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Abstract
It is given a characterization of being a matrix Q(k)

g(a3,b3)
of linear combination of a matrix

Q(n)
g(a1,b1)

and a matrix Q(m)
g(a2,b2)

, where ai , bi ∈ R
∗, i = 1, 2, 3, m, n, k ∈ Z, and Q(l)

g(a,b)
denotes an (a, b)-generalized Fibonacci Q-matrix with l ∈ Z. In addition, some examples are
presented illustrating the main result. Finally, some applications of the main result obtained
are given.

Keywords Fibonacci numbers · Fibonacci Q-matrix · Generalized Fibonacci numbers ·
Linear combination · Matrix equations
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1 Introduction and preliminaries

In this section, we remind some fundamental definitions and propositions related to Fibonacci
and generalized Fibonacci sequences.

The classical Fibonacci sequence {Fn} is defined by the recurrence relation

Fn+1 = Fn + Fn−1 for all integers n ≥ 1,

with F0 = 0 and F1 = 1. The Fibonacci sequence with negative subscript is determined by
the relation

F−n = (−1)n+1Fn (1)

for all integers n ≥ 1, see, for instance, [4].
It is well known that the identity

FaFb − FcFd = (−1)r (Fa−r Fb−r − Fc−r Fd−r ) (2)
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holds for all integers r , where a, b, c and d are integers such that a + b = c + d [1]. In
addition, the identity

Fn+1Fn−1 − F2
n = (−1)n (3)

is known as Cassini identity, see, for example, [4].
Now, consider the sequence {Gn} defined by the relation

Gn = Gn−1 + Gn−2

for n ≥ 3 with the initial conditionsG1 = a andG2 = b, where a and b are arbitrary nonzero
real numbers. This sequence is called the generalized Fibonacci sequence (or gibonacci
sequence) [5]. The constant µ = a2 +ab−b2 produced by a and b in the definition is called
the characteristic of generalized Fibonacci sequence.

There is a relation between theFibonacci sequence and the generalizedFibonacci sequence
as follows:

Gn = aFn−2 + bFn−1 for n ≥ 3. (4)

Of course, there are many different generalizations of Fibonacci sequences, see for example,
[2, 3]. However, throughout the work, we shall use the definition in (4) of the generalized
Fibonacci sequence. And also, the identity

Gm+n = GmFn+1 + Gm−1Fn (5)

in [4] will be used in the remaining parts of the work.
Fibonacci sequences have amazing application in coding, encryption, and decryption, see,

for example, [12, 13].On the other hand, these types of special sequences occur inmanyplaces
in nature and art, see, for example, [4, 14]. One such example is that generalized Fibonacci
numbers appear in bee colonies in examining the genealogical growth from generation to
generation, see for example [4].

The main result in this work includes the main results in [10] and [11].
From now on, nth term of generalized Fibonacci sequence defined as in (4) will be denoted

by G(n)
(a,b). On the other hand, we know that Qn =

[
Fn+1 Fn
Fn Fn−1

]
holds for all integer n,

where Q =
[
1 1
1 0

]
, which is known as Fibonacci Q-matrix [6, 7]. Hence, we easily get that

aQn−2 + bQn−1 =
[

aFn−1 + bFn aFn−2 + bFn−1

aFn−2 + bFn−1 aFn−3 + bFn−2

]
(6)

for all integers n with a, b ∈ R
∗. For the sake of simplicity, we will denote the matrix in (6)

by Q(n)
g(a,b), and call this matrix as (a, b)-generalized Fibonacci Q-matrix.

