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Abstract

The concepts of multiresolution analysis (MRA) and wavelets in Sobolev space over local
fields of positive characteristic (H* (K)) are developed by Pathak and Singh [9]. In this paper,
we constructed wavelet packets in Sobolev space H*(K) and derived their orthogonality at
each level. By using convolution theory, an example of wavelet packets in H* (K) is presented
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1 Introduction

The theory of wavelets on local fields and related groups is developed by Benedetto et al.
in [2, 3]). Albeverio, Skopina, et al. (see [1, 6, 7]) constructed MR A-related wavelets on the
p-adic field. Jiang et al. [5] discusses wavelets on local fields. Recently, Pathak and Singh
modified the classical concept of MRA and constructed orthonormal wavelets in Sobolev
space; their H®-norm was translation invariant but not dilation invariant. Hence, they used
different scaling functions at each level of dilation (see [8—16]). In this paper, we construct
wavelet packets corresponding to such an MRA.

This article is divided into the following sections. In Sect. 1, we discuss some properties
of local fields and Sobolev space over K. In Sect. 2, we recall the MRA on H*(K), and one
essential lemma, the splitting lemma, is proved. In Sect. 3, we construct wavelet packets and
prove their orthogonality at each level. We also show that they form an orthonormal basis for
H* (K). Finally, we construct wavelet packets in H* (K) at the jth level.

Throughout the paper, K denotes the local field of positive characteristic, x is a fixed
character on K, p is a fixed prime element in K used for dilation, and u(k) € K, , k € Ny =
0,1, 2,3, ...1is used for translation. For more detail, we refer to [9].
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The Sobolev space H* (K),s € R, consists of all those f € .7/ (K) (the space of continuous
linear functionals on . (K), where .#(K) is the space of all finite linear combinations of
characteristic functions of balls in K ) which satisfy:

1 W iy = /K P51 f©)17dE, where 7°(§) = (max(1, 5]))’.

the corresponding inner product is defined by

(o 8) i) = fK 59(6) f©)7@)dE,
where

@ = /K FeOxetIdx, € € K.
For more detail, refer to [5, 9, 18]).

2 Multiresolution analysis on H*(K) and the splitting lemma

Pathak and Singh [9] modified the classical multiresolution analysis on L*(K). Now, we
recall the theory of wavelet in Sobolev space over K.

Definition 2.1 A multiresolution analysis of H*(K) is a sequence {V;};ez of the closed
linear subspaces of H*®(KK) such that

(@ Vi C Vit
(b) Ujez V; = H*(K);
(©) Njez V; =0;

(d) For each j € Z, there exists a function ¢¢) € H*(K) such that {q)(.j )}keN , forms an
.k 0
orthonormal basis of V;,

where
6700 =q2¢ P (p77. —uk), keNy, jeL

Such function ¢ are called scaling function. The condition Vi C Vjqisfor j € Zis

equivalent to the existence of integral-periodic function mf)j ) e ? (®) such that the following
scale relation holds.

$U ) = mg "V eI (p8), @1

these functions m(()j 1 are called low pass filter. Define wr(j ), j € Zandr € D =

{0,1,2,3,4..q — 1}, by the formula

3 © =m Ve gU T p8), jeZ, reDy, @2
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where m,jH) (t=1,2,3, ..., ¢g—1) are called high pass filters such that the matrix MD &) =

[ (b + pu(r2)1?,,. g is unitary.

We get {1//r(j} ) jeZ keNg,rep, form an orthonormal basis for H*(K), where

v O =g 07 —uk). j k€ Z.r € Dy 2.3)

Theorem 2.2 Ifs € R, ¢V € H*(K) then the distribution {q%¢<-/’>(p—/x —u(k)), k € 7}
are orthonormal in H® (K) if and only if

DoV T E +u)VE +ut)F =1 ae. (24)
0

Moreover, we also have
6D (p/ ) < P72 (E). 2.5)

Theorem 2.3 Let {¢p')} jez be a sequence of functions of H*(K) such that, for every j, the
distributions

$;4(0) =g (pIx — u(k)), k € Ny, 2.6)
are orthonormal in H* (K) and V; = {¢; x(§) : k € Np}.
If
Jim |39 (/6] =776, @7)

holds then, U;czV; = H*(K). Moreover, for every j <0, then N;czV; = {0}.
For construction of wavelet packets the following splitting lemma is required.

