choice of aperture 1 in the cone defin-

ing Sψ is merely a normalization, and one could just as well integrate over the cone
with any other fixed aperture β > 0, i.e., �β(x) := {(y, t) ∈ R

n+1+ : |x − y| < βt}.
The prototypical example is

ψt (x, y) = ψt (x − y) = t
∂

∂t
pt (x − y), (1.23)
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208 S. Hofmann, A. McIntosh

where

pt (x) = 2 t

σn
(
t2 + |x |2)(n+1)/2

is the classical Poisson kernel for the Laplacian in the half-space R
n+1+ , with σn denot-

ing the volume of the unit n-sphere in R
n+1. Thus,

�t f = ψt ∗ f = t
∂

∂t
Pt f,

where Pt := e−t
√−	 is the Poisson semigroup, so that the Fourier transform is

�̂t f (ξ) = ψ̂(tξ) f (ξ) = −2π t |ξ |e−2π t |ξ | f (ξ)

(See Section 3.1.) Note that in this case the operator �t is of convolution type. Not sur-
prisingly, the corresponding square function operators Gψ and Sψ play a fundamental
role in the theory of harmonic functions in R

n+1+ .
A general class of convolution examples is provided by choosing ψ ∈ C∞

0 (Rn) (or
more generally, in the Schwarz class S), with

∫
Rn ψ(x) dx = 0, and setting

ψt (x) := 1

tn
ψ

( x

t

)
, Qt f := ψt ∗ f. (1.24)

It is an easy exercise to verify that the functions ψt (x, y) := ψt (x − y) form a standard
Littlewood-Paley family with α = 1. In this situation, it is the usual notational con-
vention to use Qt in place of �t , thus Qt f := ψt ∗ f, Gψ f = (∫ ∞

0 |Qt f |2dt/t
)1/2

,

and so on.
An important class of non-convolution examples arises in the theory of divergence

form elliptic operators. Let A be an n × n matrix with bounded measurable entries

A jk : R
n −→ C, j = 1, . . . , n, k = 1, . . . , n, (1.25)

satisfying the ellipticity condition

λ|ξ |2 ≤ 
eA(x)ξ · ξ̄ and |A(x)ξ · ζ̄ | ≤ �|ξ ||ζ |, ∀ ξ, ζ ∈ C
n, x ∈ R

n (a.e.)

(1.26)

for some constants 0 < λ ≤ � < ∞. Let L denote the second order divergence form
operator defined by

L f := −div(A∇ f ) = −
∑

1≤ j,k≤n

∂

∂x j

(
A jk

∂ f

∂xk

)
, (1.27)
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Singular integrals and square functions 209

which we interpret in the usual weak sense via a sesquilinear form, and let pL
t (x, y) and

PL
t := e−t

√
L be the associated Poisson kernel and Poisson semigroup, respectively.

Generalizing (1.23), we then set

ψt (x, y) := t
∂

∂t
pL

t (x − y), �t := t
∂

∂t
PL

t . (1.28)

If the coefficient matrix A has real entries, then this kernel ψt satisfies the bounds
(1.14), (1.15) and (1.16) by the classical De Giorgi/Nash regularity theory [43,78].
The De Giorgi/Nash estimates remain true for complex coefficients when n = 2 [16],
or when A is sufficiently close (in L∞) to a real matrix [1,18]. On the other hand, in
general, ψt (x, y) need not satisfy the pointwise bounds (1.14), (1.15) nor (1.16), yet
even then it is still possible to develop some aspects of the theory. We refer the reader
to [3] and to [11] for a discussion of the latter situation.

1.3 Notation

The Lebesgue measure of a measurable subset S ⊂ R
n is denoted by |S|, while its

indicator function 1S is defined by 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x ∈ R
n\S.

For each cube Q ⊂ R
n, the mean value of a function f over Q is defined to be

[ f ]Q := |Q|−1
∫

Q
f (x) dx, (1.29)

while �(Q) denotes its side length, and κ Q denotes the concentric dilate of Q by a
factor of κ > 0. Our cubes always have sides parallel to the coordinate axes.

For each integer N , the symbol D(N ) denotes the collection of all dyadic cubes in
R

n with �(Q) = 2N , that is, the collection of cubes 2N k̃ + (0, 2N ]n with k̃ ∈ Z
n, and

D := ⋃
N∈Z D(N ).

For each x ∈ R
n and r > 0, B(x, r) denotes the open ball with centre x and radius r .

The Hardy-Littlewood maximal function of a measurable function f defined on R
n

is M f (x) := supr>0 |B(x, r)|−1
∫

B(x,r)
f (y) dy. We use the well-known result that,

when 1 < p ≤ ∞, there exists Cn,p < ∞ such that

‖M f ‖p ≤ Cn,p‖ f ‖p (1.30)

for all f ∈ L p(Rn). (This is the first theorem in [86].)
We use the notation X � Y to mean that there exists a constant C > 0 such that

X ≤ CY . The notation X ≈ Y means that X � Y and Y � X . The value of C varies
from one usage to the next.

For later use, we note Chebychev’s inequality with exponent p ∈ [1,∞): For each
g ∈ L p(Rn) and λ > 0,

λp|{x ∈ R
n ; |g(x)| > λ}| ≤ ‖g‖p

p, (1.31)
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210 S. Hofmann, A. McIntosh

which is easily verified, as is the Schur estimate for integral operators S f (x) =∫
Rn K (x, y) f (y) dy with weakly singular kernels:

‖S f ‖2 ≤
{

sup
y∈Rn

∫
Rn

|K (x, y)| dx

}1/2 {
sup

x∈Rn

∫
Rn

|K (x, y)| dy

}1/2

‖ f ‖2. (1.32)

The theory of SIOs deals with integral operators with kernels which are not abso-
lutely integrable in this sense, but whose boundedness depends on some cancelation
properties of the kernel.

2 L p and endpoint theory of SIOs and square functions

In this section, we discuss L p and endpoint bounds that are satisfied by SIOs and
square functions, assuming boundedness on L2. The fundamental result is that of
Calderón and Zygmund [40].

Theorem 2.1 (Calderón-Zygmund Theorem) [40]. Let T be an SIO associated to a
Calderón-Zygmund kernel K (x, y) satisfying the standard bounds (1.2) and (1.3).
Suppose also that T extends to a bounded linear operator on L2(Rn), i.e., that for all
f, g ∈ C∞

0 (Rn), we have

|〈T f, g〉| ≤ C ‖ f ‖2‖g‖2.

Then T extends to a bounded operator on L p(Rn), 1 < p < ∞.

To be historically accurate, we should observe that the original paper [40] treated
only the convolution case, but the argument there extends essentially verbatim to the
general setting described above. Let us now give the proof, following [40]. We begin
with a fundamental stopping time lemma, in which an L1 function f is decomposed
into a good part g and a bad part b.

Lemma 2.2 (Calderón-Zygmund decomposition). Suppose that f ∈ L1(Rn), and let
λ > 0. Then there is a family F := {Q j }∞j=1 of non-overlapping dyadic cubes, and a
decomposition f = b + g such that

(1) λ ≤ |Q j |−1
∫

Q j
| f (x)| dx < 2nλ, for every Q j ∈ F;

(2)
∑

j |Q j | ≤ λ−1 ‖ f ‖1 ;
(3) b = ∑

j bQ j , with supp(bQ j ) ⊂ Q j , and
∫

bQ j = 0, ∀Q j ∈ F ;
(4) g ∈ L1(Rn) ∩ L2(Rn), with ‖g‖1 ≤ ‖ f ‖1 and ‖g‖2

2 ≤ Cn λ ‖ f ‖1.

Proof of Lemma 2.2 We start with an initial grid D(N ) of dyadic cubes of side length
2N , chosen so large that for Q ∈ D(N ), we have

1

|Q|
∫

Q
| f (x)| dx ≤ 1

|Q| ‖ f ‖1 < λ.
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Singular integrals and square functions 211

We then subdivide each Q in D(N ) dyadically, stopping the first time we reach a
sub-cube Q′ ⊂ Q for which

1

|Q′|
∫

Q′
| f (x)| dx ≥ λ. (2.3)

The family F is simply the collection of cubes that are maximal with respect to the
property (2.3). The left hand inequality in (1) then holds by definition, while the right
hand bound follows from the maximality of Q j ∈ F . In turn, (2) follows directly from
the left hand estimate in (1), since the cubes Q j are non-overlapping (by maximality).

To establish (3) and (4), we set E := ∪ j Q j , and define

g := f 1Rn\E +
∑

j

1Q j

1

|Q j |
∫

Q j

f (x) dx, b := f − g.

Then (3) holds by definition, with

bQ j = ( f − [ f ]Q j )1Q j ,

recalling that [ f ]Q j denotes the mean value of f over Q j (1.29).
To prove (4), we observe first that the claimed L1 bound for g is trivial, while the

L2 bound may be obtained from the L1 bound and the fact that ‖g‖∞ ≤ 2nλ. In turn,
the latter estimate follows directly from Lebesgue’s differentiation theorem (to control
g on R

n\E), and the right hand inequality in (1). ��

Proof of Theorem 2.1 We shall obtain this result by interpolation and duality, after
first establishing the weak-type (1,1) bound:

sup
λ>0

(
λ

∣∣{x ∈ R
n : |T f (x)| > λ}∣∣ ) ≤ C ‖ f ‖1, (2.4)

where C depends only on dimension, the kernel bounds (1.2) and (1.3), and the L2 →
L2 operator norm of T . It is enough to prove (2.4) for f ∈ L2 ∩ L1, as one may then
extend by continuity to all of L1. To this end, we fix λ > 0, and write f = b + g as
in Lemma 2.2. Then

∣∣{x ∈ R
n : |T f (x)| > λ}∣∣≤ ∣∣{x ∈ R

n : |T b(x)| > λ/2}∣∣ + ∣∣{x ∈ R
n : |T g(x)| >λ/2}∣∣.

The desired bound for T g follows directly from Chebychev’s inequality with expo-
nent 2 and the L2 bound for g in Lemma 2.2:

∣∣∣∣
{

x ; |T g(x)| >
λ

2

}∣∣∣∣ ≤ 4

λ2 ‖T g‖2
2 ≤ 4Cn

λ
‖T ‖2

op‖ f ‖1.
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To handle T b, we set E∗ := ∪ j (5Q j ). Then

∣∣{x ∈ R
n : |T b(x)| > λ/2}∣∣ ≤

∑
j

|5Q j | + ∣∣{x ∈ R
n\E∗ : |T b(x)| > λ/2}∣∣

=: I + I I.

