

The L-fuzzy cover spaces and L-fuzzy compact open topology

M. Routaray¹

Received: 13 July 2022 / Accepted: 28 November 2023 / Published online: 18 January 2024 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024

Abstract

In this paper, a new concept of *L*-fuzzy cover spaces regarding fuzzy topological spaces is added. Secondly, the ideas of *L*-fuzzy compact open topology is established and the number of their interesting properties are studied.

Keywords L-Fuzzy space · L-Fuzzy cover spaces and L-Fuzzy compact open topology

Mathematics Subject Classification 54A40 · 54E55

1 Introduction

Zadeh added the essential standards of fuzzy sets in his classical paper [14]. Fuzzy sets have applications in lots of fields of engineering, social technological know-how, economics, clinical science and many others,. In mathematics, topology furnished the most natural framework for the ideas of fuzzy units to flourish. Bayramov [1] added and advanced the concept of *L*-fuzzy topological spaces. Additionally fibrewise variations of homotopy concept were studied in [8, 11]. The perception of fuzzy homotopy principle was delivered by way of G. Culvacioglu and M. Citil in [10]. The essential organization of fuzzy topological areas was brought by using Abdul Razak Salleh and Mohammad faucet in [2, 7]. Prompted through [2, 7], fuzzy essential organization in fuzzy topological areas became prolonged to numerous fuzzy structure spaces in [5, 6]. The concept of compact-open topology has a important position in defining function spaces in standard topology. Routaray et al. [9] introduced the concept of fuzzy - structure covering map, fuzzy \Im *-Structure compact open topology.

One of the most crucial ideas in general topology is compactness, which many authors [3, 13] have extended to L-topological space. The objective of this article is to present an original concept of L-fuzzy compact-open topology and contribute some theories and effects relating to this concept.

The rest of paper is organized as follows: Section "Introduction" highlights the importance of fuzzy topology. The "Preliminaries" section emphasizes the fuzzy logic and *L*-fuzzy topology. The next part discusses the *L*-fuzzy covering space and some related theorems. The

M. Routaray mitaray8@gmail.com

¹ Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar, Odisha 751024, India

section "L-fuzzy compact open topology" details suggested the concept of L-fuzzy compact open topology, L-fuzzy connected set and L-fuzzy path connected space. The contributions of the work are summarized in the "Conclusion" section which highlights the achievements and identifies possible direction for further study.

2 Preliminaries

Definition 2.1 [14] A function from a non-empty set X to a unit interval I = [0, 1] is called a fuzzy set λ . I^X denotes the fuzzy set family as a whole.

Definition 2.2 [8] Let X be a set and τ be a family of fuzzy subsets of X. Then τ is called fuzzy topology on X if satisfies the following conditions:

(i) $0_X, 1_X \in \tau$ (ii) If $\lambda, \mu \in \tau$ then $\lambda \land \mu \in \tau$ (iii) If $\lambda_i \in \tau$ for all *I* then $\lor \lambda_i \in \tau$.

Definition 2.3 [12] For any fuzzy set $A \in F(X)$ and any $\lambda \in [0, 1]$, the λ -cut and strong λ -cut of A are respectively defined as follows: $A_{\lambda} = \{x \in X : A(x) \ge \lambda\}, A_{\langle \lambda \rangle} = \{x \in X : A(x) \ge \lambda\}$, where $A(x) = \mu A(x)$ since A(x) is more convenient than $\mu A(x)$.

Definition 2.4 [12] Let I^{τ} be set of all monotonic decreasing maps $\lambda : \mathbb{R} \to L$ (where *L* is completely distributive lattice) satisfying:

(i) $\lambda(t) = 1$ for t < 0, (ii) $\lambda(t) = 0$ for t > 1.

