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Abstract
In this paperwepresent amodel for quasistatic frictional contact between a thermoviscoelastic
body and a moving foundation that involves wear of contacting surface and diffusion of wear
debris. The damage effect is taken into account in the thermoviscoelastic constitutive law, its
evolution is described by a parabolic inclusion with the homogeneous Neumann boundary
condition. Contact is modeled with a normal compliance condition and is associated to a
dry friction. The wear takes place on a part of the contact surface, when the wear debris
surface density diffuse on the whole of the contact surface and is accompanied by frictional
heat exchange. We derive a variational formulation of the problem and state that, under a
smallness assumption on the problem data, there exists a unique weak solution for the model.
The proof is based on elliptic variational inequalities, parabolic variational inequalities, first
order evolution equations and fixed point arguments.

Keywords Thermoviscoelastic materials · Friction · Normal compliance · Damage · Wear
diffusion · Frictional heat generation

Mathematics Subject Classification 74F05 · 74M10 · 74M15

1 Introduction

This work studies a quasistatic model for the process of frictional contact between a thermo-
viscoelastic body and a moving foundation when wear debris is generated and diffuses on
the contact surface. The damage effect is included in the thermoviscoelastic constitutive law.
The contact is described with a normal compliance condition and the associated a version
of Coulomb law of dry friction in which the coefficient of friction is assumed to depend on
the density of the wear particles and on the slip rate. The motion is accompanied by wear
diffusion and frictional heat generation. The wear takes place on a part of the contact surface
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and its rate is described by the Archard differential condition. So, our interest is to describe
a physical process in which thermal effect, damage effect, friction, wear diffusion and fric-
tional heat generation are involved, and to show that the resulting model leads to well-posed
mathematical problem. Then we present the result on the existence and uniqueness of a weak
solution to the system. The model is set as a system of an evolutionary variational inequality
for the displacements, a parabolic variational equation for the density of the wear particles, a
parabolic variational inequality for the damage and an evolution equation for the temperature.

Frictional contact arise in structural and mechanical systems, a considerable progress has
been achieved in modeling and mathematical analysis. Models of frictional contact problems
are investigated in [13, 15, 18, 20, 21]. Frictional contact problems with wear, both in the
dynamic and the quasistatic case, can be found in [16, 17, 19, 20]. Mathematical models for
frictional contact with wear under thermodynamic considerations have been considered in
[1, 5]. General dynamic thermoelastic models, which were derived from thermodynamical
principles, can be found in [12, 23]. Quasistatic or dynamic thermoviscoelastic frictional
contact problems can be found in [4, 5, 14]. A quasistatic thermoviscoelastic problem for
a beam can be found in [10, 11], where the wear of the contacting surface is included.
Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and
wear diffusion can be found in [9].

Following [6, 7], the evolution of the microscopic cracks responsible for the damage is
determined by a parabolic inclusion with a constitutive function describing the source of
damage in the system which results from tension or compression. Using the subdifferential
of indicator function of the interval [0, 1] guarantees that the damage function β which
measures the decrease in the load-bearing capacity of the material, varies between 0 and 1.
When β = 1 there is no damage in the material, when β = 0 the material is completely
damaged, when 0 < β < 1 there is partial damage and the system has a reduced load
carrying capacity. Contact problems with damage have been investigated in [8, 17, 20] and
the monograph [22].

The rest of the manuscript is structured as follows. In Sect. 2 we present the notation we
shall use as well as some preliminary material. In Sect. 3 we present the physical setting,
describe the mechanical problem, list the assumptions on the data and give the variational
formulation of the problem. In Sect. 4 we state our main existence and uniqueness result
based on arguments of elliptic variational inequalities, parabolic variational inequalities, first
order evolution equations and fixed point.

2 Notations and preliminaries

In this section we present some notations and preliminary material we shall use later in this
paper. For further details, we refer the reader to [3]. Let Ω ⊂ R

3 be a bounded domain with
a Lipschitz boundary Γ and ν denote the unit outward normal on Ω . We denote by S3 the
space of second order symmetric tensors on R

3 while "." and | . | will represent the inner
product and the Euclidean norm on the spacesR2 andR3. Everywhere in the sequel the index
i and j run from 1 to 3. The summation convention over repeated indices is adopted and the
index that follows a comma indicates a partial derivative with respect to the corresponding
component of the independent variable. We introduce the following spaces

H = {
u = (ui ) | ui ∈ L2(Ω)

} = L2(Ω)3,

H = {
σ = (σi j ) | σi j = σ j i ∈ L2(Ω)

} = L2(Ω)3×3
s ,
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H1 = {u = (ui ) | ε(u) ∈ H} = H1(Ω)3,

H1 = {σ ∈ H | Divσ ∈ H} .

Here ε and Div are the deformation and divergence operators, respectively, defined by
ε(u) = (εi j (u)), εi j (u) = 1

2 (ui, j + u j,i ), Divσ = (σi j, j ). The spaces H , H, H1 and H1

are real Hilbert spaces endowed with the canonical inner products given by

(u, v)H =
∫

Ω

uivi dx, (σ, τ )H =
∫

Ω

σi jτi j dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))H, (σ, τ )H1 = (σ, τ )H + (Div σ , Div τ )H .

The associated norms on the spaces H ,H, H1 andH1 are denoted by | · |H , | · |H, | · |H1 and
| · |H1 , respectively. For an element v ∈ H1 we denote by v its trace on Γ and by vν = v · ν,
vτ = v−vνν its normal and tangential components on the boundary. For an element σ ∈ H1,
by σν = (σν) · ν and σ τ = σν − σνν we denote the normal and the tangential traces of σ .
The following two Green formulas hold

(div v, u)L2(Ω) + (v,∇u)H =
∫

Γ

u(v · ν) da for all u ∈ H1(Ω) and v ∈ H1, (1)

(σ , ε(v))H + (Div σ , v)H =
∫

Γ

σν.v da ∀ v ∈ H1 and σ ∈ H1. (2)

Let T > 0. For every real Banach space X we denote by C(0, T ; X) and C1(0, T ; X)

the spaces of continuous and continuously differentiable functions from [0, T ] to X , with
norms

| f |C(0,T ;X)= max
t∈[0,T ] | f (t) |X , | f |C1(0,T ;X)= max

t∈[0,T ] | f (t) |X + max
t∈[0,T ] | ḟ (t) |X .

