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Abstract
In this paper, we study 3-Lie algebras with derivations. We call the pair consisting of a 3-Lie
algebra and a distinguished derivation by the 3-LieDer pair. We define a cohomology theory
for 3-LieDer pair with coefficients in a representation. We study central extensions of a 3-
LieDer pair and show that central extensions are classified by the second cohomology of the
3-LieDer pair with coefficients in the trivial representation. We generalize Gerstenhaber’s
formal deformation theory to 3-LieDer pairs in which we deform both the 3-Lie bracket and
the distinguished derivation.

Keywords 3-Lie algebra · Derivation · Representation · Cohomology · Central extension ·
Deformation

Mathematics Subject Classification 17A42 · 17B10 · 17B40 · 17B56

1 Introduction

3-Lie algebras are special types of n-Lie algebras and have close relationships with many
important fields in mathematics and mathematical physics [4, 5]. The structure of 3-Lie
algebras is closely linked to the supersymmetry and gauge symmetry transformations of the
world-volume theory of multiple coincident M2-branes and is applied to the study of the
Bagger-Lambert theory. Moreover, the n-Jacobi identity can be regarded as a generalized
Plucker relation in the physics literature. In particular, the metric 3-Lie algebras, or more
generally, the 3-Lie algebras with invariant symmetric bilinear forms attract even more atten-
tion in physics. Recently, many more properties and structures of 3-Lie algebras have been
developed, see [6, 8, 16, 22, 27, 31, 32] and references cited therein.

Derivations on algebraic structures were first started by Ritt [25] for commutative algebras
and field. The structure is called a differential (commutative) algebra. For the notion of dif-
ferential n-Lie algebras and related structures, see [7, 10, 21]. Derivations of types of algebra
provide many important aspects of the algebraic structure. For example, Coll, Gertstenhaber,

B Ripan Saha
ripanjumaths@gmail.com

1 School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang
550025, People’s Republic of China

2 Department of Mathematics, Raiganj University, Raiganj, West Bengal 733134, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13370-022-00998-7&domain=pdf
http://orcid.org/0000-0002-2932-4274


60 Page 2 of 15 S. Guo, R. Saha

and Giaquinto [11] described explicitly a deformation formula for algebras whose Lie alge-
bra of derivations contains the unique non-abelian Lie algebra of dimension two. Amitsur
[1, 2] studied derivations of central simple algebras. Derivations are also used to construct
homotopy Lie algebras [30] and play an important role in the study of differential Galois the-
ory [24]. One may also look at some interesting roles played by derivations in control theory
and gauge theory in quantum field theory [3]. In [15, 23], the authors studied algebras with
derivations from an operadic point of view. Recently, Lie algebras with derivations (called
LieDer pairs) are studied from a cohomological point of view [29] and extensions, deforma-
tions of LieDer pairs are considered. The results of [29] have been extended to associative
algebras and Leibniz algebras with derivations in [12] and [13].

The deformation is a tool to study a mathematical object by deforming it into a family
of the same kind of objects depending on a certain parameter. The deformation theory was
introduced by Gerstenhaber for rings and algebras [18, 19], and by Zhang for 3-Lie color
algebras [32]. They studied 1-parameter formal deformations and established the connection
between the cohomology groups and infinitesimal deformations. Motivated by Tang’s [29]
terminology of LieDer pairs. Due to the importance of 3-Lie algebras, cohomology, and
deformation theories, Our main objective of this paper is to study the cohomology and
deformation theory of 3-Lie algebra with a derivation.

The paper is organized as follows. In Sect. 2, we define a cohomology theory for 3-
LieDer pair with coefficients in a representation. In Sect. 3, we study central extensions of
a 3-LieDer pair and show that isomorphic classes of central extensions are classified by the
second cohomology of the 3-LieDer pair with coefficients in the trivial representation. In
Sect. 4, we study formal one-parameter deformations of 3-LieDer pairs in which we deform
both the 3-Lie bracket and the distinguished derivations.

Throughout this paper, we work over the field F of characteristics 0.

2 Cohomology of 3-LieDer pairs

In this section, we define a cohomology theory for 3-LieDer pair with coefficients in a
representation.

Definition 2.1 [17] A 3-Lie algebra is a tuple (L, [·, ·, ·]) consisting of a vector space L , a
3-ary skew-symmetric operation [·, ·, ·] : ∧3L → L satisfying the following Jacobi identity

[x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]], (2.1)

for any x, y, u, v, w ∈ L .

Definition 2.2 [20] A representation of a 3-Lie algebra (L, [·, ·, ·]) on the vector space M is
a linear map ρ : L ∧ L → gl(M), such that for any x, y, z, u ∈ L , the following equalities
are satisfied

ρ([x, y, z], u) = ρ(y, z)ρ(x, u) + ρ(z, x)ρ(y, u) + ρ(x, y)ρ(z, u),

ρ(x, y)ρ(z, u) = ρ(z, u)ρ(x, y) + ρ([x, y, z], u) + ρ(z, [x, y, u]).
Then (M, ρ) is called a representation of L , or M is an L-module.