For $\lambda, \mu \in I^{\Gamma}$, we define that $\lambda \equiv \mu$ iff $\lambda(t-) = \mu(t-)$ and $\lambda(t+) = \mu(t+)$ for all $t \in \mathbb{R}$, where $\lambda(t-) = \inf_{s < t} \lambda(s)$ and $\lambda(t+) = \sup_{s > t} \lambda(s)$. Then \equiv is an equivalence relation on I^{Γ} , $[\lambda]$ denotes the equivalence class of $\lambda \in I^{\Gamma}$ and the quotient set I^{Γ} / \equiv is called the *L*-fuzzy unit interval which in symbols is written I(L).

We define an *L*-fuzzy topology τ on I(L) by taking as a subbase $\{L_{t,R_t:t\in\mathbb{R}}\}$, where we define $L_t([\lambda]) = (\lambda(t-))'$ and $R_t([\lambda]) = (\lambda(t+))'$. The topology τ is called the standart topology on I(L), and the base of τ is $\{L_s \wedge R_t : s, t \in \mathbb{R}\}$.

Definition 2.5 Let $f, g: (X, \tau) \to (Y, \sigma)$ be *L*-fuzzy continuous maps. We say that f is *L*-fuzzy homotopic to g if there exists an *L*-fuzzy continuous map $F: (X, \tau) \times (I(L), \tau) \to (Y, \sigma)$ such that $F(a_{\alpha}, [\lambda_0]) = f(a_{\alpha})$ and $F(a_{\alpha}, [\lambda_1]) = g(a_{\alpha})$ for every *L*-fuzzy point $a_{\alpha} \in (X, \tau)$ where i = 0, 1.

$$\lambda_i(t) = \begin{cases} 1, \ t < i \\ 0, \ t > i \end{cases}$$

The map F is called an L-fuzzy homotopy between f and g, and written $F : f \cong_L g$.

Definition 2.6 Let (X, τ) and (Y, σ) be any two *L*-fuzzy space. Let $p : (X, \tau) \to (Y, \sigma)$ is called a *L*-fuzzy covering space if and only if

- (i) p is L-fuzzy onto.
- (ii) For every $a_{\alpha} \in X$ there exists a neighborhood $a_{\alpha} \in U$ such that $p^{-1}(u) = \bigcup S_i$ such that each s_i is *L*-fuzzy homeomorphic to *U*.

Each s_i is called a sheet. Each u for which $p^{-1}(u) = \bigcup s_i$ is said to be *L*-fuzzy covered. $p^{-1}(a_\alpha)$ is called a *L*-fuzzy fiber.

Definition 2.7 Let $p: (X, \tau) \to (Y, \sigma)$ be a *L*-fuzzy covering map and let $f: (\tilde{X}, \tilde{\sigma}) \to (Y, \sigma)$ be a *L*-fuzzy continuous function. Then a map $\tilde{f}: (\tilde{X}, \tilde{\sigma}) \to (X, \tau)$ is said to be *L*-fuzzy lift on the map f if $p \circ \tilde{f} = f$.

3 L-Fuzzy covering space

Theorem 3.1 Let $p: (X_1, \tau, x_{\lambda}) \to (X_2, \sigma, x_{\lambda_2})$ be a L-fuzzy covering space generated by τ and σ . Let $f: (Y, \eta, y_{\lambda}) \to (X_2, \sigma, x_{\lambda_2})$ be a arbitrary L-fuzzy map. If (Y, η, y_{λ}) is L-fuzzy connected then f' is unique (if it exists).

Proof Let f'' be another L-fuzzy lifting of the map pf' = f, pf'' = f. Define

$$A = \left\{ y \in Y : f^{'}(y) = f^{''}(y) \right\}$$

and

$$B = \left\{ y \in Y : f'(y) \neq f''(y) \right\}$$

clearly $Y = A \cup B$ and $A \cap B = \phi$.

