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Abstract
In the current article, we introduce and investigate a new family K�(δ, λ, x) of analytic and
bi-univalent functions by using the Horadam polynomials defined in the open unit disk U.
We determine upper bounds for the initial Taylor–Maclaurin coefficients. Further we obtain
the Fekete–Szegö inequality of functions belonging to this family. We also point out several
certain special cases for our results.
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1 Introduction

Denote byA the collection of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}
that have the following normalized form:

f (z) = z +
∞∑

n=2

anz
n . (1.1)

Further, let S indicate the subclass of A consisting of functions which are univalent in
U. According to the Koebe one-quarter theorem [6] every function f ∈ S has an inverse
f −1 defined by f −1( f (z)) = z, (z ∈ U) and f ( f −1(w)) = w, (|w| < r0( f ), r0( f ) � 1

4 ),
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where

g(w) = f −1(w) = w − a2w
2 + (

2a22 − a3
)
w3 − (

5a32 − 5a2a3 + a4
)
w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent inU if both f and f −1 are univalent inU. Let
� stands for the class of bi-univalent functions in U given by (1.1). In fact, Srivastava et al.
[25] have actually revived the study of analytic and bi-univalent functions in recent years, it
was followed by such works as those by Caglar et al. [5], Bulut [4], Adegani et al. [2] and
others (see, for example [18, 20–22, 29, 30, 32]). From the work of Srivastava et al. [25], we
choose to recall the following examples of functions in the class � :

z

1 − z
, − log(1 − z) and

1

2
log

(
1 + z

1 − z

)
.

We notice that the class � is not empty. However, the Koebe function is not a member of �.

The problem to find the general coefficient bounds on the Taylor–Maclaurin coefficients
|an | (n ∈ N; n � 3) for functions f ∈ � is still not completely addressed for many of the
subclasses of the bi-univalent function class � (see, for example, [20, 26, 28]).

The Fekete–Szegö functional
∣∣a3 − μa22

∣∣ for f ∈ S is well known for its rich history in the
field of Geometric Function Theory. Its origin was in the disproof by Fekete and Szegö [7] of
the Littlewood–Paley conjecture that the coefficients of odd univalent functions are bounded
by unity. The functional has since received great attention, particularly in the study of many
subclasses of the family of univalent functions. This topic has become of considerable interest
among researchers in Geometric Function Theory (see, for example, [14, 17, 23, 24, 27]).

With a view to recalling the principle of subordination between analytic functions, let the
functions f and g be analytic in U. We say that the function f is subordinate to g, if there
exists a Schwarz function ω, which is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U),
such that f (z) = g

(
ω(z)

)
. This subordination is denoted by f ≺ g or f (z) ≺ g(z) (z ∈ U).

It is well known that (see [16]), if the function g is univalent in U, then

f ≺ g (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊆ g(U).

Recently, Hörçum and Koçer [11] considered the Horadam polynomials hn(x), which are
given by the following recurrence relation (see also Horadam and Mahon [10]):

hn(x) = pxhn−1(x) + qhn−2(x) (x ∈ R; n ∈ N − {1, 2}), (1.3)

with h1(x) = a and h2(x) = bx , for some real constant a, b, p and q . The characteristic
equation of repetition relation (1.3) is t2 − pxt − q = 0. This equation has two real roots

x1 = px+
√

p2x2+4q
2 and x2 = px−

√
p2x2+4q
2 .

Remark 1.1 By selecting the particular values of a, b, p and q , the Horadam polynomial
hn(x) reduces to several polynomials. Some of these special cases are recorded below.

1. Taking a = b = p = q = 1, we obtain the Fibonacci polynomials Fn(x).
2. Taking a = 2 and b = p = q = 1, we attain the Lucas polynomials Ln(x).
3. Taking a = q = 1 and b = p = 2, we have the Pell polynomials Pn(x).
4. Taking a = b = p = 2 and q = 1, we get the Pell–Lucas polynomials Qn(x).
5. Taking a = b = 1, p = 2 and q = −1, we obtain the Chebyshev polynomials Tn(x) of

the first kind.
6. Taking a = 1, b = p = 2 and q = −1, we have the Chebyshev polynomials Un(x) of

the second kind.
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These polynomials, the families of orthogonal polynomials and other special polynomials
as well as their generalizations are potentially important in a variety of disciplines in many of
sciences, specially in themathematics, statistics and physics. Formore information associated
with these polynomials see [8–10, 12, 13].

