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Abstract

This paper investigates the performance of combined and separate log type class of estimators
of population mean under stratified ranked set sampling. The expressions of bias and mean
square error of the proposed estimators are deduced. The theoretical comparison of the
proposed estimators with the existing estimators is carried out and the efficiency conditions
are reported. The credibility of theoretical results is extended by a simulation study conducted
over various artificially generated symmetric and asymmetric populations. The results of the
simulation study show that the proposed class of estimators dominate the well-known existing
estimators.
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1 Introduction

The primary objective of any survey is to improve the efficiency of the estimate of the
population which not only rely upon the size of sample and sampling fraction but also upon
the heterogeneity or variability of the population. By far the most common sampling scheme
used to reduce the heterogeneity of population is stratified simple random sampling (SSRS).
Ranked set sampling (RSS) was first introduced by Mclntyre [16]. Following Mclntyre
[16], Samawi [19] investigated the concept of stratified ranked set sampling (SRSS) as an
alternative sampling scheme to SSRS which merge the profits of stratification and RSS to
obtain an unbiased estimator of population mean with likely improvement in efficiency. In
contrast to SSRS, quantified observations in SRSS do not lend identically to draw illation due
to further structure that imposes ranking, permitting observations in order to tempt different
dimensions of population and to obtain possible advantages in efficiency.
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In theory of sample surveys, the aim of survey statistician is to improve the efficiency of
the proposed estimators. RSS becomes the better alternative over the other sampling schemes
provided the ranking of the units is possible. The procedure of RSS is based on quantifying
m simple random samples each of size m units from the population and m units are ranked
within each set according to the variable of interest visually or by any cost independent
measure. From the first sample, the unit with rank 1 is taken for the measurement of element
and remaining units of the sample are omitted. Again, from the second sample, the unit
with rank 2 is taken for the measurement of element and remaining units of the sample are
omitted. Iterate the process in the similar pattern until the unit with rank m is taken for the
measurement of elements from the m’* sample. This whole process constitute a cycle. If this
whole cycle is iterated r times then this yield a ranked set sample of size n = mr.

The procedure of stratified ranked set sample is based on drawing m, independent random
samples each of size mj units from the hh h = 1,2, ..., L, stratum of population. Now
ranking is performed over observations of each sample and procedure of RSS is used to get
L independent ranked set samples each of size mj, such that Zﬁz 1 mp = m. This process
completes one cycle of SRSS. The whole procedure is iterated » times in order to obtain
desired sample size n, = my,r.

The literature on RSS is quite broad starting with Mclntyre [16] and extending to many
variations till date. SRSS as introduced by Samawi [19] is one of those variations of RSS.
Samawi and Siam [20] suggested the ratio estimator under SRSS. By using auxiliary infor-
mation, Mandowara and Mehta [15] analysed some modified ratio estimators under SRSS
whereas Mehta and Mandowara [17] suggested an advance estimator under SRSS. Linder
et al. [14] suggested regression estimator under SRSS. Khan and Shabbir [10] considered
Hartley-Ross type unbiased estimators under RSS and SRSS. Saini and Kumar [18] investi-
gated ratio type estimator using quartile as auxiliary information under SRSS. Bhushan et al.
[4] considered the problem of mean estimation utilizing logarithmic estimators under SRSS,
while Bhushan et al. [5] introduced an efficient estimation procedure of population mean
under SRSS. Bhushan et al. [6] suggested some improved class of estimators employing
SRSS. Bhushan et al. [7] investigated SRSS for the quest of an optimal class of estimators.
The main objective of this paper is to study the performance of combined and separate log
type class of estimators viz a viz the existing classes of estimators under SRSS.

The rest of the paper is drafted as follows. In Sect. 2, the notations used throughout this
article will be defined. Section3 will consider the review of the combined and separate
classes of estimators with their properties. The suggested combined and separate classes of
estimators will be presented in Sect. 4, whereas the efficiency comparison of combined and
separate estimators will be given in Sect.5. In support of theoretical results, a simulation
study will be carried out in Sect. 6. Some formal concluding remarks will be given in Sect. 7.

2 Notaions

To obtain the estimate of the population mean Y. of the study variable y, let the ranking
be executed on the auxiliary variable x. For 7" cycle and h'" stratum, let (Xp1yr, Ya[1)),
(Xn@yrs Yn21r)sees Xnnpyrs Yaimy,)r) denote the stratified ranked set sample with bivariate
probability density function f (xj, y;) and bivariate cumulative distribution function (c.d.f.)
F(xn, yn)-

The notations used throughout this article are defined below.

