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Abstract
Attracted by the importance of ordinary differential equations in many physical situations
like, engineering, business and health care in particular, an effective and successful numerical
algorithm is needed in order to explainmany of the ambiguities about the phenomena inmany
fields of human endeavor. In this study, an interpolation and collocation technique are adopted
in deriving a Block Hybrid Algorithm (BHA) for the numerical solution of systems of first-
order Initial Value Problems (IVPs). To derive the BHA, the shifted Legendre polynomials
was interpolated at two selected points and its derivative was collocated at seven selected
points. This led to a continuous scheme which was eventually evaluated at some points to
obtain the discrete schemes used in the numerical computation. Furthermore, some illustrative
examples are introduced to show the applicability and validity of the proposed algorithm. It
was observed that the proposed algorithm has the desired rate of convergence to the exact
solution. The suggested method utilizes data at points other than the step numbers which
is viewed as an important landmark; another major advantage of this algorithm is that it
possesses remarkably small error constants (Table 2). Some graphical representations of the
exact and numerical results are presented to show how accurate the numerical results agree
with the exact solutions.
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1 Introduction

Differential equations are the best language for expressing many of the general laws of
nature in quantum physics, electronics, computational chemistry and astronomy [1]. They
are important because for many physical systems, one can subject it to suitable idealizations.
They are important in mathematics and the sciences because they can be used tomodel a wide
variety of real-world situations, [2, 3]. In physics, for example, differential equations can be
used to model the motion of particles in a fluid, the trajectory of a projectile, calculate the
movement or flow of electricity, motion of an object to and fro like a pendulum, to explain
thermodynamics concepts. Also, in medical terms, they are used to check the growth of
diseases in graphical representation [4, 5].

The primary purpose of the study of differential equation is the study of solutions that sat-
isfy the equations and the properties of the solutions. Therefore, understanding the solutions
of these equations is of paramount interest [6–8]. The exact solution is obtained analytically
while the numerical solutions are demonstrated using some techniques, namely, the adaptive
moving mesh and uniform mesh methods with the exact solution presented in a form of
convergent power series [9, 10].

In this work, the block method approach (numerical solutions) will be considered because
it provides a faster and easy way to solve problems among other advantages as compared
to the analytic method of solution [11, 12]. These solutions are available only at selected
(discrete) solution points, but not at all points covered by the functions as in the case with
analytical solution methods [2, 13].

One of the major advantages of using block methods is that the methods do not require
starting values [14–16]. Hence, they are cheaper to implement and it also has the capability of
generating simultaneous approximate solutions at grid pointswithin the interval of integration
[17–19]. For more on block methods, see the works of [12, 19–21].

A number of methods have been proposed in literature for the solution of systems of
first order IVPs. The authors in [9] proposed the adoption of hybrid block methods for the
solution of first order IVPs of the form (1). They went further to implement the proposed
method on some sets of first-order problems. The author in [22] formulated block hybrid
methods with intra-step points for the solution of first order linear and nonlinear differential
equations. They further used the absolute and residual error analysis to carry out the analysis
of some basic properties of the methods. The authors in [23] derived a pair of three-step
hybrid block methods of orders five and six for the solution of linear and nonlinear first-order
systems using the power series polynomial as the basis function to derive the methods, the
convergence analysis of the methods was also carried out. The authors in [24] formulated a
sixth-order hybrid blockmethod for the solution of first order IVPs. TheLagrange polynomial
was adopted as the basis function in constructing the method and the method was found to
be A-stable. The authors in [25] derived a class of hybrid block methods for the solution
of first-order IVPs. They analysed the convergence properties of the methods. The authors
in [26–29] also gave deep insight as to how to analyze algorithms for solving differential
systems.Other authors that used hybrid blockmethods to solve first order IVPs are [8, 30–32].

Most of the conventional methods for solving systems of first-order IVPs of the form (1)
have been reported to have some setbacks like low order of accuracy, large function evaluation
and large error constants. The desire to address some of these challenges necessitated this
research. The proposed BHA has the advantages of possessing fewer number of function
evaluation per step, high order of accuracy and very small error constants.
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The paper is structured into four sections as follows. Section 1 introduces the topic and
the main aim of the article. In Sect. 2, the BHA is derived and analyzes for consistency,
zero-stability and convergence. The applicability and validity of the algorithm is tested on
some few systems of first order IVPs of ordinary differential equations in Sect. 3. Finally,
some concluding remarks and suggestions are contained in Sect. 4.