The generating function of the Horadam polynomials hn(x) (see [11]) is given by

�(x, z) =
∞∑

n=1

hn(x)z
n−1 = a + (b − ap)xz

1 − pxz − qz2
. (1.4)

In fact, Srivastava et al. [19] have already these the Horadam polynomials in a similar
context involving analytic and bi-univalent functions in recent years, it was followed by such
works as those by Magesh et al. [15], Al-Amoush [3], Wanas and Alina [31] and Abirami et
al. [1].

2 Main results

We begin this section by defining the family K�(δ, λ, x) as follows:

Definition 2.1 For δ � 0, 0 � λ � 1 and x ∈ R, a function f ∈ � is said to be in the family
K�(δ, λ, x) if it satisfies the subordinations:

Z(1 − δ)

[
(1 − λ)

z f ′(z)
f (z)

+ λ

(
1 + z f ′′(z)

f ′(z)

)]
+ δ

λz2 f ′′(z) + z f ′(z)
λz f ′(z) + (1 − λ) f (z)

≺ �(x, z)

+1 − a

and

(1 − δ)

[
(1 − λ)

wg′(w)

g(w)
+ λ

(
1 + wg′′(w)

g′(w)

)]
+ δ

λw2g′′(w) + wg′(w)

λwg′(w) + (1 − λ)g(w)

≺ �(x, w) + 1 − a,

where a is real constant and the function g = f −1 is given by (1.2).

Remark 2.1 For λ = 1, a function f ∈ � is in the family K�(δ, 1, x) =: K�(x) which was
considered recently by Magesh et al. [15], if the following conditions are satisfied:

1 + z f ′′(z)
f ′(z)

≺ �(x, z) + 1 − a

and

1 + wg′′(w)

g′(w)
≺ �(x, w) + 1 − a,

where z, w ∈ U and the function g is described in (1.2).

Remark 2.2 For λ = 0, a function f ∈ � is in the family K�(δ, 0, x) =: W�(x) which was
considered recently by Srivastava et al. [19], the following conditions are satisfied:

z f ′(z)
f (z)

≺ �(x, z) + 1 − a and
wg′(w)

g(w)
≺ �(x, w) + 1 − a, (2.1)

where z, w ∈ U and the function g is described in (1.2).
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Remark 2.3 For δ = 0, a function f ∈ � is in the family K�(0, λ, x) =: M�(λ, x) which
was considered recently by Magesh et al. [15] if the following conditions are satisfied:

(1 − λ)
z f ′(z)
f (z)

+ λ

(
1 + z f ′′(z)

f ′(z)

)
≺ �(x, z) + 1 − a

and

(1 − λ)
wg′(w)

g(w)
+ λ

(
1 + wg′′(w)

g′(w)

)
≺ �(x, w) + 1 − a,

where z, w ∈ U and the function g is described in (1.2).

Theorem 2.1 For δ � 0, 0 � λ � 1 and x ∈ R, let f ∈ A be in the family K�(δ, λ, x).
Then

|a2| � |bx | √|bx |√∣∣[(λ + 1 − λδ(λ − 1)) b − p (λ + 1)2
]
bx2 − qa (λ + 1)2

∣∣

and

|a3| � |bx |
2(2λ + 1)

+ b2x2

(λ + 1)2
.

Proof Let f ∈ K�(δ, λ, x). Then there are two analytic functions u, v : U −→ U given by

u(z) = u1z + u2z
2 + u3z

3 + · · · (z ∈ U) (2.2)

and

v(w) = v1w + v2w
2 + v3w

3 + · · · (w ∈ U), (2.3)

with u(0) = v(0) = 0 and max {|u(z)| , |v(w)|} < 1, z, w ∈ U such that

(1 − δ)

[
(1 − λ)

z f ′(z)
f (z)

+ λ

(
1 + z f ′′(z)

f ′(z)

)]
+ δ

λz2 f ′′(z) + z f ′(z)
λz f ′(z) + (1 − λ) f (z)

= �(x, u(z)) + 1 − a

and

(1 − δ)

[
(1 − λ)

wg′(w)

g(w)
+ λ

(
1 + wg′′(w)

g′(w)

)]
+ δ

λw2g′′(w) + wg′(w)

λwg′(w) + (1 − λ)g(w)

= �(x, v(w)) + 1 − a.