For $y \in A$ we have f'(y) = f''(y) and pf'(y) = f(y) implies $pf'(y) \in u$ from this line it is clear that $f'(y) \in p^{-1}(u)$. Again $f'(y) \in S$, $f''(y) \in S$ this implies $y \in f'(S) \cap f''(S) \subset A$.

If not let there exists $z \in B$ so $f'(z) \in S$, $f''(z) \in S$ and $f'(z) \neq f''(z)$ implies $pf'(z) \neq pf''(z)$. So we get $f(z) \neq f(z)$ which is a contradiction. So A is a L-fuzzy open set. Similarly B is also L-fuzzy open. Since Y is L-fuzzy connected one of A and B must be empty.

Clearly $f'(x_{\lambda}) = y_{\lambda}$ and $f''(x_{\lambda}) = y_{\lambda}$. So $x_{\lambda} \in A$ and $A \neq \phi$, $B = \phi$. This competes the proof.

Theorem 3.2 Let $p : (X_1, \tau, x_{\lambda}) \to (X_2, \sigma, x_{\lambda_2})$ be a L-fuzzy covering space and ω be a L-fuzzy path in (X_1, τ, x_{λ}) , then there exists a unique $\omega' : I \to X_1$ such that $\omega' = \omega$.

Proof Since I is L-fuzzy connected, ω' (if it exists) must be unique. Now we shall prove that ω' exists.

Case-1: Suppose X_2 itself is *L*-fuzzy structure covered, i.e., $p^{-1}(X_2) = \bigcup S_i = E$. x_{λ_1} belongs to some sheet S_i . Then p/S_i is a homeomorphism and ψ be the inverse map, i.e., $\psi : X_2 \to S_i$. Clearly ψ exists and *L*-fuzzy continuous. Since p/S_i is a homeomorphism. Let $\omega : I \to X_2$ then $\psi \circ \omega : I \to S_i$, i.e., *E*. Let $\omega' = \psi \circ \omega$. So ω' is a *L*-fuzzy path in X_2 . This is our required ω' is a *L*-fuzzy path in S_i .

To show that $p\omega' = \omega p\omega' = (p/S_i)\omega' = (p/S_i)\psi \circ \omega = \omega$ since $(p/S_i)\psi = id$, i.e., ψ is the inverse of p/S_i .

Case-II: For each $x_{\lambda} \in X_2$ there exists a *L*-fuzzy neighborhood $x_{\lambda} \in X_{U_{\lambda}}$ which is L-fuzzy covered and each $\{\omega^{-1}(U_{x_1})\}$ is a L-fuzzy open set. Thus the collection of these L-fuzzy open sets will be a L-fuzzy covering I. Since I is L-fuzzy compact it is possible to choose a *L*-fuzzy finite covering

$$0 = t_0 < t_1 < t_2 \cdots < t_n = 1$$

such that $[t_i, t_{i+1}] \subset \omega^{-1}(U_x)$ for some x and for all $i \cdot \omega[t_i, t_{i+1}] \subset \omega^{-1}(U_x)$ for some x and for all *i*.

There exists ω'_1 : $[t_0, t_1] \to X_1$ such that $p\omega'_1 = \omega/[t_0, t_1]$ similarly there exists ω'_2 : $[t_1, t_2] \rightarrow X_1$ such that $p\omega_2' = \omega/[t_1, t_2]$

Define
$$\omega'(t) = \begin{cases} \omega'_1(t) & t_0 \le t \le t_1 \\ \omega'_2(t) & t_1 \le t \le t_2 \\ & \vdots \\ \omega'_n(t) & t_{n-1} \le t \le t_n \end{cases}$$

Theorem 3.3 Let $f: (Y, \tau) \to (X, \sigma)$ admit a L-fuzzy lifting f' generated by τ and σ ; then any L-fuzzy homotopy $F: (Y, \tau) \times (I(L), \tau) \to (X, \sigma)$ with $F(a_{\alpha}, [\lambda_0]) = f(a_{\alpha})$ can be *L*-fuzzy lifted to a *L*-fuzzy homotopy $F': (Y, \tau) \times (I(L), \tau) \to E$ with $F'(a_{\alpha}, [\lambda_0]) = f'(y)$