For k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue spaces
L p(0, T ; X) and for the Sobolev spaces Wk,p(0, T ; X). Moreover, if X1 and X2 are two
real Hilbert spaces, then X1 × X2 denotes the product space endowed with the canonical
inner product (·, ·)X1×X2 and norm |.|X1×X2 .

3 Problem statement and variational formulation

A thermoviscoelastic body occupies a bounded domain Ω ⊂ R
3 with a Lipschitz surface Γ

that is divided into three disjoint measurable partsΓ1,Γ2 andΓ3 such thatmeas (Γ1) > 0 and
meas(Γ3) > 0. Let [0, T ] be the time interval of interest, for T > 0. The body is clamped on
Γ1 × (0, T ), so the displacement field vanishes there. Surface tractions of density f 2 act on
Γ2 × (0, T ) and a body force of density f 0 is applied in Ω × (0, T ). An initial gap g exists
between the potential contact surface Γ3 and the foundation, and it is measured along the
outward normal ν. We assume that the coordinate system is such that Γ3 occupies a regular
domain in the Ox1x2 plane and the foundation is moving with velocity v∗ in the Ox1x2
plane. Furthermore, Γ3 is divided into two subdomains Dd and Dω by a smooth curve γ ∗.
The wear takes place only on Dω, while the wear particles diffuse on the whole of the contact
surface Γ3. The boundary ∂Γ3 of Γ3 is assumed to be Lipschitz and is composed of two parts
γd and γω. Then ∂Dω = γω∪ γ ∗ and ∂Dd = γd∪ γ ∗.
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The wear function ω = ω(x, t) is defined on Dω and the wear particle surface density
function ζ = ζ(x, t) is defined on Γ3. The function ζ measures the surface density of the
diffusing wear particles and the wear function ω measures the depth of the wear i.e., the
amount of material per unit surface that has been removed, then ω = λζ in Dω, where λ is a
conversion factor from wear debris surface density to wear depth, which we assume to be a
positive constant. For the sake of convenience we extend ω by zero to the whole of Γ3, and
below when confusion is unlikely we use the same symbol for the function and its extension.
Thus,

ω = λζχ[Dw] on Γ3 × (0, T ), (3)

where χ[Dw] is the characteristic function of the set Dω (i.e., χ[Dw](x) = 1 when x ∈ Dω

and χ[Dw](x) = 0 if x /∈ Dω). The wear diffusion coefficient k is given by

k = k(x) =
{
kw in Dω,
kd in Dd .

Here, wear diffusion is described by the following nonlinear diffusion equation

ζ̇ − div(k∇ζ ) = κ |σ τ | R∗(
∣∣u̇τ − v∗∣∣)χ[Dω] in Γ3 × (0, T ), (4)

where R∗ : R+ → R+ is the truncation operator

R∗(r) =
{
r if r ≤ R,

R if r > R,
(5)

R is a fixed positive constant and κ is the wear rate coefficient. We need this operator in
order to avoid some mathematical difficulties, however, from the physical point of view the
use of R∗ is not restrictive since, in practice, the slip velocity is bounded and no smallness
assumption will be made on R.

Then, the classical model for the above process is as follows:

Problem P . Find a displacement field u : Ω × [0, T ] → R
3, a stress field σ : Ω × [0, T ] →

S3, a temperature field θ : Ω × [0, T ] → R, a damage field β : Ω × [0, T ] → R and a
surface particle density field ζ : Γ3 × [0, T ] → R such that

σ = Aε(u̇) + G(ε(u), β) − C(θ, β) in Ω × (0, T ) , (6)

β̇ − k1 � β + ∂ϕY (β) � φ(ε(u), θ, β) in Ω × (0, T ) , (7)

Divσ + f 0 = 0 in Ω × (0, T ) , (8)

u = 0 on Γ1 × (0, T ) , (9)

σν = f 2 on Γ2 × (0, T ) , (10)
{

−σν = pν, | σ τ |≤ μpν,

σ τ = −μpν
u̇τ −v∗
|u̇τ −v∗| if u̇τ 
= v∗ on Γ3 × (0, T ), (11)

ζ̇ − div(k∇ζ ) = κμpνR
∗(| .

uτ − v∗ |)χ[Dω] on Γ3 × (0, T ), (12)

ζ = 0 on ∂Γ3 × (0, T ), (13)

θ̇ − div(Kc∇θ) = ψ(u̇, θ, β) + q in Ω × (0, T ), (14)

− ki jθ,iη j = ke(θ − θR) on Γ3 × (0, T ), (15)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (16)

∂β

∂ν
= 0 on Γ × (0, T ) , (17)
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u(0) = u0, θ(0) = θ0, β(0) = β0 in Ω, (18)

ζ(0) = ζ0 in Γ3. (19)

Here pν = pν(uν − λζχ[Dω] − g) and μ = μ(ζ, | u̇τ − v∗ |) is the coefficient of friction
which depends on the density of thewear particles and on the slip rate. Equation (6) represents
the thermoviscoelastic constitutive law, where σ denotes the stress tensor, u represents the
displacement field, u̇ the velocity, θ is the temperature field and ε(u) is the small strain tensor.
HereA and G are nonlinear operators describing the purely viscous and the elastic properties
of the material, respectively and C represents the thermal expansion tensor. Equation (7)
represents the inclusion used for the evolution of the damage field, where the set of admissible
damage functions defined by

Y = {ξ ∈ H1(Ω) / 0 ≤ ξ ≤ 1 a.e. Ω},
k1 is a positive coefficient, ∂ϕY is the subdifferential of the indicator function ϕY and φ is a
given constitutive function which describes the sources of the damage in the system. Equa-
tion (8) represents the equilibrium equation, since the process is assumed to be quasistatic.
Equations (9)–(10) are the displacement-traction conditions. Equation (12) represents the
nonlinear diffusion equation, Eq. (13) is the absorbing boundary condition. In (18) u0 is the
given initial displacement field, θ0 is the initial temperature and β0 is the given initial damage
field. In (19), ζ0 is the given initial surface particle density field. To simplify the notation, we
do not indicate explicitly the dependence of various functions on the variables x ∈ Ω ∪ Γ

and t ∈ [0, T ] .
The evolution of the temperature field θ is governed by the heat equation (see [1, 13]),

obtained from the conservation of energy, and defined by the differential equation for the
temperature given in (14), where Kc = (ki j ) represents the thermal conductivity tensor,
div(Kc∇θ) = (ki jθ,i ),i and q(t) the density of volume heat sources. The associated tem-
perature boundary condition is given by (15), where θR is the temperature of the foundation
and ke is the heat exchange coefficient between the body and the obstacle. Condition (11)
represents the normal compliance condition with wear and the associated general law of dry
friction on the contact surface Γ3. In (16) the temperature vanishes on Γ1 ∪ Γ2. Equation
(17) represents the Neumann boundary condition. To obtain a variational formulation of the
problem (6)–(19) we need additional notation. Let V be the closed subspace of H1 defined
by

