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Abstract
Fuzzy rough set theory gives a mathematical tool for studying unsettled knowledge that is
beclouded, inexact, and mutually exclusive. The perception and conclusions of fuzzy rough
sets theory are inextricably linked to topological perception. The topological appearance and
its applications in fuzzy rough sets theory have been extensively discussed by researchers.
The underlying subordinate of topology and classic fuzzy rough sets theory, as well as the
expressive work done in this area over the previous years, are highlighted in this research.
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Mathematics Subject Classification 54A40 · 06B23 · 03E72

1 Introduction

The theory of fuzzy sets was first introduced by Zadeh [76] in 1965 to study unclear bound-
aries of sets. After that, many studies attempted to generalize the fuzzy set by using various
approaches. In [35], Pawlak introduced the concept of rough sets. This new mathematical
tool for data reasoning has benefited machine learning, intelligent systems with insufficient
and incomplete information, inductive reasoning, pattern recognition, mereology, image pro-
cessing, signal analysis, knowledge discovery, decision analysis, expert systems, and many
other fields [36–39]. An approximation space is the underlying structure of rough set theory.
Lower and upper approximations can be induced based on it. In 1990, Dubois and Prade [12]
developed the concepts of rough fuzzy sets and fuzzy rough sets, based on approximations
of fuzzy sets by crisp approximation spaces and crisp sets by fuzzy approximation spaces;
and pointed out that a rough fuzzy set is a particular instance of a fuzzy rough set. Many
researchers have since developed other fuzzy set generalizations of rough approximations
(see [10, 12, 33, 46, 52, 53, 57, 58, 66]). Themost frequent fuzzy rough set is found by replac-
ing crisp relations on the universe with fuzzy relations and crisp subsets with fuzzy sets. As
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in classical examples, there are two techniques for developing fuzzy rough set theory. One
is the constructive technique, which involves constructing lower and upper approximation
operators from fuzzy relations. The alternative is the axiomatic method, which requires that
the lower and upper approximation operators fulfill the same set of axioms as the created
ones. Morsi and Yakout [31] provided axioms for the fuzzy rough set model. Wu et al. [66]
proposed a broad framework for studying fuzzy rough sets that include both constructive and
axiomatic approaches. Yeung et al. [71] looked into the generalization of fuzzy rough sets
and discovered a relation between fuzzy preorders and saturated Kuratowski fuzzy closure
operators that met an additional criterion. Over fuzzy lattices, Liu [28] proposed the concept
of generalized rough sets. The crisp [37, 38] and fuzzy generalizations [12] of rough sets can
be put into one framework using this approach.

Atanassov [2] introduced the idea of intuitionistic fuzzy sets. In Sostak’s sense, Coker
and Demirci [8] defined intuitionistic fuzzy topological spaces as a generalization of smooth
and intuitionistic fuzzy topological spaces. Samanta and Mondal [48] proposed the idea of
intuitionistic fuzzy rough sets by combining the concepts of fuzzy rough sets and intuitionistic
fuzzy sets. Zhou et al. [80, 81] defined the lower and upper approximations of an intuitionistic
fuzzy approximation space. Many researchers [68, 73–75], have investigated several key
characteristics of intuitionistic fuzzy approximation operators. Working under the by name
“intuitionistic" raised questions about the applicability of the term, particularly when dealing
with a complete lattice L . These questions were answered in 2005 by Gutierrez Garcia, and
Rodabaugh [15]. They demonstrated that this word is inappropriate for use in mathematics
and applications. They came to the conclusion that the term “L-double" should be used in
place of the word “intuitionistic". As a generalization of intuitionistic fuzzy topology and
L-fuzzy topology, Samanta andMondal [49] presented the concept of intuitionistic gradation
of openness (L-double fuzzy topology).

Later several other generalizations of fuzzy sets were further generalized in the framework
of fuzzy rough sets. For example, multi-fuzzy rough sets [63] generalize multi-fuzzy sets [50,
51], hesitant fuzzy rough sets [6, 11, 13, 27, 69] generalize hesistant fuzzy sets [61, 62]. In
this paper, we take a survey of topological study on various models of fuzzy rough sets. The
paper collects fuzzy rough set models (their definitions and properties) and the topological
structures studied on them.

The following is the format of the paper: Sect. 2 collects some basic definitions and
properties of topological spaces, rough set theory and fuzzy set theory. Section 3 brings
together research on topological theory generated in the framework of fuzzy rough sets, as
well as its features. In Sect. 4, we study the topological structures on fuzzy rough sets and
fuzzy topologies generated by them. On fuzzy rough sets, there is a relation between fuzzy
preorders and fuzzy topologies. In Sect. 5, we collect the work done on intuitionistic fuzzy
rough sets, which are derived from intuitionistic fuzzy approximation spaces and study their
intuitionistic fuzzy topological spaces. In Sect. 6, we review the ideas of L-double fuzzy
rough sets and their topological features, as well as L-double fuzzy topology derived from
L-double fuzzy approximation operators. In Sect. 7, we look at some topological theories on
multi-fuzzy rough sets. Section 8 discusses hesistant fuzzy topological spaces and its basic
characterization in terms of fuzzy rough sets. Finally in last section (Sect. 9), we conclude
the survey.
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2 Preliminaries and basic results

Throughout this paper, X refers to a non-empty set known as the universal set; � refers to an
equivalence relation on X; P(X) refers to the power set of X; � is an arbitrary index set, and
Xc refers to the complement of a set X . The essential concepts, properties, and operations
of topology, rough set theory, and fuzzy set theory are collected in this section.

2.1 Topological spaces

Definition 2.1 [21, 53] Let X be a non-empty set. Then a collection τ of subsets of X is
called a topology for X , if τ satisfies the following axioms:

(1) ∅ and X are in τ,

(2) if {Gα : α ∈ �} is an arbitrary collection of sets in τ, then ∪{Gα : α ∈ �} is in τ,

(3) if G1 and G2 are two sets in τ, then G1 ∩ G2 is in τ.

The pair (X , τ ) is called a topological space.

In a topological space (X , τ ), the members of τ are called open sets of X . The compliments
of open sets are closed sets of X .

Definition 2.2 [53] Let (X , τ ) be a topological space and let A ⊆ X . Then the interior of A
is the union of all open subsets of A and is denoted by intτ (A) or Ao, i.e.,

intτ (A) = Ao = ⋃{G ∈ τ : G ⊆ A and G is an open set}.
Definition 2.3 [53] Let (X , τ ) be a topological space and let A ⊆ X . Then the intersection
of all closed supersets of A is called the closure of A and is denoted by A or clτ (A), i.e.,

clτ (A) = A = ⋂{F ⊆ X : A ⊆ F and F is a closed set in τ }.

2.2 Rough set theory

[53]. Let A ⊆ X and � be an equivalence relation on X . The lower approximation of the
set A with respect to � is the set of all objects which can be certainly classified as A with
respect to � and denoted by �(A) is

�(A) = {x ∈ X : [x]� ⊆ A},
where [x]� denotes the equivalence class of x with respect to the relation �.

The upper approximation of the set X with respect to � is the set of all objects which can
be possibly classified with respect to � and is denoted by �(A).

�(A) = {x ∈ X : [x]� ∩ A �= ∅}.
The boundary region of A is denoted as BN�(A) = �(A) − �(A). A set A is crisp if the
boundary region of A is empty, i .e, BN�(A) = ∅, otherwise the set A is rough.

Rough sets can be also expressed by a rough membership function, namely

νA(x) = |[x]� ∩ A|
|[x]�| , x ∈ X .

The membership function is a type of fuzzy set, and its value may be defined as the degree
of certainty with which x belongs to A.

Properties of approximation operators:
Let A, B ⊆ X . Then
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(1) �(A) ⊆ A ⊆ �(A),

(2) �(∅) = �(∅) = ∅ ; �(X) = �(X) = X ,

(3) �(A ∪ B) = �(A) ∪ �(B),

(4) �(A ∩ B) = �(A) ∩ �(B),

(5) �(A ∪ B) ⊇ �(A) ∪ �(B),

(6) �(A ∩ B) ⊆ �(A) ∩ �(B),

(7) A ⊆ B ⇒ �(A) ⊆ �(B) and �(A) ⊆ �(B),

(8) �(Ac) = (�(A))c and �(Ac) = (�(A))c,

(9) �(�(A)) = �(A) and �(�(A)) = �(A),

(10) �(�(A)) = �(A) and �(�(A)) = �(A),

(11) �(A) ⊆ �(�(A)), �(�(A)) ⊆ �(A), �(A) ⊆ �(�(A)),

�(�(A)) ⊆ �(A), and A ⊆ �(�(A)).

2.3 Fuzzy set theory

Fuzzy sets were first introduced by Zadeh [76] as an extension of crisp sets (classical sets).
A fuzzy set is a technique to express the sets whose boundaries are not well defined. Fuzzy
sets also use a several (or infinite) valued membership function, as compared to classical set
theory, which uses a two-valued membership function (i .e., an element is either in a set or it
is not). For lattice theory, we refer [72].

Definition 2.4 [72] Let X be a universal set. A fuzzy set F in X is characterized by its
membership function denoted by νF ; that is νF : X → [0, 1] and νF (x) is calledmembership
grade of x in fuzzy set F for each x ∈ X . We write a fuzzy set F as

F = {(x, νF (x)) : x ∈ X}.
Here, each pair (x, νF (x)) is called a singleton.

If X = {x1, x2, x3, · · · , xn} is a finite set and F is a fuzzy set in X , then we often use the
notation

F =
n∑

i=1

νF (xi )

xi
= νF (x1)

x1
+ νF (x2)

x2
+ νF (x3)

x3
+ · · · + νF (xn)

xn
,

where the term
νF (xi )

xi
, i = 1, 2, 3, . . . , n, signifies that νF (xi ) is the membership grade

of xi in the fuzzy set F and the plus sign represents the union. Fuzzy sets of this type used
in the literature, are called ordinary fuzzy sets.