2 Being amatrixQ(k)
g(a3,b3)

of linear combinations of a matrixQ(n)
g(a1,b1)

and amatrixQ(m)

g(a2,b2)

Consider the matrix equation

c1Q
(n)
(a1,b1)

+ c2Q
(m)
(a2,b2)

= Q(k)
(a3,b3)

, (7)

where c1, c2 are unknowns, m, n, k ∈ Z, and ai , bi ∈ R
∗, i = 1, 2, 3.
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The matrix equation (7) is equivalent to the system of linear equations

c1(a1Fn−2 + b1Fn−1) + c2(a2Fm−2 + b2Fm−1) = a3Fk−2 + b3Fk−1

c1(a1Fn−3 + b1Fn−2) + c2(a2Fm−3 + b2Fm−2) = a3Fk−3 + b3Fk−2.
(8)

It is seen that the determinant of coefficient matrix of the system (8) is

∣∣∣∣ a1Fn−2 + b1Fn−1 a2Fm−2 + b2Fm−1

a1Fn−3 + b1Fn−2 a2Fm−3 + b2Fm−2

∣∣∣∣ = (−1)n(−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

) (9)

taking the identity (2) into account. In case a1G
(m−n+2)
(a2,b2)

= b1G
(m−n+1)
(a2,b2)

, the determinant
(9) is zero, and nonzero, otherwise. First, suppose that the determinant is nonzero. In this
case, it is clear that the matrix equation (7) has unique solution such that

c1 = (−1)k−n(−a3G
(m−k+2)
(a2,b2)

+ b3G
(m−k+1)
(a2,b2)

)

−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

and c2 = −a1G
(k−n+2)
(a3,b3)

+ b1G
(k−n+1)
(a3,b3)

−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

.

Next, consider the case where the determinant is zero. Writing a1 = b1G
(m−n+1)
(a2,b2)

G(m−n+2)
(a2,b2)

in the

augmented matrix of the system of equations (8) under the condition G(m−n+2)
(a2,b2)

�= 0, and
then rearranging the entries of the matrix in view of (5) lead to the augmented matrix

⎡
⎢⎢⎢⎣

b1G
(m)
(a2,b2)

G(m−n+2)
(a2,b2)

a2Fm−2 + b2Fm−1 a3Fk−2 + b3Fk−1

b1G
(m−1)
(a2,b2)

G(m−n+2)
(a2,b2)

a2Fm−3 + b2Fm−2 a3Fk−3 + b3Fk−2

⎤
⎥⎥⎥⎦ . (10)

If the first row of this matrix is multiplied by −G(m−1)
(a2,b2)

G(m)
(a2,b2)

with G(m)
(a2,b2)

�= 0, and then added

this row to the second row, and finally the last entry of the second row is rearranged, then it
is obtained the augmented matrix

⎡
⎢⎢⎣

b1G
(m)
(a2,b2)

G(m−n+2)
(a2,b2)

G(m)
(a2,b2)

G(k)
(a3,b3)

0 0
(−1)k (a3G

(m−k+2)
(a2,b2)

−b3G
(m−k+1)
(a2,b2)

)

G(m)
(a2,b2)

⎤
⎥⎥⎦ (11)

which is equivalent to (10). So, the system of linear equations corresponding to the matrix
(11) has no solution in case a3G

(m−k+2)
(a3,b3)

− b3G
(m−k+1)
(a3,b3)

�= 0, otherwise, there are finitely

many solutions. Now, suppose that a3G
(m−k+2)
(a2,b2)

= b3G
(m−k+1)
(a2,b2)

.

If we first take a3 = b3G
(m−k+1)
(a2,b2)

G(m−k+2)
(a2,b2)

with G(m−k+2)
(a2,b2)

�= 0 in the equation corresponding to the

first row of (11), and next rearrange this equation by using (5), then we get finitely many
solutions, for the matrix equation (7), based on the parameter t ∈ R

∗ such that (c1, c2) =(
t, b3

G(m−k+2)
(a2,b2)

− tb1
G(m−n+2)
(a2,b2)

)
.
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Now, consider the case G(m)
(a2,b2)

= 0. In this case, the augmented matrix (10) turns into
the matrix ⎡

⎢⎢⎣
0 0 a3Fk−2 + b3Fk−1

b1G
(m−1)
(a2,b2)