V = {v ∈ H1 / v = 0 on Γ1 } ,

and let E be the closed subspace of H1(Ω) given by

E = {
y ∈ H1(Ω) / y = 0 on Γ1 ∪ Γ2

}
.

Since Γ is Lipschitz continuous and meas(Γ1) > 0, Korn’s and Poincare’s inequalities hold
true

| ε(v) |H≥ C | v |H1 ∀ v ∈ V , (20)

| ∇ y |H≥ C | y |H1(Ω) ∀ y ∈ E, (21)

where here and below C is a positive constant depending on the problem data but is indepen-
dent of the solutions, its value may change from line to line. We define the inner products on
V and on E by

(u, v)V = (ε(u), ε(v))H ∀u, v ∈ V , (22)

(y, z)E = (∇ y,∇z)H ∀y, z ∈ E, (23)
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respectively. It follows from (20) and (22) that | · |H1 and | · |V are equivalent norms on
V and from (21) and (23), it follows that | · |H1(Ω) and | · |E are equivalent norms on E .
Therefore (V , | · |V ) and (E, | · |E ) are real Hilbert spaces. By the Sobolev’s trace theorem,
there exists a constant CΓ > 0 which depends only on Ω , Γ1 and Γ3 such that

| v |L2(Γ3)3
≤ CΓ | v |V ∀ v ∈ V . (24)

There exists ĈΓ > 0 depending on Ω , Γ1, Γ2 and Γ3 such that

| θ |L2(Γ3)
≤ ĈΓ | θ |E ∀θ ∈ E . (25)

E ′ is the dual of the space E . Identifying L2(Ω)with its own dualwe canwrite E ⊂ L2(Ω) ⊂
E ′. Below 〈·, ·〉 represents the duality pairing between E ′ and E , and | · |E ′ denotes the norm
on E ′. Also, 〈θ, η〉 = (θ, η)L2(Ω) for θ ∈ L2(Ω) and η ∈ E .

Recall that Γ3 is assumed to be a regular domain in the Ox1x2 plane with Lipschitz
boundary ∂Γ3. Keeping in mind the boundary condition (13), for the surface particle density
function, we shall use the space

H1
0 (Γ3) = {

ξ ∈ H1(Γ3) / ξ = 0 on ∂Γ3
}
.

This is a real Hilbert space endowed with the inner product

(ζ, ξ)H1
0 (Γ3)

= (∇ζ,∇ξ)L2(Γ3)2
,

where ∇ : H1
0 (Γ3) → L2(Γ3)

2 denotes the gradient operator, that is ∇ξ = (
ξ,x1 , ξ,x2

)
. By

the Friedrichs–Poincaré inequality there exists a constant C̃Γ > 0, which depends on Γ3,
such that

| ζ |L2(Γ3)
≤ C̃Γ | ζ |H1

0 (Γ3)
∀ζ ∈ H1

0 (Γ3). (26)

We use the notation H−1(Γ3) for the dual of the space H1
0 (Γ3). Identifying L2(Γ3) with its

own dual we can write H1
0 (Γ3) ⊂ L2(Γ3) ⊂ H−1(Γ3). Below 〈·, ·〉 represents the duality

pairing between H−1(Γ3) and H1
0 (Γ3), and | · |H−1(Γ3)

denotes the norm on H−1(Γ3). Also,
〈ζ, ξ 〉 = (ζ, ξ)L2(Γ3)

for ζ ∈ L2(Γ3) and ξ ∈ H1
0 (Γ3).

For our existence and uniqueness result we will need the following hypotheses.
The viscosity operator A: Ω × S3 → S3 satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) There exists LA > 0 such that
| A(x, ε1) − A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ S3, a.e. x ∈ Ω.

(b) There exists mA > 0 such that
(A(x, ε1) − A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2 ∀ε1, ε2 ∈ S3, a.e. x ∈ Ω.

(c) The mapping x → A(x, ε) is Lebesgue measurable on Ω for any ε ∈ S3.
(d) The mapping x → A(x, 0) ∈ H.

(27)
The elasticity operator G : Ω × S3 × R → S3 satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) There exists LG > 0 such that
| G(x, ε1, β1) − G(x, ε2, β2) |≤ LG(| ε1 − ε2 | + | β1 − β2 |)

∀ε1, ε2 ∈ S3, ∀β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x → G(x, ε, β) is Lebesgue measurable on Ω for any ε ∈ S3 and β ∈ R.

(c) The mapping x → G(x, 0, 0) ∈ H.

(28)
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The damage source function φ : Ω × S3 × R × R → R satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) There exists Lφ > 0 such that
| φ(x, ε1, θ1, β1) − φ(x, ε2, θ2, β2) |≤ Lφ(| ε1 − ε2 | + | θ1 − θ2 | + | β1 − β2 |)
∀ε1, ε2,∈ S3 and θ1, θ2, β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x → φ(x, ε, θ, β) is Lebesgue measurable on Ω for any ε ∈ S3 and θ, β ∈ R.

(c) The mapping x → φ(x, 0, 0, 0) ∈ L2(Ω).

(29)

The thermal expansion operator C : Ω × R × R → S3 satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(a) There exists LC > 0 such that
| C(x, θ1, β1) − C(x, θ2, β2) |≤ LC (| θ1 − θ2 | + | β1 − β2 |) ∀θ1, θ2, β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x → C(x, θ, β) is Lebesgue measurable on Ω for any θ, β ∈ R.

(c) The mapping x → C(x, 0, 0) ∈ H.