Definition 2.5 [33] Let X be a set and L be a lattice. An L-fuzzy set F in X is defined
by a membership function νF : X → L that assigns a ‘grade’ or ‘degree of membership’
νF (x) ∈ L with each point x ∈ X .

In particular, L could the closed interval I = [0, 1].
Let F and G be fuzzy sets in X . Then

(1) F = G if and only if νF (x) = νG(x), for all x ∈ X ,

(2) F ⊆ G if and only if νF (x) ≤ νG(x), for all x ∈ X ,

(3) E = F ∪ G if and only if νE (x) = max[νF (x), νG(x)], x ∈ X ,

(4) H = F ∩ G if and only if νH (x) = min[νF (x), νG(x)], x ∈ X ,

(5) the complement of F, denoted by Fc, is defined by
νFc (x) = 1 − νF (x), x ∈ X .

123



A survey on topological structures on fuzzy rough sets Page 5 of 28 42

The family of all fuzzy sets on X is represented by F(X). Let α ∈ [0, 1]. If νF (x) = α,

for every x ∈ X , then the fuzzy set F ∈ F(X) is constant and is written by αX . Moreover,
xα is said to be a fuzzy point if, for every x in X , νxα (y) = α, if x = y and νxα (y) = 0,
if y �= x, where the point x is called support and α is called its height [72]. Denote by
F(X) = {xα : x ∈ X , α ∈ (0, 1]}.
Definition 2.6 [5, 25] A collection η ⊆ F(X) is said to be a fuzzy topology, if it satisfies the
following conditions:

(1) αX ∈ η, α ∈ [0, 1],
(2) F ∩ G ∈ η, F,G ∈ η,

(3)
⋃

i∈� Fi ∈ η, {Fi }i∈� ⊆ η.

Further, if η additionally satisfies

(4)
⋂

i∈� Fi ∈ η, {Fi }i∈� ⊆ η,

then η is said to be an Alexandrov fuzzy topology on X .

Definition 2.7 [54] Let (X , η) be a fuzzy topological space. Then

(1) ξ(xα) = {F ∈ F(X) : F is closed remote neighbourhood of xα},
(2) (X ,F) is called T−1, if for any xα, xβ ∈ F(X) and β < α there exists F ∈ ξ(xα) such

that xβ ∈ F, or, there exists G ∈ ξ(xβ) such that xα ∈ G,

(3) (X ,F) is sub-T0, if for any x, y ∈ X and x �= y, there exist α ∈ (0, 1] and F ∈ ξ(xα)

such that yα ∈ F, or, there exist α ∈ (0, 1] and G ∈ ξ(yα) such that xα ∈ G.

Definition 2.8 [56] A Kuratowski fuzzy closure operator on X is a function cl : F(X) →
F(X) such that for every α ∈ I , F,G ∈ F(X),

(1) cl(αX ) = αX ,

(2) F ≤ cl(F),

(3) cl(F ∨ G) = cl(F) ∨ cl(G) and
(4) cl(cl(F)) = cl(F).

A Kuratowski fuzzy closure operator cl on X is said to be saturated if and only if for every
Fi ∈ F(X), i ∈ �, cl(

∨{Fi : i ∈ �}) = ∨{cl(Fi ) : i ∈ �}.
Every Kuratowski fuzzy closure operator cl on X induces a fuzzy topology on X in which a
fuzzy set F is closed if and only if cl(F) = F .

2.4 Fuzzy relation

Definition 2.9 [65]

(1) A fuzzy set F ∈ F(X × Y ) is called a fuzzy relation from X to Y .

(2) If
∨

y∈Y F(x, y) = 1 for every x ∈ X , then F is said to be serial.
(3) If there exists y ∈ Y such thatF(x, y) = 1 for every x ∈ X , thenF is said to be strongly

serial.

If X = Y , then F is said to be fuzzy relation on X . For each fuzzy relation F on X , a fuzzy
relation F−1 is defined as F−1(x, y) = F(y, x), for every x, y ∈ X . A fuzzy relation F is
said to be inverse serial if for every x ∈ X there exists a y ∈ X such that F(y, x) = 1.
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Definition 2.10 [77] Consider the fuzzy relation F on X .

(1) If F(x, x) = 1, x ∈ X , then F is reflexive.
(2) If F(x, y) = F(y, x), x, y ∈ X , then F is symmetric.
(3) If T (F(x, y),F(y, z)) ≤ F(x, z), x, y, z ∈ X , then F is T -transitive.
(4) If F(x, x) �= 1, x ∈ X , then F is irreflexive.
(5) If F(x, x) = 0, x ∈ X , then F is antireflexive.
(6) If min{F(x, y),F(y, x)} = 0, (x, y) ∈ X × X , then F is asymmetric.
(7) If min{F(x, y),F(y, x)} = 0, (x, y) ∈ X × X , such that x �= y, then F is antisym-

metric.
(8) If max{F(x, y),F(y, z)} ≥ F(x, z), x, y, z ∈ X , then F is negatively transitive.
(9) If max{F(x, y),F(y, x)} = 1, x, y ∈ X , then F is total.

(10) If max{F(x, y),F(y, x)} = 1, (x, y) ∈ X × X , such that x �= y, then F is
connecting.

(11) If F is reflexive, transitive and antisymmetric, then F is a fuzzy partial order relation.

In short, if T = ∧, then T -transitive is said to be transitive. If a fuzzy relation F is reflexive
and symmetric, it is said to be a fuzzy tolerance relation. Furthermore, F is said to be T -
fuzzy preorder, if it is reflexive and T -transitive. A fuzzy T -equivalence relation is reflexive,
symmetric, and T -transitive. Similarly, if a fuzzy relation F is both reflexive and transitive,
then it is known to as a fuzzy preorder. Moreover, a fuzzy relation is a fuzzy equivalence
relation, if it is reflexive, symmetric and transitive.

Definition 2.11 [14] A fuzzy relation F on a set X is said to be fuzzy interval order if

(1) max{F(x, y),F(y, x)} = 1, for all x, y ∈ X ,

(2) min{F(x, y),F(z, w)} ≤ max{F(x, w),F(z, y)}, for all x, y, z, w ∈ X .

A fuzzy relation on X is called a fuzzy semiorder if

(3) it is a fuzzy interval order,
(4) max{F(x, z),F(z, w)} ≥ min{F(x, y),F(y, w)}, for all x, y, z, w ∈ X .

Definition 2.12 [54] Let F be a fuzzy relation on X . Then F is said to as a pseudo constant
if there exists α ∈ I such that for each x, y ∈ X ,

F(x, y) =
{
1, i f x = y
α, i f x �= y .

Every pseudo constant fuzzy relation is obviously a fuzzy equivalence relation.

3 Fuzzy rough sets

In 1990, Dubois and Prade [12] were the first to develop fuzzy rough sets by replacing fuzzy
binary relations for crisp binary relations. We will study the definition of fuzzy rough sets,
as well as some important results, in this section. Firstly, let us define fuzzy rough sets.

Definition 3.1 [24, 45, 48] Let F denotes a fuzzy relation from X to Y . Then the triple
(X , Y ,F) is known as a fuzzy approximation space. If X = Y and F is a fuzzy relation
on X , then (X ,F) is a fuzzy approximation space whose upper approximation F and lower
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approximation F are defined as, for any F ∈ F(X),

F(F)(x) =
∨

y∈X
(F(x, y) ∧ F(y)), for all x ∈ X ,

F(F)(x) =
∧

y∈X
(1 − F(x, y) ∨ F(y)), for all x ∈ X ,

A set F ⊆ X is said to be definable on (X ,F) if F(F) = F(F) otherwise, F is (fuzzy)
undefinable, or (fuzzy) rough.
Pawlak rough sets are a simple form of fuzzy rough set, whenF is a crisp equivalence relation
and F ⊆ X .

3.1 Properties of fuzzy approximation operators

[40]. In a fuzzy approximation space (X ,F), the operators F and F satisfies the following
conditions for any F,G ∈ F(X) and a fuzzy constant αX :
(1) F(F) = (

F(Fc)
)c

,

(2) F(F) = (
F(Fc)

)c
,

(3) F(X) = X ,

(4) F(∅) = ∅,

(5) F(F ∩ G) = F(F) ∩ F(G),

(6) F(F ∪ G) = F(F) ∪ F(G),

(7) F ⊆ G ⇒ F(F) ⊆ F(G),

(8) F ⊆ G ⇒ F(F) ⊆ F(G),

(9) F(F ∪ G) ⊇ F(F) ∪ F(G),

(10) F(F ∩ G) ⊆ F(F) ∩ F(G),

(11) F(F ∪ αX ) = F(F) ∪ αX ,

(12) F(F ∩ αX ) = F(F) ∩ αX .

More generally, we have the following properties for any Fi ∈ F(X), (i ∈ �),

(13) F(
⋂

i∈� Fi ) = ⋂
i∈� F(Fi ),

(14) F(
⋃

i∈� Fi ) = ⋃
i∈� F(Fi ),

(15) F(
⋃

i∈� Fi ) ⊇ ⋃
i∈� F(Fi ),

(16) F(
⋂

i∈� Fi ) ⊆ ⋂
i∈� F(Fi ).

If F is a serial fuzzy relation on X , then
(17) F(∅) = ∅,

(18) F(X) = X ,

(19) F(F) ⊆ F(F).

If F is a inverse serial fuzzy relation on X , then for any F ∈ F(X)

(20) F(F) = X i f and only i f F = X ,

(21) F(F) = ∅ i f and only i f F = ∅,

(22) F(λcx ) �= X f or any x ∈ X ,

(23) F(λx ) �= ∅ f or any x ∈ X ,

(24) F(F) > 0 ⇒ F > 0,
(25) F(F) < 1 ⇒ F < 1.