Lemma 2.4 Let {q%qﬁ(j)(p_j. —u(m)) : m € No} be an orthonormal system in H* (K)

and V; = span{q? ¢ (p=i. —u(m)) : m € No}. Let 4" (&) = m/ ™ (p&)pU+D (pe),
0<r<gq—1.Then {w:’;m() 0 <r < g —1,m € Ny} is an orthonormal basis in V; if
and only if the matrix

MD ) = [mf (08 + pur2)IL )y

is unitary for a.e. § € D.
Proof Let MY (&) is unitary. Then, we have
(012,00 0L, ,0)
= / 7 ©a 0 GO T g 0T 0 )

f 39 € +u®)D € + DT E + ul) T ) 10§V

1eNy

= [ X G e unmd e + g

D leNy
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X $T (pg + pu@)mL T (pE + pu (D)) G+ (pE + pu() X (§) xn (€)dE

q—1
= /@Z PR A

i=0 [eNy

(p€ + pulgl + D))ImY TV g + pulql + i))mI TV (pg + pulql + i)
x 1§71 (pE + pulgl + D)) Ko () xn (£)dE

-1 i
= f@ Dm0 + pu@)md ™ (pE + pu))) X (&) xn (§)dE
i=0

_ / 871,12 Fom (8) 2 ()
3]

= arl,rzsm,m

Therefore, {qél//,(j)(p_j. —u(m)) : 0 <r < g—1,m € Np}is an orthonormal systemin V;.
For proving it basis, suppose 2 € V; be such thatitis orthonormal to wr(”(p’j.—u(m)) Vr =
0,1,...,g — 1;m € Nyp. We claim that 7 = 0 a.e.

Since h € V;, therefore h € V1. Hence h(x) can be written as

hx =Y g7 VUt (=i =1x — u(k)), for some (¢ : k € No} € 12(No).
keNy
Therefore,

h©) = g7 Y U 0 p )
keNy

_ m;lj'*‘l)(ijrlg)(ﬁ(jJrl)(pj+1§)’ (2.8)

. il . .
where, m(/+1)(§) = q_% ZkeNo c(ﬁ_l)xk(é), ie., m;lﬁ']) is integral periodic and is in

h k
L2(D).
Forr=0,1,2,...,qg — 1 and m € Ny, we have

0 = <h i - u(m))>

- fK P ERE G (0 E) pm (07 £)dE

- /K P (o E MY (o)UY (pEYmYI Y (pE)FUHD (pE) o (8)dE

= /@ S P 0 E +u@)m TV oE +u@)m TV & +ud))

ZENO

x|V (p(& + uD) P xm (£)dE

g—1
= f@ YT T T g + pul) + u @)YV (08 + pu) + u @)

i=0leNy

sy ™V (o + pui)my ™ (pE + pu i) xom (€)d&
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g1
= [ i ot pu oV i)
i=0

Hence,
g-1
Y m*V p + pu(i)m ™D (g + pu(i)) =0, forall r = 0,1, ... q — 1.

That is the vector (m(J + )(pé + pu(i))); _01 € C1 is orthogonal to each row vector of the
unitary matrix M () (€). Therefore it is zero for a.e. £. In particular, m(J +D (p/ +1 p7E) =0

a.e. This implies that h = 0 a.e. Therefore h = 0 a.e. By reversing the above steps, the
converse part can also be proved. O

3 wavelet packets in Sobolev space

If we apply splitting lemma to V;, then we see that {q%w,(j)(p’j —u@m)) : 0 <r <
—1,m € Ny} is an orthonormal basis for V;. Define a sequence of functions {w(] )i > 0}
such that

wg = ¢ and w =y (1 =n =g - 1),
where

v ® =m g e 1 <1 =g - .
In general, let wy, ) be defined for every integer n > 0 by

w00 =g 5 3 R w T e —u(m)). for0<r<g 1.

meNy

Taking the Fourier transform, we get
N +1 A~ (j+1
DY), &) =m0 @eydd ™t me).