By Lemma 2.2 (2), we have that I ≤ 5nλ−1‖ f ‖1, as desired.
It now remains to treat term I I . We proceed as follows. First, by our qualitative

assumption that f ∈ L2 ∩ L1, we have in particular that the sum in Lemma 2.2
converges in L2. Since T : L2 → L2, it therefore follows that

|T b(x)| ≤
∑

j

|T bQ j (x)| a.e.,

so that by Chebychev’s inequality we have

I I ≤ 2

λ

∑
j

∫
Rn\E∗

|T bQ j (x)| dx . (2.5)

Next, we let y j denote the center of Q j , and note that by (1.4), the fact that bQ j has
mean value 0, and (1.3), we have

|T bQ j (x)| =
∣∣∣∣
∫

K (x, y)bQ j (y) dy

∣∣∣∣ =
∣∣∣∣
∫ (

K (x, y) − K (x, y j )
)

bQ j (y) dy

∣∣∣∣
≤ C

�(Q j )
α

(
�(Q j ) + |x − y j |

)n+α

∫
|bQ j (y)| dy, ∀x ∈ R

n\5Q j , (2.6)

where �(Q) denotes the side length of Q. Combining (2.5) and (2.6), we obtain

I I ≤ Cn,α

λ

∑
j

∫
|bQ j (y)| dy = Cn,α

λ

∫
|b(y)| dy ≤ 2

Cn,α

λ
‖ f ‖1,

thus completing the proof of (2.4).
By the Marcinkiewicz interpolation theorem, as presented e.g. in Theorem 5, Ch. I

of [86], it follows from the L2 bound for T and the weak-type (1,1) bound (2.4), that
T is bounded in L p for all p ∈ (1, 2]. By the symmetry of the kernel conditions (1.2)
and (1.3), the same is true for its transpose t T . So, by duality, T is bounded in L p for
all p ∈ [2,∞), and the proof is complete.

We shall not discuss L p theory for square functions explicitly, but let us simply note
that, assuming (1.14)–(1.16), the square function operators Gψ and Sψ may be viewed
as SIOs with standard kernels taking values in an appropriate Hilbert space, and thus
bounded on L p, given L2 boundedness. For example, in the case of Gψ, we set

K (x, y) = {K (x, y)(t)}t := {ψt (x, y)}t ,
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and observe that K (x, y) satisfies the kernel bounds (1.2), (1.3), if the modulus | · | is
replaced by the Hilbert space norm

‖h‖H :=
(∫ ∞

0
|h(t)|2 dt

t

)1/2

.

We leave this observation as an exercise for the reader. In this context, the proof of the
Calderón-Zygmund Theorem 2.1 carries over mutatis mutandi.

It is worth emphasizing that the L p bounds in Theorem 2.1 were obtained by inter-
polating between the assumed L2 estimate and an endpoint estimate, in this case a
weak-type (1,1) bound. However, there is another type of endpoint estimate which
may also serve via interpolation to obtain L p bounds, namely, the fact that an L2

bounded SIO maps L∞(Rn) into BMO(Rn), the space of functions of bounded mean
oscillation.

We recall that BMO(Rn) is the Banach space of locally integrable functions modulo
constants for which the norm

‖b‖∗ = sup |Q|−1
∫

Q
|b(x) − [b]Q | dx

is finite, where the supremum runs over all cubes Q ⊂ R
n with sides parallel to the

co-ordinate axes (though balls would work just as well). The fundamental result about
BMO is the John-Nirenberg Theorem [67], which implies in particular that, when
1 ≤ p < ∞,

‖b‖∗ ≈ sup

(
|Q|−1

∫
Q

|b(x) − [b]Q |pdx

)1/p

, (2.7)

where the implicit constants depend only on p and dimension. We also note the
elementary fact that the mean value [b]Q is essentially the optimal constant. More
precisely,

1

2
‖b‖∗ ≤ sup inf |Q|−1

∫
Q

|b(x) − cQ |dx ≤ ‖b‖∗, (2.8)

where the infimum runs over all constants cQ, and the supremum again runs over all
cubes Q ⊂ R

n .
The following result was obtained independently by Peetre [81], Spanne [83] and

Stein [84]:

Theorem 2.9 (Peetre-Spanne-Stein Theorem). Let T be an L2 bounded SIO, asso-
ciated to a standard Calderón-Zygmund kernel K (x, y) (cf. (1.2), (1.3).) Then the
mapping T : L∞(Rn) → BMO(Rn) is bounded.

Proof Fix Q, and let f ∈ L∞. We write f = f1 + f2, where f1 := f 15Q . Let xQ

denote the center of Q, and set cQ := T f2(xQ). We then have

∫
Q

∣∣T f (x) − cQ
∣∣ dx ≤

∫
Q

|T f1(x)| dx +
∫

Q

∣∣T f2(x) − cQ
∣∣ dx =: I + I I.
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By Cauchy-Schwarz and the L2 boundedness of T, we have that

I ≤ ‖T ‖op|Q|1/2‖ f1‖2 ≤ 5n/2‖T ‖op|Q| ‖ f ‖∞.

Also, by (1.3) we have, for x ∈ Q:

∣∣T f2(x) − cQ
∣∣ =

∣∣∣∣
∫
Rn\5Q

(
K (x, y) − K (xQ, y)

)
f (y) dy

∣∣∣∣
≤ C ‖ f ‖∞

∫
Rn

�(Q)α(
�(Q) + |xQ − y|)n+α

dy = Cn,α ‖ f ‖∞,

whence I I ≤ C‖ f ‖∞|Q|. The conclusion of the theorem then follows by (2.8). ��
Note that, implicitly, T f is only defined modulo constants for general f ∈ L∞.
A few remarks are in order. Suppose that T is an L2 bounded SIO. By the symmetry

of the kernel conditions (1.2) and (1.3), the same is true for its transpose t T . Then
by Theorem 2.9, both T and t T map L∞ into BMO, whence by Fefferman’s duality
theorem [51], T also maps the Hardy space H1(Rn) into L1. By the Fefferman-Stein
interpolation theorem [51], we then have that T : L p → L p, 1 < p < ∞, thus
providing an alternative proof of Theorem 2.1.

Moreover, the same line of reasoning leads to a more subtle observation, which in
turn serves to clarify the nature of the results in the next section. Notice that if we start
with the hypothesis that T and t T both map L∞ into BMO, then the same duality and
interpolation arguments yield that T is bounded on L2. The L2 boundedness criteria
that we shall discuss in Section 3 state that, rather than testing T and t T on all of L∞,

it is enough to verify that each of them maps one particular function in L∞ into BMO.
Finally, Theorem 2.9, and also the Calderón Zygmund Theorem 2.1, say that given

L2 boundedness of an SIO associated to a standard kernel, one then automatically
knows L p and endpoint estimates for the operator. Thus, the question of L2 bounded-
ness is paramount. We remark that one can also obtain weighted L p estimates. See,
e.g. [53]. The weighted theory is also of considerable interest, and has, in fact, enjoyed
a renaissance of late. However, we shall not touch on this subject in the present survey.

3 L2 boundedness criteria

3.1 The convolution case

The theory of convolution integral operators is closely related to Fourier theory. Sup-
pose ψ ∈ L1(Rn). Its Fourier transform ψ̂, defined by

ψ̂(ξ) =
∫
Rn

e−2π iξ ·x ψ(x) dx

is a continuous function which satisfies ‖ψ̂‖∞ ≤ ‖ψ‖1 and the Plancherel identity
‖ψ̂‖2 = ‖ψ‖2 provided also that ψ ∈ L2(Rn). The transform of convolution is mul-
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tiplication, in the sense that ψ̂ ∗ f (ξ) = ψ̂(ξ) f̂ (ξ) for all ξ ∈ R
n when f ∈ L1(Rn).

Hence

‖ψ ∗ f ‖2 = ‖ψ̂ f̂ ‖2 ≤ ‖ψ̂‖∞‖ f̂ ‖2 ≤ ‖ψ‖1‖ f ‖2

for all ψ ∈ L1(Rn) and f ∈ L1 ∩ L2(Rn).
The question of L2 boundedness of a convolution SIO with kernel K (x, y) =

K (x − y) is straightforward: by Plancherel’s Theorem, it is sufficient to verify that
the associated Fourier multiplier

m(ξ) := lim
ε→0

∫
ε<|x |<ε−1

e−2π iξ ·x K (x) dx

belongs to L∞. In turn, it is not hard to establish the boundedness of m, given the stan-
dard kernel estimates (1.2), (1.3) and sufficient cancellation, say that K has mean value
0 on every annulus 0 < a < |x | < b < ∞. Clearly, the latter cancellation condition
holds for any odd kernel K , for example as one encounters in the Hilbert and Riesz
transforms. In this case, we have formally that T f = K ∗ f, or T̂ f (ξ) = m(ξ) f̂ (ξ), so
T can be written in terms of the bounded functional calculus of commuting self-adjoint
operators:

(T f )(x) = m

(
1

2π i

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

))
f (x)

with ‖T ‖op = ‖m‖∞ as ‖T f ‖2 = ‖K ∗ f ‖2 = ‖m f̂ ‖2. We must be careful though.
When, for example m(ξ) = |ξ |i , then the corresponding SIO is not given by a prin-
cipal value integral, though it can be obtained as a limit of a particular sequence of
εn → 0. (See p. 51 of [86]).

There is an excellent account of convolution SIOs in the classic [86].
For square functions, Plancherel’s theorem is also applicable in the convolution

case when Qt f = ψt ∗ f with ψt (x) = t−nψ(x)/t where ψ ∈ C∞
0 (Rn) with∫

Rn ψ(x) dx = 0 as discussed in (1.24). The key point is that the Fourier trans-
form ψ̂ belongs to the test space S(Rn) of rapidly decreasing C∞ functions and
ψ̂(0) = ∫ ∞

0 ψ(x) dx = 0, so that

|ψ̂(ξ)| � min
{
|ξ |, |ξ |−1

}

for all ξ ∈ R
n . Moreover ψ̂t (ξ) = ψ̂(tξ). Then, using (1.22),

‖Sψ f ‖2 ≈ ‖Gψ f ‖2 =
∫∫

R
n+1+

|Qt f (x)|2 dxdt

t

=
∫ ∞

0

∫
Rn

|ψ̂(tξ)|2 | f̂ (ξ)|2dξ
dt

t
=

∫
Rn

| f̂ (ξ)|2
(∫ ∞

0
|ψ̂(tξ/|ξ |)|2 dt

t

)
dξ

� ‖ f ‖2
L2(Rn)

(∫ 1

0
t2 dt

t
+

∫ ∞

1
t−2 dt

t

)
� ‖ f ‖2. (3.1)
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We remark for later use that if ψ is a non-trivial real-valued radial function, then
ψ̂ has the same properties, so with a slight abuse of notation we have

∫ ∞

0
|ψ̂(tξ)|2 dt

t
=

∫ ∞

0
|ψ̂(t |ξ |)|2 dt

t
=

∫ ∞

0
|ψ̂(t)|2 dt

t
= c < ∞,

and by renormalizing, we may suppose that c = 1. In this case ‖Gψ f ‖2 = ‖ f ‖2.
On noting that Qt is self-adjoint in this case, we obtain that

∫ ∞

0
Q2

s
ds

s
= I, (3.2)

in the strong operator topology on L2, where I is the identity operator on L2(Rn).
The identity (3.2) is referred to as the Calderón reproducing formula.