If F is both reflexive and symmetrical fuzzy relation on X , then
(26) F(F(F)) ⊆ F(F) ⊆ F ⊆ F(F) ⊆ F(F(F)).

A binary operation T : [0, 1] × [0, 1] → [0, 1] and S : [0, 1] × [0, 1] → [0, 1]),
respectively, are called t-norm and t-conorm on [0, 1], if it is commutative, associative,
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increasing in every argument and has a unit element of 1 and 0, respectively. The fundamental
t-norm and t-conorm are defined as, respectively,α∧β = min{α, β} andα∨β = max{α, β},
for every α, β ∈ [0, 1].

If the following holds, for every {αi }i∈� ⊆ [0, 1] and β ∈ [0, 1],

T
(

∨

i∈�

αi , β

)

=
∨

i∈�

T (αi , β),

then a t-norm T is said to be left-continuous. If a mapping I : [0, 1] × [0, 1] → [0, 1]
satisfies the Boolean implicator boundary conditions (cf. [7]) and is decreasing in the first
argument while increasing in the second argument, then it is called a fuzzy implicator on
[0, 1]. If the following conditions hold for every {αi }i∈� ⊆ [0, 1] and β ∈ [0, 1],

I(
∨

i∈� αi , β) = ∧
i∈� I(αi , β) and I(β,

∧
i∈� αi ) = ∧

i∈� I(β, αi ),

then a fuzzy implicator I is said to be left-continuous in the first argument and right-
continuous in the second argument.

A negator N : [0, 1] → [0, 1] is a decreasing mapping that satisfies the conditions
N (0) = 1 and N (1) = 0. Further N is said to be involutive if the N (N (x)) = x, for every
x in [0, 1]. An implicator I satisfies I(0, 0) = 1, I(1, x) = x, for every x ∈ [0, 1]. If T is
a t-norm, the mapping IT defined by, for every x and y in [0, 1], IT (x, y) = sup{λ : λ ∈
[0, 1] and T (x, λ) ≤ y} is an implicator (of T ), also known as the residual implicator. If
T is a t-norm and N is an involutive negator, then the mapping IT given by for every x, y
in [0, 1], IT ,N (x, y) = N (T (x,N (y))) is an implicator, which is called the S-implicator
induced by T and N .

Theorem 3.1 [40] Let L andM be two unary operators on F(X). If the following conditions
are satisfied by L and M for any F, Fi ∈ F(X), i ∈ � and αX ∈ [0, 1].
(1) L(F) = (M(Fc))c ,

(2) M(F) = (L(Fc))c ,

(3) L(F ∪ αX ) = L(F) ∪ αX ,

(4) M(F ∩ αX ) = M(F) ∩ αX ,

(5) L
(⋂

i∈� Fi
) = ⋂

i∈� L(Fi ),
(6) M

(⋃
i∈� Fi

) = ⋃
M(Fi ),

then there exists a fuzzy binary relation F on X such that L = F, M = F .

Proposition 3.1 [3] If I is a residual implicator of left-continuous t-norm T , then for any
fuzzy set F in X ,

F(F(F)) ⊆ F ⊆ F(F(F)).

In general, Proposition 3.1 does not holds for other t-norms and implicators that do not satisfy
the properties

T (x, I(x, y)) ≤ y and y ≤ I(x, T (x, y)).

For example, let X = {α, β} be a finite set and F be a fuzzy relation on X . Define a fuzzy
set F in X by F(α) = 1 and F(β) = 0.8. Moreover, let T = TM and I = IIM ,Ns be its
S-implicator. Then F(F)(α) = 1 and F(F)(β) = 0.8. Hence

F(F(F))(α) = min (max(0, 1),max(0.8, 0.8)) = 0.8.

Thus F � F(F(F)). From all of the above, we obtain

F(F(F)) ⊆ F(F) ⊆ F(F(F)) ⊆ F ⊆ F(F(F)) ⊆ F(F) ⊆ F(F(F)),
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If I is residual implicator of left-continuous T , then the above inequality is valid for any
reflexive and symmetric fuzzy relation F .

Proposition 3.2 [4, 7] If T is a left-continuous t-norm, then for every fuzzy set F in X ,

F(F(F)) = (F ◦ F)(F). Further if I is left-continuous in its first component and right-
continuous in its second component and if T and I satisfy the shunting principle,

I(T (x, y), z) = I(x, I(y, z)),

then for every fuzzy set F in X ,

F(F(F)) = (F ◦ F)(F).

Proposition 3.3 [3, 4, 7, 46] If F is a fuzzy T -equivalence relation in X, where T is a
left-continuous t-norm and its residual implicator, then for every fuzzy set F in X ,

F(F(F)) = F(F) and F(F(F)) = F(F).

It means that by using a fuzzy T -equivalence relation to model approximate equality, we
obtain maximal reduction or expansion in one phase, regardless of the approximations. When
F is not T - transitive and the universe X is finite, it is known that the T -transitive closure
of F, and is denoted by F |X−1| (assuming |X | ≥ 2) [32]. Hence

F |X−1| ◦ F |X−1| = F |X−1|.

In other words, with the lower and upper approximations, maximal reduction and expansion
will be reached in at most |X − 1| steps, while with the tight lower and the loose upper
approximation, it can take at most �|X − 1|/2� steps.

4 Topological structures on fuzzy rough sets

Qin and Pei [45] examined topological structures of fuzzy rough sets or fuzzy approximation
spaces and pointed out that the set of all reflexive, transitive fuzzy relations and the set of all
fuzzy topologies satisfying the (TC) axiom have a one-to-one correspondence. Lai and Zhang
[25], found a strong link between fuzzy preorders and saturated fuzzy topologies that satisfy
an additional but differently formulated condition. Throughout this section, let (X ,F) be a
fuzzy approximation, where X is a non-empty finite set (see [12]), unless stated otherwise.

4.1 Fuzzy topologies from fuzzy approximation spaces

The topological structures of fuzzy approximation spaces are discussed in this subsection.
For every F ∈ F(X × X), let

ηF = {F ∈ F(X) : F = F(F)},
θF = {F(F) : F ∈ F(X)},
sF =

∧

x,y∈X ,x �=y

F(x, y),

tF =
∨

x,y∈X ,x �=y

F(x, y).
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If F is a fuzzy preorder, then θF = ηF .

Also, ηF is the Alexandrov fuzzy topology induced by (X ,F), if (X ,F) is a reflexive fuzzy
approximation space (X ,F). This topology satisfies the following properties [54]:

1. (X , ηF ) is not connected,
2. (X , ηF ) is T−1,

3. (a) if (X , ηF ) is sub-T0, then for any x, y ∈ X such as x �= y,F(x, y) ∧ F(y, x) < 1,
(b) if tF < 1, then (X , ηF ) is sub-T0.

Proposition 4.1 Let F1 and F2 be two reflexive fuzzy relations on X. Then

(1) F1 ⊆ F2 ⇒ ηF2 ⊆ ηF1 ,

(2) ηF1 ⊆ ηF2 ⇒ ∨
y∈X−{x} F2(x, y) ≤ ∨

y∈X−{x} F1(x, y), x ∈ X ,

(3) F1 ∪ F2 is reflexive,
(4) ηF1∪F2 is an Alexandrov fuzzy topology on X ,

(5) ηF1∪F2 = ηF1 ∩ ηF2 .

Theorem 4.1 [45] Let (X ,F) be a fuzzy preorder approximation space. Then

(1) θF is a fuzzy topology on X ,

(2) the interior operator of θF is F,

(3) the closure operator of θF is F .

If F be a fuzzy relation on X , then

(4) F is transitive emplies θF ⊆ ηF ,

(5) an Alexandrov fuzzy topology on X is ηF ,

(6) if F is reflexive, then for each F ∈ F(X), intηF (F) ⊆ F(F) ⊆ F ⊆ F(F) ⊆ clηF (F),

(7) F ∈ (ηF )c if and only if F(F) ⊆ F,

(9) for every α ∈ I , αX ∈ (ηF )c.

4.2 Fuzzy approximation spaces from fuzzy topologies

Afuzzy topology is generated by a reflexive fuzzy approximation space, aswe saw inSect. 4.1.
In this subsection, we look at the opposite problem: how can a fuzzy topology be linked to a
fuzzy approximation space that provides the specified fuzzy topology.

Let η be the fuzzy topology on X . Define the fuzzy relation Fη on X by Fη(x, y) =
clη(y)(x), (x, y) ∈ X × X . Then Fη is called the fuzzy relation induced by η on X and
(X ,Fη) is called the fuzzy approximation space induced by η on X .

Theorem 4.2 [54] Let F be a reflexive fuzzy relation, ηF be the fuzzy topology generated
by F on X , and FηF be the fuzzy relation generated by ηF on X . If F is transitive, then
FηF = F .

For a fuzzy topology η on X, the following condition is said to be the (CC) axiom: for
any α ∈ I and F ∈ F(X),

(CC) clη(αX F) = αXclη(F),

where clη is the fuzzy closure operator on X.
Assume that η is a fuzzy topology on X. If η satisfies the (CC) axiom, then

(1) the closure fuzzy operator of η is Fη,

(2) η is an Alexandrov fuzzy topology on X .

Further, ηF satisfies the (CC) axiom if F is a preorder fuzzy relation on X. Finally, we have
the following theorem given by Tang et al. [54].
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Theorem 4.3 Let η be a fuzzy topology on X, Fη be the fuzzy relation generated by η on X,
and ηFη be the fuzzy topology generated by Fη on X . Then

ηFη = η if and only if η follows (CC) axiom.