Definition 2.3 [17] Let (L, [·, ·, ·]) be a 3-Lie algebra. A derivation on L is given by a linear
map φL : L → L satisfying

φL([x, y, z]) = [φL(x), y, z] + [x, φL(y), z] + [x, y, φL(z)], ∀x, y, z ∈ L.
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We call the pair (L, φL) of a 3-Lie algebra and a derivation by a 3-LieDer pair.

Remark 2.4 Let (L, [·, ·, ·]) be a 3-Lie algebra. For all x1, x2 ∈ L , the map defined by

adx1,x2 x := [x1, x2, x], for all x ∈ L,

is called the adjoint map. From the Eq. 2.1, it is clear that adx1,x2 is a derivation. The linear
map ad : L∧L → gl(L) defines a representation of (L, [·, ·, ·]) on itself. This representation
is called the adjoint representation.

Definition 2.5 Let (L, φL) be a 3-LieDer pair. A representation of (L, φL) is given by
(M, φM ) in which M is a representation of L and φM : M → M is a linear map satis-
fying

φM (ρ(x, y)(m)) = ρ(φL (x), y)(m) + ρ(x, φL(y))(m) + ρ(x, y)(φM (m)),

for all x, y ∈ L and m ∈ M .

Proposition 2.6 Let (L, φL) be a 3-LieDer pair and (M, φM ) be a representation of it. Then
(L ⊕ M, φL ⊕ φM ) is a 3-LieDer pair where the 3-Lie algebra bracket on L ⊕ M is given
by the semi-direct product

[(x,m), (y, n), (z, p)] = ([x, y, z], ρ(y, z)(m) + ρ(z, x)(n) + ρ(x, y)(p)),

for any x, y, z ∈ L and m, n, p ∈ M.

Proof It is known that L ⊕ M equipped with the above product is a 3-Lie algebra. Moreover,
we have

(φL ⊕ φM )([(x,m), (y, n), (z, p)])
= (φL([x, y, z]), φM (ρ(y, z)(m)) + φM (ρ(z, x)(n)) + φM (ρ(x, y)(p)))

= ([φL(x), y, z], ρ(y, z)(φM (m)) + ρ(φL (x), z)(n) + ρ(φL(x), y)(p))

+([x, φL(y), z], ρ(φL (y), z)(m) + ρ(z, x)(φM (n)) + ρ(x, φL(y))(p))

+([x, y, φT (z)], ρ(y, φL (z))(m) + ρ(z, φL (x))(n) + ρ(x, y)(φM (p)))

= [(φL ⊕ φM )(x,m), (y, n), (z, p)] + [(x,m), (φL ⊕ φM )(y, n), (z, p)]
+[(x,m), (y, n), (φL ⊕ φM )(z, p)].

Hence the proof is finished. ��
Recall from [28] that let ρ be a representation of (L, [·, ·, ·]) on M . Denote by Cn(L, M)

the set of all n-cochains and defined as

Cn(L, M) = Hom((∧2L)⊗n−1, M), n ≥ 1.

Let dn : Cn(L, M) → Cn+1(L, M) be defined by

dn f (X1, . . . , Xn, xn+1)

= (−1)n+1ρ(yn, xn+1) f (X1, . . . , Xn−1, xn)

+ (−1)n+1ρ(xn+1, xn) f (X1, . . . , Xn−1, yn)

+
n∑

j=1

(−1) j+1ρ(x j , y j ) f (X1, . . . , X̂ j , . . . , Xn, xn+1)
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+
n∑

j=1

(−1) j f (X1, . . . , X̂ j , . . . , Xn, [x j , y j , xn+1]),

+
∑

1≤ j<k≤n

(−1) j f (X1, . . . , X̂ j , . . . , Xk−1, [x j , y j , xk] ∧ yk

+ xk ∧ [x j , y j , xk], Xk+1, . . . , Xn, xn+1),

for all Xi = xi ∧ yi ∈ ⊗2L, i = 1, 2, . . . , n and xn+1 ∈ L , it was proved that dn+1 ◦dn = 0.
Therefore, (C∗(L, M), d∗) is a cochain complex.

Observe that for trivial representation coboundary maps d1 and d2 are explicitly given as
follows:

d1( f )(a, b, c) = [ f (a), b, c] + [a, f (b), c] + [a, b, f (c)] − f ([a, b, c]), f ∈ C1(L, M).

d2( f )(a, b, c, d, e) = [a, b, f (c, d, e)] − f ([a, b, c], d, e) + f (a, b, [c, d, e])
−[ f (a, b, c), d, e], f ∈ C2(L, M).