3.2 The non-convolution case

The non-convolution case is much more subtle. The original proofs of the L2 bound-
edness of the prototypical non-convolution examples (1.7) and (1.9), had each been
a real tour de force, obtained by a variety of methods. See [25] for the first Calderón
commutator, [35] for the second commutator, [36] for the higher commutators, [27] for
the Cauchy integral on a Lipschitz graph with small Lipschitz constant, and [39] for the
Cauchy integral on all Lipschitz graphs. Thus, the search for general L2 boundedness
criteria was driven in large part by the desire to better understand these fundamentally
important examples and to treat them in a more systematic way.

The first such criterion was the T 1 Theorem of David and Journé [44]:

Theorem 3.3 (T1 Theorem) [44]. Suppose that T is a singular integral operator
associated to a standard kernel K (x, y) satisfying (1.2), (1.3). Then T extends to a
bounded operator on L2 if and only if T satisfies WBP (1.13), and T 1 ∈ BMO and
t T 1 ∈ BMO.

Remark If K (x, y) is antisymmetric, and T is the associated principal value opera-
tor given by (1.12), then t T = −T, and WBP is satisfied automatically, as we have
observed above (cf. (1.12), (1.13)). Thus, in that case, matters reduce to the simple
statement that T : L2 → L2 ⇐⇒ T 1 ∈ BMO.

Remark Note that the “only if” direction of the T 1 Theorem was already known: given
that T is L2 bounded, one obtains that T 1, t T 1 ∈ BMO by the Peetre-Spanne-Stein
Theorem, and as we have noted earlier, WBP follows by Cauchy-Schwarz.

Remark The T 1 Theorem yields a simple proof of the L2 boundedness of the first Cal-
derón commutator C1

A, for A a Lipschitz function. Here is a formal proof, which can
easily be made rigorous. By antisymmetry, it is enough to verify that C1

A1 ∈ BMO. By
the representation (1.8), and the fact that (d/dx◦H)1 = 0, we have that C1

A1 = 1
i H A′.

By the Peetre-Spanne-Stein Theorem, the latter belongs to BMO, since A′ ∈ L∞ and
H : L2 → L2. Similarly, one may handle the higher order commutators by induction,
reducing Ck

A1 to Ck−1
A A′.
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We now present the proof of the T 1 Theorem, following an approach made explicit
in [33], although many of the essential ideas were already implicit in [38]. We begin
with an analogue of Theorem 3.3 for square functions, which appears in [33].

Theorem 3.4 (T1 Theorem for square functions) [33]. Let

�t f (x) :=
∫
Rn

ψt (x, y) f (y)dy,

where ψt (x, y) satisfies (1.14), (1.15). Suppose that dμ(x, t) := |�t 1(x)|2dxdt/t is
a Carleson measure, i.e., that

sup
Q

1

|Q|
∫ �(Q)

0

∫
Q

|�t 1(x)|2 dxdt

t
=: ‖μ‖C < ∞. (3.5)

Then the following square function estimate holds:

‖Gψ f ‖2
L2(Rn)

=
∫∫

R
n+1+

|�t f (x)|2 dxdt

t
� ‖ f ‖2

L2(Rn)
. (3.6)

Remark The converse direction (i.e. that (3.6) implies (3.5)) is essentially due to
Fefferman and Stein [51].

Proof of Theorem 3.4 We start with the special case when �t 1 ≡ 0 for all t > 0. We
shall show that, in this case, �t satisfies the orthogonality condition

‖�t Qs‖L2→L2 � min

(
s

t
,

t

s

)η

for some η > 0, (3.7)

with respect to convolution operators Qs defined by Qs f := ζs ∗ f with ζs(x) :=
s−nζ(x/s) with ζ ∈ C∞

0 (B(0, 1)) and
∫

ζ = 0. To do this, we shall apply the Schur
estimate (1.32) to the kernel Kts(x, y) = ∫

ψt (x, z)ζs(z − y) dz of �t Qs .
When s ≤ t, we use the smoothness (1.15) of ψt (x, y) and cancellation of ζs to

estimate

∫
Rn

|Kts(x, y)| dy =
∫
Rn

∣∣∣∣
∫

|z−y|≤s
(ψt (x, z) − ψt (x, y))ζs(z − y) dz

∣∣∣∣ dy

�
∫
Rn

sup
{z;|z−y|≤s}

|ψt (x, z) − ψt (x, y)| dy

�
∫
Rn

sα

(t + |x − y|)n+α
dy � sα

tα

for all x ∈ R
n . Also, using (1.19),

∫
Rn

|Kts(x, y)| dx ≤
∫
Rn

∫
Rn

|ψt (x, z)| |ζs(z − y)| dx dz � 1
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for all y ∈ R
n, so the Schur estimate (1.32) gives ‖�t Qs‖op � (s/t)α/2.

When t ≤ s, we reverse the roles of smoothness and cancellation, so in fact here is
where we use �t 1 ≡ 0. For all y ∈ R

n :
∫
Rn

|Kts(x, y)| dx =
∫
Rn

∣∣∣∣
∫
Rn

ψt (x, z)(ζs(z − y) − ζs(x − y)) dz

∣∣∣∣ dx

≤
∫
Rn

∫
|x−z|>s

|ψt (x, z)ζs(z − y)| dz dx

+
∫
Rn

∫
|x−z|>s

|ψt (x, z)ζs(x − y)| dz dx

+
∫
Rn

∫
|x−z|≤s

|ψt (x, z)| |ζs(z − y) − ζs(x − y)| dz dx,

so that in turn,∫
Rn

|Kts(x, y)| dx �
∫
Rn

s

(s + |z − y|)n+1

(∫
|x−z|>s

tα

|x − z|n+α
dx

)
dz

+
∫
Rn

s

(s + |x − y|)n+1

(∫
|x−z|>s

tα

|x − z|n+α
dz

)
dx

+ tα/2

sα/2

∫
Rn

sα/2

(s+|x−y|)n+α/2

(∫
Rn

tα/2|x−z|α/2

(t+|x−z|)n+α
dz

)
dx � tα/2

sα/2 .

(We have used the fact, noted after (1.24), that the family {ζs(x − y)} satisfies the
Littlewood Paley bounds (1.14) and (1.15) for all α ≤ 1.)

Continuing as above we obtain ‖�t Qs‖op � (t/s)α/4, thus completing the proof
of the orthogonality condition (3.7).

We further recall that ‖Gζ f ‖2 = ∫ ∞
0 ‖Qs f ‖2

2 � ‖ f ‖2, as we have shown in (3.1).
On choosing ζ to be a non-trivial real-valued radial function, appropriately normalised,
we have the Calderón reproducing formula

∫ ∞

0
Q2

s
ds

s
= I,

as shown in (3.2).
We are now ready to dispose of the special case when �t 1 = 0. Indeed

∫∫
R

n+1+
|�t f (x)|2 dxdt

t
=

∫ ∞

0
‖�t f ‖2

2
dt

t

=
∫ ∞

0

∥∥∥∥
∫ ∞

0
(�t Qs)Qs f

ds

s

∥∥∥∥
2

2

dt

t

≤ sup
t>0

∫ ∞

0
‖�t Qs‖op

ds
s sup

s>0

∫ ∞

0
‖�t Qs‖op

dt
t

×
∫ ∞

0
‖Qs f ‖2

2
ds

s

� ‖ f ‖2
2
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where we have used (3.2) in the second line, a variant of the Schur inequality (1.32)
in the third line, and (3.7) and (3.1) in the final one.

We now return to the proof of Theorem 3.4 in the general case. To this end, we
use a technique from [38], which has become standard in this subject. Let Pt be
a nice approximate identity, i.e., Pt f := ϕt ∗ f, where ϕt (x) := t−nϕ(x/t), and
0 ≤ ϕ ∈ C∞

0 (B(0, 1)), with
∫

ϕ = 1, so that Pt 1 = 1. Write

�t = (�t − (�t 1)Pt ) + (�t 1)Pt =: Rt + (�t 1)Pt . (3.8)

Then Rt 1 ≡ 0 for all t > 0, and, since �t 1 ∈ L∞(Rn) uniformly in t > 0 by
(1.17), the kernel of Rt continues to satisfy (1.14), (1.15). The contribution of Rt may
therefore be handled by the special case that we have just proved.

The term (�t 1)Pt may be treated by Carleson’s embedding lemma [29]:

∫∫
R

n+1+
|�t 1(x)|2 |Pt f (x)|2 dxdt

t
= :

∫∫
R

n+1+
|Pt f (x)|2 dμ(x, t)

≤ C ‖μ‖C ‖N∗(Pt f )‖2
L2(Rn)

, (3.9)

where μ and ‖μ‖C are defined in the statement of the theorem and

N∗F(x) := sup
{(y,t): |x−y|<t}

|F(y, t)|

is the non-tangential maximal function. In turn, it is a routine matter to verify that
N∗(Pt f )(x) � M f (x) whence ‖N∗(Pt f )‖L2(Rn) � ‖M f ‖L2(Rn) � ‖ f ‖L2(Rn) by
(1.30). The proof of Theorem 3.4 is now complete. ��
Remark 3.10 The lemma of Carleson which we have just applied, is of fundamental
importance in analysis. There is a proof in Chapter 2, Section 2, of [87].

