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Abstract
In this work, the existence and the controllability of impulsive stochastic integro-differential
equations with infinite delay are investigated. Unlike previous papers, the result of this one
relies upon some weaker assumptions using a recently defined measure of noncompactness,
resolvent operator solution in sense of Grimmer and Mönch fixed point theorem. The semi-
group is only required to be strongly continuous. At the end, examples are presented to
illustrate the obtained result.

Keywords Hausdorff measure of noncompactness · Impulsive stochastic integro-differential
equations · Controllability · Infinite delay · Resolvent operator · Fixed point theory

Mathematics Subject Classification 60H10 · 34A37 · 47G20 · 47H10

1 Introduction

Generally, ordinary differential equations are most commonly used to describe real-world
phenomena. Because of the uncertainty, stochastic differential equations are widely spread
in almost all applied sciences, as they are more convenient and natural than deterministic
models (for the theory of stochastic differential equations in infinite dimensional space see
[5, 23]). Simultaneously, nature can encounter some unexpected disturbances that might
affect the system for a short time such as earthquakes and disasters, this can be described as
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impulsive differential equations (see themonographs in [4, 20, 25]).As a consequence, impul-
sive stochastic differential equations have received extensive attention. In [14] Guendouzi
and Khadem discussed the existence of mild solutions for impulsive fractional stochastic
equations with infinite delay by Sadovskii’s fixed point theorem. In [6] the existence and
exponential stability results have been established for impulsive neutral stochastic functional
differential equations driven by fractional Brownian motion with infinite delay using an
analytic semigroup and Mönch fixed point theorem. In [11] the existence and mean-square
exponential stability of mild solutions for impulsive stochastic partial differential equations
with finite delay have been discussed by employing Hausdorff measures of noncompactness
and Mönch fixed point.

Additionally, the authors also focused on the controllability of impulsive stochastic dif-
ferential equations. Whatever the exact or approximate controllability, the purpose is to
determine whether or not it is possible to find a control function that steers the system towards
a prescribed final state. In the infinite-dimensional systems, it is noteworthy that the exact
controllability using a compact semigroup is invalid, instead, the approximate controllability
can be achieved (see [1, 2, 21, 27]).

In recent years, there is a great interest in integral differential equations related to the
resolvent operators, the study developed by Grimmer [12] frequently used in heat conduction
in material with memory and reaction-diffusion problems. The resolvent operator does not
satisfy the algebraic property of the semigroup operator due to a memory term. In [22]
Lizama and Pozo established the existence results of mild solutions for a semilinear integro-
differential equation when the resolvent operator is norm continuous. Later on, Ezzinbi et al.
[9] proved the existence of mild solutions when the norm continuity of the resolvent operator
is equivalent to the norm continuity of the semigroup operator. Recently, Ezzinbi et al. [10]
ensured the existence results of mild solutions with only the fact that A generates a strongly
continuous semigroup. The proof is based on a new measure of noncompactness and some
estimations related to integral operators. First we focus on the existence of mild solutions for
stochastic impulsive differential equations with infinite delay of the form:

⎧
⎪⎪⎨

⎪⎪⎩

du(t) = [
Au(t) +

∫ t

0
ϒ(t − s)u(s)ds

]
dt + f (t, ut ) dW(t), t �= ti , t ∈ [0, a],

u(t+i ) = u(t−i ) + Ji
(
u(ti )

)
, i = 1, 2, . . . , n,

u(t) = ξ(t) ∈ B.

(1)

Here, the state u(·) takes values in a real separable Hilbert space
(
H, (·, ·)H, ‖ · ‖H

)
.

A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup
{T (t), t ≥ 0}.ϒ is a closed linear operator onHwith domain D(A) ⊂ D(ϒ). {W(t) : t ≥ 0}
is a given K-valued Brownian motion, and f ,Ji are appropriate functions to be specified
latter. 0 = t0 < t1 < . . . < ti < ti+1 = a are impulse points, and u(t+i ), u(t−i ) represent the
right and left limits ofu(t) at time t = ti , respectively, the history function ut : (−∞, 0] → H

defined by ut (θ) = u(t+θ) for θ ∈ (−∞, 0], belong to some abstract phase spaceB defined
axiomatically, and the initial data {ξ(t), t ∈ (−∞, 0]} is anF0 measurable,B-valued random
variable independent of W.

Our goal is to ensure the existence and the exact controllability using a new measure
of noncompactness without imposing any restrictive assumptions. The resolvent operator is
neither compact nor equicontinuous.

This paper is organized as follows. In Sect. 2, we give some necessary definitions con-
cerning Brownian motion, resolvent operator and some estimations to be used in the rest of
this paper. In Sect. 3, we prove the existence of mild solutions for our system (1). In Sect.
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4, we discuss the exact controllability. At the end, examples are provided to illustrate the
obtained results.

2 Preliminaries

Let
(
H, (·, ·)H, ‖ · ‖H

)
, and

(
K, (·, ·)K, ‖ · ‖K

)
be two real separable Hilbert spaces.

L(K,H) denotes the space of all linear bounded operators from K into H. Let (�,F,P)

be a complete probability space equipped with a normal filtration {Ft }t≥0 satisfying the
usual conditions (i.e it is right continuous increasing family and F0 contains all P-null sets).
Suppose that {W(t) : t ≥ 0} is a Q-Wiener process with a finite trace nuclear covariance
operator Q ≥ 0 defined on a complete filtered probability space (�,F, {Ft }t≥0,P). We
assume that there exists a complete orthonormal system {ek}∞k=1 in K, a bounded sequence
of nonnegative real numbers {λk}∞k=1 such that Qek = λkek , k ∈ N, and a sequence βk of
independent Brownian motions such that

W(t) =
∞∑

k=1

√
λkβkek, t ∈ [0, a],

and Ft = FW
t , where FW

t is the σ -algebra generated by {W(t) : 0 ≤ s ≤ t}. We define
L0
2 = L2(Q1/2K,H) the space of all Hilbert-Schmidt operators from Q1/2K toH, with the

norm ‖ψ‖2
L0
2

= Tr
(
(ψQ1/2)(ψQ1/2)∗

)
, for any ψ ∈ L0

2. Clearly, for any bounded operator

ψ ∈ L(K,H), we have

‖ψ‖2
L0
2

= Tr(ψQψ∗) =
∞∑

k=1

‖√λkψek‖2.