Theorem 4.4 Consider a fuzzy topological space (X , η). Then (X , η) is a fuzzy approximation
space provided any one of the following conditions is satisfied:

(1) η satisfies (CC) axiom,
(2) F ∈ F(X) and for any α ∈ I , intη(αX ∪ F) = αX ∪ intη(F),

(3) there exists a preorder fuzzy relation F on X such that F is the closure operator of η,

(4) there exists a preorder fuzzy relation F on X such that F is the interior operator of η,

(5) the closure operator of η is Fη,

(6) the interior operator of η is Fη.

Moreover, we have the following result that a fuzzy topology generates a fuzzy approximation
space.

Theorem 4.5 Let the fuzzy topological space be defined by (X , η). If there exists a reflexive
fuzzy relation F , then (X , η) is a fuzzy approximation space such that

η =
⋃{

F ∈ F(X) : for every (x, y) ∈ F, Fc(x) ∧ Fc(y) ≥ F(x, y)
}
.

4.3 Relation between fuzzy preorders and fuzzy topologies

The family of all saturated fuzzy topologies on X satisfying the specific extra condition is
in close relationship with the family of fuzzy preorders on X (see [25, 45, 71]). In fact, the
fuzzy topologies involved in [25, 45, 71], are either the same or closely related. In [56], it is
shown that the observation in [25, 45, 71] regarding the relationship are actually equivalent.
In this subsection, let X be a non-empty set.

Definition 4.1 (1) Let (X ,F) be a fuzzy preordered set. Then F ∈ F(X) is called an upper
set of (X ,F) if F(x) ∧ F(x, y) ≤ F(y) for every x, y ∈ X .

(2) For β ∈ I , F ∈ F(X), x ∈ X ,

(β → F)(x) = β → F(x) =
{
1 , i f β ≤ F(x),
F(x), i f β > F(x).

Proposition 4.2 [71] The set of all fuzzy preorders on X and the set of all saturated fuzzy
topologies η on X are in one-to-one correspondence such that for every β ∈ I and for every
F ∈ η, β → F ∈ η.

Proposition 4.3 Let (X ,F) be a fuzzy preordered set and F ∈ F(X). Then F is an upper set
of (X ,F) if and only if F = F(F).

A fuzzy topology η on X is said to satisfy:

(1) The (TC) axiom if, for every x, y ∈ X , whenever there exists some F ∈ η such
that F(x) > F(y), then there also exists some F∗ ∈ η such that F∗(y) = 0 and
F∗(x) ≥ F(x).

(2) The (TC∗) axiom if, for every x, y ∈ X , whenever there exists some F ∈ η such
that F(x) < F(y), then there also exits some F∗ ∈ η such that F∗(y) = 1 and
F∗(x) ≤ F(x).
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The set of all fuzzy preorders on X and the set of saturated fuzzy topologies η on X
that satisfies the (TC) axiom or (TC∗) axiom are shown to have a one-to-one relationship
in [18, 23, 70]. Moreover, a fuzzy topological space (X , η) satisfies the (TC∗) axiom or
(TC) axiom if and only if β → F ∈ η, ((β → Fc)c ∈ η), for every β ∈ I and for every
F ∈ η.

Proposition 4.4 Let cl be a Kuratowski fuzzy closure operator on X and I = [0, 1]. Then
there is a fuzzy preorder F on X such that cl = F if and only if

(1) cl(
∨

i∈I Fi ) = ∨
i∈I cl(Fi ), Fi ∈ F(X),

(2) cl(β
∧

F) = β
∧

cl(F), for every F ∈ F(X), β ∈ I , and
(3) for every β ∈ I and for every F ∈ F(X), cl(β → F) = β → cl(F) if and only if

cl(β
∧

F) = β
∧

cl(F).

Proposition 4.5 The set of all fuzzy preorders on X has a one-to-one correspondence with
the collection of all Kuratowski saturated fuzzy closure operators cl on X such that for every
β ∈ I and for every F ∈ F(X), cl(β ∧ F) = β ∧ cl(F).

Remark 4.1 Most of the results studied for fuzzy rough sets have been generalized by different
researchers for L-fuzzy rough sets in [30, 34, 44, 64].

5 Intuitionistic fuzzy rough sets

All the elements of a set have a membership value in the fuzzy set theory, and the non-
membership values are ignored. However, because of the presence of doubt, this is not true
in many real-life problems. In fuzzy set theory, if νF (x) is the degree of membership of an
element x in F, then the degree of non-membership of x is determined using themathematical
formula (1 − νF (x)) assuming that deterministic component governs the whole degree of
membership and the indeterministic part has no contribution in the degree of membership.
In [2], the intuitionistic fuzzy set theory was introduced because the fuzzy set theory is not
always applicable in real life. The intuitionistic fuzzy set theory reduces to the fuzzy set
theory if the indeterministic element is zero. It shows that the intuitionistic fuzzy set model is
an expanded version of the fuzzy set model. Therefore, a better model than a fuzzy rough set
on two universal sets is an intuitionistic fuzzy rough set on two universal sets. We define the
basic concepts leading to an intuitionistic fuzzy rough set on two universal sets. We denote ν

for membership and ϑ for non-membership functions associated with an intuitionistic fuzzy
rough set on two universal sets.

Definition 5.1 [2] An intuitionistic fuzzy (I F, in short) set F in X is an object of the form

F = {< x, νF (x), ϑF (x) >: x ∈ X},
where νF : X → [0, 1] and ϑF : X → [0, 1] satisfy 0 ≤ νF (x) + ϑF (x) ≤ 1 for every
x ∈ X ,and νF (x) and ϑF (x) are, respectively, used to define the degree of membership and
the degree of non-membership of the element x to F . The collection of all I F subsets of X is
denoted by IF(X).The complement of an I F set F is given by Fc = {< x, ϑF (x), νF (x) >:
x ∈ X}.

Clearly, every fuzzy set has a structure {< x, νF (x), 1 − νF (x) > x ∈ X} and is an I F
set. Every I F set of the form {< x, 1, 0 >: x ∈ X} is still considered a crisp set F and if
y /∈ F, then νF (y) = 0 and ϑF (y) = 1.
Let F,G ∈ IF(X). Some fundamental operations on IF(X) are as follows:
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(1) F ⊆ G if and only if νF (x) ≤ νG(x) and ϑF (x) ≥ ϑG(x) for all x ∈ X ,

(2) F ⊇ G if and only if G ⊆ F,

(3) F = G if and only if F ⊆ G, and G ⊆ F,

(4) F ∩ G = {< x,min(νF (x), νG(x)),max(ϑF (x), ϑG(x)) >: x ∈ X},
(5)

⋂
i∈� Fi = {< x,

∧
i∈� νFi (x),

∨
i∈� ϑFi (x) >: x ∈ X}, Fi ∈ IF(X), i ∈ �,

(6) F ∪ G = {< x,max(νF (x), νG(x)),min(ϑF (x), ϑG(x)) >: x ∈ X},
(7)

⋃
i∈� Fi = {< x,

∨
i∈� νFi (x),

∧
i∈� ϑFi (x) >: x ∈ X}, Fi ∈ IF(X), i ∈ �.

A constant I F set (α, β)X = {< x, α, β >: x ∈ X}, where 0 ≤ α, β ≤ 1. A special I F set
(I F singleton set) 1y for y ∈ X , is defined as follows:

ν1y (x) =
{
1, i f x = y
0, i f x �= y

ϑ1y (x) =
{
0, i f x = y
1, i f x �= y

ν1X−{y}(x) =
{
0, i f x = y
1, i f x �= y

ϑ1X−{y}(x) =
{
1, i f x = y
0, i f x �= y

The I F universe set is 1cX = X = {< x, 1, 0 >: x ∈ X} and the I F empty set is
0cX = ∅ = {< x, 1, 0 >: x ∈ X}. An I F relation on X is an I F subset of X × X that is,

F = {< (x, y), νF (x, y), ϑF (x, y) >: x, y ∈ X},
where

νF : X × X → [0, 1], ϑF : X × X → [0, 1]
satisfies 0 ≤ νF (x, y)+ϑF (x, y) ≤ 1 for every (x, y) ∈ X×X .Wedenote by I FF(X×X),

the collection of all I F relations on X . For other properties of I F sets, we refer [79].

Definition 5.2 [9] An I F topology on a non-empty set X is a family ψ of I F sets in X
satisfying the following axioms:

(1) 0cX , 1cX ∈ ψ,

(2) F ∩ G ∈ ψ, for any F,G ∈ ψ,

(3)
⋃

i∈� Fi ∈ ψ, for an arbitrary family {Fi : i ∈ �} ⊆ ψ.

5.1 Intuitionistic fuzzy rough sets induced from intuitionistic fuzzy approximation
spaces

In this subsection, we study the rough set approximations of I F sets with respect to a I F
approximation space and features of I F rough approximation operators.

Definition 5.3 [1, 80] IfF ∈ I FF(X × X), then the pair (X ,F) is called an I F approxima-
tion space. For F ∈ IF(X), the upper and lower approximations of F with respect to (X ,F)

are given by F(F) and F(F), and are defined as follows:

F(F) = {< x, νF(F)(x), ϑF(F)(x) >: x ∈ X},
F(F) = {< x, νF(F)(x), ϑF(F)(x) >: x ∈ X},

where

νF(F)(x) =
∨

y∈X
[νF (x, y) ∧ νF (y)], ϑF(F)(x) =

∧

y∈X
[ϑF (x, y) ∨ ϑF (y)]

νF(F)(x) =
∧

y∈X
[ϑF (x, y) ∨ νF (y)], ϑF(F)(x) =

∨

y∈X
[νF (x, y) ∧ ϑF (y)].
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The pair (F(F),F(F)) is said to be an I F rough set of F with respect to (X ,F), and
F,F : IF(X) → IF(X) are respectively called as upper and lower I F rough approximation
operators.