(30)

The normal compliance functions pν : Γ3 × R → R+ satisfy
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) There exists Lν > 0 such that
| pν(x, u1) − pν(x, u2) |≤ Lν | u1 − u2 | ∀u1, u2 ∈ R, a.e. x ∈ Γ3.

(b) the mapping x → pν(x, u) is measurable on Γ3 for any u ∈ R.

(c) pν(x, u) = 0 for all u ≤ 0, a.e. x ∈ Γ3.

(d) There exists p∗
ν > 0 such that pν(x, u) ≤ p∗

ν ∀u ∈ R, a.e. x ∈ Γ3.

(31)

The coefficient of friction μ : Γ3 × R
2 → R+ satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) There exists Lμ > 0 such that
| μ(x, a1, b1) − μ(x, a1, b1) |≤ Lμ(| a1 − a2 | + | b1 − b2 |)
∀a1, a2, b1, b2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x → μ(x, a, b, c) is Lebesgue measurable on Γ3, ∀a, b, c ∈ R.

(c) There exists μ∗ > 0 such that μ(x, a, b) ≤ μ∗ ∀a, b ∈ R, a.e. x ∈ Γ3.

(32)
The operator in the heat equation ψ : Ω × R

3 → R satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) There exists Lψ > 0 such that
| ψ(x, ε1, θ1, β1) − ψ(x, ε2, θ2, β2) |≤ Lψ(| ε1 − ε1 | + | θ1 − θ2 | + | β1 − β2 |)
∀ε1, ε2 ∈ R

3 ∀θ1, θ2, β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x → ψ(x, ε, θ, β) is Lebesgue measurable on Ω, ∀ε ∈ R
3 ∀θ, β ∈ R.

(c) ψ(x, ε, θ, β) ∈ L2(H).

(33)
For some ck > 0, for all (ξi ) ∈ R

3

Kc = (ki j ), ki j = k ji ∈ L∞(Ω), ki jξ jξi ≥ ckξiξi . (34)

For the initial gap function, wear diffusion coefficient, wear rate coefficient, velocity of the
foundation, heat source density, body forces and surface traction we make the following
assumptions

g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3. (35)

k ∈ L∞(Γ3), k ≥ k∗ > 0 a.e. on Γ3. (36)

κ ∈ L∞(Γ3), κ > 0 a.e. on Γ3. (37)
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v∗ : Γ3 × [0, T ] → R
3 is a continuous function. (38)

q ∈ L2(0, T ; L2(Ω)). (39)

f 0 ∈ C(0, T ; H), f 2 ∈ C(0, T ; L2(Γ2)
3). (40)

The boundary and initial data satisfy

u0 ∈ V , ζ0 ∈ L2(Γ3), β0 ∈ Y , θ0 ∈ L2(Ω), θR ∈ L2(0, T ; L2(Γ3)), ke ∈ L∞(Ω,R+).

(41)
We define the vector valued function f : [0, T ] → V and the bilinear forms a : H1

0 (Γ3) ×
H1
0 (Γ3) → R and b : H1(Ω) × H1(Ω) → R by

( f (t), v)V =
∫

Ω

f 0(t) · vdx +
∫

Γ2

f 2(t) · v da ∀v ∈ V . (42)

a(ζ, ξ) =
∫

Γ3

k∇ζ · ∇ξ da. (43)

b(ξ,ϕϕϕ) = k1

∫

Ω

∇ξ · ∇ϕϕϕ dx . (44)

Finally, the functional j : L2(Γ3)×V 3 → R and the operator F : H1
0 (Γ3)×V 3 → H−1(Γ3)

are given by

j(ζ, u, v,w) =
∫

Γ3

pν(uν − λζχ[Dω] − g)wνda

+
∫

Γ3

μ(ζ, | vτ − v∗ |)pν(uν − λζχ[Dω] − g) | wτ

− v∗ | da ∀ζ ∈ L2(Γ3), ∀u, v,w ∈ V . (45)

(F(ζ, u, v, w), ξ)H−1(Γ3)×H1
0 (Γ3)

=
∫

Γ3

κμ(ζ, | vτ − v∗ |)pν(uν − λζχ[Dω] − g)

R∗(| wτ − v∗ |)ξda ∀ζ, ξ ∈ H1
0 (Γ3), ∀u, v, w ∈ V .

(46)

Using standard arguments based on Green formulas given on (1) and (2), we obtain the
following formulation of the mechanical problem (6)–(19).

Problem PV . Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H,

a temperature field θ : [0, T ] → E , a damage field β : [0, T ] → H1(Ω) and a surface
particle density field ζ : [0, T ] → H1

0 (Γ3) such that

σ (t) = Aε(u̇(t)) + G(ε(u(t)), β(t)) − C(θ(t), β(t)) (47)

(σ (t), ε(v − u̇(t))H + j(ζ(t), u(t), u̇(t), v) − j(ζ(t), u(t), u̇(t), u̇(t))

≥ ( f (t), v − u̇(t))V ∀v ∈ V , (48)

β(t) ∈ Y , (β̇(t), ξ − β(t))L2(Ω) + b(β(t), ξ − β(t))

≥ (φ(ε(u(t)), θ(t), β(t)), ξ − β(t))L2(Ω) ∀ξ ∈ Y a.e. t ∈ (0, T ) , (49)

θ̇ (t) + K θ(t) = S(u̇(t), θ(t), β(t)) + Q(t) in E ′ a.e. t ∈ (0, T ), (50)
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(ζ̇ (t), ξ)H−1(Γ3)×H1
0 (Γ3)

+ a(ζ(t), ξ) = (F(ζ(t), u(t), u̇(t),
.
u(t)), ξ)H−1(Γ3)×H1

0 (Γ3)

∀ξ ∈ H1
0 (Γ3) a.e. t ∈ (0, T ) , (51)

u(0) = u0, β(0) = β0, ζ(0) = ζ0, θ(0) = θ0, (52)

where Q : [0, T ] → E ′, K : E → E ′ and S : V × E × L2(Ω) → E ′ are given by

(Q(t), η)E ′×E =
∫

Γ3

keθR(t)ηda +
∫

Ω

q(t)ηdx, (53)

(K τ, η)E ′×E =
3∑

i, j=1

∫

Ω

ki j
∂τ

∂x j

∂η

∂xi
dx +

∫

Γ3

keτ · ηda, (54)