In [26], the graded space C∗(L, L) = ⊕
n≥0 C

n+1(L, L) of cochain groups carries a
degree -1 gradedLie bracket given by [ f , g] = f ◦g−(−1)mng◦ f , for f ∈ Cm+1(L, L), g ∈
Cn+1(L, L), where f ◦ g ∈ Cm+n+1(L, L), and defined as follows:

f ◦ g(X1, . . . , Xm+n, x)

=
m∑

k=1

(−1)(k−1)n
∑

σ∈S(k−1,n)

f (Xσ(1), . . . , Xσ(k−1), g(Xσ(k), · · · , Xσ(k+n−1), xk+n)

∧yk+n, Xσ(k+n+1), . . . , Xσ(m+n), x)

+
m∑

k=1

(−1)(k−1)n
∑

σ∈S(k−1,n)

(−1)σ f (Xσ(1), . . . , Xσ(k−1), xk+n

∧g(Xσ(k), . . . , Xσ(k+n−1), yk+n), Xk+n+1, . . . , Xm+n, x)∑

σ∈S(m,n)

(−1)mn(−1)σ f (Xσ(1), . . . , Xσ(m), g(Xσ(m+1), . . . , Xσ(m+n−1), Xσ(m+n), x)),

for all Xi = xi ∧ yi ∈ ⊗2L, i = 1, 2, . . . ,m + n and x ∈ L . Here S(k − 1, n) denotes
the set of all (k − 1, n)-shuffles. Moreover, μ : ⊗3L → L is a 3-Lie bracket if and only if
[μ,μ] = 0, i.e. μ is a Maurer–Cartan element of the graded Lie algebra (C∗(L, L), [·, ·].
where μ is considered as an element in C2(L, L). With this notation, the differential (with
coefficients in L) is given by

d f = (−1)n[μ, f ], for all f ∈ Cn(L, L).

In the next, we introduce cohomology for a 3-LieDer pair with coefficients in a represen-
tation.

Let (L, φL) be a 3-LieDer pair and (M, φM ) be a representation of it. For any n ≥ 2, we
define cochain groups for 3-LieDer pair as follows:

Cn
3-LieDer(L, M) := Cn(L, M) ⊕ Cn−1(L, M).

Define the space C0
3-LieDer(L, M) of 0-cochains to be 0 and the space C1

3-LieDer(L, M) of 1-
cochains to beHom(L, M). Note thatμ = [·, ·, ·] ∈ C2(L, L) and derivationφL ∈ C1(L, L).
Thus, the pair (μ, φL) ∈ C2

3-LieDer(L, L). To define the coboundary map for 3-LieDer pair,
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we need following map δ : Cn(L, M) → Cn(L, M) by

δ f =
n∑

i=1

f ◦ (I dL ⊗ · · · ⊗ φL ⊗ · · · ⊗ I dL ) − φM ◦ f .

The following lemma showsmaps ∂ and δ commute, and is useful to define the coboundary
operator of the cohomology of 3-LieDer pair.

Lemma 2.7 The map δ commute with d, i.e, d ◦ δ = δ ◦ d.

Proof Note that in case of self representation, that is, when (M, φM ) = (L, φL), we have

δ( f ) = −[φL , f ], for all f ∈ Cn(L, L).

Therefore, we have

(d ◦ δ)( f ) = −d[φL , f ]
= (−1)n[μ, [φL , f ]]
= (−1)n[[μ, φL ], f ] + (−1)n[φL , [μ, f ]]
= (−1)n[φL , [μ, f ]]
= (δ ◦ δ)( f )

��
We are now in a position to define the cohomology of the 3-LieDer pair. We define a map
∂ : Cn

3-LieDer(L, M) → Cn+1
3-LieDer(L, M) by

∂ f = (d f ,−δ f ), for all f ∈ C1
3-LieDer(L, M),

∂( fn, fn) = (d fn, d f n + (−1)nδ fn), for all ( fn, f n) ∈ Cn
3-LieDer(L, M).

Proposition 2.8 The map ∂ satisfies ∂ ◦ ∂ = 0.

Proof For any f ∈ C1
3-LieDer(L, M), we have

(∂ ◦ ∂) f = ∂(d f ,−δ f ) = ((d ◦ d) f ,−(d ◦ δ) f + (δ ◦ d) f ) = 0.

Similarly, for any ( fn, f n) ∈ Cn
3-LieDer(L, M), we have

(∂ ◦ ∂)( fn, fn) = ∂(d fn, d fn + (−1)n fn)

= (d2 fn, d
2 fn + (−1)ndδ fn + (−1)n+1δd fn)

= 0. ��
Therefore, (C∗

3-LieDer(L, M), ∂) forms a cochain complex. We denote the corresponding
cohomology groups by H∗

3-LieDer(L, M).

3 Central extensions of 3-LieDer pairs

In this section,we study central extensions of a 3-LieDer pair. Similar to the classical cases,we
show that isomorphic classes of central extensions are classified by the second cohomology
of the 3-LieDer pair with coefficients in the trivial representation.