2 Derivation and convergence analysis of the BHA

Consider the IVP of first order ordinary differential equation of the form

y′(x) � f (x , y(x)), y(x0) � y0 (1)

where y(x) is the unknown function to be determined. The idea here is to approximate the
exact solution y(x) of (1) in the partition In � [a � x0 < x1 < x2 < . . . < xn � b] of the
integration interval [a, b] with a constant step size h � xi − xi−1, i � 1, . . . , n by a shifted
Legendre polynomial basis function of degree s + r − 1 of the form;

y(x) �
s+r−1∑

i�0

ci Pi (t) (2)

where Pi (t) � ∑i
k�0(−1)(i+k) (i+k)!tk

(i−k)!(k!)21k
, ci ∈ R, y ∈ C1(a, b) and t � (x − xn). The

shifted Legendre polynomial was used as basis function in deriving the new block hybrid
algorithm. This is in contrast to the power series polynomial basis function that is conven-
tionally used in most literatures.

The first derivative of (2) is then substituted into (1) to obtain a differential system of the
form

y′(x) �
s+r−1∑

i�0

ci P
′
i (t) � f (x , y(x)) (3)

Now interpolating (2) at xn+s , s � 0, 4
5 and collocating (3) at xn+r , r � 0

( 1
5

)
1 where s

and r represents the interpolation and collocation points respectively, the continuous scheme
of the form below is obtained;

y(x) � α0(x)yn + α 4
5
(x)yn+ 4

5
+ h

⎛

⎜⎝
1∑

τ�0

βτ (x) f (xn+τ , yn+τ ) +
1∑

v� 1
5 ,

3
10 ,

2
5 ,

3
5
4
5

βv(x) f (xn+v , yn+v)

⎞

⎟⎠

(4)

where

α0(x) � 1 − 7875

32h2
x2 +

119875

64h3
x3 − 2953125

512h4
x4 +

1115625

128h5
x5 − 1640625

256h6
x6 +

234375

128h7
x7

α 4
5
(x) � 7875

32h2
x2 − 119875

64h3
x3 +

2953125

512h4
x4 − 1115625

128h5
x5 +

1640625

256h6
x6 − 234375

128h7
x7

β0(x) � x − 1009

48h
x2 +

38065

288h2
x3 − 292625

768h3
x4 +

107125

192h4
x5 − 464375

1152h5
x6 +

21875

192h6
x7

β 1
5
(x) � 17255

36h2
x3 − 148625

96h3
x4 +

9625

4h4
x5 − 259375

144h5
x6 +

3125

6h6
x7 − 115

2h
x2
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β 2
5
(x) � 19735

72h2
x3 − 147625

192h3
x4 +

51125

48h4
x5 − 209375

288h5
x6 +

3125

16h6
x7 − 155

4h
x2

β 3
5
(x) � 8615

18h2
x3 − 72625

48h3
x4 +

14125

6h4
x5 − 128125

72h5
x6 +

3125

6h6
x7 − 185

3h
x2

β 4
5
(x) � 39665

288h2
x3 − 316625

768h3
x4 +

38375

64h4
x5 − 484375

1152h5
x6 +

21875

192h6
x7 − 295

16h
x2

β1(x) � 1

2h
x2 − 125

36h2
x3 +

875

96h3
x4 − 125

12h4
x5 +

625

144h5
x6

In order to obtain the discrete BHA, Eq. (4) is evaluated at x � xn , xn+ 1
5
, . . . , xn+1 and

its first derivative evaluated at xn+ 3
10
, to give the following discrete BHA in Table 1 below.

Equation (4) is the continuous schemewhile Table 1 gives the corresponding block discrete
schemes for the one-step hybrid block method.

2.1 Order and error constant

Expanding each term of the block discrete schemes in Table 1 in Taylor’s series using for
instance scheme 1 given by;

yn+1 � 1375

512
yn+ 4

5
− 233

2304
h fn − 863

512
yn +

19

288
h fn+1

− 145

288
h fn+ 1

5
− 65

576
h fn+ 2

5
− 85

144
h fn+ 3

5
+

215

2304
h fn+ 4

5

Now, expanding each term of the above discrete scheme in Taylor’s series and adding
together the coefficients of hyn in all the terms of the scheme, we have