Or, equivalently

(1 − δ)

[
(1 − λ)

z f ′(z)
f (z)

+ λ

(
1 + z f ′′(z)

f ′(z)

)]
+ δ

λz2 f ′′(z) + z f ′(z)
λz f ′(z) + (1 − λ) f (z)

= 1 + h1(x) + h2(x)u(z) + h3(x)u
2(z) + · · · (2.4)

and

(1 − δ)

[
(1 − λ)

wg′(w)

g(w)
+ λ

(
1 + wg′′(w)

g′(w)

)]
+ δ

λw2g′′(w) + wg′(w)

λwg′(w) + (1 − λ)g(w)

= 1 + h1(x) + h2(x)v(w) + h3(x)v
2(w) + · · · . (2.5)
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Combining (2.2), (2.3), (2.4) and (2.5) yields

(1 − δ)

[
(1 − λ)

z f ′(z)
f (z)

+ λ

(
1 + z f ′′(z)

f ′(z)

)]
+ δ

λz2 f ′′(z) + z f ′(z)
λz f ′(z) + (1 − λ) f (z)

= 1 + h2(x)u1z + [
h2(x)u2 + h3(x)u

2
1

]
z2 + · · · (2.6)

and

(1 − δ)

[
(1 − λ)

wg′(w)

g(w)
+ λ

(
1 + wg′′(w)

g′(w)

)]
+ δ

λw2g′′(w) + wg′(w)

λwg′(w) + (1 − λ)g(w)

= 1 + h2(x)v1w + [
h2(x)v2 + h3(x)v

2
1

]
w2 + · · · . (2.7)

It is quite well-known that if max {|u(z)| , |v(w)|} < 1, z, w ∈ U, then

|ui | � 1 and |vi | � 1 (∀ i ∈ N). (2.8)

Comparing the corresponding coefficients in (2.6) and (2.7), after simplifying, we have

(λ + 1)a2 = h2(x)u1, (2.9)

2(2λ + 1)a3 − (λδ(λ − 1) + 3λ + 1) a22 = h2(x)u2 + h3(x)u
2
1, (2.10)

−(λ + 1)a2 = h2(x)v1 (2.11)

and

2(2λ + 1)(2a22 − a3) − (λδ(λ − 1) + 3λ + 1) a22 = h2(x)v2 + h3(x)v
2
1 . (2.12)

It follows from (2.9) and (2.11) that

u1 = −v1 (2.13)

and

2(λ + 1)2a22 = h22(x)(u
2
1 + v21). (2.14)

If we add (2.10) to (2.12), we find that

2 (λ + 1 − λδ(λ − 1)) a22 = h2(x)(u2 + v2) + h3(x)(u
2
1 + v21). (2.15)

Substituting the value of u21 + v21 from (2.14) in the right hand side of (2.15), we deduce that

a22 = h32(x)(u2 + v2)

2
[
h22(x) (λ + 1 − λδ(λ − 1)) − h3(x) (λ + 1)2

] . (2.16)

Further computations using (1.3), (2.8) and (2.16), we obtain

|a2| � |bx | √|bx |√∣∣[(λ + 1 − λδ(λ − 1)) b − p (λ + 1)2
]
bx2 − qa (λ + 1)2

∣∣
.

Next, if we subtract (2.12) from (2.10), we can easily see that

4(2λ + 1)(a3 − a22) = h2(x)(u2 − v2) + h3(x)(u
2
1 − v21). (2.17)

In view of (2.13) and (2.14), we get from (2.17)

a3 = h2(x)(u2 − v2)

4(2λ + 1)
+ h22(x)(u

2
1 + v21)

2 (λ + 1)2
.
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Thus applying (1.3), we obtain

|a3| � |bx |
2(2λ + 1)

+ b2x2

(λ + 1)2
.

This completes the proof of Theorem 2.1 �

By taking λ = 1, we state

Corollary 2.1 [15] Let f given by 1.1 be in the family K�(δ, 1, x) =: K�(x). Then

|a2| � |bx |√|bx |√|(2b − 4p)bx2 − 4qa| ,

|a3| � |bx |
6

+ b2x2

4
.

By taking λ = 0, we state

Corollary 2.2 [19] Let f given by 1.1 be in the family K�(δ, 0, x) =: W�(x). Then

|a2| � |bx |√|bx |√|(b − p)bx2 − qa| ,

|a3| � |bx |
2

+ b2x2.