We can also define w(J ) for every integer n > 0 by its Fourier transform as (here [x] denotes
greatest integer less than or equal to x)

w&”(g)==n¢f+“<ps>ﬁfgi”<psx
q
where r is given by

]. (3.1)

n
r=n—ql-
q

Definition 3.1 The set of functions {w(’ )i > 0} defined as above are said to be wavelet
packets associated with the MRA {V} ;cz of H*(K).

Definition 3.2 For every n € Ny and 0 < r < g — 1, the wavelet packet spaces at jth level
are given by

n

Wja " = span{gtw (0. — u(k)) : k € Z} N H (K),
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where r is given by (3.1).

Definition 3.3 Suppose w(J ) (x) be a wavelet packet corresponding to the scaling function
¢ (x). Then the translates and dilates form of wavelet packet functions for integer j and
k € Ny are defined as

ﬁ’in(x)—qzwn”(p Ix —u(k)). (3.2)

Proposition 3.4 Let the unique expansion for an integer m > 1 in the base q is
m =kt ag + e’ ot b= kg (3.3)
where My #0and 0 < A; < q foralli = 1,2, ..., k. Then
) (&) = Hmi{*“(p"f)y—%(@
i=1

Proof By using the induction hypothesis and Eq. (2.7), it can be easily proved. O

We can view the decomposition process in Fig. 1.

Lemma3.5 For j € Z, let w,(,j+1) € HS(K), then the distribution

{q%w[(fl‘-]’_l)(pﬂlx —uk)) : ke No} are orthonormal in H® (K) if and only if
q

2P 0T E +uon iy € + ekl

keNy
Proof Let

S(H'I)(E) Z Al J= l(g‘-‘ —|—u(k)))|ﬁ)(J+1)(§ +u (k))|

keNy

Since wflj e s (K), then the above series converges almost everywhere and belongs to
an (9)

Moreover, for every [ € Ny, we have

/@ SUD 3 (@) §)ds = / KA I AOVAGEL

j+1 ; . . i+ G :
= /K P ©q T b O e g T al e e ods
J

<qT AR ION AR u(l>>>

1ifl=kand SUTD(&) =1

@ Springer



Multilevel Wavelet packets... Page70f12 70

Fig. 1 Two iterations of the decomposition in H* (K) at (j + 2)”’ level
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3.1 Orthogonality of wavelet packets at jth level

In the following theorems, we obtain the orthogonality at jth level.
Theorem 3.6 Let j € Z and k,l,n € Ny. Then

() () )

<wj’k’,,y

Proof
(00w} = (a2l @~ u), ¥ w7~ )
=q7 / P © b5 p76) R D (b5 11 (07 )
= / P p-ienS @i ©) ) €)d
= / P e )1 % (€) x(6)dE
= [ 760 weas 6o @ s

/ > I E + u@)m P o + u@m)?

nENQ

X'w[(ﬁ”@(s U €)1 (8 dE

/ Z 3P0 E +ulgn + i)l TV (p(E + uign + )P

i=0 nENo

x|w“+ D(0(E + ulgn + )5 ) 1 (8)dE

f ZZ I 0 + pu) + u gy 0 + puld) + u(n)f

i=0 neNy

xm Y (pg + pu ()220 (€)1 (6)dE

q—1 )
= f 3 im0 + pui) P 7€) 10 (6)de

D0

=/ Xk () xi(§)dE = br-
D

Theorem 3.7 Letn € Ngand 1 <t < g — 1. Then, we have

w? Wy

jokgn Wilittgn! =

Proof With the help of change of variable trick, we have

) ()
<wjjk qn’ jjl t+qn>
) = LD =i
= (et w6 — w0, g3, 67— u )

g /K P @05 @ e (81870 ) i (07 §)dE
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= / P IO ED,, )T E) 1 (§)dE
/ “eEmy " ey D peym D (o) “’*“(ps)xmxz(é)ds
/ S(p~ ’$)|lff(’+1)(pé)lzmé’“)(pé)m IV (08) 31 (&) 1 (6l