G(m−n+2)
(a2,b2)

a2Fm−3 + b2Fm−2 a3Fk−3 + b3Fk−2

⎤
⎥⎥⎦ . (12)

Consistency of the system corresponding to the augmentedmatrix (12) is possible if a3Fk−2+
b3Fk−1 = 0. It is clear that k �= 2, since k = 2 leads to b3 = 0, which is a contradiction. If
we first write a3 = − b3Fk−1

Fk−2
in the equation corresponding to the second row of the matrix

in (12), and next rearrange this row by using (2) and (3), then we obtain the general solution
of the matrix equation (7) as

(c1, c2) =
(
t,

(
(−b3(−1)k−2)

Fk−2
− tb1

F2−n

)
Fm−2

(−b2)(−1)m−2

)
, t ∈ R

∗.

Thus, we have proved the following theorem.

Theorem 1 For the solutions of the matrix equation c1Q
(n)
g(a1,b1)

+ c2Q
(m)
g(a2,b2)

= Q(k)
g(a3,b3)

,
where c1, c2 are unknowns, m, n, k ∈ Z, and ai , bi ∈ R

∗, i = 1, 2, 3, the followings are true.

(1) In case −a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

�= 0, there is unique solution such that

(c1, c2) =
(
(−1)k(−a3G

(m−k+2)
(a2,b2)

+ b3G
(m−k+1)
(a2,b2)

)

(−1)n(−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

)
,
(−a1G

(k−n+2)
(a3,b3)

+ b1G
(k−n+1)
(a3,b3)

)

(−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

)

)
.

(2) In case −a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

= 0, if G(m−n+2)
(a2,b2)

�= 0, then

(i) There is no solution if a3G
(m−k+2)
(a2,b2)

− b3G
(m−k+1)
(a2,b2)

�= 0, G(m)
(a2,b2)

�= 0.

(ii) In case a3G
(m−k+2)
(a2,b2)

− b3G
(m−k+1)
(a2,b2)

= 0,
(a) There are finitely many solutions such that

(c1, c2) =
(
t,

b3

G(m−k+2)
(a2,b2)

− tb1

G(m−n+2)
(a2,b2)

)
, t ∈ R

∗,

under the conditions G(m−k+2)
(a2,b2)

�= 0 and G(m)
(a2,b2)

�= 0,
(b) There are finitely many solutions such that

(c1, c2) =
(
t,

(
(−b3(−1)k−2)

Fk−2
− tb1

F2−n

)
Fm−2

(−b2)(−1)m−2

)

under the condition G(m)
(a2,b2)

= 0.

��

3 Numerical examples

Now, we give some examples illustrating the theorem.

123



On characterization of being a generalized Fibonacci... Page 5 of 8 7

Example 1 Suppose that m = 5, n = 4, k = 6, a1 = 2, a2 = 5, a3 = 6, b1 = 3, b2 =
7, b3 = 4. Under these assumptions, since −2G(3)

(5,7) + 3G(2)
(5,7) = −3 �= 0, we get c1 = 22

3

and c2 = − 2
3 by Theorem 1(1).

Actually, it is easily seen that c1 and c2 obtained above hold the equality c1Q
(4)
g(2,3) +

c2Q
(5)
g(5,7) = Q(6)

g(6,4), that is the matrix equality

c1

[
13 8
8 5

]
+ c2

[
50 31
31 19

]
=

[
62 38
38 24

]

which has the unique solution such that c1 = 22
3 and c2 = − 2

3 .

Example 2 Assume that n = 4,m = 5, k = 6, a1 = 14, a2 = 5, a3 = 6, b1 = 24, b2 =
7, b3 = 4. So, we have −14G(3)

(5,7) + 24G(2)
(5,7) = 0, G(3)

(5,7) = 12 �= 0, 6G(1)
(5,7) − 4G(0)

(5,7) =
22 �= 0 (by (1)), and G(5)

(5,7) = 31 �= 0. Hence, there is no solution of the matrix equation

c1Q
(4)
g(14,24) + c2Q

(5)
g(5,7) = Q(6)

g(6,4) by Theorem 1(2)-(i).