(S(u, θ, β), η)E ′×E =
∫

Ω

ψ(u, θ, β)ηdx, (55)

for all u, v ∈ V , θ, η, τ ∈ E , β ∈ L2(Ω) and ζ ∈ L2(Γ3). Below in this section u1, u2, v1
and v2 represent elements of V , θ1, θ2 are elements of E and ζ1, ζ2 are in L2(Γ3). Finally,
we use (45), the assumption (31) on pν , the assumption (32) on μ, (24) and (25) to see that

j(ζ1, u1, v1, v2) − j(ζ1, u1, v1, v1) + j(ζ2, u2, v2, v1) − j(ζ2, u2, v2, v2)

≤ C2
Γ (Lν + μ∗Lν)|u1 − u2|V |v1 − v2|V + CΓ (Lνλ + μ∗Lνλ + p∗

ν Lμ)|ζ1
− ζ2|L2(Γ3)

|v1 − v2|V + p∗
ν LμC

2
Γ |v1 − v2|2V (56)

This inequality will be used in the following section.

4 An existence and uniqueness result

Our main existence and uniqueness result is the following.

Theorem 1 Let the assumptions (27)–(41)hold. There exists a constantC∗ > 0, dependingon
CΓ , mA and Lμ such that if p∗

ν < C∗ then problem PV has a unique solution {u, σ , β, θ, ζ }
satisfying

u ∈ C1(0, T ; V ), σ ∈ C(0, T ;H1), (57)

β ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), (58)

θ ∈ C(0, T ; L2(Ω)) ∩ L2(0, T ; E) ∩ W 1,2(0, T ; E ′), (59)

ζ ∈ L2(0, T ; H1
0 (Γ3)) ∩ C(0, T ; L2(Γ3)), ζ̇ ∈ L2(0, T ; H−1(Γ3)). (60)

We conclude that, under assumptions (27)–(41), the mechanical problem (6)–(19) has a
unique weak solution with the regularities (57)–(60).

The proof of this theorem will be carried out in several steps. We assume in what follows
that assumptions (27)–(41) are satisfied and moreover

C2
Γ p∗

ν Lμ < mA. (61)

First let α ∈ L2(0, T ; H−1(Γ3)), we solve the following parabolic equation.

Problem PVα . Find ζα : [0, T ] → H1
0 (Γ3) such that

(ζ̇α(t), ξ)H−1(Γ3)×H1
0 (Γ3)

+ a(ζα(t), ξ) = (α(t), ξ)H−1(Γ3)×H1
0 (Γ3)
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∀ξ ∈ H1
0 (Γ3), a.e. t ∈ (0, T ) , (62)

ζα(0) = ζ0. (63)

Lemma 1 There exists a unique solution of problem (62)–(63) satisfying

ζα ∈ L2(0, T ; H1
0 (Γ3)) ∩ C(0, T ; L2(Γ3)),

.

ζ α ∈ L2(0, T ; H−1(Γ3)). (64)

Moreover, if ζi is the solution toProblem PVα corresponding toα = αi ∈ L2(0, T ; H−1(Γ3)),
for i = 1, 2, then

|ζ1(t) − ζ2(t)|2L2(Γ3)
+

t∫

0

|∇ζ1(s) − ∇ζ2(s)|2L2(Γ3)2
ds

≤ C

t∫

0

|α1(s) − α2(s)|2H−1(Γ3)
ds ∀t ∈ [0, T ]. (65)

Proof The proof follows from an evolution equation result with linear continuous operators,
see for example [24].

Now let ρ ∈ L2(0, T ; E ′), we solve the following evolution equation.

Problem PVρ . Find θρ : [0, T ] → E such that

θ̇ρ(t) + K θρ(t) = ρ(t) in E ′, a.e. t ∈ (0, T ) , (66)

θρ(0) = θ0. (67)

We have the following result.

Lemma 2 Problem PVρ has a unique solution satisfying the regularity (59). Moreover, ∃C >

0 such that ∀ρi ∈ L2(0, T ; E ′), denote θρi = θi , i = 1, 2,

| θ1(t)−θ2(t) |2L2(Ω)
+

t∫

0

| θ1(s)−θ2(s) |2E ds ≤ C

t∫

0

| ρ1(s)−ρ2(s) |2E ′ ds ∀t ∈ [0, T ].

(68)

Proof The proof follows from classical first order evolution equation given in [2, 22]. Here
the Gelfand triple is given by E ⊂ L2(Ω) ⊂ E ′. The operator K is linear and coercive. By
Korn’s inequality, we have (K τ, τ )E ′×E ≥ C | τ |2E .

Next, for ∀ρ1, ρ2 ∈ L2(0, T ; E ′) we have for a.e. s ∈ (0, T )

(θ̇1(s) − θ̇2(s), θ1(s) − θ2(s))L2(Ω) + (K θ1(s) − K θ2(s), θ1(s) − θ2(s))E ′×E

= (ρ1(s) − ρ2(s), θ1(s) − θ2(s))E ′×E ,

then by integrating over (0, t) for t ∈ [0, T ], (68) follows by using (34) and (54).

In the third step, we let γ ∈ L2(0, T ; L2(Ω)) be given and consider the following varia-
tional problem for the damage field.

Problem PVγ . Find a damage field βγ : [0, T ] → H1(Ω) such that

βγ (t) ∈ Y , (
.

βγ (t), ξ − βγ (t))L2(Ω) + b(βγ (t), ξ − βγ (t))

≥ (γ (t), ξ − βγ (t))L2(Ω) ∀ξ ∈ Y a.e. t ∈ (0, T ) , (69)

βγ (0) = β0. (70)
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Lemma 3 Problem PVγ has a unique solution βγ such that

βγ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)). (71)

Moreover, if βi is the solution to Problem PVγ corresponding to γ = γi ∈ L2(0, T ; L2(Ω)),
for i = 1, 2, then

|β1(t)−β2(t)|2L2(Ω)
+

t∫

0

|β1(s)−β2(s)|2L2(Ω)
ds ≤ C

t∫

0

|γ1(s)−γ2(s)|2L2(Ω)
ds ∀t ∈ [0, T ].

(72)

Proof We use (44), β0 in (41) and a classical existence and uniqueness result on parabolic
inequalities (see for example [2, 22]).

Now we substitute (47) in (48) and we consider the obtained variational inequality with
ζ = ζα, θ = θρ and β = βγ . Let (z, h) ∈ C(0, T ; V )2 be given, we consider the following
variational problem.