863

512
yn � 863

512

10∑

j�0

(0) j h j

j!
y( j)
n � 863

512

yn+1 �
8∑

j�0

(1) j h j

j!
y( j)n

�
(

1

362880

)
h9y9{n} +

(
1

40320

)
h8y8{n} +

(
1

5040

)
h7y7{n} +

(
1

720

)
h6y6{n}

+

(
1

120

)
h5y5{n} +

(
1

24

)
h4y4{n} +

(
1

6

)
h3y3{n} +

(
1

2

)
h2y2{n} + hy{n} + 1

−1375

512
yn+ 4

5
� −1375

512

8∑

j�0

( 4
5

) j
h j

j!
y( j)n � −

(
11

984375

)
h8y8{n} −

(
22

196875

)
h7y7{n}

−
(

11

11250

)
h6y6{n} −

(
11

1500

)
h5y5{n} −

(
11

240

)
h4y4{n}

−
(
11

48

)
h3y3{n} −

(
55

64

)
h2y2{n} −

(
275

128

)
hy{n} −

(
1375

512

)

233

2304
h fn � 233

2304
h

8∑

j�0

(0) j h j

j!
y( j+1)
n �

(
233

2304

)
hy{n}
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145

288
h fn+ 1

5
� 145

288
h

8∑

j�0

( 1
5

) j
h j

j!
y( j+1)n

�
(

29

907200000000

)
h9y9{n} +

(
29

22680000000

)
h8y8{n}

+

(
29

648000000

)
h7y7{n} +

(
29

21600000

)
h6y6{n} +

(
29

864000

)
h5y5{n}

+

(
29

43200

)
h4y4{n} +

(
29

2880

)
h3y3{n} +

(
29

288

)
h2y2{n} +

(
145

288

)
hy{n}

65

576
h fn+ 2

5
� 65

576
h

8∑

j�0

( 2
5

) j
h j

j!
y( j+1)n �

(
13

7087500000

)
h9y9{n} +

(
13

354375000

)
h8y8{n}

+

(
13

20250000

)
h7y7{n} +

(
13

1350000

)
h6y6{n} +

(
13

108000

)
h5y5{n}

+

(
13

10800

)
h4y4{n} +

(
13

1440

)
h3y3{n} +

(
13

288

)
h2y2{n} +

(
65

576

)
hy{n}

85

144
h fn+ 3

5
� 85

144
h

8∑

j�0

( 3
5

) j
h j

j!
y( j+1)n �

(
1377

5600000000

)
h9y9{n} +

(
459

140000000

)
h8y8{n}

+

(
153

4000000

)
h7y7{n} +

(
153

400000

)
h6y6{n} +

(
51

16000

)
h5y5{n}

+

(
17

800

)
h4y4{n} +

(
17

160

)
h3y3{n} +

(
17

48

)
h2y2{n} +

(
85

144

)
hy{n}

− 215

2304
h fn+ 4

5
� − 215

2304
h

8∑

j�0

( 4
5

) j
h j

j!
y( j+1)n

� −
(

86

221484375

)
h9y9{n} −

(
172

44296875

)
h8y8{n}

−
(

43

1265625

)
h7y7{n} −

(
43

168750

)
h6y6{n} −

(
43

27000

)
h5y5{n}

−
(

43

5400

)
h4y4{n} −

(
43

1440

)
h3y3{n} −

(
43

576

)
h2y2{n} −

(
215

2304

)
hy{n}

− 19

288
h fn+1 � − 19

288
h

8∑

j�0

(1) j h j

j!
y( j+1)n � −

(
19

11612160

)
h9y9{n} −

(
19

1451520

)
h8y8{n}

−
(

19

207360

)
h7y7{n} −

(
19

34560

)
h6y6{n} −

(
19

6912

)
h5y5{n}

−
(

19

1728

)
h4y4{n} −

(
19

576

)
h3y3{n} −

(
19

288

)
h2y2{n} −

(
19

288

)
hy{n}
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LetC0 be the coefficient of (hyn)0,C1 be the coefficient of (hyn)1 andC2 be the coefficient

of (hyn)2 respectively and so on. Summing up these coefficients we, obtain the following;

C0 �
(
863

512

)
+ 1 −

(
1375

512

)
� 0

C1 � 1 −
(
275

128

)
+

(
233

2304

)
+

(
145

288

)
+

(
65

576

)
+

(
85

144

)
−

(
215

2304

)
−

(
19

288

)
� 0

C2 �
(
1

2

)
−

(
55

64

)
+

(
29

288

)
+

(
13

288

)
+

(
17

48

)
−

(
43

576

)
−

(
19

288

)
� 0

C3 � −
(

19

576

)
−

(
43

1440

)
+

(
17

160

)
+

(
13

1440

)
+

(
29

2880

)
−

(
11

48

)
+

(
1

6

)
� 0

C4 � −
(

19

1728

)
−

(
43

5400

)
+

(
17

800

)
+

(
13

10800

)
+

(
29

43200

)
−

(
11

240

)
+

(
1

24

)
� 0

C5 � −
(

19

6912

)
−

(
43

27000

)
+

(
51

16000

)
+

(
13

108000

)
+

(
29

864000

)
−

(
11

1500

)
+

(
1

120

)