Let (L, φL) be a 3-LieDer pair and (M, φM ) be an abelian 3-LieDer pair i.e, the 3-Lie
algebra bracket of M is trivial.
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Definition 3.1 A central extension of (L, φL) by (M, φM ) is an exact sequence of 3-LieDer
pairs

0 �� (M, φM )
i �� (L̂, φL̂)

p �� (L, φL) �� 0 (3.1)

such that [i(m), x̂, ŷ] = 0, for all m ∈ M and x̂, ŷ ∈ L̂ .

In a central extension, using the map i we can identify M with the corresponding subal-
gebra of L̂ and with this φM = φL̂ |M .

Definition 3.2 Two central extensions (L̂, φT̂ ) and (L̂ ′, φL̂ ′) are said to be isomorphic if

there is an isomorphism η : (L̂, φL̂) → (L̂ ′, φL̂ ′) of 3-LieDer pairs that makes the following
diagram commutative

0 �� (M, φM )

I dM

��

i �� (L̂, φL̂ )

η

��

p �� (L, φL )

I dL

��

�� 0

0 �� (M, φM )
i ′ �� (L̂ ′, φL̂ ′ )

q �� (L, φL ) �� 0.

Let Eq. (3.1) be a central extension of (L, φL). A section of the map p is given by a linear
map s : L → L̂ such that p ◦ s = I dL .

For any section s, we define linear maps ψ : L ∧ L ∧ L → M and χ : L → M by

ψ(x, y, z) := [s(x), s(y), s(z)] − s([x, y, z]), χ(x) = φL̂(s(x)) − s(φL(x)),

for all x, y, z ∈ L.

Note that the vector space L̂ is isomorphic to the direct sum L ⊕ M via the section s.
Therefore, we may transfer the structures of L̂ to L ⊕ M . The product and linear maps on
L ⊕ M are given by

[(x,m), (y, n), (z, p)]ψ = ([x, y, z], ψ(x, y, z)),

φL⊕M (x,m) = (φL(x), φM (m) + χ(x)).

Proposition 3.3 The vector space L ⊕ M equipped with the above product and linear maps
φL⊕M forms a 3-LieDer pair if and only if (ψ, χ) is a 2-cocycle in the cohomology of
the 3-LieDer pair (L, φL) with coefficients in the trivial representation M. Moreover, the
cohomology class of (ψ, χ) does not depend on the choice of the section s.
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Proof The tuple (L ⊕ M, φL⊕M ) is a 3-LieDer pair if and only if the following equations
holds:

[(x,m), (y, n), [(z, p), (v, k), (w, l)]ψ ]ψ
= [[(x,m), (y, n), (z, p)]ψ , (v, k), (w, l)]ψ + [(z, p), [(x,m), (y, n), (v, k)]ψ , (w, l)]ψ

+[(z, p), (v, k), [(x,m), (y, n), (w, l)]ψ ]ψ, (3.2)

and, (3.3)

φL⊕M [(x,m), (y, n), (z, p)]ψ
= [φL⊕M (x,m), (y, n), (z, p)]ψ + [(x,m), φL⊕M (y, n), (z, p)]ψ

+[(x,m), (y, n), φL⊕M (z, p)]ψ, (3.4)

for all x ⊕m, y ⊕ n, z ⊕ p, v ⊕ k, w ⊕ l ∈ L ⊕ M . The condition Eq. (3.2) is equivalent to

ψ(x, y, [z, v, w]) = ψ([x, y, z], v, w) + ψ(z, [x, y, v], w) + ψ(z, v, [x, y, w]),
or, equivalently, d(ψ) = 0, as we are considering only trivial representation. The condition
Eq. (3.3) is equivalent to

φM (ψ(x, y, z)) + χ([x, y, z]) = ψ(φL(x), y, z) + ψ(x, φL(y), z) + ψ(x, y, φL(z)).

This is same as d(χ) + δψ = 0. This implies (ψ, χ) is a 2-cocycle.
Let s1, s2 be two sections of p. Define a map u : L → M by u(x) := s1(x) − s2(x).

Observe that

ψ(x, y, z) = [s1(x), s1(y), s1(z)] − s1([x, y, z])
= [s2(x) + u(x), s2(y) + u(y), s2(z) + u(z)] − s2([x, y, z]) − u([x, y, z])
= ψ ′(x, y, z) − u([x, y, z]),

as u(x), u(y), u(z) ∈ M and (M, φM ) be an abelian 3-LieDer pair.
Also note that

χ(x) = φL̂(s1(x)) − s1(φL(x))

= φL̂(s2(x) + u(x)) − s2(φL(x)) − u(φL(x))

= χ ′(x) + φM (u(x)) − u(φL(x)).

This shows that (ψ, χ) − (ψ ′, χ ′) = ∂u. Hence they correspond to the same cohomology
class. ��

Theorem 3.4 Let (L, φL) be a 3-LieDer pair and (M, φM ) be an abelian 3-LieDer pair.
Then the isomorphism classes of central extensions of L by M are classified by the second
cohomology group H2

3-LieDer(L, M).