Problem PVαργ zh . Find a displacement field vαργ zh : [0, T ] → V such that

(Aε(vαργ zh(t)), ε(v − vαργ zh(t)))H + j(ζα(t), z(t), h(t), v) − j(ζα(t), z(t), h(t), vαργ zh(t))

≥ ( f (t), v − vαργ zh(t))V − (G(ε(z(t)), βγ (t)), ε(v − vαργ zh(t)))H
+ (C(θρ(t), βγ (t)), ε(v − vαργ zh(t)))H ∀v ∈ V , t ∈ (0, T ) . (73)

Lemma 4 There exists a unique solution of problem (73) satisfying vαργ zh ∈ C(0, T ; V ).

Proof By using variational inequalities results (see for example [3]), we conclude that there
exists a unique solution vαργ zh(t) of problem (73) for t ∈ (0, T ). Now we show that vαργ zh :
[0, T ] → V is continuous. Let t1, t2 ∈ (0, T ), we denote vαργ zh(ti ) = vi , ζα(ti ) = ζi ,
θρ(ti ) = θi , βγ (ti ) = βi , z(ti ) = zi , h(ti ) = hi and f (ti ) = f i for i = 1, 2. We use (73) to
find

(Aε(v1) − Aε(v2), ε(v1 − v2))H ≤ j(ζ1, z1, h1, v2) − j(ζ1, z1, h1, v1)

+ j(ζ2, z2, h2, v1) − j(ζ2, z2, h2, v2)

+ (G(ε(z1), β1) − G(ε(z2), β2), ε(v1−v2))H
+ (C(θ1, β1) − C(θ2, β2), ε(v1−v2))H
+ ( f 1 − f 2, v1−v2)V .

Condition (22), the estimate (56) and assumptions (27), (28) and (30) give us

mA | v1−v2 |V ≤ (LG + C2
Γ (Lν + μ∗Lν)) | z1 − z2 |V

+ C2
Γ p∗

ν Lμ | h1 − h2 |V +(LG + LC ) | β1 − β2 |L2(Ω)

+ CΓ (λLν + μ∗Lνλ + p∗
ν Lμ) | ζ1 − ζ2 |L2(Γ3)

+ | f 1 − f 2 |V +LC | θ1 − θ2 |E , (74)

which implies that vαργ zh : [0, T ] → V is a continuous function.
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We now consider the operator Λαργ z : C(0, T ; V ) → C(0, T ; V ) defined by

Λαργ zh = vαργ zh . (75)

We have the following result.

Lemma 5 The operator Λαργ z has a unique fixed point hαργ z ∈ C(0, T ; V ).

Proof Let h1, h2 ∈ C(0, T ; V ) and let vi denote the solution of (73) for h = hi , i.e. vi =
vαργ zhi , i = 1, 2. Using the definition of the operator Λαργ z given in (75) we find that

| Λαργ zh1(t) − Λαργ zh2(t) |V=| v1(t) − v2(t) |V ∀t ∈ [0, T ] .

We use arguments like those used for the estimate (74) to obtain

mA | v1(t) −v2 (t) |V≤ C2
Γ p∗

ν Lμ | h1(t) − h2(t) |V ∀t ∈ [0, T ] .

The two previous inequalities and the assumption (61) imply that the operator Λαργ z is a
contraction on the Banach space C(0, T ; V ).

In the sequel let hαργ z be the fixed point obtained in Lemma 5 and let vαργ z ∈ C(0, T ; V )

be the function defined by
vαργ z = vαργ zhαργ z . (76)

We have Λαργ zhαργ z = hαργ z and

vαργ z = hαργ z . (77)

We take h = hαργ z in (73) and we use (76) and (77), to see that vαργ z satisfies

(Aε(vαργ z(t)), ε(v − vαργ z(t)))H + j(ζα(t), z(t), vαργ z(t), v)

− j(ζα(t), z(t), vαργ z(t), vαργ z(t))

≥ ( f (t), v − vαργ z(t))V − (G(ε(z(t)), βγ (t)), ε(v − vαργ zh(t)))H
+ (C(θρ(t), βγ (t)), ε(v − vαργ zh(t)))H ∀v ∈ V , t ∈ (0, T ) . (78)

Let now uαργ z ∈ C1(0, T ; V ) be the function defined by

uαργ z(t) =
t∫

0

vαργ z(s)ds + u0 ∀t ∈ [0, T ]. (79)

We define the operator Λαργ : C(0, T ; V ) → C(0, T ; V ) by

Λαργ z = uαργ z . (80)

We have the following result.

Lemma 6 The operator Λαργ has a unique fixed point zαργ ∈ C(0, T ; V ).

Proof Let z1, z2 ∈ C(0, T ; V ) and denote vi = vαργ zi , ui = uαργ zi for i = 1, 2. We use
(78) and arguments like those used for the estimate (74) in the proof of Lemma 4 to have

(mA − C2
Γ p∗

ν Lμ) |v1(s) − v2(s)|V ≤ (LG + C2
Γ (Lν + μ∗Lν)) |z1(s) − z2(s)|V , (81)

for all s ∈ [0, T ]. Using now (80)–(81) we obtain

∣∣Λαργ z1(t) − Λαργ z2(t)
∣∣
V ≤ C

t∫

0

|z1(s) − z2(s)|V ds,
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for all t ∈ [0, T ] and C is a positive constant. By reiterating this inequality we obtain that a
power of Λαργ is a contraction mapping on C(0, T ; V ), which concludes the proof.

We are now ready to prove the unique solvability of the variational problem.

Problem PVαργ . Find a displacement field uαργ : [0, T ] → V such that

(Aε(u̇αργ (t)), ε(v − u̇αργ (t)))H + j(ζα(t), uαργ (t), u̇αργ (t), v)

− j(ζα(t), uαργ (t), u̇αργ (t), u̇αργ (t)) ≥ ( f (t), v − u̇αργ (t))V

− (G(ε(uαργ (t)), βγ (t)), ε(v − u̇αργ (t)))H + (C(θρ(t), βγ (t)), ε(v − u̇αργ (t)))H
∀v ∈ V , t ∈ (0, T ) , (82)

uαργ (0) = u0. (83)

Lemma 7 There exists a unique function uαργ ∈ C1(0, T ; V ) satisfying (82)–(83).