The collection of all strongly measurable p−integrable, H valued random variables
denoted by Lp(�,H) is a Banach space equipped with the norm

‖u(·)‖Lp = (
E
∥
∥u(·, W)

∥
∥p)1/p

,

where E(u) = ∫

�
u(W)dP(W). And the subspace Lp

0 (�,H) is given by

Lp
0 (�,H) =

{
f ∈ Lp(�,H) f is F0-measurable

}
.

We denote by C([0, a],Lp(�,H)
)
the Banach space of all continuous, Ft -adapted

measurable process from [0, a] into Lp(�,H), satisfying supt∈[0,a] E‖u(t)‖p < ∞.
For the infinite delay case, we employ the axiomatic definition of the phase spaceB intro-

duced by Hale and Kato [18], with an appropriate change to treat the impulsive differential
equations (see [15]).

Definition 1 [18] LetB be a linear space ofF0-measurable functionsmapping from (−∞, 0]
into H, endowed with a seminorm ‖ · ‖B, satisfying the following axioms:

(A) if u : (∞, σ + a] → H, a > 0, such that u |[σ,σ+a]∈ PC([σ, σ + a],H)
and u0 ∈ B,

then for every t ∈ [σ, σ + a], the following conditions hold:

1. ut ∈ B.
2. ‖u(t)‖H ≤ H‖ut‖B.
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3. ‖ut‖B ≤ K (t − σ) sup{‖u(s)‖, σ ≤ s ≤ t} + M(t − σ)‖uσ ‖B, where H > 0 is
a constant. K , M : [0,∞) → [1,∞), K is continuous, M is locally bounded, and
H , K , M are independent of u(·).

(B) The spaceB is complete.

Lemma 1 [28] Let u : (−∞, a] → H be an Ft -adapted measurable process, such that the
F0-adapted process u(t) = ξ(t) ∈ Lp(�,B), and u |[0,a]∈ PC([0, a],H)

, then

‖ us ‖B ≤ Ma E‖ ξ ‖B + Ka sup
0≤s≤a

E‖ u(s) ‖H,

where Ma = sup
{
M(t), 0 ≤ t ≤ a

}
, Ka = sup

{
K (t), 0 ≤ t ≤ a

}
.

Now, we define the space of all piecewise continuous functions PC([0, a],H) formed
by all Ft -adapted measurable, H valued stochastic process

{
u(t) : [0, a] → H, u(t) is

continuous everywhere except a finite number of points t = ti , at which u(t−i ) = u(ti ) and
u(t+i ) exist, for i = 1, 2, . . . , n

}
endowed with the norm

‖ u ‖PC =
(
sup

0≤t≤a
E‖ u(t) ‖p

H

) 1
p
.

Now, let us recall the general definition of measure of noncompactness.

Definition 2 [3, 19] A functionψ defined on the set of all bounded subsets of a Banach space
X with values inR

+ is called a measure of noncompactness (MNC) on X , if for any bounded
subset D ⊂ X , we have ψ(coD) = ψ(D), where coD stands for the closed convex hull of
D.

Definition 3 [19] A MNC is called

• monotone: if for any bounded subset D,C ⊂ X , D ⊂ C ⇒ ψ(D) ≤ ψ(C),
• nonsingular: if ψ(D ∪ a) = ψ(D), for any a ∈ X and D ⊂ X ,
• regular: ψ(D) = 0 if and only if D is relatively compact in X .

One of the most known measures of noncompactness that fulfills all the above properties
is the Hausdorff measure of noncompactness defined by

χ(D) = in f
{
ε > 0, D has a finite cover by balls of radius ε

}
.

Moreover, it enjoys the following additional properties:

Lemma 2 [3]

• χ(λD) =| λ | χ(D), for any λ ∈ R.
• χ(D + C) ≤ χ(D) + χ(C).
• if (Vn)∞n=1 is a nondecreasing sequence of bounded closed nonempty subsets of X and

limn→+∞ χ(Vn) = 0, then
⋂∞

n=1 Vn is nonempty and compact in X.
• if Q : X → X is Lipshitz continuous map with constant κ , then χ(Q(D)) ≤ κχ(D), for

any bounded subset D of X.

Now, let us introduce other examples ofmeasures of noncompactness thatwas investigated
in [19].

For every bounded subset D ⊂ C([0, a], X), we define

modC(D) = sup
{
modC

(
D(t)

)
t ∈ [0, a]},
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where

modC
(
D(t)

) = lim
δ→0

sup
x∈D

{
sup

{| x(t2) − x(t1) |: t1, t2 ∈ (t − δ, t + δ)
}}

,

and

χ∞(D) = sup
{

χ
(
D(t)

) : t ∈ [0, a]},
where χ denotes the Hausdorff measure of noncompactness in X . and since we miss the full-
ness in suchMNCs, we define the functionψ on the family of bounded subsets in C([0, a], X)

by taking

ψ(D) = χ∞(D) + modC(D),

Then, ψ is a full monotone and nonsingular MNC on the space C([0, a], X). for more
details we refer to [17, 19].

Theorem 1 [10] Let � be a function from R
+ into L(H). Suppose that � is continuous for

the strong operator topology. Let D be a bounded subset of H, and
{
�(·)u : u ∈ D

} ⊂
C(R+,H). Then, for any t ≥ 0, we have

modC
(
�(t)D

) ≤ ω
(
�(t)

)
χ(D).

In particular, for any t ∈ [0, a], we have
modC

(
�(t)D

) ≤ 2Mχ(D),

where

ω
(
�(t)

) = lim
δ→0

sup
‖x‖≤1

{ ‖�(t2)x − �(t1)x‖H : t1, t2 ∈ (t − δ, t + δ)
}
,

and
M := sup

t∈[0,a]
‖�(t)‖L(H) < ∞. (2)

Lemma 3 [5] For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable process �(·),

we have

sup
s∈[0,t]

E

∥
∥
∥
∥

∫ s

0
�(u)dW(u)

∥
∥
∥
∥

2p

H

≤ (
p(2p − 1)

)p
(∫ t

0

(
E

∥
∥�(s)

∥
∥2p
L0
2

) 1
p
ds

)p

, t ≥ 0,

in the rest of our paper, we denote by Cp = (
p(p − 1)/2

) p
2 .