Remark 3.11 For later use, we note that our proof of the T 1 theorem for square func-
tions, Theorem 3.4, remains valid when the Hölder condition (1.15) is replaced by the
following weaker integral condition: There exists α > 0, C < ∞, such that for all
x ∈ R

n and all 0 < s ≤ t < ∞,∫
Rn

sup
{z;|z−y|≤s}

|ψt (x, z) − ψt (x, y)| dy ≤ C
sα

tα
. (3.12)

Proof of Theorem 3.3 With Theorem 3.4 in hand, we now turn to the proof of the T 1
theorem. As in the proof of Theorem 3.4, let Qs denote convolution operators of the
form Qs f = ζs ∗ f with ζs(x) := s−nζ(x/s) for s > 0, where ζ is a real-valued
radial function in C∞

0 (B(0, 1)) with
∫

ζ = 0, normalised so that (3.2) holds. The
interested reader may readily verify that the operators

Pt :=
∫ ∞

t
Q2

s
ds

s
(3.13)

form a nice approximate identity in the sense that Pt f = ϕt ∗ f with ϕt (x) =
t−nϕ(x/t), where ϕ ∈ C∞

0 (B(0, 2)) with
∫

ϕ = 1.
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Now, for T as in Theorem 3.3, f, g ∈ C∞
0 , and Pt as in (3.13), we may write

〈T f, g〉 = lim
ε→0

〈T Pε f, Pεg〉 = − lim
ε→0

∫ 1/ε

ε

d

dt
〈T Pt f, Pt g〉 dt

= lim
ε→0

∫ 1/ε

ε

〈T Pt f, Q2
t g〉dt

t
+ lim

ε→0

∫ 1/ε

ε

〈T Q2
t f, Pt g〉 dt

t
=: I + I I,

where we have used the WBP (1.13) to obtain the the fact that, as R → ∞,

|〈T PR f, PR g〉| � Rn(‖PR f ‖∞ + R‖∇ PR f ‖∞)(‖PRg‖∞ + R‖∇ PR g‖∞)

� R−n‖ f ‖1‖g‖1 → 0.

(For the L∞ bounds, use ‖PR f ‖∞ = ‖φR ∗ f ‖∞ ≤ ‖φR‖∞‖ f ‖1 � R−N ‖ f ‖1, etc.)
The dual of term I I is the same as term I, except with t T in place of T and the

roles of f and g reversed, so it is enough to treat term I . Since Qt , having a radial
kernel, is its own transpose, we therefore have (applying (3.1)) that

|I | ≤
(∫∫

R
n+1+

|�t f (x)|2 dxdt

t

)1/2 (∫∫
R

n+1+
|Qt g(x)|2 dxdt

t

)1/2

�
(∫∫

R
n+1+

|�t f (x)|2 dxdt

t

)1/2

‖g‖2

where �t = Qt T Pt , i.e., �t f (x) := ∫
Rn ψt (x, y) f (y)dy, and

ψt (x, y) := 〈ζt (x − ·), T ϕt (· − y)〉.
Here, as above, ζt and ϕt are the kernels of Qt and Pt , respectively.

What remains is to bound the first factor by ‖ f ‖2, for we can then conclude that T
is a bounded operator in L2(Rn). We do this by applying the T 1 Theorem for square
functions, Theorem 3.4.

For this we must first show that ψt (x, y) satisfies the standard kernel conditions
(1.14) and (1.15). When |x − y| ≤ 8t then (1.14) is a consequence of (1.13) as we
now show:

|ψt (x, y)| = |〈ζt (x − ·), T ϕt (· − y)〉| � tn(‖ζt‖∞ + t‖∇ζt‖∞)(‖ϕt‖∞ + t‖∇ϕt‖∞)

≤ ct−n ≈ tα

(t + |x − y|)n+α
;

while (1.15) can be verified in a similar way. When |x − y| > 8t, we may use the
representation (1.1) along with (1.3) and the fact that

∫
ζs = 0 to argue as in (2.6) to

prove the claim:

|ψt (x, y)| =
∣∣∣∣
∫
Rn

∫
Rn

ζt (x − w)(K (w, z) − K (x, z))ϕt (z − y) dw dz

∣∣∣∣
≤ C sup

{ |w − x |α
|w − z|n+α

: |x − w| ≤ t, |z − y| ≤ 2t

}
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×
∫
Rn

|ζt (x − w)|dw

∫
Rn

|ϕt (z − y)|dz

� tα

|x − y|n+α
≈ tα

(t + |x − y|)n+α
(using |w − z| > 1

2 |x − y|);

while (1.15) can be verified in a similar way.
Finally, we need to establish the Carleson measure bound (3.5):

sup
Q

1

|Q|
∫ �(Q)

0

∫
Q

|�t 1(x)|2 dxdt

t
=: ‖μ‖C < ∞

In fact, since Pt 1 = 1, we have

�t 1 = Qt (T 1) = Qt b

where b := T 1 ∈ BMO by hypothesis. It is enough to invoke a simple version of the
Fefferman-Stein inequality [51]:

1

|Q|
∫ �(Q)

0

∫
Q

|Qt b(x)|2 dxdt

t

= 1

|Q|
∫ �(Q)

0

∫
Q

∣∣Qt
((

b − [b]3Q
)

13Q
)
(x)

∣∣2 dxdt

t

≤ C
1

|Q|
∫

3Q

∣∣b − [b]3Q
∣∣2 ≤ C ‖b‖2∗,

where in the middle line we have used that Qt 1 = 0 and that ζt (x − ·) is supported in
the ball B(x, t) with t ≤ �(Q), and in the last line we have used the L2 bound (3.1)
and the consequence (2.7) of the John-Nirenberg inequality.

This concludes the proof of the T 1 Theorem. ��
The T 1 theorem shed considerable light on the behavior of the Calderón commuta-

tors Ck
A (1.7). Indeed, as we have remarked above, the T 1 theorem provided a general

framework which incorporated the fundamental result of Calderón [25] concerning
the L2 boundedness of the first commutator C1

A. Moreover, an induction scheme based
on the T 1 theorem produces an operator norm of the order of ck (for some constant
c) for the kth commutator Ck

A. Thus, expanding the operator CA in (1.9) as a series of
commutators:

CA =
∞∑

k=0

(−i)kCk
A,

one obtains a proof of the boundedness of the Cauchy integral on a Lipschitz curve with
small Lipschitz constant, first proved by Calderón in [27]. However, the T 1 theorem
does not yield a direct proof of the L2 boundedness of the Cauchy integral operator
on an arbitrary Lipschitz curve, which was first established by Coifman, McIntosh
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and Meyer, by showing that the norms of the commutators Ck
A actually depend poly-

nomially on k. [39]. The desire to rectify this shortcoming of the T 1 theorem, and to
develop a general theory that would encompass the Cauchy integral operator, led to
the so-called Tb Theorem.

The Tb theorem is an extension of the T 1 theorem, in which the conditions
T 1, t T 1 ∈ BMO are replaced by the conditions T b1,

t T b2 ∈ BMO for suitable
functions b1, b2 ∈ L∞(Rn). It was first proved in a special case by McIntosh and
Meyer [75], and in general by David, Journé and Semmes [45].

Theorem 3.14 (Tb Theorem) [45]. Suppose that b1, b2 ∈ L∞ are accretive, i.e., there
is a constant δ > 0 such that


e(bi ) > δ, i = 1, 2. (3.15)

Let T be a mapping from b1C∞
0 into (b2C∞

0 )′, associated to a standard kernel K (x, y)

(equivalently, b2T b1 is a mapping from test functions to distributions associated to the
kernel b2(x)K (x, y)b1(y).) Suppose also that b2T b1 satisfies WBP (1.13) and that
T b1 and t T b2 are in BMO. Then T extends to a bounded operator on L2(Rn).

Remark For the principal value operator associated to an antisymmetric kernel, it is
enough to verify that there is a single accretive b such that T b ∈ BMO. In this case
W B P holds automatically for bT b.

Remark The accretivity condition (3.15) may be relaxed to pseudo-accretivity:

inf
Q

∣∣[b]Q
∣∣ ≥ δ,

or even para-accretivity, a relaxed version of pseudo-accretivity in which nondegen-
eracy of the average over each given cube is replaced by nondegeneracy of the average
over some sub-cube of comparable size.

Remark Somewhat earlier, it was proved in [75] that when T b1 and t T b2 both satisfy
WBP, and T b1 = 0 = t T b2, then T extends to a bounded operator on L2(Rn). (In
fact, this paper only mentions the case b1 = b2, though the same proof holds when b1
and b2 are different functions [73].)

Both papers [75] and [45] provide alternative proofs of the Cauchy integral theo-
rem of [39]. Indeed, let γ be the graph of a Lipschitz function A, and observe that
b := 1 + i A′ is accretive. By definition, (cf. (1.9), (1.10)),

CAb(x) = (Cγ 1
)
(x + i A(x)),

and at least formally, by the formula of Plemelj, CAb = 0 in the sense of BMO. More-
over, the requisite operators satisfy WBP. (Some care must be taken in interpreting
the Plemelj formula on an infinite graph, but this can be managed.)

The Tb theorem also provided a more direct proof of n dimensional analogues of the
Cauchy integral theorem, which had initially been proved by using the Calderón rota-
tion method to extend the one dimensional theory to higher dimensions. In particular,
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such results include L2 bounds for double layer potential operators, and derivatives
of single layer potential operators, on strongly Lipschitz surfaces, thus allowing the
methods of potential theory to be used to solve boundary value problems for harmonic
functions on domains with such boundaries. There is a vast literature on singular inte-
grals and potential theory, as developed for example by the school of Mikhlin [76]
and many others. Calderón’s paper [27] provided L2 bounds for potential operators on
surfaces with small Lipschitz constants, and was used by Fabes, Jodeit and Riviére to
[50] to solve Dirichlet and Neumann problems on C1 domains. After the publication of
[39], Verchota [89] showed how to solve these boundary value problems for harmonic
functions on all regions in R

n with strongly Lipschitz boundaries, using appropriate
Rellich identities to invert the boundary potential operators, thus complementing the
approach, via harmonic measures, of Dahlberg, Jerison, Kenig and others.

We shall not present the proof of the Tb theorem in the present survey, but here is
the basic idea: one constructs a discrete variant of the Calderón reproducing formula
(3.2) that is adapted to the accretive functions b1 and b2, and for which discrete square
function estimates still hold for the adapted Qt operators. In the discrete version, they
are now Qk’s. The main outline of the proof then follows that of the T 1 Theorem.
We refer the reader to [34] or to [32], pp 64–67, for the details of an argument that is
somewhat simpler than the original one in [45].

We shall however, present the proof of a square function version of the Tb theo-
rem, due to Semmes [82], as it contains the germ of an idea that has turned out to be
quite useful and to which we will return in the next section. The theorem generalizes
Theorem 3.4, and the latter will be used in the course of the proof.