Actually, there is no pair (c1, c2) satisfying the matrix equation c1Q
(4)
g(14,24)+c2Q

(5)
g(5,7) =

Q(6)
g(6,4), that is the matrix equality

c1

[
100 62
62 38

]
+ c2

[
50 31
31 19

]
=

[
62 38
38 24

]

which has no solution.

Example 3 Take n = 4,m = 5, k = 6, a1 = 14, a2 = 5, a3 = 6, b1 = 24, b2 =
7, b3 = 15. So, it is clear that −14G(3)

(5,7) + 24G(2)
(5,7) = 0, G(3)

(5,7) = 12 �= 0, and

6G(1)
(5,7) − 15G(0)

(5,7) = 0. Thus, by Theorem 1-(ii)-(a), there are finitely many solutions

such that (c1, c2) =
(
t, 15

G(1)
(5,7)

− 24t
G(3)
(5,7)

)
= (t, 3 − 2t) with the conditions G(1)

(5,7) = −2 �= 0

(by (1)) and G(5)
(5,7) = 31 �= 0.

Actually, if we try to find the values c1 and c2 satisfying the equation c1Q
(4)
g(14,24) +

c2Q
(5)
g(5,7) = Q(6)

g(6,15), or equivalently, the matrix equality

c1

[
100 62
62 38

]
+ c2

[
50 31
31 19

]
=

[
150 93
93 57

]
,

then we get 2c1 + c2 = 3, and therefore (c1, c2) = (t, 3 − 2t) with t ∈ R
∗.

4 Applications

In this section, we give some new identities related to generalized Fibonacci sequences by
using Theorem 1.

Firstly, consider the equations (8).Adding these equations side by side leads to the equation

c1(a1Fn−1 + b1Fn) + c2(a2Fm−1 + b2Fm) = a3Fk−1 + b3Fk, (13)

or equivalently,
c1G

(n+1)
(a1,b1)

+ c2G
(m+1)
(a2,b2)

= G(k+1)
(a3,b3)

. (14)
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From now on, suppose that a1 = a2 = a3 = a and b1 = b2 = b3 = b. We consider
Theorem 1(1). The condition−a1G

(m−n+2)
(a2,b2)

+b1G
(m−n+1)
(a2,b2)

�= 0 in the theorem turns into the
conditions m �= n and µ �= 0.

Now, let’s handle the cases a = ∓b and a2 �= b2, separately.
First, suppose that a = b. In this case, from (13), we get

c1Fn+1 + c2Fm+1 = Fk+1 (15)

taking into account a �= 0. On the other hand, in this case, the solutions c1 and c2 in Theorem
1(1) becomes as follows:

c1 = (−1)k−n Fm−k

Fm−n
and c2 = Fk−n

Fm−n
.

If these solutions are written in (15), the identity

(−1)k−n Fm−k Fn+1 + Fk−n Fm+1 = Fm−n Fk+1 (16)

is obtained. Notice that the identity (16) holds for all m, n, k ∈ Z even if m �= n in the
hypothesis. Also, since a = b and a, b ∈ R

∗, in this particular case the condition µ �= 0 is
already satisfied. So, writing n − 1 + c, m − 1 + c, k − 1 + c instead of n, m, and k in (16)
leads to the following result.

Corollary 1 The identity

(−1)k−n Fm−k Fn+c = Fm−n Fk+c − Fk−n Fm+c

holds for all c,m, n, k ∈ Z. ��
Note that when proceeding with the condition a = −b, the same result as above is obtained.

Now, suppose that a2 �= b2. Writing c1 and c2 obtained in Theorem 1(1) in the equation
(14) yields

(−1)k−n(−a3G
(m−k+2)
(a2,b2)

+ b3G
(m−k+1)
(a2,b2)

)G(n+1)
(a1,b1)

= (−a1G
(m−n+2)
(a2,b2)

+ b1G
(m−n+1)
(a2,b2)

)G(k+1)
(a3,b3)

− (−a1G
(k−n+2)
(a3,b3)

+ b1G
(k−n+1)
(a2,b2)

)G(k+1)
(a3,b3)

.