� 0

C6 � −
(

19

34560

)
−

(
43

168750

)
+

(
153

400000

)
+

(
13

1350000

)

+

(
29

21600000

)
−

(
11

11250

)
+

(
1

720

)
� 0

C7 � −
(

19

207360

)
−

(
43

1265625

)
+

(
153

4000000

)
+

(
13

20250000

)

+

(
29

648000000

)
−

(
22

196875

)
+

(
1

5040

)
� 0

C8 � −
(

19

1451520

)
−

(
172

44296875

)
+

(
459

140000000

)
+

(
13

354375000

)
+

(
29

22680000000

)

−
(

11

984375

)
+

(
1

40320

)
� −

(
11

378000000

)
� −2.91005291005 × 10−8

Hence, the order of the discrete scheme 1 is Cp � C7 → p � 7 and error constant
Cp+1 � C8 �� 0 � −2.9101 × 10−8 as shown in Table 2 below and the order and error con-
stants of the remaining schemes are computed using the same approach.

Hence, the BHA has uniform order p̌ � 7 as can be seen in Table 2 below.

2.2 Consistency

The block discrete schemes in Table 1 is said to be consistent if the following conditions
hold:

(i) It has order p̌ ≥ 1,
(ii)

∑k
j�0 α̌ j � 0,

(iii)
∑k

j�0 j α̂ j � ∑k
j�0 β̌ j ,

(iv) ρ(1) � 0 and ρ′(1) � σ(1),
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Table 2 Order and error constants
of individual members of the
BHA

Algorithm no Order Error constants

1 P � 7 −2.9101 × 10−8

2 P � 7 −7.4286 × 10−9

3 P � 7 −5.3013 × 10−9

4 P � 7 −3.3862 × 10−9

5 P � 7 −7.4286 × 10−9

6 P � 7 7.7400 × 10−9

where ρ(r ) and σ (r ) are the first and the second characteristic polynomials of the block
discrete schemes in Table 1. Following [2, 3, 9, 10], condition (i) is a sufficient condition for
the block discrete schemes in Table 1 to be consistent. Since p̂ � 7 > 1, hence the BHA is
consistent.

2.3 Zero-stability

The block discrete schemes in Table 1 is said to be zero stable if the roots zr ; r � 1, . . . , n
of the first characteristic polynomial p(z), defined by

p(z) � det |zQ − T |
satisfies |zr | ≤ 1 and every root with |zr | � 1 has multiplicity not exceeding the order of the
differential equation in the limit as h → 0, [13].

Calculations from all available information revealed that the BHA has the following roots

z5(z − 1) � 0 ⇒ z � (0,0, 0, 0, 0, 1)

Hence, the BHA is zero-stable, since all roots with modulus one does not havemultiplicity
exceeding the order of the differential equation in the limit as h → 0.

2.4 Convergence

According to [10, 33], we can safely assert the convergence of the block discrete schemes in
Table 1 since the BHA is consistent and zero-stable.

3 Numerical experiments

In this section, some systems of first-order IVPs shall be solved using the BHA. The absolute
errors of the BHA shall be compared with those of some existing methods. The following
notations shall be used in Tables 3, 4 and 5 and Figs. 1, 2 and 3.

x : point of evaluation.
yi : solution component.
Ne � |yE − yN |: absolute error.
BHA: the proposed block hybrid algorithm.

Problem 1 Consider a mildly stiff system problem which was solved by [30]
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Table 3 Comparison of the
performance of the BHA on
Problem 1