Proof Let (L̂, φL̂) and (L̂ ′, φL̂ ′) be two isomorphic central extensions and the isomorphism

is given by η : L̂ → L̂ ′. Let s : L → L̂ be a section of p. Then

p′ ◦ (η ◦ s) = (p′ ◦ η) ◦ s = p ◦ s = I dL .
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This shows that s′ := η ◦ s is a section of p′. Since η is a morphism of 3-LieDer pairs, we
have η|M = I dM . Thus,

ψ ′(x, y, z) = [s′(x), s′(y), s′(z)] − s′([x, y, z])
= η([s(x), s(y), s(z)] − [x, y, z])
= ψ(x, y, z),

and

χ ′(x) = φL̂ ′(s
′(x)) − s′(φL(x))

= φL̂ ′(η ◦ s(x)) − η ◦ s(φL(x))

= φL̂(s(x)) − s(φL(x))

= χ(x).

Therefore, isomorphic central extensions give rise to the same 2-cocycle, hence, correspond
to the same element in H2

3−LieDer (L, M).
Conversely, let (ψ, χ) and (ψ ′, χ ′) be two cohomologous 2-cocycles. Therefore, there

exists a map v : L → M such that

(ψ, χ) − (ψ ′, χ ′) = ∂v.

The 3-LieDer pair structures on L⊕M corresponding to the above 2-cocycles are isomorphic
via themap η : L⊕M → L⊕M given by η(x,m) = (x,m+v(x)). This proves our theorem.

��

4 Extensions of a pair of derivations

It is well-known that derivations are infinitesimals of automorphisms, and a study [9] has
been done on extensions of a pair of automorphisms of Lie-algebras. In this section, we study
extensions of a pair of derivations and see how it is related to the cohomology of the 3-LieDer
pair.

Let

0 �� M
i �� L̂

p �� L �� 0 (4.1)

be a fixed central extensions of 3-Lie algebras. Given a pair of derivations (φL , φM ) ∈
Der(L) × Der(M), here we study extensions of them to a derivation φL̂ ∈ Der(L̂) which
makes

0 �� (M, φM )
i �� (L̂, φL̂)

p �� (L, φL) �� 0 (4.2)

into an exact sequence of 3-LieDer pairs. In such a case, the pair (φL , φM ) ∈ Der(L) ×
Der(M) is said to be extensible.

Let s : L → L̂ be a section of Eq. (4.1), we define a map ψ : L ⊗ L ⊗ L → M by

ψ(x, y, z) := [s(x), s(y), s(z)] − s([x, y, z]), χ(x) = φL̂ (s(x)) − s(φL (x)), ∀x, y, z ∈ L.
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Given a pair of derivations (φL , φM ) ∈ Der(L) × Der(M), we define another map

ObL̂(φL ,φM ) : L ⊗ L ⊗ L → M by

ObM(φL ,φM )(x, y, z) := φM (ψ(x, y, z)) − ψ(φL(x), y, z) − ψ(x, φL(y), z) − ψ(x, y, φL(z)).

Proposition 4.1 The map ObL̂(φL ,φM ) : L ⊗ L ⊗ L → M is a 2-cocycle in the cohomology of
the 3-Lie algebra L with coefficients in the trivial representation a.Moreover, the cohomology

class [ObL̂(φL ,φM )] ∈ H2(L, M) does not depend on the choice of sections.

Proof First observe that ψ is a 1-cocycle in the cohomology of the 3-Lie algebra L with
coefficients in the trivial representation M . Thus, we have

(dObM(φL ,φM ))(x, y, u, v, w)

= −ObM(φL ,φM )(x, y, [u, v, w]) + ObM(φL ,φM )([x, y, u], v, w)

+ObM(φL ,φM )(u, [x, y, v], w) + ObM(φL ,φM )(u, v, [x, y, w])
= −φM (ψ(x, y, [u, v, w])) + ψ(φL(x), y, [u, v, w]) + ψ(x, φL(y), [u, v, w])

+ψ(x, y, φL ([u, v, w])) + φM (ψ([x, y, u], v, w)) − ψ(φL([x, y, u]), v,w)

−ψ([x, y, u], φL (v), w) − ψ([x, y, u], v, φL (w)) + φM (ψ(u, [x, y, v], w))

−ψ(φL(u), [x, y, v], w) − ψ(u, φL([x, y, v]), w) − ψ(u, [x, y, v], φL (w))

+φM (ψ(u, v, [x, y, w])) − ψ(φL(u), v, [x, y, w]) − ψ(u, φL(v), [x, y, w])
−ψ(u, v, φL([x, y, w]))

= ψ(φL(x), y, [u, v, w]) + ψ(x, φL(y), [u, v, w]) + ψ(x, y, φL([u, v, w]))
−ψ(φL([x, y, u]), v,w) − ψ([x, y, u], φL (v), w) − ψ([x, y, u], v, φL (w))

−ψ(φL(u), [x, y, v], w) − ψ(u, φL([x, y, v]), w) − ψ(u, [x, y, v], φL (w))

−ψ(φL(u), v, [x, y, w]) − ψ(u, φL(v), [x, y, w]) − ψ(u, v, φL([x, y, w]))
= 0.

