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Abstract
The reconstruction of potential function using nodal parameters is an inverse problem that
has been studied in this work. An efficient and highly helpful transformation allowed for the
extraction of a reconstruction formula for the problem’s potential function by a narrow col-
lection of nodal data only. Additionally, the method’s efficacy was shown by a few numerical
illustrations.
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1 Introduction

Consider the following differential equation

y′′ + (λ2 + μ − q(x))y = 0, 0 ≤ x ≤ π, (1.1)

where μ �= 1 is any real number, λ is a spectral parameter and q(x) ∈ C1 [0, π] (see [1]).
Let y(x, λ) be the eigenfunction of (1.1) with the following conditions

y(0, λ) = 0, (1.2)

ay
′
(π, λ) + λy(π, λ) = 0, (1.3)

for a real number a �= 0. Here, 0 < xk,μ
1 < · · · < xk,μ

k−1 < π are nodal points and lk,μ
j =

xk,μ
j+1 − xk,μ

j are nodal length of (1.1)–(1.3). The eigenfunction yk(x, λ
μ
k ) corresponding to

λ
μ
k has k + 1 nodal points in [0, π ] including 0 and π [2].
It is crucial to understand whether or not the spectrum analysis alerts when the spectral

parameter is present in both the boundary conditions and the equation. This eigenvalue
problem is not of the usual type. Friedman is the rightful owner of the methodology for

B Hikmet Koyunbakan
hkoyunbakan@gmail.com

Unal Ic
unalic@firat.edu.tr

1 Firat University Faculty of Education, Department of Mathematics, Elazığ, Turkey
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handling such issues [3]. He looked at the operator formula approach to solving Sturm–
Liouville problems with boundary conditions that depend on eigenparameters. Issues with
the linear eigenvalue parameter boundary conditions have been thoroughly examined due to
the significance of use in physics, probability theory, and other fields. Eigenparameter uses in
the physical domain Many authors have taken into consideration dependent Sturm–Liouville
problems because of their extensive applications in engineering, mathematical physics, and
mechanics [4–10]. As known, Theories that expand on the eigenvector and eigenvalue theory
of a single square matrix to a far more comprehensive description of the structure of operators
in a range of mathematical spaces are collectively referred to as spectral theory. Inverse and
direct problems make up the two categories of problems covered in spectral theory. Direct
problems have a long history. The history of inverse problems is relatively closer. Inverse
problems have an incredible number of applications in physics and engineering. In the inverse
problem involving a differential operator, the aim is to obtain the operator by using some
information sets. Spectral parameters such as spectrum, spectral parameter and nodal datas
are used to create the operator. The most direct result of these theories is the theory in which
nodal datas are used. These kinds of problems are called inverse nodal problems and they
have a wide application area. Over the years, this type of problems have been handled by
many operators as Sturm–Liouville, Dirac etc. with different boundary conditions [11–19].

Recently, a transformation called the Prüfer has been used to further simplify and make
the solution of inverse nodal problems more effective. There are many studies using this
transformation and with important results [20, 21].

In this study, wewill construct the potential function for the given operator while the nodal
datas are already available by using the Prüfer transform effectively. In fact, this problem
has been solved by another method in [2, 22]. The strength of the method we use will thus
be better seen. Later, we will support our theories and obtained results with some numerical
presentations.

2 Asymptotics forms of eigenvalues and nodal parameters

y(x, λ) = s (x) sin (λθ (x)) , (2.1)

y′(x, λ) = λs (x) cos (λθ (x)) ,

or
y(x, λ)

y ′
(x, λ)

= 1

λ
tan (λθ(x)) . (2.2)

This substitution represents a legitimate change of variables provided s is never zero. After
some straightforward computations with (1.1) and (2.1), we obtain the expression

θ ′ (x, λ) = 1 − 1

λ2
[q(x) − μ] sin2 (λθ(x)) , (2.3)

which plays an important role throughout our study.