Lemma 4 [26] If�(·) ⊂ Lp([0, a],L0
2(K,H)),W(t) is a Q-Wiener process. For any p ≥ 2,

the Hausdorff measure of noncompactness χ satisfies

χ
(∫ t

0
�(s) dW(s)

)
≤

√

a
p

2
(p − 1)χ

(
�(t)

)
,

where
∫ t

0
�(s) dW(s) =

{∫ t

0
x(s) dW(s) : for all x ∈ �, t ∈ [0, a]

}

.
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Theorem 2 [24] Let D ⊂ H be a closed, convex subset of a Banach space H, with 0 ∈ H.
Suppose that there is a continuous map T : D → D, satisfies Mönch’s condition, that is

D0 ⊆ D countable, D0 ⊆ (
co{0} ∪ T (D0)

) �⇒ D0 is relatively compact.

Then T has at least one fixed point in D.

In order to obtain our results, we need to recall some details about resolvent operators for
integro-differential equations.

In what follows, H is a Banach space, A and ϒ(t) are closed linear operators on H . Let
K be the Banach space D(A) equipped with the graph norm defined by

‖y‖K = ‖Ay‖ + ‖y‖, y ∈ K.

The notation C(R+,K) stands for the space of all continuous functions from R
+ intoK.

Let us consider the following Cauchy problem

u
′
(t) = Au(t) +

∫ t

0
ϒ(t − s)u(s)ds, t ≥ 0,

u(0) = u0 ∈ H. (3)

Definition 4 ([12]): A resolvent operator for the problem (3) is a bounded linear operator
R(t) ∈ L(H), for t ≥ 0, having the following properties:

(i) R(0) = I (The Identity operator of H) and ‖R(t)‖ ≤ Meβt for some constants
M > 0 and β ∈ R.

(ii) For each u ∈ H, R(t)u is strongly continuous for t ≥ 0.
(iii) For u ∈ K, R(·)u ∈ C1(R+,H) ∩ C(R+,K) and

R
′
(t)u = AR(t)u +

∫ t

0
ϒ(t − s)R(s)u ds

= R(t)Au +
∫ t

0
R(t − s)ϒ(s)u ds, for t ≥ 0.

Next, we make the following hypotheses:

H(1) The operator A is the infinitesimal generator of a strongly continuous semigroup
(T (t))t≥0 onH.

H(2) For all t ≥ 0, ϒ(t) is a closed linear operator from D(A) to H and ϒ(t) ∈
L(K,H). For any u ∈ K, the map t → ϒ(t)u is bounded, differentiable and the
derivative t → ϒ

′
(t)u is bounded and uniformly continuous on R

+.

Theorem 3 ([12]): Assume that H(1) − H(2) hold. Then there exists a unique resolvent
operator to the Cauchy problem (3).

For more details concerning resolvent operators of integral equations we refer to [7, 12,
13]. Now we can define a mild solution of our problem 1.

Definition 5 A Ft -adapted stochastic process {u(t) t ∈ (−∞, a]} is called a mild solution
of (1), if u0 = ξ ∈ B, u |[0,a]∈ PC and

u(t) = R(t)ξ(0) +
∫ t

0
R(t − s) f (s, us) dWs +

∑

0<ti<t

R(t − ti )Ji
(
u(t−i )

)
,
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3 Existence of mild solutions results

The following assumptions will be required throughout this paper

H(3) The nonlinear function f : [0, a] × B → L0
2(K,H) satisfying the following

conditions:

1. The function t → f (t, u) is strongly measurable for any u ∈ B.
2. The function u → f (t, u) is continuous for any t ∈ [0, a].
3. There exists a positive constant r > 0, a function m ∈ L1

([0, a], R
+)

, and a
nondecreasing continuous function ϕ f : R

+ → R
+ such that

E
( ‖ f (t, u)‖p

L0
2

) ≤ m(t)ϕ f (‖x‖p
B) lim

r→+∞ inf
ϕ f (r)

r
= 0 < ∞,

4. there exists a function ζ f ∈ L1
([0, a], R

+)
such that for any bounded set D ⊂ B

χ( f (t, D)) ≤ ζ f (t) sup
−∞≤θ≤0

χ
(
D(θ)

)
.

H(4) The impulsive function Ji : H → H is continuous and for all u ∈ H

1. there exist Ni > 0, and for some positive number r > 0, we have

E‖Ji (u)‖p ≤ Ni (‖u‖p
B) lim

r→+∞ inf
Ni (r)

r
= 0 < ∞,

2. there exist constants σi > 0, such that for any bounded set D ⊂ B

χ(Ji (D)) ≤ σi sup
−∞≤θ≤0

χ
(
D(θ)

)
.

Theorem 4 Assume that the hypotheses H(1) - H(4) are satisfied. Then the impulsive
stochastic integro-differential problem (1) has at least one mild solution, provided that

l0 = M
(
2

√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) + 3
n∑

i=1

σi

)
< 1. (4)

Proof Let us consider the space �a of all functions u : (−∞, a] → H such that u0 ∈ B,
and the restriction u |[0,a]∈ PC, with the seminorm ‖ · ‖a , defined by

‖ u ‖a = ‖ u0‖B +
(
sup

0≤t≤a
E‖ u(t) ‖p

H

) 1
p
, u ∈ �a .

Now, consider the operator S : �a → �a defined by

(Su)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ(t), t ∈ (−∞, 0],
R(t)ξ(0) +

∫ t

0
R(t − s) f (s, us) dWs

+
∑

0<ti<t

R(t − ti )Ji
(
u(t−i )

)
, t ∈ [0, a].