Proof Let zαργ ∈ C(0, T ; V ) be the fixed point guaranteed by Lemma 6 and let uαργ ∈
C1(0, T ; V ) be defined by (79), for z = zαργ . We have u̇αργ = vαργ zαργ and, writing (78)
for z = zαργ , we find

(Aε(u̇αργ (t)), ε(v − u̇αργ (t)))H + j(ζα(t), zαργ (t), u̇αργ (t), v)

− j(ζα(t), zαργ (t), u̇αργ (t), u̇αργ (t))

≥ ( f (t), v − u̇αργ (t))V − (G(ε(zαργ (t)), βγ (t)), ε(v − u̇αργ (t)))H
+ (C(θρ(t), βγ (t)), ε(v − u̇αργ (t)))H ∀v ∈ V , t ∈ (0, T ) . (84)

Inequality (82) follows now from (84) and (75) since uαργ = zαργ . Moreover, (83) results
from (79). We conclude that uαργ is a solution of (82)–(83). For the uniqueness, let uαργ be
the solution of (82)–(83) and let u∗

αργ be any other solution such that u∗
αργ ∈ C1(0, T ; V ).

Let v∗
αργ = u̇∗

αργ . Using (82) we obtain that v∗
αργ satisfies

(Aε(v∗
αργ (t)), ε(v − v∗

αργ (t)))H + j(ζα(t), u∗
αργ (t), v∗

αργ (t), v)

− j(ζα(t), u∗
αργ (t), v∗

αργ (t), v∗
αργ (t))

≥ ( f (t), v − v∗
αργ (t))V − (G(ε(u∗

αργ (t)), βγ (t)), ε(v − v∗
αργ (t)))H

+ (C(θρ(t), βγ (t)), ε(v − v∗
αργ (t)))H ∀v ∈ V , t ∈ (0, T ) . (85)

This inequality has a form of (78) with z = u∗
αργ and, therefore, it follows from (73) that

it has a unique solution, already denoted by vαργ u∗
αργ

. We conclude that v∗
αργ = vαργ u∗

αργ
.

Since v∗
αργ = u̇∗

αργ it follows from (79) that

u∗
αργ (t) =

t∫

0

vαργ u∗
αργ

(s)ds + u0 ∀t ∈ [0, T ]. (86)

From (79) and (86) we obtain u∗
αργ = uαργ u∗

αργ
, which shows that u∗

αργ is a fixed point of
the operator Λαργ defined by (80). Using now Lemma 5 we deduce that

u∗
αργ = z∗αργ . (87)

The uniqueness of the problem (82)–(83) is now a consequence of the fact that uαργ = zαργ

and equality (87).

Next, we need to investigate the properties of the operator F : H1
0 (Γ3) × E × V 3 →

H−1(Γ3) given by (46).
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Lemma 8 The following inequality holds

|F(ζ1, u1, v1,w1) − F(ζ2, u2, v2,w2)|H−1(Γ3)

≤ LF (| ζ1 − ζ2 |H1
0 (Γ3)

+ | u1 − u2 |V + | v1 − v2 |V + | w1 − w2 |V )

∀ζ1, ζ2 ∈ H1
0 (Γ3), ∀u1, u2, v1, v2,w1,w2 ∈ V , (88)

where

LF =| κ |L∞(Dω) CΓ max
{
μ∗ p∗

νCΓ , μ∗LνRCΓ , (Lμ p∗
ν + λμ∗Lν)RC̃Γ , p∗

ν LμRCΓ

}
.

Proof The estimate (88) follows from the definition (46) on F , the assumptions (31) on pν ,
(32) on μ, (24), (25), (26) and the definition of R∗.

Now we define the operatorΛ : L2(0, T ; H−1(Γ3)× E ′ × L2(Ω)) → L2(0, T ; H−1(Γ3)×
E ′ × L2(Ω)) by

Λ(α, ρ, γ ) = (Λ1(α, ρ, γ ),Λ2(α, ρ, γ ),Λ3(α, ρ, γ )), (89)

such that

Λ1(α(t), ρ(t), γ (t)) = F(ζα(t), u(t), u̇(t), u̇(t)), (90)

Λ2(α(t), ρ(t), γ (t)) = S(u̇(t), θρ(t), βγ ) + Q(t), (91)

Λ3(α(t), ρ(t), γ (t)) = φ(ε(u(t)), θρ(t), βγ (t)). (92)

Lemma 9 The operator Λ has a unique fixed point (α, ρ, γ ) ∈ L2(0, T ; H−1(Γ3) × E ′ ×
L2(Ω)) such that Λ(α, ρ, γ ) = (α, ρ, γ ).

Proof Let (αi , ρi , γi ) ∈ L2(0, T ; H−1(Γ3) × E ′ × L2(Ω)) i = 1, 2. Denote uαiρiγi = ui ,
u̇αiρiγi = vi , ζαi = ζi , θρi = θi and βγi = βi for i = 1, 2. Using (90)–(92), (29), (30), (31),
(32), (33), the definition of R∗ and Lemma 8 we deduce that

| (Λ1(α1, ρ1, γ1) − Λ1(α2, ρ2, γ2), ξ) |2
H−1(Γ3)×H1

0 (Γ3)

≤
∫

Γ3

|F(ζ1, u1, u̇1, u̇1) − F(ζ2, u2, u̇2, u̇2)|2H−1(Γ3)
| ξ |2

H1
0 (Γ3)

da

≤ C(| ζ1 − ζ2 |2L2(Γ3)
+ | u1 − u2 |2V + | u̇1 − u̇2 |2V ) | ξ |2L2(Γ3)

.

| (Λ2(α1, ρ1, γ1) − Λ2(α2, ρ2, γ2), η) |2E ′×E

≤
∫

Ω

|(ψ(u̇1, θ1, β1) − ψ(u̇2, θ2, β2)
)
η|2dx

≤ C(| u̇1 − u̇2 |2V + | θ1 − θ2 |2L2(Ω)
+|β1 − β2|2L2(Ω)

) | η |2L2(Ω)
.

| Λ3(α1, ρ1, γ1) − Λ3(α2, ρ2, γ2) |2L2(Ω)
=| φ(ε(u1), θ1, β1) − φ(ε(u2), θ2, β2) |2L2(Ω)

≤ C(|u1 − u2|2V + |θ1 − θ2|2L2(Ω)
+ |β1 − β2|2L2(Ω)

).