Therefore, ObL̂(φL ,φM ) is a 2-cocycle. To prove the second part, let s1 and s2 be two sections
of Eq. (4.1). Consider the map u : L → M given by u(x) := s1(x) − s2(x). Then

ψ1(x, y, z) = ψ2(x, y, z) − u[x, y, z].
If 1ObL̂(φL ,φM ) and

2ObL̂(φL ,φM ) denote the one cocycles corresponding to the sections s1 and
s2, then

1ObM(φL ,φM )(x, y, z)

= φM (ψ1(x, y, z)) − ψ1(φL(x), y, z) − ψ1(x, φL(y), z) − ψ1(x, y, φL(z))

= φM (ψ2(x, y, z)) − φM (u(x, y, z)) − ψ2(φL(x), y, z) + u(φL(x), y, z)

−ψ2(x, φL(y), z) + u(x, φL(y), z) − ψ2(x, y, φL (z)) + u(x, y, φL(z))

=2 ObM(φL ,φM )(x, y, z) + d(φM ◦ u − u ◦ φL)(x, y, z).

This shows that the 2-cocycles 1ObL̂(φL ,φM ) and
2ObL̂(φL ,φM ) are cohomologous. Hence they

correspond to the same cohomology class in ∈ H2(L, M). ��
The cohomology class [ObL̂(φL ,φM )] ∈ H2(L, M) is called the obstruction class to extend

the pair of derivations (φL , φM ).
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Theorem 4.2 Let Eq. (4.1) be a central extension of 3-Lie algebras. A pair of derivations

(φL , φM ) ∈ Der(L)×Der(M) is extensible if and only if the obstruction class [ObL̂(φL ,φM )] ∈
H2(L, M) is trivial.

Proof Suppose there exists a derivationsφL̂ ∈ Der(L̂) such thatEq. (4.2) is an exact sequence
of 3-LieDer pairs. For any x ∈ L , we observe that p(φL̂(s(x)) − s(φL(x))) = 0. Hence
φL̂(s(x)) − s(φL(x)) ∈ ker(p) = im(i). We define λ : L → M by

λ(x) = φL̂(s(x)) − s(φL(x)).

For any s(x) + a ∈ L̂ , we have

φL̂(s(x) + a) = s(φL(x)) + λ(x) + φL̂(a).

Since φL̂ is a derivation, for any s(x) + a, s(y) + b ∈ L̂ , we have

φM (ψ(x, y, z)) − ψ(φL(x), y, z) − ψ(x, φL(y), z) − ψ(x, y, φL(z)) = −λ([x, y, z]),
or, equivalently, ObL̂(φL ,φM ) = ∂λ is a coboundary. Hence the obstruction class [ObL̂(φL ,φM )] ∈
H2(L, M) is trivial. ��

To prove the converse part, suppose ObL̂(φL ,φM ) is given by a coboundary, say ObL̂(φL ,φM ) =
∂λ. We define a map φL̂ : L̂ → L̂ by

φL̂(s(x) + a) = s(φL(x)) + λ(x) + φL̂(a).

Then φL̂ is a derivation on L̂ and Eq. (4.2) is an exact sequence of 3-LieDer pairs. Hence the
pair (φL , φM ) is extensible. Thus, we obtain the following.

Theorem 4.3 If H2(L, M) = 0, then any pair of derivations (φL , φM ) ∈ Der(L)×Der(M)

is extensible.

5 Formal deformations of 3-LieDer pairs

In this section, we study one-parameter formal deformations of 3-LieDer pairs in which we
deform both the 3-Lie bracket and the distinguished derivations.

Let (L, φL) be a 3-LieDer pair. We denote the 3-Lie bracket on L by μ, i.e, μ(x, y, z) =
[x, y, z], for all x, y, z ∈ L . Consider the space L[[t]] of formal power series in t with
coefficients from L . Then L[[t]] is a F[[t]]-module.

A formal one-parameter deformation of the 3-LieDer pair (L, φL) consist of formal power
series

μt =
∞∑

i=0

t iμi ∈ Hom(L⊗3, L)[[t]] with μ0 = μ,

φt =
∞∑

i=0

t iφi ∈ Hom(L, L)[[t]] with φ0 = φL ,

such that L[[t]] together with the bracket μt forms a 3-Lie algebra over F[[t]] and φt is a
derivation on L[[t]].
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Therefore, in a formal one-parameter deformation of 3-LieDer pair, the following relations
hold:

μt (x, y, μt (z, v, w)) = μt (μt (x, y, z), v,w) + μt (z, μt (x, y, v), w)

+μt (z, v, μt (x, y, w)), (5.1)

φt (μt (x, y, z)) = μt (φt (x), y, z) + μt (x, φt (y), z) + μt (x, y, φt (z)). (5.2)