(5)

For ξ ∈ B, we define ξ̃ by

ξ̃ (t) =
{

ξ(t), t ∈ (−∞, 0],
R(t)ξ(0), t ∈ [0, a].
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Then, ξ̃ ∈ �a , we can decompose u(t) = z(t)+ ξ̃ (t), t ∈ (−∞, a], if and only if z0 = 0,
and

z(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ (−∞, 0],
∫ t

0
R(t − s) f

(
s, zs + ξ̃s

)
dWs

+
∑

0<ti<t

R(t − ti )Ji
(
z(t−i ) + ξ̃ (t−i )

)
, t ∈ [0, a].

Let �0
a = {

z ∈ �a z0 = 0 ∈ B
}
, for any z ∈ �a ,we have

‖ z ‖a = ‖ z0‖B +
(
sup

0≤t≤a
E‖ z(t) ‖p

H

) 1
p =

(
sup

0≤t≤a
E‖ z(t) ‖p

H

) 1
p
.

Thus,
(
�0
a, ‖ · ‖�0

a

)
is a Banach space.

Let T : �0
a → �0

a be the operator defined as follows

(T z)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ (−∞, 0],
∫ t

0
R(t − s) f

(
s, zs + ξ̃s

)
dWs

+
∑

0<ti<t

R(t − ti )Ji
(
z(t−i ) + ξ̃ (t−i )

)
, t ∈ [0, a].

(6)

Clearly, It turns out that the operator S has a fixed point is equivalent to T has one. So we
only need to prove that T has one. This will be achieved in several Lemmas.

For r > 0, let �0
r = {

z ∈ �0
a E‖z‖p

H ≤ r
}
.

Clearly. �0
r is a bounded closed and convex set, and for any z ∈ �0

r , and from Lemma 1,
we have

∥
∥ zs + ξ̃s

∥
∥p
B

≤ 2p−1
(
‖ zs ‖p

B + ‖ ξ̃s ‖p
B

)

≤ 4p−1
[

Mp
a E‖ z0 ‖p

B + K p
a

(
sup

0≤t≤a
E‖ z(t) ‖p

H

)

+Mp
a E‖ ξ0 ‖p

B + K p
a

(
sup

0≤t≤a
E‖ R(t)ξ(0) ‖p

H

)]

≤ 4p−1
[

K p
a

(
sup

0≤t≤a
E‖ z(t) ‖p

H

)
+

(
M2

a + K p
a M

pH p
)
E‖ξ‖p

B

]

≤ 4p−1
[
K p
a r +

(
Mp

a + K p
a M

pH p
)
E‖ ξ ‖p

B

]
= r∗. (7)

Step 01: We claim that there exists r > 0, such that T (�0
r ) ⊆ �0

r . If it is not true, then
for each positive number r , there exists a function zr ∈ �0

r , such that E‖T (zr )(t)‖p > r ,
then for any t ∈ [0, a], by (2), (7), and Lemma 3, we have

r < E
∥
∥ T (zr )(t)

∥
∥p ≤ 2p−1MpCp

[∫ t

0

(
E

∥
∥
∥ f

(
s, zrs + ξ̃s

) ∥
∥
∥
p

L0
2

) 2
p
ds

] p
2

+2p−1Mp
∑

0<ti<t

E
∥
∥
∥Ji

(
zr (t−i ) + ξ̃ (t−i )

)∥
∥
∥
p

≤ 2p−1MpCpa
p/2−1

∫ t

0
m(s)ϕ f (‖ zrs + ξ̃s ‖p

B) ds
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+2p−1Mp
n∑

i=1

Ni (‖ zrs + ξ̃s ‖p
B)

≤ 2p−1MpCpa
p/2−1‖ m ‖

L1
(
[0,a],R+

)ϕ f (r
∗)

+2p−1Mp
n∑

i=1

Ni (r
∗).

Dividing both sides by r , and taking the lower limit as r → ∞, we get that 1 ≤ 0, witch
is a contradiction. Hence, T (�0

r ) ⊆ �0
r .

Step 02: We show that the operator T : �0
r → �0

r is continuous. For that purpose, let
us consider a sequence {zn}∞n=1 ⊆ �0

r , such that limn→∞ zn = z ∈ �0
r . By H(3)- H(4), we

have

lim
n→∞ f

(
s, zns + ξ̃s

) = f
(
s, zs + ξ̃s

)
, (8)

lim
n→∞Ji

(
zn(ti ) + ξ̃ (ti )

) = Ji
(
z(ti ) + ξ̃ (ti )

)
. (9)

And
E

∥
∥
∥ f

(
s, zns + ξ̃s

) − f
(
s, zs + ξ̃s

)∥∥
∥
p

L0
2

≤ 2p−1m(s)ϕ f (r
∗). (10)

Then, from the Lebesgue dominated convergence theorem, we obtain that

E
∥
∥
∥(T zn)(t) − (T z)(t)

∥
∥
∥
p

≤ 2p−1E

∥
∥
∥
∥

∫ t

0
R(t − s) f

(
s, zns + ξ̃s

)
− f

(
s, zs + ξ̃s

)
dWs

∥
∥
∥
∥

p

+ 2p−1E

∥
∥
∥
∥

∑

0<ti<t

R(t − ti )Ji

(
zn(ti ) + ξ̃ (ti )

)
− Ji

(
z(ti ) + ξ̃ (ti )

)∥
∥
∥
∥

p

≤ 2p−1MpCp

[∫ t

0

(
E

∥
∥
∥ f

(
s, zns + ξ̃s

)
− f

(
s, zs + ξ̃s

) ∥
∥
∥
p

L0
2

) 2
p
ds

] p
2

+ 2p−1Mp
∑

0<ti<t

E
∥
∥
∥Ji

(
zn(ti ) + ξ̃ (ti )

)
− Ji

(
z(ti ) + ξ̃ (ti )

)∥
∥
∥
p

−→ 0 as n −→ ∞.

Then, we conclude that

‖(T zn) − (T z)‖2a −→ 0, as n −→ ∞.