If F is a crisp binary relation on X , then (X ,F) is a crisp approximation space, the I F
rough approximation operators are induced from a crisp approximation space, that is, for all
F ∈ IF(X),

F(F) =
{
< x, νF(F)(x), ϑF(F)(x) >: x ∈ X

}
,

F(F) = {
< x, νF(F)(x), ϑF(F)(x) >: x ∈ X

}
,

where

νF(F)(x) =
∨

y∈xF
νF (y), ϑF(F)(x) =

∧

y∈xF
ϑF (y),

νF(F)(x) =
∧

y∈xF
νF (y), ϑF(F)(x) =

∨

y∈xF
ϑF (y).

An I F rough set degenerates to a fuzzy rough set if F is a fuzzy relation on X and F is a
fuzzy set [67].

Definition 5.4 Let F ∈ IF(X) and α, β ∈ [0, 1] with α + β ≤ 1, the (α, β)-level cut set of
F, given by Fβ

α , is defined as the following:

Fβ
α = {x ∈ X : νF (x) ≥ α, ϑF (x) ≤ β}.

5.2 Relation between intuitionistic fuzzy approximation spaces and intuitionistic
fuzzy topological space

In this section, we investigate the relation between I F rough set approximations and I F
topologies by generalizing I F rough set theory inside the framework of I F topological
spaces (see [80]). Let F represents an I F reflexive and transitive binary relation on X , and
F and F represent the I F rough approximation operators defined in Definition 5.3.

Theorem 5.1 Let Fi ∈ IF(X), i ∈ �. Then

F
(

⋃

i∈�

F(Fi )

)

=
⋃

i∈�

F(Fi ).

In the following theorems, Zhou et al. [80] proved that an I F reflexive and transitive
approximation space can generate an I F topological space, in which the I F topology is
formed by the family of all lower approximations of IF sets concerning the I F approximation
space. In addition, the interior and closure operators of the I F topological space are the lower
and upper I F rough approximation operators, respectively.

Theorem 5.2 Let (X ,F) be an I F reflexive and transitive approximation space. Then

(1) ψF = {F(F) : F ∈ IF(X)} is an I F topology on X .

(2) Further, for every F ∈ IF(X),

(i) F(F) = int(F) = ⋃{F(G) : F(G) ⊆ F,G ∈ IF(X)}
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(ii) F(F) = cl(F) = ⋂{(F(G))c : (F(G))c ⊇ F,G ∈ IF(X)}
= ⋂{F(G) : F(G) ⊇ F,G ∈ IF(X)}.

The following theorem proves that the generating I F topology can also represent an I F
reflexive and transitive relation.

Theorem 5.3 Let (X ,F) denotes an I F reflexive and transitive approximation space, and
(X , ψ) denotes the I F topological space generated by (X ,F). Then

νF (x, y) =
∧

G∈(y)ψ

νG(x), ϑF (x, y) =
∨

G∈(y)ψ

ϑG(x), x, y ∈ X ,

where (y)ψ = {G ∈ IF(X) : Gc ∈ ψF , νG(y) = 1, ϑG(y) = 0}.
An I F reflexive and transitive approximation space gives an I F topological space. Con-
versely, we will look at the conditions under which an I F topological space and an I F
approximation space can be connected to produce the same I F topological space. In [80],
the authors provide the necessary and sufficient conditions to satisfy the requirement. For
this purpose, we consider the fuzzy topology defined in [5].

Definition 5.5 [5] A fuzzy topology on a set X is a family η of fuzzy sets in X that satisfies
the following conditions:

(1) ∅, X ∈ η,

(2) if F,G ∈ η, then F ∩ G ∈ η,

(3) if Fi ∈ η, i ∈ �, then
⋃

i∈� Fi ∈ η.

Lemma 5.1 [9] Let (X , ψ) be an IF topological space. Then

(1) η1 = {νG : G ∈ ψ} is a fuzzy topology on X in Chang’s sense,
(2) η2 = {1 − ϑG : G ∈ ψ} is a fuzzy topology on X in Chang’s sense and η∗

2 = {1 − ϑG :
G ∈ ψ} is the family of all fuzzy closed sets of η2.

Let (X , ψ) be an I F topological space and C, I : IF(X) → IF(X) be the I F closure and
I F interior operators, respectively. Then C may be characterised by a pair of operators C =
(Cν,Cϑ),whereCν represents the fuzzy closure operator generated by η2, andCϑ represents
the fuzzy interior operator generated by η1. Moreover, the pair of operators I = (Iν, Iϑ)

characterise to I, where Iν represents the fuzzy interior operator generated by η1 and Iϑ
represents the fuzzy closure operator generated by η2. In factCν,Cϑ , Iν, Iϑ : F(X) → F(X).

For F ∈ IF(X), C(F) = (Cν(ν),Cϑ(ϑ)) such that νC(F) = Cν(ν) and ϑC(F) = Cϑ(ϑ),

I(F) = (Iν(ν), Iϑ(ϑ)) such that νI(F) = Iν(ν) and ϑI(F) = Iϑ(ϑ).

Imposing some sufficient and necessary conditions, an I F interior (closure, respectively)
operator derived from an I F topological space can be associated with an I F reflexive and
transitive relation such that the induced lower (upper, respectively) I F rough approximation
operator is just the I F interior (closure, respectively) operator.

Theorem 5.4 Let (X , ψ) be an I F topological space and C, I : IF(X) → IF(X) be the I F
closure operator and the I F interior operator, respectively. Then there exists an I F reflexive
and transitive relation F on X such that F(F) = C(F) and F(F) = I(F), for every
F ∈ IF(X), if and only if C satisfies (1) and (2), or equivalently, I satisfies the following
conditions (3) and (4) :
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(1) C
(⋃

i∈� Fi
) = ⋃

i∈� C(Fi ), i.e., Cν

(
ν⋃

i∈� Fi

)
= Cν

(⋃
i∈� νFi

) = ⋃
i∈� Cν(νFi ),

Cϑ

(
ϑ⋃

i∈� Fi

)
= Cϑ

(
⋂

i∈�

ϑFi

)

=
⋂

i∈�

Cϑ(ϑFi ), F ∈ IF(X).

(2) C (F ∩ (α, β)X ) = C(F) ∩ (α, β)X , i .e., Cν(νFX ∩ αX ) = Cν(νF ) ∩ αX ,

Cϑ(ϑFX ∪ βX ) = Cϑ(ϑF ) ∪ βX , F ∈ IF(X), α, β ∈ [0, 1] with α + β ≤ 1.

(3) I
(⋂

i∈� Fi
) = ⋂

i∈� I(Fi ), i.e., Iν
(
ν⋂

i∈� Fi

)
= Iν

(⋂
i∈� νFi

) = ⋂
i∈� Iν(νFi ),

Iϑ
(
ϑ⋂

i∈� Fi

)
= Iϑ

(
⋃

i∈�

ϑFi

)

=
⋃

i∈�

Iϑ(ϑFi ), F ∈ IF(X).

(4) I (F ∪ (α, β)X ) = I(F) ∪ (α, β)X , i .e., Iν(νFX ∪ αX ) = Iν(νF ) ∪ αX ,

Iϑ(ϑFX ∩ βX ) = Iϑ(ϑF ) ∩ βX , F ∈ IF(X), α, β ∈ [0, 1] with α + β ≤ 1.

Definition 5.6 Let (X , ψ) be an I F topological space and C, I : IF(X) → IF(X) be the
I F closure operator and the I F interior operator, respectively. Suppose that C satisfies the
conditions, (1) and (2) or I, satisfies the conditions (3) and (4). Then we call (X , ψ) an I F
rough topological space.

Finally, we have the following characterization (see [80]).

Theorem 5.5 Any universe of discourse has a one-to-one correspondence between the set of
all I F reflexive and transitive approximation spaces and the set of all I F rough topological
spaces, with the lower and upper I F rough approximation operators as the I F interior and
closure operators, respectively.

In [16], Ghanim defined the fuzzy pseudo-closure operator of a fuzzy topological space,
which results in different fuzzy topological properties. Further, the author described the I F
pseudo closure operator induced by an I F topological space and investigated its properties.
He also studied the I F pseudo-closure operatorswithin the framework of I F approximations.
A decomposition theorem for I F sets is stated as follows.

Theorem 5.6 Let X be an arbitrary non-empty universe of discourse and F ∈ IF(X). Then

F =
⋃

(α,β)∈E2

(
Fβ

α ∩ (α, β)X
)
,

where E2 = {(α, β) : α, β ∈ [0, 1], α + β ≤ 1} and (α, β)X is the constant set in I 2.

The upper and lower I F rough approximation operators can be recreated by using fol-
lowing processes of approximations.

Corollary 5.1 Let (X ,F) be an I F approximation space and F ∈ IF(X). Then

F(F) =
⋃

(α,β)∈E2

Fβ
α

(
Fβ

α ∩ (α, β)X
) =

⋃

(α,β)∈E2

Fβ
α

(
Fβ+

α+ ∩ (α, β)X

)
,

F(F) =
⋂

(α,β)∈E2

Fβ
α

(
Fα+

β+ ∪ (α, β)X

)
=

⋂

(α,β)∈E2

Fβ
α

(
Fα

β ∪ (β, α)X

)
.
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Definition 5.7 Let (X , ψ) be an I F topological space, and clψ be the I F closure operator
given by ψ. Define

Sψ(F) =
⋃

(α,β)∈E2

clψ
(
Fβ

α ∩ (α, β)X
)
, F ∈ IF(X).

Then the function Sψ : IF(X) → IF(X) is said to be I F pseudo-closure operator induced
by ψ.