N size of population,

@ Springer



On some efficient logarithmic type... Page30of22 40

Ny ; size of population in stratum £,
n; size of sample,
ny; size of sample in stratum /4,
Wi = Nj/N; weight of stratum A,
= Z:’i | Yn; /np; sample mean of variable Y in stratum #,
Vor = Z}Ifz 1 Whyn; sample mean of variable Y,
Xp = Y, xp, /ny; sample mean of variable X in stratum h,
Xgp = Z,lel Whxp; sample mean of variable X,
Visrss] = Z,I;: 1 Wh¥n[rsss stratified ranked set sample mean of variable Y,
X(srss) = 2 et Whxn(rss); stratified ranked set sample mean of variable X,
Vh[rss] = Z:":hl Z;’:l Yu[i1j/mpr; ranked set sample mean of variable Y in stratum £,
Xh(rss) = Z:"_"l Zr_l Xp(iyj/mpr; ranked set sample mean of variable X in stratum £,
Y, = Zl_ | Yh;/ Ni; population mean of variable Y in stratum h,
Y=Y, = Zh 1 WYy, population mean of variable Y,
X = N 2| Xn; / Np; population mean of variable X in stratum £,
X=X, = Zh 1 Wi X); population mean of variable X,
R=Y / X; _population ratio,
Rh = Y,/ X),; population ratio in stratum /,
=(N,— D! ZN” n; — )% population variance of variable Y in stratum 4,

=N, — D! Zh 1 Gy — X1,)?; population variance of variable X in stratum A,

Sxy, = (Np— 1)~ 1 Z 1 (X — X 1) (Yn; — Yi): population covariance between variables
X and Y in stratum £,
Pxy, = Sxy,/Sx, Sy,s population correlation coefficient between variables X and Y in
stratum £,
Cy, ; population coefficient of variation for variable Y in stratum /£,
Cy,,; population coefficient of variation for variable X in stratum h,
Bi(xp) = (E(xp — )_(h)3)2/(E()Eh — XH? population coefficient of skewness for
variable X in stratum /4, and
Bo(xp) = (E(xp—Xp, s J(EGp—X 3% population coefficient of kurtosis for variable
X in stratum h.

In order to find out bias and mean square error of combined estimators, the following
notations will be used end to end in this paper.
Let yisrss1 = Y (1 + &0), X(srs5) = X(1 + £1), such that E(eg) = E(e1) =0

L _ - _
= Z W];«J,-S EXgrss — X) (Ysrss = Y)°

XrYs 2.1

h=1
Following (2.1), we can write
52 52
E(e?) = Zézl W}% ( el D%h[]) =V, E(?) = Zﬁ:l W,% (yh )-(g D%h(l_)> =

Sy, S
Voo and E(g01) = Y p_y <Vh/0xhyh FF- thvhm> =V
— 2 — —
wherey = 1/myr, Dxm,) Zl | Xh(l)/mth )hm Zl | ryh[l]/mth Dy =
Zi:l txhyf[i]/mhrxy’_rxh(i) - (Mxh(i) Xh) tyh[i] - (I‘Lyh[,'] Yh)’ and txhyh[i] =
(:u/xh(,-) - Xh)(ﬂyh[,'] - Yh)
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To find out bias and mean square error of separate estimators, the following notations will
be used throughout this paper. _
Let yigrss) = Y(1 +€0), X(srss) = X(1 +e1), such that E(eg) = E(e1) =0,

2 S 2 2 S 2
E(eo”) = | vn Yz — M5, ) =Uo, E(e1”)=|\vn Xz — M3, . ) = Ui and E(eper)

S"h S"h
<VhPthh X/ Yl - MXth[;] = U](),

_ mp 2 _ mp 2 2..v2
where Mx]() = > Xh(l)/mthh, M»h[,] = > ‘L'yh[l.]/mthh, M,y
2.y — vy —
Zi:l Txh)/,[i]/mthth’ Txh(l.) = (Mxh(i) Xh)v Tyh[i] = (Myh[l.] Yy), and Txnyngip —

(,uxh(i) - }_(h)(ﬂyh[i] - Yh)

3 Review of estimators

The conventional mean estimator under SRSS can be defined as

Tn [srss] ZWhyh [rss]

having variance as

L 2
(S
V(T) =) WiY? (yhiy; — Dﬁhm) 3.0

h=1
Further, in this section, we consider review of some well known existing combined and
separate estimators for the estimation of population mean under SRSS.

3.1 Combined estimators

Samawi and Siam [20] considered the classical combined ratio estimator under SRSS as

Trc _ Ysrss] X
x(srss)

Linder et al. [14] suggested the regression estimator under SRSS as
TE = y[srss] + ﬁ()_( - )E(srss))

where f is the regression coefficient of y on x.
Utilizing the information on auxiliary variable, Mandowara and Mehta [15] proposed
some ratio type estimators as

Z;, | Wi (X + Cy,)
Zh 1 Wh (xh(rh) + th)
¢ - Sy W (Xp + Ba(xn))
Tmmz y ?"S'?
Y et Wi Gy + B2(xn))
TC - Zh 1 Wh(Xh,BZ(xh) + th)
mms — Ylsrss]
Zh 1 Wa Xy B2 (xp) + Cy)
c - Zh:l Wh(Xthh + B2 (xp))
Tmm4 Yisrss] 17 —
Y i1 Wa(En(y) Cxy + B2(x1))

c -
Tmml y S‘}’YY
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On the lines of Kadilar and Cingi [9], Mehta and Mandowara [17] suggested an advance ratio
estimator under SRSS as

TnLllm = k)_)lSVSSJ }_( = R\ksrxs)_(
X(srss)

where k is a suitably chosen scalar.

Following Shabbir and Gupta [21], we define the combined regression cum ratio estimator
under SRSS as

¢ - > - Z(srss)
ng = )\[y[srss] + ,B(X - x(srss))] <?)
L - > L 5 . .

where zZ[grs5] = D yoy Wa(Gn + X), Z =Y, Wi (X, 4+ X) and X is the population total.