Therefore T is continuous.
Step 03:We show that the Mönch condition hold. Let D = {zn}∞n=1 be a countable subset

of �0
r , such that

D ⊆ (
co{z0} ∪ T (D)

)
. (11)

We show that the set D is relatively compact.
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From (H3)-(H4), using (2) and Lemma 4, we have

χ
(
T D(t)

) ≤ χ
({∫ t

0
R(t − s) f

(
s, zns + ξ̃s

)
dWs

}∞
n=1

)

+χ
({ ∑

0<ti<t

R(t − ti )Ji
(
zn(ti ) + ξ̃ (ti )

)}∞
n=1

)

≤ M

√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) sup
−∞≤θ≤0

χ

({

zn(s + θ) + ξ̃ (s + θ)

}∞

n=1

)

+M
n∑

i=1

σi sup
−∞≤θ≤0

χ
({(

zn
(
ti + θ

) + ξ̃
(
ti + θ

))}∞
n=1

)

≤ M

√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) sup
0≤δ≤s

χ
({
zn(δ)

}∞
n=1

)

+M
n∑

i=1

σi sup
0≤δi≤ti

χ
({zn(δi )}∞n=1

)
.

Hence,

χ∞
(
T (D)

) ≤ M
(√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) +
n∑

i=1

σi

)
χ∞(D). (12)

On the other hand, using Theorem 1, we obtain

modC
(
T (D)

) ≤ M
(√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) + 2
n∑

i=1

σi

)
χ∞(D). (13)

Then, Combining (12), and (13), we get

ψ
(
T (D)

) ≤ M
(
2

√

a
p

2
(p − 1)‖ζ f ‖L1

(
[0,a],R+

) + 3
n∑

i=1

σi

)
ψ(D). (14)

From (11), and condition (4), we see that

ψ(D) ≤ ψ
(
co{z0} ∪ T (D)

)
= ψ

(
T (D)

) ≤ l0ψ(D).

This implies that ψ(D) = 0, since l0 < 1, therefore D is relatively compact. From
Theorem 2, we conclude that T has a fixed point. Then u = z + ξ̃ is a fixed point of S in �a ,
which is a mild solution of (1). ��

4 Controllability results

In this section, we deal with the controllability of impulsive stochastic integro-differential
equation of the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du(t) = [
Au(t) +

∫ t

0
ϒ(t − s)u(s)ds + �v(t)

]
dt + f (t, ut ) dW(t),

t �= ti , t ∈ [0, a],
u(t+i ) = u(t−i ) + Ji

(
u(ti )

)
, i = 1, 2, . . . , n,

u(t) = ξ(t) ∈ B.

(15)
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Where the control function v(·) takes values in Lp
([0, a],U)

of admissible control function
for a separable Hilbert space U,� : U → H is a bounded linear operator. The rest are defined
as in problem (1).

Definition 6 A Ft -adapted stochastic process {u(t) : t ∈ (−∞, a]} is called a mild solution
of (15), if u(t) = ξ(t) ∈ B, u |[0,a]∈ PC, and for t ∈ [0, a]
u(t) = R(t)ξ(0)+

∫ t

0
R(t − s) f (s, us) dWs+

∫ t

0
R(t − s)�v(s) ds+

∑

0<ti<t

R(t − ti )Ji
(
u(t−i )

)
,

Definition 7 The stochastic control system (15) is called controllable on the interval [0, a],
if for every initial function ξ ∈ B and uT ∈ H, there exists a suitable stochastic control
v(·) ∈ Lp([0, a],U) such that the mild solution of (15) satisfies u(a) = uT , where uT and
a are preassigned terminal state and time, respectively.

To establish our result, we need to state the following condition

H(5) The linear operator W : Lp([0, a],U) → H defined by

Wv =
∫ a

0
R(a − s)�v(s) ds,

has a bounded invertible operatorW−1 which takes values in Lp([0, a],U)/KerW ,
and

1. there exist two positive constants �1,�2 such that

‖�‖ ≤ �1, ‖W−1‖ ≤ �2,

4. there exists LW (t) ∈ L1([0, a], R
+) such that for any bounded set D ⊂ H

χ
(
W−1(D)(t)

)
≤ LW (t)χ

(
D

)
.

Theorem 5 Assume that the hypotheses H(1) - H(5) are satisfied. Then the control function
of stochastic integro-differential system is controllable on [0, a], provided that

l0 = M
(
2

√

a
p

2
(p − 1)‖ζ f ‖L1 + 3

n∑

i=1

σi

)(
1 + M�1‖LW‖L1

)
< 1.

Proof Using H(5), we define for an arbitrary function u(·), the following control

vu(t) = W−1
[

uT −R(a)ξ(0)−
∫ a

0
R(a−s) f (s, us)dWs−

∑

0<ti<a

R(a− ti )Ji
(
u(t−i )

)
]

(t).

Then, we shall show that using this control function, the operator � : �a → �a defined
by

(�u)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ(t), t ∈ (−∞, 0],
R(t)ξ(0) +

∫ t

0
R(t − s) f (s, us) dWs

+
∫ t

0
R(t − s)�v(s) ds +

∑

0<ti<t

R(t − ti )Ji
(
u(t−i )

)
, t ∈ [0, a],

has a fixed point. This fixed point is the mild solution of (15).
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Obviously, u(a) = (�u)(a) = uT , which means that the system (15) is controllable.
Let G : �0

a → �0
a be the operator defined as follows

(Gz)(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ (−∞, 0],
∫ t

0
R(t − s) f

(
s, zs + ξ̃s

)
dWs +

∫ t

0
R(t − s)�vz(s) ds

+
∑

0<ti<t

R(t − ti )Ji
(
z(t−i ) + ξ̃ (t−i )

)
, t ∈ [0, a],

(16)
where

vz(s) = W−1
[

uT − R(a)ξ(0) −
∫ a

0
R(a − s) f

(
s, zs + ξ̃s

)
dWs

−
∑

0<ti<a

R(a − ti )Ji

(
z(t−i ) + ξ̃ (t−i )

)]

(s).

It turns out that the operator � has a fixed point is equivalent to G has one. All we need
is to prove that G has one.