Theorem 3.16 (Tb Theorem for square functions) [82] Let

�t f (x) :=
∫

ψt (x, y) f (y) dy ,

and assume that ψt satisfies the standard kernel conditions (1.14), (1.15). Suppose
there exists an accretive function b such that dμ(x, t) := |�t b(x)|2dxdt/t is a Car-
leson measure, i.e., that

sup
Q

1

|Q|
∫ �(Q)

0

∫
Q

|�t b(x)|2 dxdt

t
=: ‖μ‖C < ∞. (3.17)

Then the square function estimate (3.6) holds:

‖Gψ f ‖2
L2(Rn)

=
∫∫

R
n+1+

|�t f (x)|2 dxdt

t
� ‖ f ‖2

L2(Rn)
.

Proof By Theorem 3.4, it is enough to show that |�t 1(x)|2 dxdt
t is a Carleson measure.

By accretivity, we have that

|�t 1| ≤ C | (�t 1) Pt b|,
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where Pt is a nice approximate identity (e.g., as in (3.8)), with kernel supported in a
ball of radius t . For each cube Q, let bQ := b12Q, so that when x ∈ Q and t ≤ �(Q),

then Pt b(x) = Pt bQ(x). Therefore

1

|Q|
∫ �(Q)

0

∫
Q

|�t 1|2 dxdt

t
≤ 1

|Q|
∫ �(Q)

0

∫
Q

|(�t 1)Pt bQ |2 dxdt

t

� 1

|Q|
∫ �(Q)

0

∫
Q

|�t bQ |2 dxdt

t
+ 1

|Q|
∫ �(Q)

0

∫
Q

|Rt bQ |2 dxdt

t
= I + I I

where, again following [38] as in (3.8), we let Rt = �t − (�t 1)Pt . Now the kernels
of Rt satisfy (1.14), (1.15), and Rt (1) = 0, so by the T 1 theorem for square functions,

I I ≤ 1

|Q|
∫∫

R
n+1+

|Rt bQ |2 dxdt

t
� 1

|Q| ‖bQ‖2
2 � 1.

To bound the first term I, apply the assumption (3.17) together with the estimate

∫ �(Q)

0

∫
Q

|�t (b − bQ)|2 dxdt

t
=

∫ �(Q)

0

∫
Q

∣∣∣∣
∫
Rn\2Q

ψt (x − y)b(y) dy

∣∣∣∣
2 dxdt

t

�
∫ �(Q)

0

∫
Q

∣∣∣∣
∫
Rn\2Q

tα

|x−y|n+α
dy

∣∣∣∣
2 dxdt

t
‖b‖2∞ � |Q|.

Thus |�t 1(x)|2 dxdt
t is a Carleson measure, and the proof is complete. ��

Remark 3.18 Observe that this argument carries over if b is allowed to vary with Q,

i.e. if we have a system {bQ}, indexed on the dyadic cubes, satisfying

sup
Q

1

|Q|
∫ �(Q)

0

∫
Q

|�t 1|2 dxdt

t
≤ C sup

Q

1

|Q|
∫ �(Q)

0

∫
Q

| (�t 1) Pt bQ |2 dxdt

t

(3.19)

and

sup
Q

1

|Q|
∫ �(Q)

0

∫
Q

|�t bQ |2 dxdt

t
≤ C . (3.20)

This observation is essentially due to Auscher and Tchamitchian [18], and is the start-
ing point for the solution of the Kato problem, which we shall discuss in the next
section.

Thus, it is natural to pose the question: when does (3.19) hold? In fact, the solution
to the Kato problem provided a sufficient condition which answers this question (see
in particular Theorem 4.7 (i), (iii), and Theorem 4.15 (i), (iii) below). Moreover, the
question is related to some previous work of Christ [31], who gave the first example
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of a class of results which have come to be referred to as local Tb theorems. Here is a
brief overview of the latter notion.

In some applications, it may not be at all evident that there is a single accretive (or
pseudo-accretive) b for which Tb is well behaved (where we should think of T as either
an SIO or a square function operator.) On the other hand, in such cases it is sometimes
possible to find a family {bQ}, indexed by dyadic cubes Q, such that T bQ behaves
well locally on Q as e.g. in (3.20). This motivates the introduction of the notion of
a Local Tb Theorem, in which good local control of T, on each member of a family
of suitably non-degenerate functions bQ, one for each dyadic cube Q, still suffices to
deduce global L2 boundedness of T . Such results are the topic of the next section.

4 Local Tb theorems and applications

The first local Tb theorem was proved by Christ [31], in connection with the theory of
analytic capacity. The appropriate version of non-degeneracy in this context is as fol-
lows: a pseudo-accretive system is a collection of functions {bQ}, indexed by the dyadic
cubes, with bQ supported in Q and integrable, such that for some δ > 0, we have that

∣∣∣∣
∫

Q
bQ

∣∣∣∣ ≥ δ|Q|.

Theorem 4.1 [31] Suppose that T is a singular integral operator associated to a
standard kernel K (x, y), which in addition we assume to be in L∞. Suppose also that
there are constants δ > 0 and C0 < ∞, and pseudo-accretive systems {b1

Q}, {b2
Q},

with supp bi
Q ⊆ Q, i = 1, 2, such that for each dyadic cube Q,

(i) ‖b1
Q‖L∞(Q) + ‖b2

Q‖L∞(Q) ≤ C0

(ii) ‖T b1
Q‖L∞(Q) + ‖t T b2

Q‖L∞(Q) ≤ C0

(iii) min
{∣∣∣∫Q b1

Q

∣∣∣ ,
∣∣∣∫Q b2

Q

∣∣∣
}

≥ δ|Q|.
Then T extends to a bounded operator on L2, with bound depending on n, δ, C0 and
the kernel constants in (1.2), (1.3), but not on the L∞ norm of K (x, y).

A few remarks are in order. The assumption that K ∈ L∞ is merely qualitative, and
is satisfied, e.g., by smooth truncations of a standard kernel. This assumption allows
one to make certain formal manipulations with impunity, during the course of the
proof. Christ actually proved this theorem in the setting of a space X endowed with
a pseudo-metric ρ and a doubling measure μ (meaning that μ(B(x, 2r)) ≤ Cμ(x, r)

for all x ∈ X and r > 0 and some constant C), which, as he demonstrated, neces-
sarily possesses a suitable version of a dyadic cube structure. Christ’s theorem and
the technique of its proof are related to the solution of Painlevé’s problem concerning
the characterization of those compact sets K ⊂ C for which there exist non-constant
bounded analytic functions on C\K . We will not discuss the latter subject in detail,
nor the deep related work on extending Tb theory to the non-doubling setting. See
Section 5 for some further results in this vein.
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Instead, we shall concentrate on extensions of Christ’s result in another direction,
in which L∞ control of bQ and T bQ is replaced by local, scale invariant L2 control.
Moreover, our emphasis will be on local Tb theory for square functions, as opposed to
singular integrals, although in Section 5 we shall discuss briefly some recent progress in
the latter case. It turns out that the square function setting is somewhat technically sim-
pler, yet, to date, it is that setting which has been more fruitful in terms of applications.

Before presenting the local Tb theorem for square functions, we introduce the dyadic
averaging operator At , defined by

At f (x) := 1

|Q(x, t)|
∫

Q(x,t)
f (y)dy, (4.2)

where Q(x, t) ∈ D denotes the minimal dyadic cube containing x, with side length
at least t . Just as the nice approximate identity Pt defined before (3.8) filters out fre-
quencies higher than 1/t, so does At , the difference being that At f approximates f
by a piecewise constant function, whereas Pt f approximates f by a smooth function.
These approximations are close in the following sense:

Lemma 4.3 ∫∫
R

n+1+
|(At − Pt ) f (x)|2 dxdt

t
� ‖ f ‖2

2 (4.4)

for all f ∈ L2(Rn).

Proof Write the operator At as an integral operator At f (x) = ∫
Rn χt (x, y) f (y) dy

with

χt (x, y) := 1

|Q(x, t)|1Q(x,t)(y),

where Q(x, t) is the unique dyadic cube containing x with �(Q) ≥ t > 1
2 �(Q).

It is easy to check that χt (x, y) satisfies the first Littlewood-Paley estimate (1.14),
and although it does not satisfy (1.15), it does satisfy the integral version (3.12) pre-
sented in Remark 3.11 with α = 1. This is because, when |z − y| ≤ s ≤ t, then
χt (x, z) − χt (x, y) can only be non-zero when dist(y, ∂ Q(x, t)) ≤ s. Here ∂ Q(x, t)
denotes the boundary of Q(x, t). Therefore

∫
Rn

sup
{z;|z−y|≤s}

|χt (x, z) − χt (x, y)| dy ≤
∫

dist(y,∂ Q(x,t))≤s

1

|Q(x, t)| dy � stn−1

|Q(x, t)|
≈ s

t

as required. The kernel ϕt (x, y) = ϕt (x − y) of Pt satisfies the standard Littlewood-
Paley estimates (1.14) and (1.15), so the kernel (χt − ϕt )(x, y) of �t := At − Pt

satisfies (1.14) and (3.12). Moreover �t 1(x) = ∫
χt (x, y) dy − 1 = 0 for all x ∈ R

n,

so by the special case when �t 1 ≡ 0 of the T 1 Theorem for square functions as
generalised in Remark 3.11, the square function estimate (4.4) holds. ��

123



Singular integrals and square functions 227

Before coming to the local Tb theorem for square functions, we make two prelim-
inary observations about Carleson measures. A Carleson measure is a Borel measure
μ on R

n+1+ such that, for some constant Cμ < ∞, μ(RQ) ≤ Cμ|Q| for all cubes
Q ⊂ R

n, where RQ denotes the Carleson box RQ := Q × (0, �(Q)) ⊂ R
n+1+ .

In the first observation, we note that it is sufficient to check the Carleson measure
condition on dyadic cubes:

Lemma 4.5 Let μ be a Borel measure on R
n+1+ such that μ(RQ) ≤ C |Q| for all

Q ∈ D, where RQ := Q × (0, �(Q)). Then μ(RQ) ≤ 22nC |Q| for all cubes Q ⊂ R
n.

Proof For a cube Q ⊂ R
n, cover Q with Q j ∈ D, j = 1, 2, · · · , N , with N ≤ 2n

and �(Q) ≤ �(Q j ) < 2�(Q). Then RQ ⊂ ⋃
j RQ j , so that

μ(RQ) ≤
∑

μ(RQ j ) ≤ C
∑

|Q j | ≤ C2n2n|Q|.