Hence
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| Λ(α1, ρ1, γ1) − Λ(α2, ρ2, γ2) |2H−1(Γ3)×E ′×L2(Ω)

≤ C(|ζ1 − ζ2|2L2(Γ3)
+ |u1 − u2|2V+ | u̇1 − u̇2 |2V + | θ1 − θ2 |2L2(Ω)

+|β1 − β2|2L2(Ω)
).

(93)

Since u1(0) = u2(0) = u0 we have

| u1(t) − u2(t) |2V≤
t∫

0

| v1(s) − v2(s) |2V ds. (94)

Moreover, from (82) we obtain that

(Aε(v1) − Aε(v2), ε(v1 − v2))H ≤ j(ζ1, u1, v1, v2) − j(ζ1, u1, v1, v1)

+ j(ζ2, u2, v2, v1) − j(ζ2, u2, v2, v2)

+ (C(θ1, β1) − C(θ2, β2), ε(v1 − v2))H
+ (G(ε(u1), β1) − G(ε(u2), β2), ε(v1 − v2))H.

(95)

The assumption (27) on A, the assumption (61) and the estimate (56) on j give us

| v1 − v2 |2V≤ C
(
| u1 − u2 |2V + | ζ1 − ζ2 |2L2(Γ3)

+ | θ1 − θ2 |2E +|β1 − β2|2L2(Ω)

)
.

(96)
From (94), (96) and by using Gronwall inequality we see that

| v1 − v2 |2V≤ C
(
| ζ1 − ζ2 |2L2(Γ3)

+ | θ1 − θ2 |2E +|β1 − β2|2L2(Ω)

)
. (97)

From (93), (94) and (97) we find that

| Λ(α1(t), ρ1(t), γ1(t)) − Λ(α2(t), ρ2(t), γ2(t)) |2H−1(Γ3)×E ′×L2(Ω)

≤ C

(
|ζ1(t) − ζ2(t)|2L2(Γ3)

+ | θ1(t) − θ2(t) |2E + | θ1(t) − θ2(t) |2L2(Ω)
+|β1(t) − β2(t)|2L2(Ω)

)

+ C

( t∫

0

|∇ζ1(s) − ∇ζ2(s)|2L2(Γ3)2
ds +

t∫

0

|θ1(s) − θ2(s)|2Eds +
t∫

0

|β1(s) − β2(s)|2L2(Ω)
ds

)

≤ C

(
|ζ1(t) − ζ2(t)|2L2(Γ3)

+
t∫

0

|∇ζ1(s) − ∇ζ2(s)|2L2(Γ3)2
ds + |θ1(t) − θ2(t)|2L2(Ω)

+
t∫

0

|θ1(s) − θ2(s)|2Eds + |β1(t) − β2(t)|2L2(Ω)
+

t∫

0

|β1(s) − β2(s)|2L2(Ω)
ds

)
.

Using estimates (64), (68) and (72), we obtain

| Λ(α1(t), ρ1(t), γ1(t)) − Λ(α2(t), ρ2(t), γ2(t)) |2
H1
0 (Γ3)×E ′×L2(Ω)

≤ C

t∫

0

( | α1(s) − α2(s) |2H−1(Γ3)
+ | ρ1(s) − ρ2(s) |2E ′ + | γ1(s) − γ2(s) |2L2(Ω)

)
ds.

≤ C

t∫

0

| (α1(s), ρ1(s), γ1(s)) − (α2(s), ρ2(s), γ2(s)) |2H−1(Γ3)×E ′×L2(Ω)
ds.
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Reiterating this inequality n times leads to

| Λn(α1, ρ1, γ1) − Λn(α2, ρ2, γ2) |2L2(0,T ;H−1(Γ3)×E ′×L2(Ω))

≤ (CT )n

n! | (α1, ρ1, γ1) − (α2, ρ2, γ2) |2L2(0,T ;H−1(Γ3)×E ′×L2(Ω))
.

Thus, for n sufficiently large, Λn is a contraction on the Banach space L2(0, T ; H−1(Γ3) ×
E ′ × L2(Ω)), and so Λ has a unique fixed point.

Next, we show the existence of a solution to problem PV .
Let (α∗, ρ∗, γ ∗) be the fixed point of the operator Λ defined by (89)–(92) and obtained

in lemma 9.
Let ζα∗ be the solution to problem PVα for α = α∗ (see Lemma 1), let θρ∗ be the solution

to problem PVρ for ρ = ρ∗ (see Lemma 2) and let βγ ∗ be the solution to problem PVγ for
γ = γ ∗ (see Lemma 3). Denote u∗ = uα∗ρ∗γ ∗ , u̇∗ = u̇α∗ρ∗γ ∗ , ζ ∗ = ζα∗ , θ∗ = θρ∗ and
β∗ = βγ ∗ .

Λ1(α
∗, ρ∗, γ ∗) = α∗ = F(ζ ∗, u∗, u̇∗, u̇∗),

Λ2(α
∗, ρ∗, γ ∗) = ρ∗ = S(u̇∗, θ∗, β∗) + Q,

Λ3(α
∗, ρ∗, γ ∗) = γ ∗ = φ(ε(u∗), θ∗, β∗).

u∗ = uα∗ρ∗γ ∗ is a solution to the problem PVαργ for α = α∗, ρ = ρ∗ and γ = γ ∗

(Aε(u̇∗(t)), ε(v − u̇∗(t)))H + j(ζ ∗(t), u∗(t), u̇∗(t), v)

− j(ζ ∗(t), u∗(t), u̇∗(t), u̇∗(t)) + (G(ε(u∗(t)), β∗(t)), ε(v − u̇∗(t)))H
− (C(θ∗(t), β∗(t)), ε(v − u̇∗(t)))H ≥ ( f (t), v − u̇∗(t))V ∀v ∈ V , t ∈ (0, T ) ,

(98)

u∗(0) = u0, (99)

and σ ∗ = Aε(u̇∗) + G(ε(u∗), β∗) − C(θ∗, β∗). The uniqueness of the solution is a con-
sequence of the uniqueness of the solution of problems PVαργ , PVα , PVρ , PVγ and the
uniqueness of the operator Λ.
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