Conditions Eqs.(5.1)–(5.2) are equivalent to the following equations:
∑

i+ j=n

μi (x, y, μ j (z, v, w))

=
∑

i+ j=n

μi (μ j (x, y, z), v,w) + μi (z, μ j (x, y, v), w) + μi (z, v, μ j (x, y, w)), (5.3)

and,
∑

i+ j=n

φi (μ j (x, y, z))

=
∑

i+ j=n

μi (φ j (x), y, z) + μi (x, φ j (y), z) + μi (x, y, φ j (z)). (5.4)

For n = 0 we simply get (L, φL) is a 3-LieDer pair. For n = 1, we have

μ1(x, y, [z, v, w]) + [x, y, μ1(z, v, w)]
= μ1([x, y, z], v, w) + [μ1(x, y, z), v,w] + [z, μ1(x, y, v), w]

+μ1(z, [x, y, v], w) + [z, v, μ1(x, y, w)] + μ1(z, v, [x, y, w]), (5.5)

and,

φ1([x, y, z]) + φL(μ1(x, y, z))

= μ1(φL(x), y, z) + [φ1(x), y, z] + μ1(x, φL(y), z) + [x, φ1(y), z]
+μ1(x, y, φL (z)) + [x, y, φ1(z)]. (5.6)

The condition Eq. (5.5) is equivalent to d(μ1) = 0 whereas the condition Eq. (5.6) is
equivalent to d(φ1) + δ(μ1) = 0. Therefore, we have

∂(μ1, φ1) = 0.

Definition 5.1 Let (μt , φt ) be a one-parameter formal deformation of 3-LieDer pair (L, φL).
Suppose (μn, φn) is the first non-zero term of (μt , φt ) after (μ0, φ0), then such (μn, φn) is
called the infinitesimal of the deformation of (L, φL).

Hence, from the above observations, we have the following proposition.

Proposition 5.2 Let (μt , φt ) be a formal one-parameter deformation of a 3-LieDer pair
(L, φL). Then the linear term (μ1, φ1) is a 1-cocycle in the cohomology of the 3-LieDer pair
L with coefficients in itself.

Proof We have showed that

∂(μ1, φ1) = 0.
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If (μ1, φ1) be the first non-zero term, then we are done. If (μn, φn) be the first non-zero term
after (μ0, φ0), then exactly the same way, one can show that

∂(μn, φn) = 0.

��
Next, we define a notion of equivalence between formal deformations of 3-LieDer pairs.

Definition 5.3 Two deformations (μt , φt ) and (μ′
t , φ

′
t ) of a 3-LieDer pair (L, φL) are said to

be equivalent if there exists a formal isomorphism �t = ∑∞
i=0 t

iφi : L[[t]] → L[[t]] with
�0 = I dL such that

�t ◦ μt = μ′
t ◦ (�t ⊗ �t ⊗ �t ), �t ◦ φt = φ′

t ◦ �t .

By comparing coefficients of tn from both the sides, we have
∑

i+ j=n

φi ◦ μ j =
∑

p+q+r+l=n

μ′
p ◦ (φq ⊗ φr ⊗ φl),

∑

i+ j=n

φ′
i ◦ φ j =

∑

p+q=n

φp ◦ φq .

Easy to see that the above identities hold for n = 0. For n = 1, we get

μ1 + φ1 ◦ μ = μ′
1 + μ ◦ (φ1 ⊗ I d ⊗ I d) + μ ◦ (I d ⊗ I d ⊗ φ1), (5.7)

φL ◦ �1 + φ′
1 = φ1 + φ1 ◦ φL . (5.8)

These two identities together imply that

(μ1, φ1) − (μ′
1, φ

′
1) = ∂φ1.

Thus, we have the following.

Proposition 5.4 The infinitesimals corresponding to equivalent deformations of the 3-LieDer
pair (L, φL) are cohomologous.

Definition 5.5 A deformation (μt , φt ) of a 3-LieDer pair is said to be trivial if it is equivalent
to the undeformed deformation (μ′

t = μ, φ′
t = φL).

Definition 5.6 A 3-LieDer pair (L, φL) is called rigid, if every 1-parameter formal deforma-
tion μt is equivalent to the trivial deformation.

Theorem 5.7 Every formal deformation of the 3-LieDer pair (L, φL) is rigid if the second
cohomology group of the 3-LieDer pair vanishes, that is, H2

3-LieDer(L, L) = 0.