Proof Given that $F(a_{\alpha}, [\lambda_0]) = f(a_{\alpha})$. Theorem states that there exists F' such that $F'(a_{\alpha}, [\lambda_0]) = f'(a_{\alpha}).$

Case-1: If the whole space X is evenly L-fuzzy covered then $p^{-1}(X) = \bigcup S_i = E$. p/S_i defines a L-fuzzy homeomorphism from S_i to X. Thus $S_i \cong X$. Hence there exists inverse map ψ such that $F' = \psi \circ F$ where $F' : Y \times I \to E$. Clearly F, ψ and F' are L-fuzzy continuous. $F'(a_{\alpha}, [\lambda_0]) = \psi F(a_{\alpha}, [\lambda_0]) = \psi f(a_{\alpha}) = f'(a_{\alpha}).$

Case-II: Let $a_{\alpha} \in Y$ and $\lambda_t \in I$, then $F(\lambda_t, a_{\alpha}) \in X$. Since E is L-fuzzy covering space there exists a *L*-fuzzy neighborhood $U_{F(a_{\alpha},\lambda_t)}$ which is evenly covered $\{F^{-1}(U_{F(a_{\alpha},\lambda_t)})\}$ where a_{α} is fixed and $\lambda_t \in I$. Clearly $\{a_{\alpha}\} \otimes I$ is *L*-fuzzy compact set and $F^{-1}(U_{F(a_{\alpha},\lambda_t)})$ is a *L*-fuzzy covering set of $\{a_{\alpha}\} \otimes I$. Now consider $0 = \lambda_{t_0} < \lambda_{t_1} < \lambda_{t_2} < \cdots > \lambda_{t_n} = 1$ and we get $\{a_{\alpha}\} \times [\lambda_{t_i}, \lambda_{t_{i+1}}] \subset F^{-1}(U_{F(a_{\alpha},\lambda_t)})$. But $F^{-1}(U_{F(a_{\alpha},\lambda_t)})$ is a L-fuzzy open set containing (a_{α}, λ_t) . Choose a neighbourhood $N_{a_{\alpha}}$ of a_{α} such that $F(N_1 \times [\lambda_{t_i}, \lambda_{t_{i+1}}]) \subset U_{F(a_{\alpha}, \lambda_t)}$. Thus $U_{F(a_{\alpha},\lambda_{t})}$ is evenly *L*-fuzzy covered.

Corollary 3.4 Let (X, τ) and (Y, σ) be two L-fuzzy structure and $(I(L), \tau)$ be L-fuzzy space introduced by τ . Let $\alpha, \beta : I(L) \to X$ and $p : Y \to X$. If $\alpha \simeq_L \beta$ then $\alpha' \simeq_L \beta'$.

Proof Let α : $(I(L), \tau) \rightarrow (X, \tau)$ be any *L*-fuzzy continuous function. Define a function $F: (I(L), \tau) \times (I(L), \tau) \to (X, \tau)$ such that $F(a_{\alpha}, [\lambda_0]) = \alpha(a_{\alpha})$ and $F(a_{\alpha}, [\lambda_1]) = \alpha(a_{\alpha})$ $\beta(a_{\alpha})$. Then there exists F' such that $F'(a_{\alpha}, [\lambda_0]) = \alpha'(a_{\alpha}), pF'(a_{\alpha}, [\lambda_1]) = F(a_{\alpha}, [\lambda_1])$ and $pF'(a_{\alpha}, [\lambda_1]) = \beta(a_{\alpha})$. So $F'(a_{\alpha}, [\lambda_1])$ is a lifting of β . β' is also lifting of β . Since I(L) is L-connected both are equal $\beta'(a_{\alpha}) = F'(a_{\alpha}, [\lambda_1])$. Clearly we have $\alpha' \simeq_L \beta'$.