Theorem 2.1 The eigenvalues of the problem (1.1)–(1.3) have the following asymptotic
expressions

λ
μ
k = k − arctana

π
− μ

2k − 2arctana
π

+ 1

2kπ − 2arctana

π∫

0

q(x)dx + O

(
1

k2

)
, (2.4)
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as k → ∞.

Proof Let us take λ = λ
μ
k as an eigenvalue of the problem (1.1)–(1.3), according to the right

endpoint condition, then
ay

′
(π, λ) + λ

μ
k y(π, λ) = 0,

or equivalently
−a = tan

(
λ

μ
k θ(π, λ

μ
k )

)
.

It follows that
kπ − arctana

λ
μ
k

= θ(π, λ
μ
k ).

On the other hand, integration of the phase function θ ′ (x, λ
μ
k

)
in (2.3) with respect to x on

[0, π] yields

θ(π, λ
μ
k ) = π − 1

(λ
μ
k )2

π∫

0

(q(x) − μ) sin2
(
λ

μ
k θ(x, λ

μ
k )

)
dx .

Then, we have

kπ − arctana

λ
μ
k

= π− 1

(λ
μ
k )2

π∫

0

q(x) sin2
(
λ

μ
k θ(x, λ

μ
k )

)
dx + μ

(λ
μ
k )2

π∫

0

sin2
(
λ

μ
k θ(x, λ

μ
k )

)
dx .

Using the identity

1 − 2 sin2
(
λ

μ
k θ(t)

) = cos
(
2λμ

k θ(t)
) = 1

2λμ
k θ ′(t)

d

dt

[
sin(2λμ

k θ(t)
]
,

we get

kπ − arctana

λ
μ
k

= π + μπ

2(λμ
k )2

− 1

2(λμ
k )2

π∫

0

q(x)dx

+ 1

(λ
μ
k )2

π∫

0

q(x) − μ

4(λμ
k )θ ′

d

dx

[
sin(2λμ

k θ(x, λ
μ
k ))

]
dx .

If the second term from the right above is written asymptotically, we get
π∫

0

q(x) − μ

2λμ
k θ ′

d

dx

[
sin(2λμ

k θ(x, λ
μ
k ))

]
dx = O

(
1

λ
μ
k

)
,

by using integration by parts method where |k| is sufficiently large. After recollecting all
terms above, since

lim
k→∞

μ

2k − 2 arctan α
π

+ lim
k→∞

1

2kπ − 2 arctan α

exists as a finite real number, and O
(

1
k2

)
→ 0, as k → ∞ it can be written as λ

μ
k

∼=
k − arctan α

π
+ o(1) by the definition of little o. It yields

λ
μ
k = k − arctana

π
− μ

2k − 2arctana
π

+ 1

2kπ − 2arctana

π∫

0

q(x)dx + O

(
1

k2

)
,
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for k → ∞. It completes the proof.

Remark 2.2 For q(x) ≥ μ, the eigenvalues
{
λ

μ
k

}
of the problem (1.1)–(1.3) are all real for

sufficiently large |k|.

Proof Let λ be an eigenvalue of the problem (1.1)–(1.3) corresponding to the eigenfunction
y(x). Multiplying both sides of the Eq. (1.1) y(x) and integrating the obtained result [0, π]
with respect to x yields

−
π∫

0

y′′(x)y(x)dx +
π∫

0

(q(x) − μ) |y(x)|2 dx = λ2

π∫

0

|y(x)|2 dx .

By applying integration by parts method, we get

y′(0)y(0) − y′(π)y(π) +
π∫

0

[∣∣y′(x)
∣∣2 + (q(x) − μ) |y(x)|2

]
dx = λ2

π∫

0

|y(x)|2 dx .

On the other hands, we conclude that

y′(0)y(0) − y′(π)y(π) = λ|y(π)|2
α

,

by (1.2) and (1.3). Considering last relations together, it yields

Aλ2 − Bλ − C = 0,

where A = ∫ π

0 |y(x)|2 dx, B = |y(π)|2
α

, C = ∫ π

0

[∣∣y′(x)
∣∣2 + (q(x) − μ) |y(x)|2

]
dx .