��
In the second, we show that when proving that a measure μ on R

n+1+ is a Carleson
measure, it suffices to prove a bound for μ on an η-ample sawtooth region of each Car-

leson box RQ for some η > 0. This is a region of the form E∗
Q := RQ\

(⋃
j RQ j

)
,

where {Q j } is a collection of non-overlapping dyadic sub-cubes of Q such that EQ :=
Q\

(⋃
j Q j

)
has Lebesgue measure |EQ | ≥ η|Q|. This result is known as a John-

Nirenberg type lemma for Carleson measures.
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Lemma 4.6 (“John-Nirenberg” lemma for Carleson measures). Let μ be a Borel mea-
sure on R

n+1+ . Suppose that there exist η > 0, C1 < ∞ such that for every dyadic cube
Q, there is a collection {Q j } of non-overlapping dyadic sub-cubes of Q satisfying

|EQ | := |Q\ (∪ j Q j
) | ≥ η|Q|,

for which the η-ample sawtooth E∗
Q := RQ\

(⋃
j RQ j

)
satisfies

μ
(
E∗

Q

) ≤ C1|Q| .

Then μ is a Carleson measure, with

sup
Q∈D

μ
(
RQ

)
|Q| ≤ C1

η
.

Sketch of proof Start with a dyadic cube Q. Then RQ = E∗
Q ∪ ⋃

j RQ j (disjoint
union), and

∑
j |Q j | = | ⋃ j Q j | ≤ (1 − η)|Q|. Iterating, we decompose RQ j =

E∗
Q j

∪ ⋃
k RQ j,k (disjoint union) and

∑
j,k

|Q j,k | ≤
∑

j

(1 − η)|Q j | ≤ (1 − η)2|Q|

and so on. Therefore

μ(RQ) = μ(E∗
Q) +

∑
j

μ(RQ j )

≤ C1|Q| +
∑

j

μ(E∗
Q j

) +
∑
j,k

μ(RQ j,k )

≤ C1|Q| + C1

∑
j

|Q j | +
∑
j,k

μ(E∗
Q j,k

) + · · ·

≤ C1(|Q| + (1 − η)|Q| + (1 − η)2|Q| + · · · ) = C1|Q|
η

.

��

4.1 Local Tb theorems for square functions

We begin with a local Tb theorem for square functions, which extends the global ver-
sion, Theorem 3.16. This result is essentially contained in the solution of the Kato
problem: see [60,56,9]. The stated version is formulated explicitly in [2] and [54].

Theorem 4.7 Let �t f (x) := ∫
ψt (x, y) f (y)dy, where ψt (x, y) satisfies (1.14),

(1.15). Suppose that there exist constants δ > 0, C0 < ∞, and a system {bQ} of
functions indexed by dyadic cubes Q in R

n such that for each dyadic cube Q:
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(i)
∫
Rn |bQ(x)|2 dx ≤ C0|Q|;

(ii)
∫ �(Q)

0

∫
Q |�t bQ(x)|2 dxdt

t ≤ C0|Q|;
(iii)

∣∣∣∫Q bQ(x) dx
∣∣∣ ≥ δ|Q|.

Then the following square function estimate holds:∫∫
R

n+1+
|�t f (x)|2 dxdt

t
� ‖ f ‖2

2. (4.8)

Remark 4.9 On dividing each function bQ by an appropriate complex constant, we
may replace (iii) by

(iii′)
∫

Q bQ(x) dx = |Q|
noting that the constant C0 in (i), (ii) needs to be modified. We shall assume (i), (ii)
and (iii′) in the proof.

Proof We follow the outline of the proof of Semmes’ result Theorem 3.16 (cf. [18]
and Remark 3.18), but with an additional stopping time argument, in the spirit of that
used in Christ’s proof [31] of Theorem 4.1, to exploit the pseudo-accretive system
condition, which is weaker than global pseudo-accretivity of a single function b.

As in the proof of Theorem 3.16, again by Theorem 3.4, it suffices to verify that
|�t 1|2dxdt/t is a Carleson measure, now given the existence of a family {bQ} sat-
isfying hypotheses (i), (ii) and (iii′). To this end, we first observe that, as in [82] and
[18], it is enough to verify the bound

sup
Q∈D

1

|Q|
∫∫

RQ

|�t 1|2 dxdt

t
≤ C2 sup

Q∈D
1

|Q|
∫∫

RQ

|(�t 1)At bQ |2 dxdt

t
, (4.10)

where RQ := Q × (0, �(Q)) is the Carleson box above Q, and At is the dyadic aver-
aging operator defined in (4.2). Indeed, suppose momentarily that (4.10) holds. Then
to obtain (3.5), and thus also the conclusion of the theorem, it suffices to show that
the right hand side of (4.10) is bounded. Once again let Pt define a nice approximate
identity as defined before (3.8), and following [38], write

(�t 1)Pt bQ = (
(�t 1)Pt bQ − �t bQ

) + �t bQ =: Rt bQ + �t bQ

where Rt := (�t 1)Pt − �t satisfies Rt 1 ≡ 0. Therefore∫∫
RQ

|(�t 1)At bQ(x)|2 dxdt

t
≤

∫∫
R

n+1+
|(�t 1)(At − Pt )bQ(x)|2 dxdt

t

+
∫∫

R
n+1+

|Rt bQ(x)|2 dxdt

t
+

∫∫
RQ

|�t bQ(x)|2 dxdt

t

�
∫
Rn

|bQ(x)|2 dx +
∫
Rn

|bQ(x)|2 dx + |Q| � |Q|

where the bound on the first of the three integrals follows from Lemma 4.3 and (1.17),
the bound on the second follows from the special case of Theorem 3.4 since Rt 1 ≡ 0,

and the bound on the third is hypothesis (ii). The final estimate needs (i).
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We turn now to the proof of (4.10). In order to apply Lemma 4.6, it suffices to show
that there are constants η > 0, C < ∞, such that for each Q ∈ D, there is a dyadic
sawtooth region

E∗
Q := RQ\(∪ j RQ j ), (4.11)

where {Q j } are non-overlapping dyadic sub-cubes of Q, with

|Q\(∪ j Q j )| ≥ η|Q|
and ∫∫

E∗
Q

|�t 1(x)|2 dxdt

t
≤ 4

∫∫
E∗

Q

|(�t 1(x))(At bQ(x))|2 dxdt

t
. (4.12)

We prove (4.12) via the same stopping time argument as in [60,56,9]. See also
[31], where a similar idea had previously appeared. Our starting point is (iii′). We
sub-divide Q dyadically, to select a family of non-overlapping cubes {Q j } which are
maximal with respect to the property that


e
1

|Q j |
∫

Q j

bQ ≤ 1/2. (4.13)

If E∗
Q is defined as in (4.11) with respect to this family {Q j }, then by construction, if

(x, t) ∈ E∗
Q, it follows that


e At bQ(x) ≥ 1/2

so that (4.12) holds. It remains only to verify that there exists η > 0 such that

|EQ | ≥ η|Q|, (4.14)

where EQ := Q\(⋃ j Q j ). By (iii′) we have that

|Q| =
∫

Q
bQ = 
e

∫
Q

bQ = 
e
∫

EQ

bQ + 
e
∑

j

∫
Q j

bQ

≤ |EQ | 1
2

(∫
Q

|bQ |2
) 1

2 + 1
2

∑
|Q j |,

when in the last step we have used (4.13). From hypothesis (i), we then obtain

|Q| ≤ √
C0|EQ | 1

2 |Q| 1
2 + 1

2 |Q|,

and (4.14) now follows readily with η = 1
4C0

.

123



Singular integrals and square functions 231

To conclude the proof, we apply Lemma 4.6 with

dμ = |�t 1(x)|2 dxdt

t
and

C1 = 4C2 sup
Q∈D

1

|Q|
∫∫

RQ

|(�t 1)At bQ |2 dxdt

t
.

��

The previous Theorem has an extension to the matrix valued setting. We explain
in the next subsection why this is interesting. Let M

N denote the space of N × N
matrices with complex entries.

Theorem 4.15 Suppose that � t : R
n × R

n → C
N satisfies the standard kernel

conditions (1.14), (1.15). Define, for f : R
n → C

N , the operator

�t · f(x) :=
∫

� t (x, y) · f(y)dy. (4.16)

Suppose also that there are constants δ > 0, C0 < ∞ and a system of matrix valued
functions bQ : R

n → M
N , indexed by the dyadic cubes, such that

(i)
∫
Rn |bQ(x)|2 dx ≤ C0|Q|;

(ii)
∫ �(Q)

0

∫
Q |�t bQ(x)|2 dxdt

t ≤ C0|Q|;
(iii) 
e ξ ·

(
|Q|−1

∫
Q bQ(x) dx

)
ξ ≥ δ|ξ |2.

where the ellipticity condition (iii) holds for all ξ ∈ C
N , and where the action of �t

on the matrix valued function bQ is defined in the obvious way as in (4.16) by viewing
the kernel � t (x, y) as a 1 × N matrix which multiplies the N × N matrix bQ. By
|bQ(x)| is meant the operator norm of the matrix bQ(x). Then the following square
function estimate holds:

∫∫
R

n+1+
|�t · f |2 dxdt

t
� ‖f‖2

2. (4.17)

Remark 4.18 It turns out that a variant of this theorem lies at the heart of the solution
of the Kato problem [9,56,60]. See also [18], where a similar result is given but with
(3.19) in lieu of (iii). Thus, the present result, along with the scalar version Theorem
4.7, addresses the question posed immediately following Remark 3.18.

We now sketch the proof, which is essentially the same as the argument used to
establish the Kato conjecture. Let 1 denote the N × N identity matrix. Since

�t 1 = (�1
t 1,�2

t 1, . . . , �N
t 1),
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Proposition 3.4 therefore implies that it is enough to show that |�t 1|2 t−1dxdt is a
Carleson measure. For ε small, but fixed, cover C

N by cones

�ε
k =

{
z ∈ C

N :
∣∣∣∣ z

|z| − νk

∣∣∣∣ < ε

}

where νk ∈ M
N with |νk | = 1 for k = 1, 2, 3, . . . , K (ε, N ). We see that

∫ �(Q)

0

∫
Q

|�t 1|2 dxdt

t
≤

K∑
k=1

∫ �(Q)

0

∫
Q

|�t 1|2 1�ε
k
(�t 1)

dxdt

t
.