Corollary 3.5 Let (X, τ) and (Y, σ) be any two L-fuzzy path connected spaces and p: $(X,\tau) \to (Y,\sigma)$ be a L-fuzzy continuous function. Let x_{λ} be a fuzzy point in (X,τ) and $p_*: \Pi_1(X, x_\lambda) \to \Pi_1(Y, p(x_\lambda))$. Then p_* induces a L-fuzzy monomorphism.

Proof For each $[\alpha], [\beta] \in \Pi_1(X, x_{\lambda}),$

$$p_*([\alpha] \circ [\beta]) = p_*[\alpha * \beta]$$

$$= [p \circ (\alpha * \beta)]$$

$$= [(p \circ \alpha) * (p \circ \beta)]$$

$$= [p \circ \alpha] * [p \circ \beta]$$

$$= p_*([\alpha]) \circ p_*([\beta]).$$

Thus p_* is a *L*-fuzzy homomorphism. Let $[\alpha] \in \Pi_1(X, x_\lambda)$ then $p_*[\alpha] = [\gamma]$ (where $\gamma : I \to Y$) this implies $[p \circ \alpha] \simeq [\gamma]$. So we get $p \circ \alpha \simeq_L \gamma$. Again γ has a lifting in *X*. Suppose δ is its lifting, i.e., $p\delta = \gamma$. $p\delta(x_t) = \gamma(x_t) = p(x_t)$. Let $(x_t) = y_t$. Now we get $\delta(x_t) \in p^{-1}(y_t)$. But $p^{-1}(y_t)$ is a fuzzy discrete set of points in *X*. $\delta(I) \subset p^{-1}(y_t)$, $\delta(I)$ is *L*-fuzzy connected, hence it must a singleton. Since the points are *L*-fuzzy discrete $\delta(I) = x_\lambda . \delta$ is the *L*-fuzzy lifting of γ and α is the *L*-fuzzy lifting of $p \circ \alpha$. Therefore $\alpha \simeq_L \delta$ and $[\alpha]$ is the identity class.

4 L-Fuzzy compact open topology

Let (X, τ) and (Y, σ) be any two *L*-fuzzy spaces generated by τ and σ .

Let

 $Y^X = \{f : (X, \tau) \to (Y, \sigma) | f \text{ is } L\text{-fuzzy continuous function.}\}$

We give this class Y^X a topology called the *L*-fuzzy compact open topology as follows: Let

$$\kappa: \{K: I \to X: K \text{ is } L\text{-fuzzy compact in } X\}.$$

 $\eta = \{U : I \to Y \text{ such that } U \text{ is } L\text{-fuzzy open in } Y\}.$

For any $K \in \kappa$ and $U \in \eta$, let

$$W(K, U) = \left\{ \omega \in Y^X : \omega(K) \subseteq U \right\}.$$

The collection $\{W(K, U) : K \in \kappa, U \in \eta\}$ can be as a fuzzy subbase to generate a *L*-fuzzy topology on the class Y^X , called the *L*-fuzzy compact-open topology. The class Y^X with this topology is called *L*-fuzzy compact-open topological space. Unless otherwise stated, Y^X will always have the *L*-fuzzy compact-open topology.

Theorem 4.1 Let (X, τ) and (Y, σ) be two L-fuzzy compact space. Let a_{α} be any L-fuzzy point in X and N be a L-fuzzy open set in the L-fuzzy product space $X \times Y$ containing $a_{\alpha} \times Y$. Then there exists some L-fuzzy neighborhood W of a_{α} in X such that $a_{\alpha} \times X \subseteq W \times Y \subseteq N$.