Since

λ = B ± √
B2 + 4AC

2A
,

and A, C > 0 if q(x) ≥ μ on [0, π ] , λ is real. It completes the proof.

Theorem 2.3 Asymptotic formulae of the nodal points for the problem (1.1)–(1.3) are as
follows

xk,μ
j = jπ2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j∫

0

q(x)dx + O

(
1

k3

)
, (2.5)

where k �= arctana
π

, Ak = μ

2(λμ
k )2

+ 1, as k → ∞.

Proof By integrating θ ′ (x, λ) on [0, xk,μ
j ] and using the fact θ(xk,μ

j ) = jπ

λ
μ
k

, we may easily

conclude that

jπ

λ
μ
k

= Ak xk,μ
j − 1(

λ
μ
k

)2
xk,μ

j∫

0

q(x) sin2
(
λ

μ
k θ(x, λ

μ
k )

)
dx − μ

2
(
λ

μ
k

)2
xk,μ

j∫

0

cos
(
2λμ

k θ(x, λ
μ
k )

)
dx,
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or

xk,μ
j = jπ

λ
μ
k Ak

+ 1(
λ

μ
k

)2
Ak

xk,μ
j∫

0

q(x) sin2
(
λ

μ
k θ(x, λ

μ
k )

)
dx

+ μ

2
(
λ

μ
k

)2
Ak

xk,μ
j∫

0

cos
(
2λμ

k θ(x, λ
μ
k )

)
dx . (2.6)

Equation (2.6) may be also written as

xk,μ
j = jπ

λ
μ
k Ak

+ 1

2
(
λ

μ
k

)2
Ak

xk,μ
j∫

0

q(x)dx − 1

2
(
λ

μ
k

)2
Ak

xk,μ
j∫

0

(q(x) − μ) cos(2λμ
k θ(x, λ

μ
k ))dx .

(2.7)
The last term is attempted to add on on right side asymptotically. Then by integration by
parts;

1

2
(
λ

μ
k

)2
Ak

xk,μ
j∫

0

(q(x) − μ) cos(2λμ
k θ(x))dx = O

(
1(

λ
μ
k

)3
)

.

Therefore, If the above asymptotic expression is used in (2.7) for k → ∞, and the relation
λ

μ
k

∼= k − arctana
π

+ o(1), it yields

xk,μ
j = jπ2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j∫

0

q(x)dx + O

(
1

k3

)
,

which completes the proof. it follows that the set of all nodal points is dense in (0, π).

Remark 2.4 Let a dense subset X of the nodal points be given. Then, xk,μ

jk (x) → x for k → ∞
where j = jk(x) = max

{
j : xk,μ

j < x
}
.

Theorem 2.5 The asymptotic formulae of the nodal lengths for the problem (1.1)–(1.2) satisfy
the below asymptotic expression

lk,μ
j = π2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j+1∫

xk,μ
j

q(x)dx + O

(
1

k3

)
, (2.8)

as k → ∞.
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Proof By the notion of nodal length distance between two consecutive nodal points- for

xk,μ
j+1 = ( j + 1) π2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j+1∫

0

q(x)dx + O

(
1

k3

)

xk,μ
j = jπ2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j∫

0

q(x)dx + O

(
1

k3

)

we obtain

lk,μ
j = π2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j+1∫

xk,μ
j

q(x)dx + O

(
1

k3

)
.

3 Main results

This section is devoted to an asymptotic expresison for q(x) for the problem (1.1)–(1.3) by
using nodal parameters. Actually, this method has been used in many problems. However,
the spectral parameter μ included in this equation and λ in boundary conditions distinguish
the proof from other consequences.

Theorem 3.1 Let q ∈ C1[0, π ] be a function defined on interval 0 ≤ x ≤ π . Then

q(x) = lim
k→∞2 (kπ − arctana)

(
(kπ − arctana) Ak

π2 − 1

lk,μ
j

)
, (3.1)

for almost every x ∈ (0, π) and j = jk(x).