/ > P07 € a6 +ue)Pmg TV (pE + ui)

nENo

s mI D (& + u(m) 7€) 0 (€)de

/ZZ S0 € +utgn + DD (B +uln -+ D) Pmg T 0 +ulgn + i)

i=0 neNy

“*”(p(& +ulgn + ) 3k (§) x1(5)dE

/ Z Y e ‘<ps+u(n)+pu<z>)|w“*”<ps+u<n>+pu<z)))|2

i=0 nENo

“+1)(p§ )+ puE)mIT (pF + um) + pul) 74 )0 €)d
= /@ ngf“)(ps +pu(@)mi ™ (o8 + pu i) 1 (€) ()&

i=0

=0.

3.2 Construction of wavelet packets

Using following proposition and theory of convolution of Fourier transform, we construct
orthogonal wavelet packets in H* (K) at j’* level in the other form.

Proposition 3.8 Consider the functions {w, : n > 0} the wavelet packet corresponding to
the MRA{V; : j € Z} in L3(K) J € Z (for more detail see Ref. [4]). Then

(W) kms Wjiln) L2(K) = Om.nSk 1, (3.4)
where wj i n(.) = q%wn(p_/. —u(k)), k e Noand j € Z.

Theorem 3.9 Suppose p(.) = y_% (.) and wj r »(.) as in above proposition. Then

(wjjl)”, w_g»{l),,,)HS(K) = &k.1
where wﬁjlz () = p() *wj i n(.) and * denotes convolution of two functions.

Proof By using the convolution theorem, we have
i wlh) s = /K P EP 3 )b ()7 €)1 0 EVdE

= f W kn (E) 1.0 (E)dE
K

@ Springer



70 Page100f12 A.Pathak, G. P. Singh

Z/ij.k,n(X)wj.z,n(X)dx
= 8k,

m}

Example 3.10 In this presented example, we have constructed the orthogonal wavelet packets
at jth level by using the above theorem. For this, we need the orthogonal wavelet packets in
L3(K).

We recall the MRA which is given by Jiang et. al. [5], they considered the scaling function
¢ (x) = no (x), where np is a characteristic function on ©. The low-pass filter mq(€) of the
MRA is given by the formula:

q—1 . 1
mo(&) = ;kgoms) = {é L=
and high pass filters are given by
1
Wer
the associated basic wavelet functions are v, (x) = \/g[ng (p’lx —u@®)) —np(lx —
u(t — 1)1

Then, the corresponding orthogonal wavelet packets are given by [4]

m(§) = X)) = xi—1(8)), t=1,2,....q - 1,

wo(x) = no (x),

w(x) = \/g[n@ (p'x—u@®) — o 'x —u@—1)], for 1 <r<q—1,

g—1
wg (x) = @Z[n@@”x —u(l) = p~ u(k) — 0o (p>x — u(0) — p~ u )],
k=0

wy1(x) = %[ns(p_zx —p () —u() — o 2x —p~lu(1) — no(p~x — u(l)
+ 05 (0],
Wg2(X) = ~[o(p2x —p~ u(2) —u(1)) — no(p2x —p~'u(2)

NORIENY

—no (P 2x —p~lu() —u()) + no(p2x —p~lu()],

Now, by using Theorem 3.9, we get the wavelet packets in H*(K) at jth level (Table 1)
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Table 1 Basis functions for the wavelet packet decomposition at jth level in A (K)

Space Generator of wavelet packets Formula

woo w$ () = wotp ) %y~ 3 () spantg 2w 0 —u(k) : k € 7)
W;)t wfj)(x) =w (p/ x) % yf%(x) xpan{q%wt(])(p_j- —u(k)) : k € Z}
who Wi ) = wy i) w3 (@) spantg 3w (oI —u() <k € 7)
W},l (1) L) = w1 (™ Jx)ysy™ 2(x) Sp,m{qzw(ﬂ ™ J.—uk))  k ez}
W]!'2 q+2(x) = w2 I x) xy ) spanfq? w(j) 20 —ul) ke Z)
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