(17)

Since a1 = a2 = a3 = a and b1 = b2 = b3 = b, from the equality (17), we get

(−1)k−n(−aGm−k+2 + bGm−k+1)Gn+1

= (−aGm−n+2 + bGm−n+1)Gk+1 − (−aGk−n+2 + bGk−n+1)Gm+1.
(18)

From this, we obtain

(−1)k−n(b2 − a2)Fm−kGn+1 = (b2 − a2)Fm−nGk+1 − (b2 − a2)Fk−nGm+1. (19)

Since a2 �= b2, from the equality (19), it is obtained that

(−1)k−n Fm−kGn+1 = Fm−nGk+1 − Fk−nGm+1. (20)

Notice that in case ofm = n, the identity is also (20) provided. Also, if it is written n−1+c,
m − 1 + c, k − 1 + c instead of n, m, and k in (20), the following result is obtained.

Corollary 2 For all integers c,m, n, k, the identity

(−1)k−n Fm−kGn+c = Fm−nGk+c − Fk−nGm+c

holds with a2 �= b2 and µ �= 0. ��
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Now, consider Theorem 1(2-ii)–(a). Suppose that a1 = a2 = a3 = a and b1 = b2 = b3 =
b. So, the conditions in the first case of Theorem 1(2-ii)–(a) turn into the conditions

(b2 − a2 − ab)Fm−n = 0,

aFm−n + bFm−n+1 �= 0,

(a2 − b2 + ab)Fm−k = 0,

aFm−k + bFm−k+1 �= 0,

aFm−2 + bFm−1 �= 0.

Also, we have c1 = t and c2 = b
(

1
Gm−k+2

− t
Gm−n+2

)
with t ∈ R

∗. If wewrite these solutions
in (14) by taking t = 1, then we get the following result.

Corollary 3 For all integers m, n, k, the identity

(Gn+1 − Gk+1)Gm−k+2Gm−n+2 = bGm+1(Gm−k+2 − Gm−n+2)

holds, where −µFm−n = µFm−k = 0 and Gm−n+2,Gm−k+2,Gm �= 0. ��
Finally, we handle the second case of Theorem 1(2-ii)-(b). Assuming that a1 = a2 =

a3 = a and b1 = b2 = b3 = b, we see that the conditions in the second case of Theorem
1(2-ii)-(b) turn into the conditions

(b2 − a2 − ab)Fm−n = 0,

aFm−n + bFm−n+1 �= 0,

(a2 − b2 + ab)Fm−k = 0,

aFm−2 + bFm−1 = 0.

If the solutions c1 and c2 in this part of the theorem are written in (14), and it is rearranged
the equality obtained by using (1), then the following result is obtained.

Corollary 4 For all integers m, n, k, the identity

Gk+1 − Gn+1 = F2−mGm+1

(
1

F2−k
+ 1

F2−n

)

holds, where −µFm−n = µFm−k = Gm = 0 and Gm−n+2 �= 0. ��
NOTE: In case a2 = b2, the matrix equation (7) turns into the matrix equation

d1Q
(n)
g(a1,b1)

+ d2Q
m = Q(k)

g(a3,b3)
, di ∈ R

∗, i = 1, 2

which was handled in [11]. If a2 = b2 and a3 = b3, then the matrix equation (7) turns into
the matrix equation

h1Q
(n)
g(a1,b1)

+ h2Q
m = Qk, hi ∈ R

∗, i = 1, 2

which was considered a special case themain result in [11]. Finally, in case a1 = b1, a2 = b2,
and a3 = b3, the matrix equation (7) turns into the equation

e1Q
n + e2Q

m = Qk, ei ∈ R
∗, i = 1, 2

which was discussed in the studies [9] and [10].
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