On the lines of Koyuncu and Kadilar [12], one may define the following combined esti-
mator under SRSS as

aX +b ]g
a(af(srss) +b)+ (1 - Ol)(a)_( +b)
where « is a fixed constant and g is a suitably opted scalar which take values 1 and -1 to
produce ratio and product type estimators, respectively, whereas (a # 0) and b are either
real numbers or the function of known parameters of auxiliary variable x.

Following Singh and Vishwakarma [24], one may consider a combined general procedure
for estimating the population mean Y under SRSS as

chk = )\k)_’[srssj[

o ] X
Tsv = Aly[srxs] + AZy(.vrss) o
X(srss)
where X% = Y4 Wi (anTn +bn), X* = Yy Wi(anXp +bn) and Ay, A, are suitably
chosen scalars.
Motivated by S_ingh and Solanki [23], we define a new family of combined estimators for
population mean Y under SRSS as

- - ) v g
TS = [ M e [a(aﬂxﬁhn)+<1—a)<ax,x+bs,)] + Ao [ (ay X+byy) ] ]

(ast}?‘f’h:!) Ol(dgxfs[+b;,)+(l*Ol)(ll;;}—(‘i’bsx)

where §, g, and « are suitably opted constants, whereas A1 and A, are optimizing scalars to
be determined later.

Saini and Kumar [18] utilized quartiles as auxiliary information and suggested ratio esti-
mator under SRSS as

. - X — Xsrss) +
T, = Fisrss1 [M] Lr=13
X + X(srs5) + qr

where g;, t = 1,3 is the 1" quartile.

The MSEs of these estimators are given in Appendix A for ready reference and further
analysis.

3.2 Separate estimators

Samawi and Siam [20] suggested the classical separate ratio estimator under SRSS as

L _
= 3wy,
=1 Xh(rss)
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where y Yhlrss] = T th Z;zl Yhlilj and ih(rss) = mLhr Z:n:hl Z;:l Xh(i)j-
Linder et al. [14] evoked the separate regression estimator under SRSS as

L

Ty =Y Wildhirss) + Bn(Xn = Tnrss))]
h=1

where §j, is the regression coefficient of y on x.
The separate version of Mandowara and Mehta [15] estimator under SRSS is

X, +C
Tomy Z Wi Vhirss) < - )

Xh(rss) + th

Xp + Ba(xn) )
W - = 7
mmz Z hyh [rss] <xh(rrv) + ﬂZ(xh)

XnBa(xn) + Cy,
Whyn (
mm3 Z [rss] Xn(rss)B2(xn) + Cy,

X1 Cx,, + Ba(xn)
Whyn <
mm4 Z Yhlrss) h(rss)cx;, + B2 (xp)

The separate version of Mehta and Mandowara [17] estimator under SRSS is

Z W k yh[rss] X
=1 x(srss)

where kj, is duly opted scalar.
On the line of Shabbir and Gupta [21], we define the separate regression cum ratio estimator
under SRSS as

L _
_ - Zh(rss
T;, = E WiAn[Fnirss) + Br(Xn — Xnerss))] ss)
h=1 Zn

where zj(55] = 211{:1 W, Gn + Xp), Zp, = Zﬁ:l Wi (X5, + X3) and X, is the population
total in stratum h.

Motivated by Koyuncu and Kadilar [12], one may consider the following separate esti-
mator under SRSS as

L

T]jk = Z Wh)tkh yh[rss]
h=1

[ ah)_(h + by, :Ig
an(@nZnrssy +bn) + (1 — ap) (@ Xn + by)

where o, g are fixed constants, and Ay, is a suitably opted scalar. Also, (a; # 0) and by, are
real values or the function of known parameters of auxiliary variable xj, in stratum /.

Following Singh and Vishwakarma [24], one may consider a separate general procedure
for estimating population mean ¥ under SRSS as

L

X
Z Wi Alh Yhlrss] + AZ;I Yh(rss)

=1 xh(ru)

where Ay, and A, are duly chosen scalars in stratum /.
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Motivated by Singh and Solanki [23], we define a new family of separate estimators for
population mean Y under SRSS as

2 o (@nZnrss)+bn)+(1—ap)(an Xp+bp) 8
Z W 1 Isrss) (anXn+bi) p
(anXn+bn)
h=1 A2 Vhlrss) {th (@n¥n(rss)+bm)+(1—a) (an Xp+bp) }

where 8, g, and «;, are suitably chosen scalars, whereas A1, and A, are optimizing constants
to be determined later.
The separate type of Saini and Kumar [18] estimator under SRSS is

Xpn — Xnerss) + 4y
s h
Whyn [— ct=1,3
sk = § : Yhrss] X + Thiros) + oy

The MSEs of these estimators are given in Appendix B for ready reference and further
analysis.

4 Proposed estimators

The crux of this paper is to suggest some efficient combined and separate classes of estimators
for the estimation of population mean ¥ under SRSS. The suggested class of estimators are
better choice over the existing class of estimators discussed in previous section. Motivated
by Bhushan et al. [4], we extend the work of Bhushan and Kumar [1] and suggest some
combined and separate class of estimators of population mean under SRSS.