Step 01: We claim that there exists r > 0, such that G(�0
r ) ⊆ �0

r . If it is not true, then
for each positive number r , there exists a function zr ∈ �0

r , such that E‖G(zr )(t)‖p > r ,
then for any t ∈ [0, a], we have

r < E
∥
∥ G(zr )(t)

∥
∥p ≤ 3p−1E

∥
∥
∥

∫ t

0
R(t − s) f

(
s, zrs + ξ̃s

)
dWs

∥
∥
∥
p

+3p−1E
∥
∥
∥

∫ t

0
R(t − s)�vzr (s) ds

∥
∥
∥
p

+3p−1E
∥
∥
∥

∑

0<ti<t

R(t − ti )Ji

(
zr (t−i ) + ξ̃ (t−i )

)∥
∥
∥
p

=: 3p−1
3∑

i=1

E
∥
∥ �i (t)

∥
∥p

.

From (H3), (2), and Lemma 3, we obtain

E‖ �1(t) ‖p = E
∥
∥
∥

∫ t

0
R(t − s) f

(
s, zrs + ξ̃s

)
dWs

∥
∥
∥
p

≤ MpCp

[∫ t

0

(
E

∥
∥
∥ f

(
s, zrs + ξ̃s

) ∥
∥
∥
p

L0
2

) 2
p
ds

] p
2

≤ MpCpa
p/2−1

∫ t

0
m(s)ϕ f (‖ zrs + ξ̃s ‖p

B) ds

≤ MpCpa
p/2−1‖ m ‖L1ϕ f (r

∗). (17)

By (H3)-H(5), (2), (7), and Lemma 3, we have

E‖ �2(t) ‖p = E
∥
∥
∥

∫ t

0
R(t − s)�vzr (s) ds

∥
∥
∥
p

≤ Mp�
p
1�

p
2

∫ t

0

[

E‖ zT ‖p + Mp E‖ ξ(0) ‖p
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+MpCpa
p/2−1‖ m ‖L1ϕ f (‖ zrs + ξ̃s ‖p

B)

+Mp
n∑

i=1

Ni (‖ zrs + ξ̃s ‖p
B)

]

ds

≤ Mp�
p
1�

p
2 a

[

E‖ zT ‖p + MpH p ‖ ξ ‖p
B

+MpCpa
p/2−1‖ m ‖L1ϕ f (r

∗) + Mp
n∑

i=1

Ni (r
∗)

]

. (18)

And from H(4), we obtain

E‖ �3(t) ‖p = E
∥
∥
∥

∑

0<ti<t

R(t − ti )Ji

(
zr (t−i ) + ξ̃ (t−i )

)∥
∥
∥
p

≤ Mp
n∑

i=1

Ni (‖ zrs + ξ̃s ‖p
B)

≤ Mp
n∑

i=1

Ni (r
∗). (19)

Combining (17), (18), and (19) yields us to

r < E
∥
∥ G(zr )(t)

∥
∥p ≤ 3p−1MpCpa

p/2−1‖ m ‖L1ϕ f (r
∗)

+12p−1Mp�
p
1�

p
2 a

[

E‖ zT ‖p + MpH p ‖ ξ ‖p
B

+MpCpa
p/2−1‖ m ‖L1ϕ f (r

∗) + Mp
n∑

i=1

Ni (r
∗)

]

+3p−1Mp
n∑

i=1

Ni (r
∗).

Dividing both sides by r , and taking the lower limit as r → ∞, we get that 1 ≤ 0, which
is a contradiction. Hence, G(�0

r ) ⊆ �0
r .

Step 02:We show that the operator G : �0
r → �0

r is continuous. For that purpose, let us
consider a sequence {zn}∞n=1 ⊆ �0

r , such that limn→∞ zn = z ∈ �0
r

Then, employing the Lebesgue dominated convergence theorem, combined with (2), (8),
(9), (10), and Lemma 3, we obtain

E
∥
∥
∥(Gzn)(t) − (Gz)(t)

∥
∥
∥
p

≤ 3p−1E

∥
∥
∥
∥

∫ t

0
R(t − s) f

(
s, zns + ξ̃s

)
− f

(
s, zs + ξ̃s

)
dWs

∥
∥
∥
∥

p

+ 3p−1E

∥
∥
∥
∥

∫ t

0
R(t − s)�

(
vzn (s) − vz(s)

)
ds

∥
∥
∥
∥

p

+ 3p−1E

∥
∥
∥
∥

∑

0<ti<t

R(t − ti )Ji

(
zn(ti ) + ξ̃ (ti )

)
− Ji

(
z(ti ) + ξ̃ (ti )

)∥
∥
∥
∥

p
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≤ 3p−1MpCp

[∫ t

0

(
E

∥
∥
∥ f

(
s, zns + ξ̃s

)
− f

(
s, zs + ξ̃s

) ∥
∥
∥
p

L0
2

) 2
p
ds

] p
2

+ 3p−1Mp�
p
1

∫ t

0
E

∥
∥
∥vzn (s) − vz(s)

∥
∥
∥
p
ds

+ 3p−1Mp
∑

0<ti<t

E
∥
∥
∥Ji

(
zn(ti ) + ξ̃ (ti )

)
− Ji

(
z(ti ) + ξ̃ (ti )

)∥
∥
∥
p

−→ 0 as n −→ ∞.

where

E
∥
∥
∥vzn (s) − vz(s)

∥
∥
∥
p ≤ �

p
2

[

MpCp

(∫ a

0

(
E

∥
∥
∥ f

(
s, zns + ξ̃s

)
− f

(
s, zs + ξ̃s

) ∥
∥
∥
p

L0
2

) 2
p
ds

) p
2

+Mp
∑

0<ti<a

E
∥
∥
∥Ji

(
zn(ti ) + ξ̃ (ti )

)
− Ji

(
z(ti ) + ξ̃ (ti )

)∥
∥
∥
p
]

−→ 0 as n −→ ∞.

Then, we conclude that
∥
∥
∥ (Gzn) − (Gz)

∥
∥
∥
p

a
−→ 0, as n → ∞.