Proof By making some straightforward computations in (2.8), we get

lk,μ
j = π2

(kπ − arctana) Ak
+ π2

2 (kπ − arctana)2 Ak

xk,μ
j+1∫

xk,μ
j

q(x)dx + O

(
1

k3

)

and applying the mean value theorem for integration, with fixed k, there exists a number

z ∈
(

xk,μ
j , xk,μ

j+1

)
, and the following is obtained

lk,μ
j q(z) = 2

(
lk,μ

j − π2

(kπ − arctana) Ak

)
(kπ − arctana)2 Ak

π2 + O

(
1

k3

)
.

For sufficiently large values of k, we get

q(x) = lim
k→∞2 (kπ − arctana)

(
(kπ − arctana) Ak

π2 − 1

lk,μ
j

)
.

This completes the proof. Now, let’s give some numerical conclusions to embody the eigen-
values and nodal parameter concepts for the problem (1.1)–(1.3). Let us consider (1.1)–(1.3)
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Table 1 The eigenvalues λ
μ
k ; k = 1, 10 of Sturm–Liouville problem for a = 1, μ = 2 and q (x) = x2

λ21 λ22 λ23 λ24 λ25 λ26 λ27 λ28 λ29 λ210

1.60991 2.11853 2.98452 3.92198 4.88578 5.86216 6.84555 7.83322 8.82371 9.81615

Table 2 The nodal points xk,μ
j ; j, k = 1, 10 of Sturm–Liouville problem for a = 1, μ = 2 and q (x) = x2

xk,2
j k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

j = 1 155.107 1.65345 1.04993 0.792148 0.636624 0.531651 0.456036 0.39904 0.354582 0.318961

j = 2 32339.8 5.92077 2.27271 1.62025 1.2846 1.06779 0.914129 0.799126 0.709741 0.638261

j = 3 1.02247 × 106 29.0019 4.05344 2.53501 1.95723 1.61328 1.37643 1.20133 1.06606 0.958242

j = 4 1.2678 × 107 152.653 7.37327 3.6208 2.67191 2.17375 1.84526 1.60679 1.42415 1.27925

j = 5 9.13303 × 107 698.032 14.6071 5.02349 3.4528 2.75602 2.32326 2.0167 1.78464 1.60165

j = 6 4.62629 × 108 2695.1 31.1206 6.99329 4.33423 3.36863 2.81343 2.43241 2.14821 1.92582

j = 7 1.83189 × 109 8956.62 68.2637 9.95072 5.36516 4.0224 3.31931 2.85537 2.51556 2.25214

j = 8 6.04873 × 109 26246.1 148.646 14.586 6.61508 4.73118 3.84508 3.28725 2.88749 2.58104

j = 9 1.73726 × 1010 69254.7 314.927 22.0059 8.18192 5.51272 4.39574 3.72991 3.26485 2.91296

j = 10 4.46814 × 1010 167372 643.798 33.9456 10.2023 6.38968 4.97727 4.1855 3.64857 3.24836

for some constant values a = 1,μ = 2. Tables 1, 2, and 3 show the behavior of nodal lengths,
nodal positions, and eigenvalues, when q (x) = x2, respectively.

Table 1 shows that the sequence of eigenvalues increases as n expands. This aligns with
the overall theoretical framework.

Table 2 shows that the nodal points oscillate within the studied range as the value of k
rises. As a result, the issue is steady and the conclusions are clear and precise.

The numerical findings in this particular situation under discussion demonstrate the appli-
cability of the found formulas for fundamental theorems.

4 Conclusion

The Prüfer transform is used in this study to solve the inverse nodal problem for the Sturm–
Liouville equation, which incorporates parameters in both the independent and boundary
conditions. In the qualitative theory of second order Sturm–Liouville differential equations,
this transformation is a helpful tool. The advantages of this will become clear eventually, but
to give you a rough idea, it makes zero counting incredibly effective. This transformation is
a very efficient procedure, as demonstrated by a few numerical results.
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