4.1 Combined estimators

We propose some efficient combined log type class of estimators under SRSS as

(srss) b
Tvcl = o1 Y[srss] 1+]0g< X >:|

Tycz = a2¥[srss] | 1 + B2log (%)}

B i* B3
- (
TUC3 = 03 Y[srss] | 1 + log < ;is)):|

_*
TS = aaisrss) | 1 + Balog ( (;; ))}

where o, i = 1,2, 3,4 and f; are suitably chosen scalars, whereas )EZ‘W ss) = aX(srss) + b

and X* = aX + b provided that a(# 0), b are either real numbers or function of known
parameters of the auxiliary variable x.

Theorem 4.1 The biases of the proposed estimators are given to the first order of approxi-
mation as

Bias(T¢) = )7[011 { 1+ B (%1 - >v20+ﬂlv11 } - 1]

Bias(Tg) =¥ [ax { 1+ paVii = G Vi | 1]
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40 Page8of22 S.Bhushan and A. Kumar

Bias(T¢) = ¥ [a3 { 1+ B (% - 1) V2 Va0 + B3u Vi } - 1]
BiaS(TUCA‘) =Y I:Ol4 { 1+ BavVy — %UZVM] - 1]
Proof The precis of the derivations are given in Appendix C. O

Theorem 4.2 The MSEs of the proposed estimators are given to the first order of approxi-
mation as

MSETS) — 72 [1+af {1+ Voo +2B1(B1 — DVao +4B1 V11 }
vl _—20!1r51 (%’—1) Vzo—ﬂqu}

[1+a3 {1+ Voo + Ba(B2 — DVag + 482 Vi1 }

—2a» { 14+ B2V — %Vzo}

[T+ a3 {1+ Voo +2B3(Bs — DU Voo +4B30 V11
—2a3 {/33 (%3 - 1) v Voo — B3u Vi }

[ 14 aF {14 Voo + Ba(Bs — DU Vag + 4B4v V11 }

—2014 { 1+ BavVyy — %‘U2V20]

MSE(T{) = Y?

MSE(T,) = Y?

MSE(T.) = Y?

Proof The precis of the derivations are given in Appendix C. O

Corollary 4.1 The minimum MSEs at the optimum values of «; and B; are given as
_ 0?
minMSE(T,fi):Y2 1—?’ ; 1=1,2,3,4 4.1)
i

Proof The precis of the derivations are given in Appendix C. O

4.2 Separate estimators

We propose the some efficient separate log type class of estimator under SRSS as

L r - Bi
_ Xp h
TUS1 = Z What, Ynrss) | 1 + log ( )E(rss) >:|
h=1 L h
L — _
TS — W - 1 1 Xh(rss)
v2 T Z hazh )”h[rss] + /32/1 Og Xh
h=l1 -
L B i;lk B3,
Ty, = ) Whas, Jairss) | 1+ log <§:3)>}
h=1 L h
L B ot
TS — Z W — 1 1 xh(rss)
oy = hOd, Yhirss) | 1+ Ba, log r
h=1 L h

where o;,, i = 1,2, 3,4 and f;, are suitably chosen scalars. Also, )E;l“(rm = apXp(rss) + bn

and XZ = an X, + by provided that aj(# 0), by are real values or function of known
parameters of the auxiliary variable x;, in stratum h.
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Theorem 4.3 The biases of the proposed estimators are given to the first order of approxi-
mation as

L
Bias(T)) = Z WEY), I:(th { 1+ By, (ﬁ% - l) Ui+ B1,Uio } - l]
h=1
L
Bias(T,,) = Z WY, [azh { L+ B2, Uio — %Ul ] - 1]
h=1
= > B
Bias(T3) = > WiTu [as, {1+ 83, (5 = 1) U1 + 3,000 | 1]
h=1
L —
Bias(T3) = > WiTi s, {1+ g, 0010 - Zvien | - 1]
h=1
Proof The precis of the derivations are given in Appendix C. O

Theorem 4.4 The MSEs of the proposed estimators are given to the first order of approxi-
mation as

L [ 1+a? {1+ U+ 281,81, — DUL +4B1,Uro
MSET}) =Y W7} i P ! }}
h=1

_—20t1;, {ﬂlh (ﬁ% - 1) Uy — B1,U10 }

1 +Ot§h { L+ Uy + B2, (B2, — DU, +4ﬁ2hU10}
__20‘2h { I+ B2,Ur0 — ﬁ%Ul ]

! +a§h { 1+ Uy +283,(B3, — 1)U2U1 +4,33hUU10}:|

L
MSE(T}) =Y WY}
h=1

L
MSE(T}) =Y W;Y}
h=1

—2a3, {ﬂzh (ﬁ% - 1) ViU — B3, UUIO}
L [ 14a? {1+ Uo+ Ba,(Bs, — v*U; + 4B4,vU10
MSE(T)) =Y WiV} i | " wtio]
P __2054;, {1+ﬂ4hUU10—ThU U1]
Proof The precis of the derivations are given in Appendix C. O

Corollary 4.2 The minimum MSEs at the optimum values of o, i = 1,2,3,4 and Bij, are
given as

L 2
- 0
minMSE(TS) =Y WiY; (1 el 4.2)
i Pi
h=1 h
Proof The precis of the derivations are given in Appendix C. O

5 Theoretical comparison
5.1 Combined estimators

On comparing the minimum MSEs of proposed estimator T, i = 1, 2, 3, 4 and the existing
estimators from (4.1), with (3.1), (A.1), (A.2), (A.3), (A4), (A.5), (A.6), (A.7), (A.8) and
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(A.9), we get the following theoretical conditions.