Therefore G is continuous.
Step 03: Let D = {zn}∞n=1 be a countable subset of �0

r , such that

D ⊆
(
co{z0} ∪ G(D)

)
. (20)

We show that the set D is relatively compact.
By (H3)-H(5), using Lemma 4, we have

χ
({

vzn (s)
}∞
n=1

)

≤ LW (s)

[

Mχ
({∫ a

0
f
(
s, zns + ξ̃s

)
dWs

}∞
n=1

)

+ M
∑

0<ti<a

χ
({

Ji
(
zn(ti ) + ξ̃ (ti )

)}∞
n=1

)]

≤ LW (s)

[

M

√

a
p

2
(p − 1)ζ f (t) sup

−∞≤θ≤0
χ

({

zn(s + θ) + ξ̃ (s + θ)

}∞

n=1

)

+ M
n∑

i=1

σi sup
−∞≤θ≤0

χ
({(

zn
(
ti + θ

) + ξ̃
(
ti + θ

))}∞
n=1

)]

≤ LW (s)

[

M

√

a
p

2
(p − 1)ζ f (t) sup

0≤δ≤s
χ

({
zn(δ)

}∞
n=1

)

+ M
n∑

i=1

σi sup
0≤δi≤ti

χ
({zn(δi )}∞n=1

)
]

. (21)
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Then, from (H3)-H(5), and (21), for each t ∈ [0, a], we obtain that

χ
(
G(D)(t)

)

≤ Mχ
({∫ t

0
f
(
s, zns + ξ̃s

)
dWs

}∞
n=1

)

+ M
∫ t

0
�1χ

({
vzn (s)

}∞
n=1

)
ds

+ M
∑

0<ti<a

χ
({

Ji
(
zn(ti ) + ξ̃ (ti )

)}∞
n=1

)

≤ M

√

a
p

2
(p − 1)ζ f (t) sup

0≤δ≤s
χ

({
zn(δ)

}∞
n=1

)

+ M
∫ t

0
�1LW (s)

[

M

√

a
p

2
(p − 1)ζ f (s) sup

0≤δ≤s
χ

({
zn(δ)

}∞
n=1

)

+ M
n∑

i=1

σi sup
0≤δi≤ti

χ
({zn(δi )}∞n=1

)
]

ds

+ M
n∑

i=1

σi sup
0≤δi≤ti

χ
({zn(δi )}∞n=1

)

≤ M

√

a
p

2
(p − 1)‖ζ f ‖L1

(
1 + M�1‖LW‖L1

)
χ∞(D)

+ M
n∑

i=1

σi

(
1 + M�1‖LW‖L1

)
χ∞(D).

Hence

χ∞
(
G(D)

) ≤ M
(√

a
p

2
(p − 1)‖ζ f ‖L1 +

n∑

i=1

σi

)(
1 + M�1‖LW‖L1

)
χ∞(D). (22)

On the other hand, using Theorem 1, we obtain

modC
(
G(D)

) ≤ M
(√

a
p

2
(p − 1)‖ζ f ‖L1 + 2

n∑

i=1

σi

)
×

×
(
1 + M�1‖LW‖L1

)
χ∞(D). (23)

Then, by combining (22), and (23), we get

ψ
(
G(D)

) ≤ M
(
2

√

a
p

2
(p − 1)‖ζ f ‖L1 + 3

n∑

i=1

σi

)(
1 + M�1‖LW‖L1

)
ψ(D). (24)

From (20), we see that

ψ(D) ≤ ψ
(
co{z0} ∪ G(D)

)
= ψ

(
G(D)

) ≤ l0ψ(D).

This implies that ψ(D) = 0, since l0 < 1, therefore D is relatively compact. From
Theorem 2, we conclude that G has a fixed point. Then u = z + ξ̃ is a fixed point of � in
�a , satisfying u(a) = uT . Hence, the system is controllable on [0, a]. ��
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5 Applications

Example 1 Let us consider the following problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂

∂t
w(t, z) = ∂2

∂z2
w(t, z) +

∫ t

0
ζ(t − s)

∂2

∂z2
w(s, z) ds

+ f1(t) f2
(
w(t − r , z)

)
dW(t), for t ∈ [0, 1], z ∈ [0, π ],

w(t, 0) = w(t, π) = 0, for t ∈ [0, 1],
w(t+i ) = w(t−i ) + Ji

(
w(ti )

)
, i = 1, 2, . . . , n,

w(t, z) = ξ(t, z) ∈ B for t ∈ (−∞, 0], z ∈ [0, π ].

(25)

Where W(t) is a standard Brownian motion defined on (�,F, {Ft }t≥0,P).
Let U = H = L2([0, π ], R) the space of all square integrable functions on R, and the

phase spaceB = PC×Lp(h,H), where h :]−∞,−r ] → R is a positiveLebesgue integrable
function, as introduced in [16], it is well known that B satisfies axioms (A)-(B). Moreover,
when r = 0, we can take H = 1, M(t) = γ (−t)

1
2 , and K (t) = 1 + (

∫ 0
−t h(τ )dτ)

1
2 .

we define A : D(A) ⊂ H → H by Aw = w
′′
, with

D(A) = {w ∈ H, w,w
′
are absolutely continuous , w

′′ ∈ H, w(0) = w(π) = 0}.
Then Aw = �+∞

n=1n
2(w, en)en, w ∈ D(A), where en(s) =

√
2
π
sin(ns), n ≥ 1 is the

orthogonal set of eigenvectors. From [8], it is well known that A is the infinitesimal generator
of a strongly continuous semigroup T (t)(t ≥ 0) in H, which is not a compact semigroup
for t ≥ 0, then T (t)w = �+∞

n=1e
−n2t (w, en)en . Furthermore, we suppose that ζ : R

+ → R
+

is bounded and C1 continuous function, with ζ
′
is bounded and uniformly continuous then

(H1)-(H2) are satisfied.
Let ϒ : U → H defined as follow

ϒ(t)w = ζ(t)A · w, for t ≥ 0, w ∈ D(A).