Thus, it suffices to show that there is a constant C1 = C1(ε, δ, C0, n, N ) such that

sup
Q∈D

|Q|−1
∫ �(Q)

0

∫
Q

|�t 1|2 1�ε (�t 1)
dxdt

t
≤ C1,

for each fixed cone �ε, provided that ε is small enough, but fixed.
To this end, normalizing so that δ = 1, and fixing Q, we follow the stopping time

argument of the previous theorem, in the present case extracting dyadic subcubes
Q j ⊂ Q which are maximal with respect to the property that at least one of the
following holds:

∫
Q j

|bQ | ≥ 1

4ε
(4.19)

or


e ν ·
(

|Q j |−1
∫

Q j

bQ

)
ν ≤ 3

4
, (4.20)

where ν ∈ C
N is the unit vector in the direction of the central axis of �ε, i.e.,

�ε =
{

z ∈ C
N :

∣∣∣∣ z

|z| − ν

∣∣∣∣ < ε

}
.

As in the proof of the previous theorem, one may check that

|EQ | := |Q\(∪ j Q j )| ≥ η|Q|,

for some fixed η > 0. Moreover, for (x, t) ∈ E∗
Q := RQ\(⋃ j RQ j ), and for z ∈ �ε,

we claim that

|z · At bQ(x)ν| ≥ 1

2
|z|, (4.21)
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where again At denotes the dyadic averaging operator defined in (4.2). Indeed, since
the opposite inequalities to (4.19) and (4.20) hold in E∗

Q, we have that

|ω · At bQ(x)ν| ≥ |ν · At bQ(x)ν| − |(ω − ν) · At bQ(x)ν| ≥ 3

4
− 1

4
= 1

2

when |ω − ν| < ε and (x, t) ∈ E∗
Q . Taking ω = z/|z| with z ∈ �ε, we obtain (4.21).

Consequently, we have that

∫∫
E∗

Q

|�t 1|2 1�ε (�t 1)
dxdt

t
≤ 4

∫∫
E∗

Q

|�t 1 · At bQν|2 dxdt

t
,

and the rest of the proof follows as in the previous theorem.

4.2 Application to the Kato square root problem

As mentioned above, a variant of the preceding theorem leads to the solution of the Kato
problem. We recall the statement of the problem. Let A be an n×n matrix of complex-
valued L∞ coefficients, defined on R

n, and satisfying the ellipticity (or accretivity)
condition (1.26). Then the associated divergence form operator L = − div A∇ defined
as in (1.27), considered as an unbounded operator in the Hilbert space L2(Rn) with
inner product (u, v) := 〈u, v〉, has both its spectrum σ(L) and its numerical range
{(Lu, u) ∈ C ; u,∇u, Lu ∈ L2} contained in a sector {ζ ∈ C ; | arg ζ | ≤ ω} for some
ω ∈ [0, π/2). Such an operator, called ω-accretive, generates a contraction semigroup
{e−t L}t>0 and has unique αω-accretive fractional powers Lα when 0 < α < 1. In par-
ticular, L has a unique square root

√
L := L1/2 satisfying

√
L
√

L = L . See [69,68].
We note for later use (see e.g. [8]) that such an ω-accretive operator L also satisfies

the uniform bounds

‖τ Le−τ L u‖2 � ‖u‖ for all τ > 0 (4.22)

and (since L is one-one) quadratic estimates such as

∫ ∞

0
‖√τ Le−τ Lu‖2 dτ

τ
≈ ‖u‖2. (4.23)

When A, and hence L , is self-adjoint, then it is easy to see that the domain of the
operator

√
L is the Sobolev space W 1,2(Rn), because

‖√Lu‖2 = (Lu, u)1/2 = (A∇,∇u)1/2 ≈ ‖∇u‖2.

The Kato square root problem is to establish the same equivalence of norms

‖√Lu‖2 ≈ ‖∇u‖2 (4.24)
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for non self-adjoint operators, with C depending only on n, λ and �. When the dimen-
sion n = 1, the latter estimate is closely related to the L2 boundedness of the Cauchy
singular integral operator on a Lipschitz curve, and indeed it was solved affirmatively
in the same paper [39].

The initial affirmative results for n ≥ 2 concerned small perturbations of the La-
placian, i.e. ‖A − I‖∞ < ε for some small ε [30,49,66]. After that came various
partial results (see [74] for a survey up to this point), but the main achievement for a
long time after was the writing of the book [18] by Auscher and Tchamitchian, con-
solidating and extending prior results, and relating them to local Tb square function
estimates (cf. Remark 4.18.) This led on to affirmative solutions, first in 2 dimensions
[60], then in all dimensions for small perturbations of real symmetric operators [10],
and for operators which satisfy Gaussian heat kernel bounds [56], and finally for all
divergence form operators with bounded measurable coefficients [9].

In order to give some feel for the connection with local Tb theorems for square
functions, let us make the additional assumption of heat kernel bounds (G):

e−τ L u(x) =
∫
Rn

kτ (x, y)u(y)dy for all u ∈ L2(Rn)

where the heat kernel kτ (x, y) satisfies the Gaussian kernel bounds:

|kτ (x, y)| ≤ β

tn/2 e− |x−y|2
ατ and

|kτ (x+h, y)−kτ (x, y)|+|kτ (x, y+h)−kτ (x, y)| ≤ β
|h|α

t (α+n)/2
e− |x−y|2

ατ ∀|h| ≤ t,

for some α, β > 0. We remark that the classes of operators which are stated to satisfy
Poisson kernel bounds in the paragraph following equation (1.28), also satisfy heat
kernel bounds.

What follows is an outline of the proof under this additional assumption, essentially
following the relevant parts of the book [18] and the paper [56].

As L∗ has the same form as L , only the direction

‖√Lu‖2 � ‖∇u‖2 (4.25)

needs be shown, because ‖√L∗u‖2 ≤ C‖∇u‖2 implies that ‖∇u‖2 � ‖√Lu‖2, for

‖∇u‖2
2 ≤ 1

λ
(A∇u,∇u) = 1

λ
(
√

Lu,
√

L∗u) ≤ C
λ
‖√Lu‖2‖∇u‖2.

(We are leaving out technical considerations concerning domains of operators, etc.)
Now (4.25) is equivalent to the square function estimate:

∫∫
R

n+1+
|t Le−t2 Lu(x)|2 dx dt

t
� ‖∇u‖2

2, (4.26)
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because, by (4.23),

∫∫
R

n+1+

∣∣∣t Le−t2 Lu(x)

∣∣∣2 dx dt

t
= 1

2

∫ ∞

0

∥∥∥√
τ Le−τ L(

√
Lu)

∥∥∥2

2

dτ

τ
≈ ‖√Lu‖2

2.

The square function estimate (4.26) has the form of equation (4.17) in Theorem
4.15 with

�t = te−t2 L div A

and f = ∇u. However we cannot apply this theorem as stated because �t does not
satisfy the standard kernel estimates (1.14) and (1.15), and indeed the square function
estimate (4.17) can, in this case, only be expected to hold for gradient vector fields
f = ∇u. To proceed, the structure of the operator L is used to show that the operators
{Zt }, defined by

Zt u(x) : = �t∇u(x) − �t 1(x) · (Pt∇u)(x)

= (t Le−t2 Lu)(x) − (t Le−t2 Lφ(x)) · (Pt∇u)(x),

(where φ(x) := x) satisfy

∫∫
R

n+1+
|Zt u(x)|2 dx dt

t
� ‖∇u‖2

2. (4.27)

Once we have proved that dμ(x) := |�t 1(x)|2 dxdt
t is a Carleson measure on

R
n+1+ , we can then verify (4.26) as follows:

∫∫
R

n+1+

∣∣∣t Le−t2 Lu(x)

∣∣∣2 dxdt

t
=

∫∫
R

n+1+
|Zt u(x) + �t 1(x) · (Pt∇u)(x)|2 dxdt

t

�
∫∫

R
n+1+

|Zt u(x)|2 dxdt

t
+

∫∫
R

n+1+
|Pt∇u(x)|2 |�t 1(x)|2 dxdt

t
� ‖∇u‖2,

by (4.27) and Carleson’s Theorem as used in (3.9). (We shall not include a proof of
(4.27), though remark that it is somewhat similar to the “T 1”-type reductions of square
function bounds to Carleson measure bounds which we have already considered.)

The next step is to proceed exactly as in Theorem 4.15, to show that the Carleson
estimate is a consequence of an estimate of the form:

∫∫
RQ

|�t 1(x) · At bQ(x)|2 dxdt

t
≤ C2|Q| for all dyadic cubes Q ⊂ R

n, (4.28)

provided we can find a system of matrix valued functions bQ : R
n → M

N , Q ∈ D,

which satisfies hypotheses (i) and (iii) of that theorem. For this purpose, we define
bQ : R

n → M
N for each dyadic cube Q ⊂ R

n by
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bQ = ∇e−ε2�(Q)2 LφQ =: ∇fQ, (4.29)

with ε > 0 to be chosen, small enough, and

φQ(x) = ηQ(x)(x − xQ),

where ηQ ∈ C∞
0 (5Q) with η ≡ 1 on Q, and xQ denotes the centre of Q.

Before checking the hypotheses (i)–(iii), we note some consequences of the heat
kernel bounds (G), namely that �t 1 ∈ L∞(Rn, C

n) with a uniform bound

‖�t 1‖∞ = ‖t Le−t2 Lφ‖∞ ≤ M1 < ∞ for all t > 0 ; and (4.30)

‖(e−t2 L − I )φQ‖∞ ≤ M2 t for all t > 0. (4.31)

We now show that the hypotheses (i), (ii), (iii) of Theorem 4.15 are satisfied by the
system of matrix valued functions bQ .

(i) The estimate ‖bQ‖2
2 ≤ C0|Q| is a consequence of the more general fact that a

homogeneous elliptic operator L in divergence form generates a bounded semigroup
with respect to the homogeneous Sobolev norm ‖∇u‖2. Thus

‖bQ‖2 = ‖∇e−ε2�(Q)2 LφQ‖2 � ‖∇φQ‖2 ≈ |Q|1/2.