07 - 2 S; 2
c i 'h
V() > MSE(TS) = 20> 1~ S Wil 72~ Dy
h=1
0?
MSE(TS) > MSE(T;)) = 7’ > 1= Vop = Voo + 2V
i
0? %
MSE(T§) > MSE(T{) = —- >1-Vp+ -1
i P; Vo
0?
MSE(Ty;,) > MSE(T) = —& > 1= Voo = AiVao + 2 Vi
i
) ) Q.2 ) 2
MSE(Ty,) > MSE(T) == —= > 1= ("= 1)? = Voo —k* Vao + 2k™ iy
i
2
c c Qi
MSE(TS) > MSE(T}) = =& > ksopn
1
C c le Bz
MSE(TS) > MSE(T.) = —- > —
! P; A
0?
MSE(T},) > MSE(T;) = 7f > Niopr) + Aa(opr) D1
1
: : 0;
MSE(T) > MSE(T;) == —= > hiwopn B2 + haiopn A2
l
0?
MSE(T},) > MSE(T})) = —F > Vi + PVs) — 2P Vi
i

If the above conditions hold then the proposed class of estimators Tv‘;_, i=1,2,3,4 dom-
inates the conventional mean estimator 75, classical ratio and regression estimator 7,° and
T, Shabbir and Gupta [21] type estimator T, Koyuncu and Kadilar [12] type estimator
T}~ Singh and Vishwakarma [24] type estimator 7}, , Singh and Solanki [23] type estimator
T{,, Mandowara and Mehta [15] estimator T,flml_, i =1,2,3,4, Mehta and Mandowara [17]
estimator 7, and Saini and Kumar [18] estimator TSC,Q, t = 1, 3 which shows the theoretical
justification of the proposed estimators TUC[, i =1,2,3,4. As a matter of relief, it has been

observed that the above conditions are readily met in practical situations.

5.2 Separate estimators

On comparing the minimum MSEs of proposed separate estimator 7,j, i = 1,2, 3, 4 with
the exising separate estimators from (4.2) and (3.1), (B.10), (B.11), (B.14), (B.15), (B.12),
(B.13), (B.16), (B.17) and (B.18), we get the following theoretical conditions.

MSE(T) < V(Tw)
L ) 02 L . 52
— it (1-52) < Swir (w03,
h=1 th h=1
MSE(TUS,,) < MSE(Trs)
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L

L
252
:>ZWth <I_P, <ZWth|:Uo+U1—2U10]
h=1 h=1
MSE(T,, MSE(Tﬂs)

w272 | Uy — 210
h=1 Ul

Qi
= ZWth 1=
in

h=1

Q2

MSE(T)) < MSE(T},,)
L Q2 -
2v2 th
= Y Wy (1- 5

<
<> wiiEun+ 4o -2, Ul
<

MSE(

)
y) <
) <

o)

mm)

) < Zwﬁ,% (kp — 1%+ { Uo+ kU —2k;;U10”

MSE(T}) < MSE(TS)
L . Q;
= Y Wiy (1- fh) < th V21— Agyi0pn]
MSE(T)) < MSE(Tkk)

N, 0? A2
7 1

= Y wir(1- P_h < th Y2 ~ B
1

MSE(TS) < MSE( TS)

h=1
< MSE(T?,)
L
< Y WRYE 1= iyopn B2, — A2y 00p0 A2y ]

L
= Y W;¥; (1 2,
h=1 h=1

MSE(TU,,) < MSE(T3,)

L 2 L
_ 0? _
= Y W;1} (1 —P—f" < Y WiY}[Uo+ PU} = 2P,Uy]
th h=1

MSE(T

L 2 L
i} 0 _
= Y wWirg(1- IT”' < > WRYE[1 = Avyopr — A2y(0pn D1y ]

Again, it follows from the above conditions that the proposed class of estimators 7;j, i =
1, 2, 3, 4 dominates the conventional mean estimator 7, classical ratio and regression esti-

m?
mators 7;° and Tg , Shabbir and Gupta [21] type estimator 7, g, Koyuncu and Kadilar [12]
> Singh and Solanki [23]
YS ’

type estimator T,fk, Singh and Vishwakarma [24] type estimator T,

type estimator 7, Mandowara and Mehta [15] estimators Tnflm , 1 =1,2,3,4, Mehta and
Mandowara [17] estimators 75, and Saini and Kumar [18] estimator 7jj which conclude
the theoretical justification of the proposed separate estimators 7y, i = 1,2, 3,4. Also, as a
matter of relief, it has been observed that the conditions are readlly met in practical situations.
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5.3 Comparison of proposed combined and separate estimators

On comparing minimum M SE of the proposed combined and separate class of estimators
Ty, i=1234and T, we get

L

: o ; 0? , 01
minMSE(TS) — minMSE(T}) = ; [(y2 - WY - <Y2P - WEY? 5 )}

(5.1)

In situations if the proposed class of estimators is reasonable and the relationship between
auxiliary variable x(;) and study variable y[;} within each stratum is a straight line and passes
through origine then the last term of (5.1) is generally small and get decreases.