If we take u(t)(z) = w(t, z), then the Equation (25) can be written into the following
abstract form

⎧
⎪⎪⎨

⎪⎪⎩

du(t) = [
Au(t) +

∫ t

0
ϒ(t − s)u(s)ds + f (t, ut ) dW(t), t �= ti , t ∈ [0, a],

u(t+i ) = u(t−i ) + Ji
(
u(ti )

)
, i = 1, 2, . . . , n,

u(t) = ξ(t) ∈ B.

Let f : [0, 1] × B −→ L0
2(K,H) be given by f (t, ϕ)(z) = f1(t) f2

(
ϕ(−τ)(z)

)
, where

f1 : [0, 1] → R is integrable, and f2 : R → R is Lipschitzian with Lipschitz constant L f2 .
For t ∈ [0, 1] and ϕ ∈ B

‖ f (t, ϕ) − f (t, ψ)‖ ≤| f1(t) | L f2‖ϕ(−τ) − ψ(−τ)‖,
by the property of the Hausdorff measure of noncompactness, we have for any bounded

subset D ∈ B

χ( f (t, D)) ≤| f1(t) | L f2 sup
−r≤θ≤0

χ
(
D(θ)

)
.

Furthermore, we have

‖ f (t, ϕ)‖ ≤ | f1(t) |
(
‖ f2

(
ϕ(−τ)(z)

) + f2(0)‖
)

≤ | f1(t) | ϕ f (‖q‖),
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where ϕ f (‖q‖) = L f2q+ | f2(0) |, this mean that (H3) hold.
Assuming Ji : H → H defined by Ji

(
u(ti )

)
(z) = Ji

(
w(ti , z)

)
satisfies H(4). Further-

more, if the condition of Theorem 4 is fulfilled, then the problem (25) has at least one mild
solution.

Example 2
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂�(t, ε)

∂t
= A �(t, ε) +

∫ t

0
ζ(t − s)A �(t, ε) ds

+μη(t, ε) + f1(t) f2
(
�(t − r , ε)

)
dW(t), t ∈ [0, a], ε ∈ [0, 1],

�(t, 0) = �(t, 1) = 0, for t ∈ [0, a],
�(t+i ) = �(t−i ) + Ji

(
�(ti , z)

)
, i = 1, 2, . . . , n,

�(t, ε) = ξ(t, ε) ∈ B t ∈ (−∞, 0], ε ∈ [0, 1].

(26)

WhereW(t) is a standardBrownianmotion defined on (�,F, {Ft }t≥0,P). ζ : R
+ → R

+
is a C1 function, with ζ

′
bounded and uniformly continuous, the coefficients ā, b̄ and c̄ are

unbounded, μ > 0, and η : [0, a] × [0, 1] → R
+ is continuous in t , and the phase space

B = PC ×Lp(h,H), where h :]−∞,−r ] → R is a positive Lebesgue integrable function,
as introduced in [16], it is well known that B satisfies axioms (A)-(B). Moreover, when
r = 0, we can take H = 1, M(t) = γ (−t)

1
2 , and K (t) = 1 + (

∫ 0
−t h(τ )dτ)

1
2 .

Let H = L2([0, 1], R) the Banach space of square integrable functions, we define the
operator A by

⎧
⎨

⎩

D(A) = {
� ∈ H,�

′
,�

′′ ∈ H,�(0) = �(1)
}

A �(t, ε) = ā(ε)
∂2�(t, ε)

∂ε2
+ b̄(ε)

∂�(t, ε)

∂ε
�(t, ε) + c̄(ε)�(t, ε).

From [8], it is well known that A is the infinitesimal generator of a strongly continuous
semigroup T (t)(t ≥ 0) onH.

We also define the operator ϒ : U → H as follows

ϒ(t)� = ζ(t)A · �, for t ≥ 0,� ∈ D(A).

And let � : U → H be defined as follows

(�v(t))(ε) = μη(t, ε), ε ∈ [0, 1], v ∈ Lp([0, a],U)
.

If we take u(t)(ε) = �(t, ε), then the Equation (26) can be written into the following
abstract form ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du(t) = [
Au(t) +

∫ t

0
ϒ(t − s)u(s)ds + �v(t)

]
dt

+ f (t, ut ) dW(t), t �= ti , t ∈ [0, a],
u(t+i ) = u(t−i ) + Ji

(
u(ti )

)
, i = 1, 2, . . . , n,

u(t) = ξ(t) ∈ B.

Clearly

‖ϒ(t)y‖H ≤ ‖ζ(t)A · y‖U ≤ ζ(t)‖y‖U,

and

‖ d

dt
ϒ(t)y‖H ≤| ζ

′
(t) | ‖A · y‖H ≤ ζ(t)‖y‖U,

for all y ∈ U, and all t ∈ R
+, accordingly (H1) and (H2) are satisfied.
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Let f : [0, a] × B −→ L0
2(K,H) be given by f (t, ϕ)(ε) = f1(t) f2

(
ϕ(−τ)(ε)

)
, where

f1 : [0, a] → R is square integrable, and f2 : R → R is Lipschitzian with Lipschitz constant
L f2 . For t ∈ [0, a] and ϕ ∈ B

‖ f (t, ϕ) − f (t, ψ)‖ ≤| f1(t) | L f2‖ϕ(−τ) − ψ(−τ)‖,
by the property of the Hausdorff measure of noncompactness, we have for any bounded

subset D ∈ B

χ( f (t, D)) ≤| f1(t) | L f2 sup
−r≤θ≤0

χ
(
D(θ)

)
.

Furthermore, we have

‖ f (t, ϕ)‖ ≤ | f1(t) |
(
‖ f2

(
ϕ(−τ)(z)

) + f2(0)‖
)

≤ | f1(t) | ϕ f (‖q‖),
where ϕ f (‖q‖) = L f2q+ | f2(0) |, this mean that (H3) hold.
Assuming Ji : H → H defined by Ji

(
u(ti )

)
(ε) = Ji

(
�(ti , ε)

)
satisfies H(4). and for

ε ∈ [0, 1], the operator W defined by

W(ε)v = μ

∫ 1

0
R(b − s)v(s) ds,

Assuming that W satisfies H(5). Furthermore, if the condition of Theorem 5 is fulfilled,
then the problem (26) has at least one mild solution, which is controllable on [0, a].
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