Proof It is clear that $x_t \times Y$ is *L*-fuzzy homeomorphic to *Y* and hence $x_t \times Y$ is *L*-fuzzy compact. We cover $\{x_t\} \times Y$ by the basis elements $\{U \times V\}$ (for the *L*-fuzzy topology of $X \times Y$) lying in *N*. Since $\{x_t\} \times Y$ is *L*-fuzzy compact, $\{U \times V\}$ has a finite subcover, say, a finite number of *L*-fuzzy basis elements $U_1 \times V_1, \dots U_n \times V_n$. Without loss of generality we assume that $x_t \in U_i$ for each $i = 1, 2 \cdots n$; since otherwise the basis elements would be superfluous. Let $W = \bigcap_{i=1}^n U_i$. Clearly *W* is *L*-fuzzy open and $x_t \in W$. We show that

$$W \times Y \subseteq \bigcup_{i=1}^{n} (U_i \times V_i)$$

Deringer

Let (x_r, y_s) be any *L*-fuzzy point in $W \times Y$. We consider the *L*-fuzzy point (x_t, y_s) . Now $(x_t, y_s) \in U_i \times V_i$ for some *i*; thus $y_s \in V_i$. But $x_r \in U_j$ for every $j = 1, 2 \cdots n$ (because $x_r \in W$). Therefore $(x_r, y_s) \in U_i \times V_i$, as desired. But $U_i \times V_i \subseteq N$ for all $i = 1, 2, \cdots, n$; and $W \times Y \subseteq \bigcup_{i=1}^n (U_i \times V_i)$. Therefore $W \times Y \subseteq N$.

Theorem 4.2 Let Y be a L-fuzzy connected and L-fuzzy locally path connected space. $P(Y, y_0)$ denote the set of all L-fuzzy paths whose initial point is y_0 . Then $\phi : P(Y, y_0) \rightarrow Y$ is L-fuzzy continuous, L-fuzzy onto and L-fuzzy open map.

Proof We have

$$W(K, U) = \left\{ \omega \in Y^X : \omega(K) \subseteq U \right\}.$$

So clearly $\{\omega : \omega(1) \subset U\}$ be *L*-fuzzy open set in the *L*-fuzzy compact open topology. Let $\phi : P(Y, y_0) \to Y$ and consider *u* as *L*-fuzzy open set in *Y*. So

$$\phi^{-1}(u) = \{\omega : \phi(\omega) \in u\} = \{\omega : \omega(1) \in u\}$$

is *L*-fuzzy open. This implies ϕ is *L*-fuzzy continuous map.

Let $\omega \in P(Y, y_0)$ and $W = \bigcap_{i=1}^{n} W(K_i, U_i)$ where K_i be *L*-fuzzy compact and U_i be *L*-fuzzy open set. Arrange the K_i according to decreasing end points. Choose $j \leq n$ such that

$$1 \in K_1 \cap K_2 \cap \cdots \in K_i$$

and

$$1 \notin K_{i+1} \cap K_{J+2} \cap \cdots \in K_n$$

Again $\omega \in W(K_i, U_i)$ then $\omega(K_i) \subset U_i$ for all $i = 1, 2, \dots n$ and $i = 1, 2, \dots j$. From this it is clear that $\omega(1) \in \bigcap_{i=1}^n U_i$. Choose *L*-fuzzy connected neighborhood of *V* of $\omega(1)$ such that

$$V \subset \bigcap_{i=1}^{n} U_i.$$

Choose $t' \in (0, 1)$ such that

$$[t', 1] \cap [K_{i+1} \cup \ldots \cup K_n] = \phi$$

such that $\omega[t', 1] \subset V$.