x yi Absolute error in BHA
Ne � |yE − yN |

Absolute error in [30]
Ne � |yE − yN |

5 y1 4.9294 × 10−14 1.3920 × 10−11

y2 2.4647 × 10−14 6.9700 × 10−12

40 y1 3.6082 × 10−15 3.3628 × 10−12

y2 1.7972 × 10−15 1.6818 × 10−12

70 y1 1.9732 × 10−16 2.9325 × 10−13

y2 9.8662 × 10−17 1.4664 × 10−13

Table 4 Comparison of the
performance of the BHA on
Problem 2

x yi Absolute error in BHA
Ne � |yE − yN |

Absolute error in [8]
Ne � |yE − yN |

0.2 y1 7.050000 × 10−12 7.740000 × 10−5

y2 5.040000 × 10−14 7.660000 × 10−6

0.4 y1 6.340000 × 10−12 1.722546 × 10−3

y2 1.520000 × 10−13 1.47976 × 10−4

0.6 y1 4.270000 × 10−12 7.992946 × 10−3

y2 3.420000 × 10−13 1.695327 × 10−3

0.8 y1 2.560000 × 10−12 1.9194892 × 10−2

y2 6.810000 × 10−13 1.2429885 × 10−2

1.0 y1 1.440000 × 10−12 2.2159840 × 10−3

y2 1.270000 × 10−12 5.3353238 × 10−2

Table 5 Comparison of the
performance of the BHA on
Problem 3

x yi Absolute error in BHA
Ne � |yE − yN |

Absolute error in [34]
Ne � |yE − yN |

1.0 y1 2.4516 × 10−17 0.0821 × 10−16

y2 1.6721 × 10−17 0.0975 × 10−16

1.5 y1 1.3509 × 10−18 0.2136 × 10−16

y2 1.8218 × 10−17 0.0845 × 10−16

2.0 y1 3.1722 × 10−18 0.3981 × 10−16

y2 2.1892 × 10−18 0.0565 × 10−16

2.5 y1 4.8192 × 10−18 0.4564 × 10−16

y2 6.2886 × 10−18 0.0389 × 10−16

3.0 y1 3.1782 × 10−19 0.8126 × 10−16

y2 3.1902 × 10−18 0.0156 × 10−16
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[
y′
1(x)
y′
2(x)

]
�

[
998 1998

−999 −1999

][
y1(x)
y2(x)

]
, with initial conditions

[
y1(0)
y2(0)

]
�

[
1
1

]
, and the

exact solution of the systems is given as

[
y1(x)
y2(x)

]
�

[
4e−x − 3e−1000x

−2e−x + 3e−1000x

]
.

The computed results are shown in Table 3, while the theoretical and numerical results
are plotted graphically in Fig. 1.

Problem 2 Consider the following linear differential equation solved by [8],[
y′
1
y′
2

]
�

[−4y1
2y2

]
, with initial conditions

[
y1(0)
y2(0)

]
�

[
1
1

]
and the exact solution of this

problem is

[
y1(x)
y2(x)

]
�

[
e−4x

e2x

]
. The numerical results are shown in Table 4 while Fig. 2

shows the solution curves for the Problem.

Problem 3 Consider the following nonlinear stiff problem[
y′
1
y′
2

]
�

[−1002y1(x) + 1000y22 (x)
y1(x) − y2(x) − y22 (x)

]
, with initial conditions

[
y1(0)
y2(0)

]
�

[
1
1

]
. The

exact solution of this problem is

[
y1(x)
y2(x)

]
�

[
e−2x

e−x

]
which was solved by [34]. The

computed results are shown in Table 5, while Fig. 3 shows the solution curves for the
Problem.

From the numerical and graphical results presented in Tables 3, 4 and 5 and Figs. 1, 2 and 3,
it is clear that the proposed BHA is computationally reliable. This explains why the absolute
errors obtained (at selected values of x) on the applications of the BHA (on the first-order
IVPs) are by far smaller than those of the existing methods we compared our results with.
In essence, this implies that the proposed BHA is more accurate. Furthermore, the solution
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curves obtained in Figs. 1, 2 and 3 show ameasure of convergence of the approximate solution
(using the BHA) to the exact solutions.

4 Conclusion

In this article, the BHA derived was tested and found to be accurate, consistent, zero-stable
and convergent. Themethodwas implemented on some systems of linear and nonlinear initial
value problems of ordinary differential equations and the numerical results were found to be
accurate when compared with the exact solutions of other numerical methods as contained
in Tables 3, 4 and 5 and their respective solution curves. It was observed that the BHA
is computationally reliable for solving ordinary differential equations of the first-order. The
close relation between the exact and numerical results is confirmed by the plotted graphs. The
new BHA is therefore a suitable candidate for all forms (linear and nonlinear) of first-order
initial value problems of ordinary differential equations. The BHA proposed in this research
is therefore recommended for the solution of systems of first-order IVPs. It is important to
state that the BHA derived in this research is limited to the solution of first-order IVPs only.
Further study could extend this work to the numerical solution of higher order IVPs. The
possibility of exploiting other basis function than the shifted Legendre polynomial is also a
viable option.
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