Proof Let (μt , φt ) be a deformation of the 3-LieDer pair (L, φL). From the Proposition
5.2, the linear term (μ1, φ1) is a 2-cocycle. Therefore, (μ1, φ1) = ∂�1 for some φ1 ∈
C1
3-LieDer(L, L) = Hom(L, L).
We set �t = I dL + t�1 : L[[t]] → L[[t]] and define

μ′
t = �−1

t ◦ μt ◦ (�t ⊗ �t ⊗ �t ), φ′
t = �−1

t ◦ φt ◦ �t . (5.9)

By definition, (μ′
t , φ

′
t ) is equivalent to (μt , φt ). Moreover, it follows from Eq. (5.7) that

μ′
t = μ + t2μ′

2 + · · · and φ′
t = φL + t2φ′

2 + · · ·.
In other words, the linear terms are vanish. By repeating this argument, we get (μt , φt ) is
equivalent to (μ, φL ). ��
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Next, we consider finite order deformations of a 3-LieDer pair (L, φL), and show that how
obstructions of extending deformation of order N to deformation of order (N + 1) depends
on the third cohomology class of the 3-LieDer pair (L, φL) .

Definition 5.8 A deformation of order N of a 3-LieDer pair (L, φL) consist of finite sums
μt = ∑N

i=0 t
iμi and φt = ∑N

i=0 t
iφi such that μt defines 3-Lie bracket on L[[t]]/(t N+1)

and φt is a derivation on it.

Therefore, we have
∑

i+ j=n

μi (x, y, μ j (z, v, w))

=
∑

i+ j=n

μi (μ j (x, y, z), v,w) + μi (z, μ j (x, y, v), w) + μi (z, v, μ j (x, y, w)),

and, ∑

i+ j=n

φi (μ j (x, y, z)) =
∑

i+ j=n

μi (φ j (x), y, z) + μi (x, φ j (y), z) + μi (x, y, φ j (z)),

for n = 0, 1, . . . , N . These identities are equivalent to

[μ,μn] = −1

2

∑

i+ j=n,i, j>0

[μi , μ j ], (5.10)

−[φL , μn] + [μ, φn] =
∑

i+ j=n,i, j>0

[φi , μ j ]. (5.11)

Definition 5.9 A deformation (μt = ∑N
i=0 t

iμi , φt = ∑N
i=0 t

iφi ) of order N is said to
be extendable if there is an element (μN+1, φN+1) ∈ C2

3-LieDer(L, L) such that (μ′
t =

μt + t N+1μN+1, φ
′
t = φt + t N+1φN+1) is a deformation of order N + 1.

Thus, the following two equations need to be satisfied-
∑

i+ j=N+1

μi (x, y, μ j (z, v, w))

=
∑

i+ j=N+1

μi (μ j (x, y, z), v,w) + μi (z, μ j (x, y, v), w) + μi (z, v, μ j (x, y, w)),

(5.12)

and,
∑

i+ j=N+1

φi (μ j (x, y, z))

=
∑

i+ j=N+1

μi (φ j (x), y, z) + μi (x, φ j (y), z) + μi (x, y, φ j (z)). (5.13)

The above two equations can be equivalently written as

d(μN+1) = −1

2

∑

i+ j=N+1,i, j>0

[μi , μ j ] = Ob3 (5.14)

d(φN+1) + δ(μN+1) = −
∑

i+ j=N+1,i, j>0

[φi , μ j ] = Ob2. (5.15)
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Using the Eqs. 5.14 and 5.15, it is routine but lengthywork to prove the following proposition.
Thus, we choose to omit the proof.

Proposition 5.10 The pair (Ob3, Ob2) ∈ C3
3-LieDer(L, L) is a 3-cocycle in the cohomology

of the 3-LieDer pair (L, φL) with coefficients in itself.

Definition 5.11 Let (μt , φt ) be a deformation of order N of a 3-LieDer pair (L, φL). The
cohomology class [(Ob3, Ob2)] ∈ H3

3-LieDer(L, L) is called the obstruction class of (μt , φt ).

Theorem 5.12 A deformation (μt , φt ) of order N is extendable if and only if the obstruction
class [(Ob3, Ob2)] ∈ H3

3-LieDer(L, L) is trivial.

Proof Suppose that a deformation (μt , φt ) of order N of the 3-LieDer pair (L, φL) extends
to a deformation of order N + 1. Then we have

∂(μN+1, φN+1) = (Ob3, Ob2).

Thus, the obstruction class [(Ob3, Ob2)] ∈ H3
3-LieDer(L, L) is trivial.

Conversely, if the obstruction class [(Ob3, Ob2)] ∈ H3
3-LieDer(L, L) is trivial, suppose

that

(Ob3, Ob2) = ∂(μN+1, φN+1),

for some (μN+1, φN+1) ∈ C2
3-LieDer(L, L). Then it follows from the above observation that

(μ′
t = μt + t N+1μN+1, φ

′
t = φt + t N+1φN+1) is a deformation of order N + 1, which

implies that (μt , φt ) is extendable. ��
Theorem 5.13 If H3

3-LieDer(L, L), then every finite order deformation of (L, φL) is extend-
able.

Corollary 5.14 If H3
3-LieDer(L, L) = 0, then every 2-cocycle in the cohomology of the 3-

LieDer pair (L, φL) with coefficients in itself is the infinitesimal of a formal deformation of
(L, φL).
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