We claim that $V \subset \phi(W)$. Let $y' \in V$ to show that $y' \in \phi(W)$, i.e., show that there exists a *L*-fuzzy path in *W* whose end point is y'. Define a *L*-fuzzy path ω' from $\omega(t')$ to y'. Now define a *L*-fuzzy path $\bar{\omega} : I \to Y$

$$\bar{\omega}(t) = \begin{cases} \omega(t), & 0 \le t \le t' \\ \omega'\left(\frac{t-t'}{1-t'}\right), & t' \le t \le 1 \end{cases}$$

For $i = j + 1, j + 2, \cdots, n, \bar{\omega}(K_i) = \omega(K_i) \subset U_i.$
 $\therefore \bar{\omega} \in W(K_i, U_i).$

For $i = 1, 2, \dots, j$,

$$\bar{\omega}(K_i) = \bar{\omega}[K_i \cap [0, t']] \cup \bar{\omega}[K_i \cap [t', 1]]$$
$$\subset \omega(K_i) \cup \omega'(I)$$
$$\subset U_i \cup V = U_i$$

🖄 Springer

We get $\bar{\omega}(K_i) \subset U_i$, $i = 1, 2, \cdots$. Let $\bar{\omega} \in W(K_i, U_i)$, so $\bar{\omega} \in \bigcap_{i=1}^n W(K_i, U_i) = W$. This implies $\bar{\omega} \in W$. Since $\phi(\bar{\omega}) = \bar{\omega}(1) = Y'$ we get $V \subset \phi(\omega) \Rightarrow \phi$ is *L*-fuzzy open.

Now we have to show that ϕ is onto. Clearly ϕ is *L*-fuzzy path connected as ϕ is *L*-fuzzy connected and *L*-fuzzy locally path connected. Let $y \in Y$, then $\exists \omega$ from y_0 to y imply $\omega \in P(Y, y_0)$ and $\phi(\omega) =$ end point of $\omega = y_1$. This implies ϕ is onto.

5 Conclusion and future work

In this work, the concept of L-fuzzy compact open topology has been introduced along with some basic theories. This work will lay the foundation for further research on L-fuzzy compact open topology. We hope to build a concept of fuzzy higher homotopy groups and fuzzy universal covering space using this concept. Further, this topic can be expanded in fuzzy category theory in future.

References

- Bayramov, S.: The Čech Homology Theory in the Category of Šostak Fuzzy Topological Spaces. Int. J. Contemp. Math. Sci. 5(9), 433–488 (2010)
- Culvacioglu, G., Citil, M.: On fuzzy homotopy theory. Adv. Stud. Contemp. Math. (Kyungshang) 12(1), 163–166 (2006)
- 3. Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190 (1968)
- 4. Flori, C.: A topos formulation of history quantum theory. J. Math. Phys. 51, 1-31 (2010)
- El-Ghoul, M., Attiya, H.I.: The dynamical fuzzy topological space and its folding. J. Fuzzy Math. 12(3), 685–693 (2004)
- 6. Massey, W.S.: Algebraic Topology An Introduction. Harcourt, Brace and World, New York (1967)
- 7. Munkres, J.: Topology, 2nd edition, Pearson Prentice Hall, New Jersey
- 8. Palaniappan, N.: Fuzzy Topology, Alpha Science International, Pangbourne England
- Routaray, M., Sahu, P.K., Naik, S.: Study on Fuzzy 3*-structure compact-open topology. Int J Fuzzy Logic Intell Syst 23(3), 311–317 (2023)
- Salleh, A.R., Md, A.O.: Tap?: The fundamental groupoid of fuzzy topological spaces. Sains Malaysina 16(4), 447–454 (1987)
- Salleh, A.R., Tap, A.O.M.: The fundamental group of fuzzy topological spaces. Sains Malaysina 15(4), 397–407 (1986)
- 12. Salleh, A.R.: The homotopy property of the induced homomorphisms on homology groups of fuzzy topological spaces. Fuzzy Sets Syst. **56**, 111–116 (1993)
- 13. Shi, F.G.: A new definition of fuzzy compactness. Fuzzy Sets Syst. 158, 1486–1495 (2007)
- 14. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338-353 (1965)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.