By taking δ = 0, we state

Corollary 2.3 [15] Let f given by 1.1 be in the family K�(0, λ, x) =: M�(λ, x). Then

|a2| � |bx | √|bx |√∣∣[(λ + 1) b − p (λ + 1)2
]
bx2 − qa (λ + 1)2

∣∣

and

|a3| � |bx |
2(2λ + 1)

+ b2x2

(λ + 1)2
.

In the next theorem, we present the Fekete–Szegö inequality for the family K�(δ, λ, x).

Theorem 2.2 For δ � 0, 0 � λ � 1 and x, μ ∈ R, let f ∈ A be in the family K�(δ, λ, x).
Then

∣∣a3 − μa22
∣∣ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|bx |
2(2λ+1) ;

f or |μ − 1| �
∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

,

|bx |3|μ−1|∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2
]
bx2−qa(λ+1)2

∣∣ ;

f or |μ − 1| �
∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

.
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Proof It follows from (2.16) and (2.17) that

a3 − μa22 = h2(x)(u2 − v2)

4(2λ + 1)
+ (1 − μ) a22

= h2(x)(u2 − v2)

4(2λ + 1)
+ h32(x)(u2 + v2) (1 − μ)

2
[
h22(x) (λ + 1 − λδ(λ − 1)) − h3(x) (λ + 1)2

]

= h2(x)

2

[(
ψ(μ, x) + 1

2(2λ + 1)

)
u2 +

(
ψ(μ, x) − 1

2(2λ + 1)

)
v2

]
,

where

ψ(μ, x) = h22(x) (1 − μ)

h22(x) (λ + 1 − λδ(λ − 1)) − h3(x) (λ + 1)2
.

According to (1.3), we find that

∣∣a3 − μa22
∣∣ �

⎧
⎪⎨

⎪⎩

|bx |
2(2λ+1) , 0 � |ψ(μ, x)| � 1

2(2λ+1) ,

|bx | |ψ(μ, x)| , |ψ(μ, x)| ≥ 1
2(2λ+1) .

After some computations, we obtain

∣∣a3 − μa22
∣∣ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|bx |
2(2λ+1) ;

f or |μ − 1| �
∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

,

|bx |3|μ−1|∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2
]
bx2−qa(λ+1)2

∣∣ ;

f or |μ − 1| �
∣∣[(λ+1−λδ(λ−1))b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

.

�
Putting μ = 1 in Theorem 2.2, we obtain the following result:

Corollary 2.4 For δ � 0, 0 � λ � 1 and x ∈ R, let f ∈ A be in the family K�(δ, λ, x).
Then

∣∣a3 − a22
∣∣ � |bx |

2(2λ + 1)
.

Corollary 2.5 [15] Let f given by 1.1 be in the family K�(δ, 1, x) =: K�(x). Then

∣∣a3 − μa22
∣∣ �

⎧
⎪⎪⎨

⎪⎪⎩

|bx |
6 ; |μ − 1| �

∣∣(2b−4p)bx2−4qa
∣∣

6b2x2
,

|bx |3|μ−1|
|(2b−4p)bx2−4qa| ; |μ − 1| �

∣∣(2b−4p)bx2−4qa
∣∣

6b2x2
.

Corollary 2.6 [19] Let f given by 1.1 be in the family K�(δ, 0, x) =: W�(x). Then

∣∣a3 − μa22
∣∣ �

⎧
⎪⎪⎨

⎪⎪⎩

|bx |
2 ; |μ − 1| �

∣∣(b−p)bx2−qa
∣∣

b2x2
,

|bx |3|μ−1|
|(b−p)bx2−qa| ; |μ − 1| �

∣∣(b−p)bx2−qa
∣∣

b2x2
.
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Corollary 2.7 [15] Let f given by 1.1 be in the family K�(0, λ, x) =: M�(λ, x). Then

∣∣a3 − μa22
∣∣ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|bx |
2(2λ+1) ;

f or |μ − 1| �
∣∣[(λ+1−)b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

,

|bx |3|μ−1|∣∣[(λ+1)b−p(λ+1)2
]
bx2−qa(λ+1)2

∣∣ ;

f or |μ − 1| �
∣∣[(λ+1)b−p(λ+1)2

]
bx2−qa(λ+1)2

∣∣
2b2x2(2λ+1)

.
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