Theorem 5.7 An I F pseudo-closure operator, defined above, satisfies following conditions,
for every F,G ∈ IF(X)

(1) Sψ(∅) = ∅,

(2) F ⊆ Sψ(F),

(3) Sψ(F ∪ G) ⊇ Sψ(F) ∪ Sψ(G), Sψ(F ∩ G) ⊆ Sψ(F) ∩ Sψ(G),

(4) if F is an I F closed set, then Sψ(F) = F (i .e., Sψclψ(F) = clψ(F)),

(5) S
n
ψ(F) ⊆ clψ(F) for every positive integer n, i.e., clψSψ(F) = clψ(F), F ∈ IF(X),

(6) Sψ coincides with clψ as operators from E(X) to IF(X), where

E(X) = {
N ∩ (κ, l)X : N ∈ P(X), (κ, l) ∈ E2} .

Corollary 5.2 Let F be a crisp reflexive and transitive relation on X . Then ψ∗
F = {F(F) :

F ∈ IF(X)} is an I F topology on X . In addition,F is the pseudo-closure operator generated
by ψ∗

F and F(F) = ⋃
(α,β)∈E2 F(Fβ

α ∩ (α, β)X ).

Theorem 5.8 Let ψF be the I F topology induced by an I F reflexive and transitive approx-
imation space (X ,F). Then

SψF (N ∩ (κ, l)X ) = F (N ∩ (κ, l)X ) , for every N ∩ (κ, l)X ∈ E(X).

6 L-Double fuzzy rough sets

In [26], El-Latif et al. introduced a new idea of L-double fuzzy rough sets, where
(L,∧,∨, c, 0L , 1L) is a fuzzy lattice, i.e., a completely distributive lattice with an order
reversing involution c : L → L, where, 0L and 1L denote the lowest and greatest elements
of the lattice L, respectively. They studied the constructive and axiomatic approaches of
L-double fuzzy rough sets. They defined L-double fuzzy rough sets by using Goguen [17]
L-fuzzy sets, and L-double fuzzy topology generated by L-double approximation operators
given by Samanta and Mondal [49].

Definition 6.1 Let X and Y be two arbitrary sets. The pair (F,F∗) ofmapsF,F∗ : X×Y →
L is said to be L-double fuzzy relation on X × Y if F(x, y) ≤ (F∗(x, y))c, for every
(x, y) ∈ X × Y . Moreover, F(x, y) (respectively, F∗(x, y)), referred to as the degree of
relation (respectively, non-relation) between x and y.

An L-double fuzzy relation (F,F∗) on X is called:

(1) L-double fuzzy reflexive, if F(x, x) = 1L and F∗(x, x) = 0L , x ∈ X ,

(2) L-double fuzzy symmetric, if F(x, y) = F(y, x) and F∗(x, y) = F∗(y, x), x, y ∈ X ,

(3) L-double fuzzy transitive, if for every x, y, z ∈ X ,

F(x, z) ≥ ∨
y∈X (F(x, y) ∧ F(y, z)) and F∗(x, z) ≤ ∧

(F∗(x, y) ∨ F∗(y, z)),
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(4) L-double fuzzy serial, if for every x ∈ X , there exists y ∈ X such that F(x, y) = 1L
and F∗(x, y) = 0L .

An L-double fuzzy relation (F,F∗) on X is called an L-double fuzzy equivalence relation
if it is L-double fuzzy reflexive, L-double fuzzy symmetric and L-double fuzzy transitive.
The triplet (X ,F,F∗) is called an L-double fuzzy approximation space.

For example, let X = {l,m, n} and L = [0, 1]. Define F,F∗ : X × X → L as follows:

F =
⎛

⎝
1 1 0.5
1 1 0.5
0.5 0.5 1

⎞

⎠ , F∗ =
⎛

⎝
0 0 0.4
0 0 0.4
0.4 0.4 0

⎞

⎠ .

Then, (F,F∗) is an L-double fuzzy reflexive, symmetric, transitive and serial relation.

Definition 6.2 Let L be a fuzzy lattice and (F,F∗) be an L-double fuzzy relation on
X . For every L-fuzzy set F on X , the pairs ((F(F),F∗(F)), (F(F),F∗(F))) of maps
F(F),F∗(F),F(F),F∗(F) : X → L are called L-double fuzzy lower approximation and
L-double fuzzy upper approximation of the L-fuzzy set F, respectively, where

F(F) =
∧

y∈X
((F(x, y))c ∨ F(y)), F∗(F) =

∨

y∈X
((F∗(x, y))c ∧ Fc(y)), x ∈ X ,

and

F(F) =
∨

y∈X
((F(x, y)) ∧ F(y)), F∗(F) =

∧

y∈X
((F∗(x, y)) ∨ Fc(y)), x ∈ X .

The quaternary (F(F),F∗(F),F(F),F∗(F)) is called an L-double fuzzy rough set of F .

The pairs (F,F∗), (F,F∗) of operators F,F∗,F,F∗ : LX → LX are called L-double
fuzzy lower approximation and L-double fuzzy upper approximation operators, respectively,
and the triplets (X ,F,F∗), (X ,F,F∗) are called L-double fuzzy lower approximation and
L-double fuzzy upper approximation spaces, respectively.

Remark 6.1 Let a mapping F : X × X → L be an L-fuzzy relation on X and (F(F),F(F))

be a extended rough set of F ∈ LX . Define a map F∗ : X × X → L by, F∗(x, y) =
(F(x, y))c, (x, y) ∈ X×X .Define L-fuzzy setsF∗(F),F∗(F) : X → L as: (F∗(F))(x) =
(F(F))c(x) and (F∗(F))(x) = (F(F))c(x), x ∈ X .

Then (F,F∗) is an L-double fuzzy relation on X and (F(F),F∗(F),F(F),F∗(F)) is an
L-double fuzzy rough set of F . Therefore, an L-double fuzzy rough set is a generalization
of generalized rough set.

Properties of L-double fuzzy rough sets: Let L be a fuzzy lattice, and (F,F∗) be an
L-double fuzzy relation on X , F ∈ LX . Then,

(1) F(F) ≤ (F∗(F))c and F(F) ≥ (F∗(F))c, F ∈ LX ,

(2) F1X = 1X and F∗1X = 0X ,

(3) F0X = 0X and F∗0X = 1X ,

(4) F(
∧

i∈� Fi ) = ∧
i∈� F(Fi ) and F∗(

∧
i∈� Fi ) = ∨

i∈� F∗(Fi ), for each family
{Fi : i ∈ �} ⊆ LX ,

(5) F(
∨

i∈� Fi ) = ∨
i∈� F(Fi ) and F∗(

∨
i∈� Fi ) = ∧

i∈� F∗(Fi ), for each family
{Fi : i ∈ �} ⊆ LX ,

(6) if F ≤ G, then F(F) ≤ F(G) and F∗(F) ≥ F∗(G),

(7) if F ≤ G, then F(F) ≤ F(G) and F∗(F) ≥ F∗(G),
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(8) F(F) ∨ F(G) ≤ F(F ∨ G) and F∗(F) ∧ F∗(G) ≥ F∗(F ∨ G), F,G ∈ LX ,

(9) F(F ∧ G) ≤ F(F) ∧ F(G) and F∗(F ∧ G) ≥ F∗(F) ∨ F∗(G), F,G ∈ LX ,

(10) F(Fc) = (F(F))c and F∗(Fc) = (F∗(F))c,

(11) F(Fc) = (F(F))c and F∗(Fc) = (F∗(F))c.

6.1 L-Double fuzzy topology from L-double fuzzy approximation operators

In this section, wewill show that an L-double fuzzy upper (respectively lower) approximation
operator on X induces an Alexandrov L-double fuzzy topology on X (see [26]). First, let us
come to the definition of L-double fuzzy topology on X .

Definition 6.3 [49] The pair (η, η∗) of maps η, η∗ : LX → LX is called an L-double fuzzy
topology on X if it satisfies the following conditions:

(1) η(F) ≤ (η∗(F))c, F ∈ LX ,

(2) η(0X ) = η(1X ) = 1L , η∗(0X ) = η∗(1X ) = 0L ,

(3) η(F ∧ G) ≥ η(F) ∧ η(G) and η∗(F ∧ G) ≤ η∗(F) ∨ η∗(G), F,G ∈ LX ,

(4) η(
∨

i∈� Fi ) ≥ ∧
i∈� η(Fi ) and η∗(

∨
i∈� Fi ) ≤ ∨

i∈� η∗(Fi ), for any family {Fi : i ∈
�} ⊆ LX .

The triplet (X , η, η∗) is called an L-double fuzzy topological space. An L-double fuzzy
topology (η, η∗) is called an Alexandrov if it satisfies:

(5) η(
∧

i∈� Fi ) ≥ ∧
i∈� η(Fi ) and η∗(

∧
i∈� Fi ) ≤ ∨

i∈� η∗(Fi ) for any family {Fi : i ∈
�} ⊆ LX .

For example: Let X = {l,m, n} and L = I . Define G ∈ LX as follows:

G(l) = 0.2, G(m) = 0.4, G(n) = 0.7.

Define η, η∗ : LX → L as follows:

η(F) =
⎧
⎨

⎩

1L , i f F ∈ {0X , 1X }
0.5, i f F = G
0L , i f otherwise,

η∗(F) =
⎧
⎨

⎩

0L , i f F ∈ {0X , 1X }
0.3, i f F = G
1L , i f otherwise.

Then (η, η∗) is an L-double fuzzy topology on X .

Definition 6.4 [49] Let f : (X , η1, η
∗
1) → (Y , η2, η

∗
2) be a map between L-double fuzzy

topological spaces (X , η1, η
∗
1) and (Y , η2, η

∗
2). Then f is said to be continuous if for

every F ∈ LY , η1( f ←(F)) ≥ η2(F) and η∗
1( f

←(F)) ≤ η∗
2(F), where f ←(F)(x) =

F( f (x)), F ∈ LY , x ∈ X .