Also, unless Ry, is invariant from stratum to stratum, separate estimators probably becomes
more efficient in each stratum if the sample in each stratum is large enough so that the
approximate formula for MSE (TUSI_), i = 1,2,3,4 is valid and cumulative bias that can
alter the proposed estimators is neglegible whereas the proposed combibed estimators is to
be preferably recommended with only a small sample in each stratum (see, Cochran [8]).

6 Simulation study

In order to enhance the theoretical justification, following Singh and Horn [22] and motivated
by Bhushan and Kumar [2, 3] and Kumar et al. [13], we conducted a simulation study over
some artificially generated symmetric (viz. Normal, Uniform, Logistic, and ¢) and asymmetric
(viz. F, x2, Beta — 1, Log-normal, Exponential, Gamma, and Weibull) populations of size
N = 1200 units by using the models given as

/ Sy
x
xi =24+ x]

where x* and y; are independent variates of respective parent distributions with reasonably
chosen value of correlation coefficient py,y, = 0.7 as it seems to be neither very high nor
very low. Now, we stratify the population into three equal mutually exclusive and exhaustive
strata and drawn a ranked set sample of size 9 units with set size 3 and number of cycles
3 from each strata by using the sampling methodology discussed in earlier section. Using
10,000 iterations, the percent relative efficiency (PRE) of the proposed class of estimators
with respect to the conventional mean estimator is computed as
prE = MSETm 4
MSE(T)

where T denotes the combined and separate estimators. The results of the simulation study
which reveals the ascendance of proposed estimators over other existing estimators are
reported below in Tables 1 and 2 in terms of PRE for reasonably chosen value of corre-
lation coefficient pyy = 0.7.

It follows from the persual of simulation results summarized in Table 1 and Table 2 that:

(i). The proposed combined estimator Tvci, i = 1,3 dominate the ratio and regression

estimators 7,° and T, Shabbir and Gupta [21] type estimator T§,, Koyuncu and

Kadilar [12] type estimator 7}, Singh and Vishwakarma [24] type estimator T}

sv?
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Singh and Solanki [23] type estimator T, Mandowara and Mehta [15] estimators

582

TS i =1,2,3, 4, Mehta and Mandowara [17] estimator 7¢, and Saini and Kumar

mm; ) mm
[18] estimators TS‘ RS 1, 3 in each population.

(ii). The proposed combined estimators 7,7, i = 2,4 are less efficient than Singh and

Solanki [23] type estimator T, whereas more efficient than the ratio and regression
estimators 7, and Tg » Shabbir and Gupta [21] type estimator 7, , Koyuncu and Kadilar
[12] type estimator T}, Singh and Vishwakarma [24] type estimator 75, Mandowara

sv?

and Mehta [15] estimators 7€ i =1,2,3, 4, Mehta and Mandowara [17] estimator

mm;

T,.,, and Saini and Kumar [18] estimators Tfkl, t = 1, 3 in each population.

(iii). The proposed separate estimators 7,;, i = 1,3 dominate the ratio and regression

estimators an - abbir an upta type estimator , Koyuncu an
i TS and Tlg Shabb dG [21] T3, K d

Kadilar [12] type estimator 7}, Singh and Vishwakarma [24] type estimator T,

sv?
Singh and Solanki [23] type estimator 7,, Mandowara and Mehta [15] estimators

T,flml_, i =1,2,3,4, Mehta and Mandowara [17] estimator 7,;, and Saini and Kumar

[18] estimators T;)(t, t = 1, 3 in each population.

(iv). The proposed separate estimators 7,;, i = 2, 4 are less efficient than Singh and Solanki

[23] type estimator T, whereas more efficient than the ratio and regression estimators
T and T/; » Shabbir and Gupta [21] type estimator T}, Koyuncu and Kadilar [12] type
estimator 7}, , Singh and Vishwakarma [24] type estimator 7, Mandowara and Mehta

sv°
[15] estimators 7, i = 1,2, 3,4, Mehta and Mandowara [17] estimator 7}, and

Saini and Kumar [18] estimators T;k,’ t = 1, 3 in each population.

(v). It can also be seen that the proposed combined and separate estimators TUCI_, i=13

and T, i = 1, 3 are most efficient among the proposed class of estimators.

7 Concluding remarks

This paper has considered some combined and separate log type class of estimators under
SRSS along with their properties. The theoretical justification of the proposed combined
and separate class of estimators has been provided. In order to enhance the credibility of
the theoretical justification, a simulation study has been performed over some artificially
generated symmetric (viz. Normal, uniform and Logistic, and 7) and asymmetric (viz. F,

x>,

Beta — I, Log-normal, Exponential, Gamma, and Weibull) populations. The following

noteworthy observations have been mentioned below:

i

iii.

iv.