(ii) Noting that �t bQ(x) = te−t2 L Le−ε2�(Q)2 LφQ, we have

∫ �(Q)

0

∫
Q

|�t bQ(x)|2 dxdt

t
≤

∫ ∞

0
‖Le−(t2+ε2�(Q)2)LφQ‖2

2 t dt

= 1
2

∫ ∞

ε2�(Q)2
‖τ Le−τ LφQ‖2

2
dτ

τ 2

where τ = t2 + ε2�(Q)2

≤ c0

(
1

ε2�(Q)2

)
‖φQ‖2

2 ≤ c1

ε2 |Q|,

using (4.22) to obtain the uniform operator bounds.
(iii)


e ξ ·
(

|Q|−1
∫

Q
bQ(x) dx

)
ξ = |ξ |2 + 
e ξ ·

(
|Q|−1

∫
Q

(bQ − 1)(x) dx

)
ξ

≥ |ξ |2−|Q|−1
∥∥∥∥
∫

Q
∇(e−ε2�(Q)2 L − I )φQ(x) dx

∥∥∥∥
op

|ξ |2

≥ |ξ |2 − c1

�(Q)

∥∥∥(e−ε2�(Q)2 L − I )φQ

∥∥∥∞ |ξ |2

≥ |ξ |2(1 − c1 M2ε) (by (4.31))

≥ 1
2 |ξ |2
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provided ε is chosen sufficiently small. We fix such a value of ε, and in particular use
it back in part (ii).

All that remains is to check (4.28). To this end, as in the proofs of Theorems 4.7
and 4.15 above, we follow [38] to write

�t 1 · (At bQ) = �t 1 · (
(At − Pt )bQ

) + (�t 1 · Pt − �t ) bQ + �t bQ,

and we note that, in view of (4.29), (�t 1 · Pt − �t )bQ = −Zt fQ . Thus,

∫∫
RQ

|�t 1(x) · (At bQ)(x)|2 dxdt

t
� ‖bQ‖2

2 + ‖bQ‖2
2 + C0|Q| ≤ C2|Q|

by (4.30), (4.4), (4.27) and (ii).
That completes our description of the proof of the Kato square root problem for

elliptic operators which satisfy pointwise heat kernel bounds. As we have said, the
result holds without this additional assumption. One may use, in lieu of the Gaussian
heat kernel bounds (G), the “Davies-Gaffney” off-diagonal estimates, which hold for
every divergence form elliptic operator L as in (1.25)–(1.27). We refer the reader to
[9] for a complete proof of the Kato square root estimate in this general setting.

The question whether accretive operators satisfy the estimate (4.24) was originally
asked by T. Kato, J.-L. Lions and others in an attempt to better understand the equiva-
lence between the operators and their associated sesquilinear (or energy) forms. This
question arose again during Kato’s study of hyperbolic wave equations with time-vary-
ing coefficients, as it is connected with the question whether the mapping A → L1/2

is analytic. See [72]. Another application, and an easier one to describe, was noted by
Kenig [70, Remark 2.5.6]: On R

n+1+ := R
n × (0,∞) consider the Dirichlet problem:

{
∂2

∂t2 U ( ·, t) − LU ( ·, t) = 0
U ( ·, t) = u( · ) ∈ D(

√
L)

where still L = −∑n
j,k=1

∂
∂x j

(A jk
∂

∂xk
). Then the solution U (x, t) := e−t

√
Lu(x)

also satisfies the Neumann boundary condition

∂U

∂t

∣∣∣t=0 = −√
Lu

if
√

Lu ∈ L2(Rn). Hence the Kato estimate ‖√Lu‖2 ≈ ‖∇x u‖2 is equivalent to

∥∥∥∥∂U

∂t
|t=0

∥∥∥∥
2

≈ ‖∇x u‖2 .

This alternative form of the Kato estimate is also known as a Rellich inequality or a
Dirichlet-Neumann inequality.

For an excellent survey of the Kato square root problem, see Kenig’s featured review
[71].
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Before completing this section, we comment briefly on L p estimates. For the vari-
ous Tb results proved up to Section 4.1, the estimates also hold with L p norms in place
of the L2 norms, as follows from Theorem 2.1 (to treat the case 2 < p < ∞, this
requires either that we work with conical square functions, or that we impose some
regularity in the x-variable, of the kernel ψt (x, y); see, e.g., [11] for a more detailed
discussion of this point.) On the other hand, the operators �t used in the current
section, arising in the proof of Kato’s square root estimate, do not typically satisfy
standard kernel bounds, even if L does have heat kernel bounds, so we cannot expect
the Kato estimates to remain true for all p �= 2. However, a variety of means have
been used to prove bounds in specific cases. One method, involving weak-type (1-1)
bounds via an adaptation of the Calderón-Zygmund theorem [46], was used to obtain

‖∇u‖p � ‖√Lu‖p, (4.32)

when 1 < p < 2, provided L has pointwise heat kernel bounds (i.e. satisfies the first
equation in (G)) [47], and, via a duality argument,

‖√Lu‖p � ‖∇u‖p, (4.33)

when 2 < p < ∞.Another, involving the use of Hardy spaces, was used in [9] to show
that if L has pointwise heat kernel bounds, then (4.33) holds when 1 < p < 2. In the
absence of pointwise kernel bounds, an extension of the Calderón-Zygmund method
of [46] was developed independently in [20,21], and in [57], to prove the “Riesz trans-
form” estimate (4.32) for a (necessarily) restricted range of p; the Kato estimate (4.33)
was proved for a sharp (and again restricted) range of p in [3]. We refer the reader
to [3] for a rather complete discussion of the L p theory in the absence of pointwise
kernel bounds. Another approach to L p estimates is mentioned in Section 5.1.3 below.

5 Further results and recent progress

In this section we briefly discuss some recent advances in this subject.

5.1 Tb theory for SIOs

5.1.1 Analytic capacity

As mentioned above, Christ’s local Tb theorem (Theorem 4.1) was motivated in part
by its connection with the theory of analytic capacity and the Painlevé problem, which
was eventually solved in the remarkable work of Tolsa [88]. See also the earlier work of
Mattila, Melnikov and Verdera [77], and David [41,42]. Analytic capacity is connected
with Tb theory via the Cauchy integral: the existence of non-constant bounded analytic
functions may be used to produce a testing function b which yields L2 bounds for the
Cauchy integral. These bounds, in turn, encode geometric information via the so-called
Menger curvature. In practice, this program was quite difficult to carry out, especially
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in the general situation in which the underlying measure may be non-doubling. Some
extensions of either local or global Tb theorems to the non-doubling setting have been
obtained by David [41] and by Nazarov, Treil and Volberg [79,80]. The latter, espe-
cially, played a useful role in Tolsa’s solution of the Painlevé problem and the related
Vitushkin conjecture concerning the semi-additivity of analytic capacity. Finally, much
of this theory has been extended to higher dimensions by Volberg [90].

5.1.2 Local Tb theory for SIOs

Theorem 4.1 has been extended in another direction, closer in spirit to the results that
we described above in Section 4, in which one requires weaker quantitative control
on bQ and T bQ . In [13], Conditions (i) and (iii) of Theorem 4.1 are relaxed to

(i)
∫

Q
|bi

Q |p ≤ C0|Q|, (i i)
∫

Q
|T b1

Q |p′ ≤ C0|Q|,
∫

Q
|t T b2

Q |p′ ≤ C0|Q|,

respectively, for 1 < p < ∞, assuming that T is a perfect dyadic SIO. In the case
of standard SIOs, the same result was obtained with p = 2 in [19], but it remains an
open problem, in general, to treat the case 1 < p < 2. The current state of the art
appears in [17], where the case 1 < p < 2 is handled in the presence of additional
hypotheses in the spirit of WBP, and in [62], where the theory is extended to a class
of non-doubling measures.

5.1.3 Tb theory for vector valued functions

Many applications require the study of SIOs acting on spaces of vector valued functions
f : R

n → X, where X is a Banach space. As mentioned in the Introduction, many
proofs in this survey carry over to this context provided X is a Hilbert space. However,
the situation is much more complicated when X is not isomorphic to a Hilbert space,
and even the Hilbert transform may then be unbounded. In the 1980’s, Bourgain [22]
and Burkholder [23] proved that the Hilbert transform is bounded on L2(Rn; X) if
and only if X has the UMD (Unconditional Martingale Difference) property. See [24]
for a survey. The connection between SIOs and martingales turns out to be the key to
the vector valued theory, but is also an important tool for the scalar valued theory, for
example in obtaining best constants. The first UMD valued T 1 theorem was obtained
in the influential paper [48] by Figiel. Over the past ten years, applications to PDEs
such as maximal regularity, have motivated the study of SIOs with operator valued
kernels K : R

n × R
n\{x = y} → B(X), where B(X) denotes the set of bounded

linear operators from X to itself, and X is a UMD space. In this direction, a T 1 theorem
was obtained by Hytönen and Weis [64], and a Tb theorem followed in [65]. A type
of local Tb theorem for square functions, used to solve Kato’s problem in L p(Rn)

and more generally in a UMD valued context, was then proven in [63]. Currently the
vector valued theory is also being developed in contexts where the space of variables
R

n is replaced by a more general metric measure space; see [61].
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5.2 Local Tb theory for square functions and applications

5.2.1 L p control on bQ

In contrast to the situation for SIOs, the local Tb theory for square functions has been
generalized to permit bQ ∈ L p, with 1 < p < 2, as in (5.1.2). See [55], where this
is done in the Euclidean case (i.e., to obtain the square function estimate (4.8) in the
upper half space R

n+1+ ). A further extension to the case that the half-space is replaced
by R

n+1\E, where E is a closed Ahlfors-David regular set of Hausdorff dimension n,

appears in [52]. The latter extension has been used to prove a result of free boundary
type, in which higher integrability of the Poisson kernel, in the presence of certain nat-
ural background hypotheses, is shown to be equivalent to a quantitative rectifiability of
the boundary [58,59]. In the spirit of the work mentioned above on analytic capacity,
local Tb theory enters by allowing one to relate Poisson kernel estimates to square
function bounds for harmonic layer potentials, which in turn are tied to quantitative
rectifiability of the boundary. In this case, the “bQ’s” are normalized Poisson kernels.

5.2.2 Extensions of the Kato problem and elliptic PDEs

The circle of ideas involved in the solution of the Kato problem, including local Tb the-
ory for square functions, has been used to establish certain generalizations of the Kato
problem with applications to complex elliptic PDEs and systems. These include L2

bounds for layer potentials associated to complex divergence form elliptic operators
[4,55], and the development of an L2 functional calculus of certain perturbed Dirac
operators and other first order elliptic systems [5–7,14]. The layer potential bounds,
and the existence of a bounded holomorphic functional calculus for first order elliptic
systems, were each then applied to obtain L2 solvability results for elliptic boundary
value problems.

The local Tb theory for square functions has also been used to establish other gen-
eralizations of the Kato problem, such as to higher order elliptic operators and systems
[12] and to elliptic operators on Lipschitz domains [15].
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