Theorem 6.1 [26] Let (X ,F,F∗
) be an L-double fuzzy upper approximation space with

F(F) ≥ (F∗
(F))c, for every F ∈ LX . Define ηF , η∗

F∗ : LX → L as follows: for every

F ∈ LX

ηF (F) =
∧

x∈X

(
(F(F))c(x) ∨ F(x)

)
,

η∗
F∗(F) =

∨

x∈X

(
(F∗

(F))c(x) ∧ Fc(x)
)

.

Then (ηF , η∗
F∗) is an Alexandrov L-double fuzzy topology on X .
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Theorem 6.2 [26] Let (X ,F,F∗) be an L-double fuzzy lower approximation space with
F(F) ≤ (F∗(F))c, for every F ∈ LX . Define ηF , η∗

F∗ : LX → L as follows: for every

F ∈ LX

ηF (F) =
∧

x∈X

(
(F(F))(x) ∨ Fc(x)

)
,

η∗
F∗(F) =

∨

x∈X

(
(F∗(F))(x) ∧ F(x)

)
.

Then (ηF , η∗
F∗) is an Alexandrov L-double fuzzy topology on X .

Definition 6.5 Let (X ,F1,F∗
1 ) and (Y ,F2,F∗

2 ) be two L-double fuzzy approximation
spaces.

(1) The map f : (X ,F1,F∗
1 ) → (Y ,F2,F∗

2 ) is called F-map if F1(x, y) ≤
F2( f (x), f (y)) and F∗

1 (x, y) ≥ F∗
2 ( f (x), f (y)), for every (x, y) ∈ X × Y ,

(2) The map f : (X ,F1,F∗
1 ) → (Y ,F2,F∗

2 ) is called F-map if F1( f ←(F)) ≤
f ←(F2(F)) and F∗

1 ( f ←(F)) ≥ f ←(F∗
2 (F), for every F ∈ LY ,

If themap f : (X ,F1,F∗
1 ) → (Y ,F2,F∗

2 ) is aF-map, then f : (X ,F1,F∗
1 )→ (Y ,F2,F∗

2 )

is a F-map. If the map f : (X ,F1,F∗
1 ) → (Y ,F2,F∗

2 ) is F-map, then (X , ηF1
, η∗

F∗
1
)

→ (X , ηF2
, η∗

F∗
2
) is continuous.

7 Topology onmulti-fuzzy rough sets

Sebastian and Ramakrishnan [50, 51] introduced multi-fuzzy sets as a generalization of
fuzzy sets. Ordered sequences of membership functions define multi-fuzzy sets. The multi-
fuzzy sets theory provides a foundation for image processing, taste recognition, and pattern
recognition problems. Multi-fuzzy sets make it simple to make decisions that involve more
than one variable. Multi-fuzzy rough sets [63] are specific hybrid models in the literature.
We collect some definitions and important results of multi-fuzzy rough sets in this section.
A detailed study on multi-fuzzy topological spaces can be found in [50].

Definition 7.1 [50] Let X be a non-empty set, N be the collection of all natural numbers, and
{Li : i ∈ N} be a family of complete lattices. A multi-fuzzy set F in X is a collection of
ordered sequences

F =
{
< x, ν1F (x), ν2F (x), ν3F (x), . . . , νiF (x), . . . >: x ∈ X

}

where νiF (x) ∈ LX
i (i .e., νiF : X → Li ) for i ∈ N.

Remark 7.1 The dimension of F is defined as the number of terms in the sequences of
membership functions that include only k-terms (a finite number of terms). The set of all
multi-fuzzy sets in X with the value domain

∏
i∈� Mi where each Mi is a complete lattice,

is denoted by
∏

i∈� MX
i and is called multi-fuzzy space. Let Li = [0, 1] for i ∈ N. Then the

set of all multi-fuzzy sets in X , is denoted by MF(X).

Definition 7.2 [51] A multi-fuzzy topology on X is a subset θ of
∏

i∈� MX
i , where each Mi

is a complete lattice, that satisfies the following conditions:
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(1) 0X , 1X ∈ θ,

(2) F ∩ G ∈ θ, for every F,G ∈ θ,

(3)
∨

i∈� Hi ∈ θ, for every H ⊂ θ, that is, the arbitrary union of multi-fuzzy sets of θ is in
θ .

A multi-fuzzy topological space is defined as an ordered triple (X ,
∏

i∈� MX
i , θ). Multi-

fuzzy sets in θ are also known as θ -open multi-fuzzy sets in X , or open multi-fuzzy sets
in X . If αX ∈ θ for every constant multi-fuzzy set, αX in X , then θ is termed as a strong
multi-fuzzy topology.

Definition 7.3 Let T be a continuous t-norm on [0, 1] and I be an implicator on [0, 1]. For
a multi-fuzzy approximation space (X ,F) and any multi-fuzzy set F ∈ MF(X), the T -

upper and I-lower multi-fuzzy rough approximation of F, denoted as FT
(F) and FI(F)

respectively, with respect to the approximation space (X ,F) are multi-fuzzy sets of X with
defined membership functions respectively,

νi
FT

(F)
(x) =

∨

y∈X
T (νiF (x, y), νiF (y)), x ∈ X , i ∈ N,

νiFI (F)(x) =
∧

y∈X
I(νiF (x, y), νiF (y)), x ∈ X , i ∈ N.

The operatorsFT
andFI onMF(X) are given to as T -upper and I-lower multi-fuzzy rough

approximation operators of (X ,F) respectively and the pair (FT
,FI) is called the (I, T )

multi-fuzzy rough set of F .

A fuzzy implication I is said to satisfy:

• the exchange principle, if I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1] (EP).

• the left neutrality property, if I(1, x) = x, x ∈ [0, 1] (N P).

Properties of I-lower multi-fuzzy rough approximation operators:
Let (X ,F) be a multi-fuzzy approximation space. Then the F-lower multi-fuzzy rough
approximation operator FI has the following properties:
For every F,G ∈ MF(X), Fi ∈ MF(X) where i ∈ �, M ⊆ X , (x, y) ∈ X × X and all
α ∈ [0, 1], i ∈ N

(1) FI(
⋂

i∈� Fi ) = ⋂
i∈� FI(Fi ),

(2) FI(αX ) ⊇ αX , if I is an N P implicator,
(3) FI(

⋃
i∈� Fi ) ⊇ ⋃

i∈� FI(Fi ),
(4) F ⊆ G ⇒ FI(F) ⊆ FI(G).

Consider the fuzzy continuous implicator I that satisfies the law of importation (i.e., if
I(x, I(y, z)) = I(T (x, y), z), x, y, z ∈ [0, 1] where T is a t-norm) and F is a multi-fuzzy
relation that is both reflexive and transitive. Then we have the following results.

Lemma 7.1 For every Fi ∈ MF(X), i ∈ � (� is an index set),

FI

(
⋃

i∈�

FI(Fi )

)

=
⋃

i∈�

FI(Fi ).

Theorem 7.1 Amulti-fuzzy topology is definedas the collection of allI-lower approximations
of multi-fuzzy sets on X,
i.e., TMFR = {FI(F) : F ∈ MF(X)} is a strong multi-fuzzy topology on X .
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8 Hesitant fuzzy rough sets

Torra and Narukawa introduced the concept of an hesitant fuzzy (HF) sets in [61, 62] as
another fuzzy set generalization. This section will study that the HF set allows an element
to belong to a set with various possible values between 0 and 1 and how useful it is for
determining membership degree, especially when there are multiple values on it. The two
tools for solving problems are rough set theory and HF set theory. Despite the absence of
a clear relationship between the two ideas, Yang et al. [69] take a significant step forward.
Introducing the concept of HF rough sets, they proposed an axiomatic approach of the
model. In this section, X is a non-empty and finite universe of discourse.

Definition 8.1 [61, 62] An HF set F on X is defined in terms of a function hF (x) that
generates a subset of [0, 1], when applied to X , i.e.,

F = {< x, hF (x) >: x ∈ X},
where hF (x) is a finite set of distinct values in [0, 1], indicating the different degrees of
membership of the element x ∈ X to F .

We call hF (x) as an HF element for convenience. Further, HF(X) denotes the set of all
HF sets on X , and is known as the HF power set of X . Moreover, an HF set F is a fuzzy
set is just one element in hF (x). As a particular case, HF sets include fuzzy sets in this
situation.

Now, we define the concept of an hesitant fuzzy relation [69].

Definition 8.2 An hesitant fuzzy (HF) relation H on X is an HF subset of X × X , i.e,
H = {< (x, y), hH(x, y) >: (x, y) ∈ X × X}, where hH(x, y) is a set of some different
values in [0, 1], denoting the possible membership degrees of the relationship between x and
y.

Yang et al. [69] also presented several special HF relations as follows:

Definition 8.3 Let H be an HF relation on X . Then

(1) H is said to be serial if for any x ∈ X , there exists y ∈ X such that hH(x, y) = {1},
(2) H is said to be reflexive if hH(x, x) = {1}, x ∈ X ,

(3) H is said to be symmetric if hH(x, y) = hH(y, x), (x, y) ∈ X × X ,

(4) H is said to be transitive if hρ(l)
H (x, y) ∧ hρ(l)

H (y, z) ≤ hρ(l)
H (x, z), l = 1, 2, . . . ,m,

where hρ(l)
H (x, y) is the lth largest value in hH(x, y) and

m = max{m(hH(x, y)),m(hH(y, z)),m(hH(x, z))}, m(hH(x, y)) is the
number of values in (hH(x, y)), x, y ∈ X .