The simulation results reported in Table 1 and 2 shows that the proposed combined and
separate estimators TUL;’ i=1,3and T,fl_, i = 1, 3 dominate the combined and separate
version of ratio and regression type estimator, Mandowara and Mehta [15] estimator,
Mehta and Mandowara [17] estimator, Shabbir and Gupta [21] type estimator Koyuncu
and Kadilar [12] type estimator, Singh and Vishwakarma [24] type estimator, Singh and
Solanki [23] type estimator and Saini and Kumar [18] estimator as well as proposed class
of estimators 7¢, i = 2,4 and TUS[_, i =2,4.

v’

i. The proposed combined and separate estimators 7, i = 2,4 and T,j, i = 2, 4 are less

v’
efficient than combined and separate version of Singh and Solanki [23] type estimator
and perform better than the other existing estimators of our study.
It can also be seen that the proposed combined estimators Tvcl_, i =1,2,3,4 perform
better than the proposed separate estimators 7, in each population.
Thus, the proposed comnined and separate class of estimator 7, i = 1,3 and Ty, i =
1, 3 is to be considered in practice.
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In future studies, the proposed estimators may be examined under stratified double RSS, for
more details, see Khan et al. [11].

Data availability Not Applicable.

Appendix A
MSE(TS) = Y2|: 0 + Voo — 2v11} (A.1)
cy ﬂ
MSE(Tﬂ)— Voz—i-szo—Z Vii
minMSE(TS) = Y* | Voo — il (A.2)
V2o
MSE(T},,) = Y*| Voo + 87 Vag — 26; VU]; i=1,2,34 (A.3)

MSE(Ty,) = V2| (k- 1)2+{Voz+kzvzo—2kvll}]

minMSE(TS,) = Y?| (k* — 1)* + { Voo + K Vag — 2KV }] (A4
2 2,42 VZ V20
MSE(T) =Y [(xs — )2 422 (Voz vt T 1)2)}
minMSE(T},) = Y*[1 = Ay(opn) | (A.5)

MSE(TS) = yz[K%Voz + a?v? {)»;%(282 +g) — (g + g)} Vzo]
ki) =

—2gav(2k£ — AV + O = 1)?

minMSE(T{,) = ¥ (1 ) (A.6)
MSE (T )_Y2[1+A1A2+B1A +2A1A2C1 —2A1 —2A, Dy ]

minMSE(T;,)) = y? [1 Ai(opr) — A2(opt)D1] (A7)
MSE(TS) = V2 [1+33Cy + 3By + 201420y — 201 Ez — 20241

minMSE(TS) = 72 [1 = A1iopiy E2 — Aaopr Aa] (A-8)
MSE(TS )_YZ[ 02 + PPV — 2P, Vi) 1 = 1,3 (A.9)

The optimum values of the scalars involved in the estimators discussed above are reported
below.

Vi
Bopy = R
(opt) = Vao
14+ Vyy
k = =k*
© = TV (say)
1
)\s(opl) = "
(1 + Vor — V20 + (N-iz-(i)2>

@ Springer



On some efficient logarithmic type... Page 17 0f22 40
202 (g2 Vag — 2gavViy +2
5 _ atu(g+g)Vao — 2gavViy + P
Kor) = TV (222 + )@ 02 Vy — dgavVyy g O
+ Voo + 2¢* + g)av=Vyo —4gavVyy ¢
Aoy = (B —CiDy)
P (A By - C))
Aoy = (A1D; —Cy)
P (A1) - CD)
M) = (B2Ey — Ay D)
o= 2 T 2
P (ByCy — D)
Asiopry = (A2C2 — D2 Es)
o = 22T )
” (B,Cy — D3)
L _
> Wi Xy
5 — h=1
1= :
Wi (Xn 4 Cxxp)
h=1
L
> Wi X
5 — h=1
2= :
> Wi (X + Ba(xp))
h=1
L _
> WiXpBa(xn)
P h=1
3= g
Wi (XnB2(xp) + Cy,)
h=1
L _
WX, C _
hgl o = X+q
84 = — and P, =2Y o
> Wi (X5 Cx, + B2(x1)) K
h=1

where,

Ap =1+ Vi),

By = (A1 + Bs(2Bs — 1) Vao + 4B V11),

C = <A1 + %_DVZO + ZﬂsVll) ,

D) = <1 + WVZO +,3sV11> ,

Ay = <1 —agu, Vi1 + @azszzo) ,

By = (1 + Voo — 4gaw, Vi1 + g(2g + Da*v? V) ,

Cy = (14 Voo +4adv, Vij +8(28 — Da’v?Vy)

a?v?

2

D, = <1+Voz+2a(5—g)v, Vii+ (5—8)(5—8—1)V20>,
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§(6+1
and £, = <1 + advVi + %(szz‘@o) .

Appendix B
MSE(T)) =Y W ',,Z[Uo + U — 2U10} (B.10)
h=1
MSE(T}) = Z [Uo + - i U1 2%%0]
minMSE(T}) = Z WEY? |:U0 } (B.11)
h=1
MSE(T},) = Z W2y} |:()»sh —D?+22 (Uo - ﬁ + (lel)z)}

minMSE(T},) = Z WEYE[1 = A 0pn) ] (B.12)

2 U 2 2{ 32 (242 (o2 }U
MSE(T,gk):Z hz[ 0+ Uy 1A, (287 +8) — iy (g ;i-g) 1}
—2gahvh(2k — M) Uro + (g, — 1)

minMSE(TS,) = Z WEY? ( ) (B.13)

MSE( mm)_ZWth Uo+8,-h 1—25,-,1U10]; i=1,2,3,4 (B.14)

MSE(T,,,) —ZW;%Y},z (kp — 1)2+{U0+kﬁU1 —2khU10}:|

L _
minMSE(Ty,) = > Wi YE| (ki — 1)* + { Uo+ k" Uy — 2k Uso ] ] (B.15)
L
MSE(TxSv) = Z Wi%Yhz [1+A111A%h +By, A%h +2A1,A2,C1, — 20, — 2A2hD1h]
h=1
L
minMSE(T},) = ) Wi¥i [1 = A1, opn = Azyopn D1, ] (B.16)
L
MSE(TS:‘:Y) = Z Wf%yhz [H')‘%h CZ/;‘H‘%;, Bo,+2A1,A2, Dy, — 201, En, — 2)‘2111421«]
h=1
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L
minMSE(TS) = Wi¥i [1 = Ayopn Ezy — Aay(0pr) A2, | (B.17)
L
MSE(T) =Y _ W;Y}[Uo+ PLUT — 2P, U] (B.18)
h=1

The optimum values of the scalars involved in the estimators discussed above are reported.

Uio 14+ Ujo 1
IBh(opt) - Rh s kh(opt) = 7 7 - kZ(SaY), )\sl,(opt) =
Uy 1+ Uo 1+ Uy UlO
Tl + <N+1)2
atv2(g? + g)Uy — 2gapupUsg + 2
Ay (opt) = I (say),
1+ Up + (282 + g)ejviU; — 4gaupUsg Bh
(B1, — C1,D1,) (A1, Dy, — C1,)
Aty(opry = ————"—F and Agy(opr) = —————3"
(AlhBlh _Clh) (AlhBlh _Clh)
(Bo, Ea, — Az, D2,) (A,Co, — Dy, Er,)
My(opt) = — 'S and Ay opr) = —— et o
(BZh C2h - Dzh) (BZh C2h - Dzh)
Xy X XnBo(xp)
51,1 = = 52,1 = = 83h ==
(Xp + Cyxp) (Xp + B2(xn)) (XnBa(xp) + Cyxy)
X,C _ X
by = 2k p oy, [%}
(XpCyy, + B2(xp)) 2Xn +qy,)
where
Ay, = 1+ Ujo),
By, = (A1 + B, 2Bs, — DU1 + 485, Ur0),
—1
Ciy, = (A1 + %Ul +2ﬂs,,Ulo>,
Bs,(Bs, — 1)
D, = (1 + %Vzo + Bs,U1o )
+
Ay, = (1—ahguU10+g(g2 D 42 U)
By, = (1 + Uy — 4ganupUro + g(2g + DafviUy)
Ca, = (14 Up + 4apduy Viy + 8(28 — DajupUy),
2 2
Dy, = |1+ Uy + 20 (8 — 2 §—8)@—g—-DU|,
) 1
and E, = (1 + apdupUso + %ahvh U1)
Appendix C

This section consider the proof of the Theorem 4.1 to Theorem 4.4.
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Consider the combined estimator Tvc1 as

5 Bi
- X(srs:
Tvcl = 01 Y[srss] [1 + log <%)i|

Using the notations described earlier, we can write Tv"’1 as

2 —
Tvcl—?:?|:ot1{1+80+,31 (81—81)-%'31('311)8%-1—,318081}—1}

2 2
(C.19)
Taking expectation both the sides of (C.19), we get
Bias(TvCI)zf’[al[l—i-ﬂl (%— 1) Vao + 1 Vi } —1] (C.20)

Similarlly, we can find out the biases of remaining combined and separate estimators.
Now, squaring both the sides of (C.19) and taking expectation, we will get the M SE of
the estimator upto first order approximation as

L+ af {1+ Vo + 2B1(B1 — D)Vao +4B1Viy }}

=Y?[1+afP| — 201 01] (C.21)

where P1 = {1 + Voo +2B1(B1 — 1) V2o +4p1Vi1}and Q| = {/31 (%’ - ) Vao — Bi Vn}-
The optimum value of «; can be obtained by minimizing (C.21) w.r.t oy as

01
Al(opt) = ?1 (C.22)

Putting a1 (opr) in (C.21), we get the minimum M SE as

_ 0?
minMSE(T,,) = Y2 (1 - Pl) (C.23)
1

Note that the simultaneous minimization of «; and B is not possible. Therefore, putting
o1 = 1 in the estimator 7}, and minimizing the MSE w.r.t. 8, we get

In similar lines, we can tabulate the minimum MSEs of other estimators T,,, i = 2, 3,4 as

MSE(T,,) = V* (1 + a2 P; — 20, Q;)

i Q?
minMSE(T,) = Y? (1 - P’)
i

Py =1+ Vo2 + B2(B2 — 1) Voo + 482 V11
B2
O =1+ BV — 7‘/20
Py =1+ Voo +2B3(83 — Dv*Vag + 430V

03=p83 <% - 1) v Voo — B3u Vi

@ Springer



On some efficient logarithmic type... Page210f22 40

Py =14 Voo + Ba(Ba — 1) Voo + 4B40 V1

Ba
Q4 =1+ ByvVy| — 7U2V20

0i
Qi(opt) = ?
1
Vi
/32(0111) = _V720
Vi .
ﬂi(opt) = _WZO’ 1= 3,4

On similar lines, we can obtaine the MSE of the other separate class of estimators.
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