Definition 8.4 The pair (X ,H) is called a HF approximation space ifH is an HF relation on
X . For everyH ∈ HF(X), the lower and upper approximations ofH with respect to (X ,H),
denoted by H(F) and H(F), respectively, are two HF sets and are defined as follows:

H(F) = {< x, hH(F)(x) >: x ∈ X},
H(F) = {< x, hH(F)(x) >: x ∈ X},
where
hH(F)(x) =

{∧
y∈X hρ(l)

Hc (x, y) ∨ hρ(l)
F (y) : l = 1, 2, . . . ,mx

}
,

hH(F)(x) =
{∨

y∈X hρ(l)
H (x, y) ∧ hρ(l)

F (y) : l = 1, 2, . . . ,mx

}
,
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where mx = maxy∈X {m(hH(x, y)),m(hF (y))} and hHc (x) = {1 − hρ(l)
F (x) : l =

1, 2, . . . ,m}.
The pair (H(F),H(F)) is said to be HF rough set of F with respect to (X ,H), and H,H :
HF(X) → HF(X) are referred to as lower and upper HF rough approximation operators,
respectively,

Theorem 8.1 Let (X ,H) be an HF approximation space, and H and H the H F approxi-
mation operators induced from (X ,H). Then, for every F ∈ HF(X), (x, y) ∈ X × X ,

(1) H is reflexive iff H(F) ⊆ F iff F ⊆ H(F),

(2) H is symmetric iff hH(1X−{x})(y) = hH(1X−{y})(x) iff hH(1x )
(y) = hH(1y)

(x),

(3) H is transitive iff H(F) ⊆ H(H(F)) iff H(H(F)) ⊆ H(F).

8.1 Hesitant fuzzy topological spaces

In this subsection, we define some fundamental concepts related to HF topological spaces
in the sense of [29].

Definition 8.5 (cf. [29]) Let X be a non-empty set, an HF topology in the sense of Lowen’s
is a family � of HF sets that satisfies the following properties:

(1) α1, α2, . . . , αn ∈ �, for every α j ∈ [0, 1], j = 1, 2, . . . , n,

(2) F ∩ G ∈ �, for any F,G ∈ �,

(3)
⋃

i∈� Fi ∈ �, for any Fi ∈ �, i ∈ �.

The pair (X ,�) is said to be an HF topological space and each HF set F in � is said to be
an HF open set in (X ,�). An HF closed set in (X ,�) is the complement of an HF open
set in (X ,�).

If ∅, X ∈ �, replaces the condition (1) of Definition 8.5, then� is a HF topology according
to [5]. In Lowen’s sense, an HF topology must obviously be an HF topology in Chang’s
sense. We will use HF topology in Lowen’s sense.

Definition 8.6 Let (X ,�) be an HF topological space. The HF interior and HF closure of
F are defined as follows for every F ∈ HF(X), respectively:

int(F) = ⋂{H : H ∈ � and H ⊆ F},
cl(F) = ⋃{K : Kc ∈ � and F ⊆ K },

and int and cl : HF(X) → HF(X) are, respectively, called the HF interior operator and
the HF closure operator of �.

Theorem 8.2 Let (X ,�) be an HF topological space. Then for every F ∈ HF(X),

(1) F is an HF open set in (X ,�) if and only if int(F) = F,

(2) F is an HF closed set in (X ,�) if and only if cl(F) = F.

Theorem 8.3 Let (X ,�) be an HF topological space. Then the following properties hold:
for any F,G ∈ HF(X) and α j ∈ [0, 1], j = 1, 2, . . . , n,

(1) (int(F))c = cl(Fc),

(2) (cl(F))c = int(Fc),

(3) int(α1, α2, . . . , αn)X = (α1, α2, . . . , αn)X ,

(4) cl(α1, α2, . . . , αn)X = (α1, α2, . . . , αn)X ,
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(5) int(F) ⊆ F,

(6) F ⊆ cl(F),

(7) int(int(F)) = int(F),

(8) cl(cl(F)) = cl(F),

(9) int(F ∩ G) = int(F) ∩ int(G),

(10) cl(F ∪ G) = cl(F) ∪ cl(G).

Theorem 8.4 (1) If an HF operator int : HF(X) → HF(X) satisfies properties
(3), (5), (7), (9), then there exists an HF topology �int on X such that int�int = int,

(2) If an HF operator cl : HF(X) → HF(X) satisfies properties (4), (6), (8), (10), then
there exists an HF topology �cl on X such that cl�cl = cl.

Next, we study the transformation from HF approximation spaces to HF topological spaces
and vice-versa.

8.2 FromHF approximation spaces to HF topological spaces

This section defines the relationship between HF rough approximation spaces and HF
topological spaces by generalizing HF rough set theory in the framework of HF topological
spaces.

Assume that X is a non-empty and finite universe of discourse, H is an HF relation on
X , and H and H are the HF rough approximation operators.

Denote
�H = {F ∈ HF(X) : H(F) = F}.

Proposition 8.1 If H is an HF reflexive and transitive relation on X , and Fi ∈ HF(X) for
every i ∈ �, then

H
(

⋃

i∈�

H(Fi )

)

=
⋃

i∈�

H(Fi ).

Theorem 8.5 If H is an HF reflexive and transitive relation on X , then �H is an HF
topology on X .

Theorem 8.6 IfH is an HF reflexive and transitive relation on X , then {H(F) : F ∈ HF(X)}
is an HF topology on X .

Theorem 8.7 Let (X ,�H) be the H F topological space induced from an HF reflexive and
transitive approximation space (X ,H), i.e., �H = {H(F) : F ∈ HF(X)}. Then, for any
F ∈ HF(X),

(1) H(F) = int�H(F) = ⋃{H(G) : H(G) ⊆ F,G ∈ HF(X)},
(2) H(F) = cl�H(F)

= ⋂{(H(G))c : (H(G))c ⊇ F,G ∈ HF(X)}
= ⋂{H(G) : H(G) ⊇ F,G ∈ HF(X)}.

Theorem 8.8 Let (X ,H) be an HF reflexive and transitive approximation space and
(X ,�H) be the H F topological space induced by (X ,H). Then

hH(x, y) = ∧G∈(y)�H
hG(x),

where

(y)�H = {G ∈ HF(X) : Gc ∈ �H, hG(y) = {1}}.
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8.3 FromHF topological spaces to HF approximation spaces

As seen from the Sect. 8.2, an HF topological space with HF interior and closure operators
that are the lower and upper approximation operators of the provided HF approximation
space can be generated from a HF reflexive and transitive approximation space. This sub-
section assumes the reverse problem: how can a HF topological space be associated with a
HF approximation space and generate the same HF topological space.

Theorem 8.9 Let (X ,�) be an HF topological space, and int, cl : HF(X) → HF(X) be
its H F interior operator and HF closure operator, respectively. Then for any F ∈ HF(X),
there exists a H F reflexive and transitive relation �H(F) = int(F) and �H(F) = cl(F)

if and only if int satisfies axioms (1) and (2), or equivalently, cl satisfies axioms (3) and
(4): for every F,G ∈ HF(X), (α1, α2, . . . , αn)X ∈ P([0, 1]) (the power set of the closed
interval [0, 1]),
(1) int (F ∪ (α1, α2, . . . , αn)X ) = int(F) ∪ (α1, α2, . . . , αn)X ,

(2) int(F ∩ G) = int(F) ∩ int(G),

(3) cl (F ∩ (α1, α2, . . . , αn)X ) = cl(F) ∩ (α1, α2, . . . , αn)X ,

(4) cl(F ∪ G) = cl(F) ∪ cl(G).

Definition 8.7 Let (X ,�) be an HF topological space and int, cl : HF(X) → HF(X)

the induced HF interior and closure operators, respectively. We call (X ,�) an HF rough
topological space if int satisfies the conditions (1) and (2), or if cl satisfies the conditions
(3) and (4), respectively.

Let R be the collection of all HF reflexive and transitive relations on X , and T the
collection of all HF rough topological spaces.

Theorem 8.10 (1) If H ∈ R, �H is defined by �H = {F ∈ HF(X) : H(F) = F} and
H�H by hH�(x, y) = hcl(1y)(x), (x, y) ∈ X × X , then H�H = H.

(2) If � ∈ T, H� is defined by hH�(x, y) = hcl(1y)(x), (x, y) ∈ X × X and �H� by
�H = {F ∈ HF(X) : H(F) = F}, then �H� = �.

(3) There exists a one-one correspondence betweenR and T.

9 Conclusion

Topology provides a useful theoretical framework for the study of fuzzy sets and rough sets.
In fuzzy rough set theory, approximation operators are fuzzy topological operators. There-
fore, a conjoint analysis of fuzzy rough set theory and topology is necessary, which many
researchers have done since the area’s inception. There are various generalizations of fuzzy
sets which have further been generalized in the framework of rough sets. All these gener-
alized structures induce generalized fuzzy topologies and vice-versa. This survey focuses
on topological structures on fuzzy rough sets, L-fuzzy rough sets, intuitionistic fuzzy rough
sets, multi-fuzzy rough sets, and hesitant fuzzy rough sets.

There are still some unsolved problems/areas that can be discussed in future research on
the topological properties of fuzzy rough sets. Some of them are as follows:

(1) Proximity structures [19, 21, 22, 55] and near sets [41–43] in combination with rough
sets have various applications in the field of image analysis, pattern recognition, and
many other fields [52, 53, 57–60]. The topological study of proximity structures and
near sets in the framework of fuzzy rough sets is still unexplored.
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(2) Various extension problems of fuzzy topology on topological structures of several fuzzy
approximation spaces are still open to get attention from researchers.

(3) The area of topological groups can also be explored in the framework of fuzzy approxi-
mation spaces.

(4) In 2019, Zhao et al. [78] introduced the concept of hesitant neutrosophic rough approx-
imation operator over two universes and applied them to handle a decision making
problem in medical diagnosis. The topological study on hesitant neutrosophic rough sets
is still missing in the literature.

This survey provides a cutting-edge and comprehensive reference for topological structures
on fuzzy rough sets and its various generalizations to date.
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