Subhamiltonian toroidal graphs

Thomas McKenzie[1](http://orcid.org/0000-0002-6214-9332) · Shannon Overbay¹

Received: 4 December 2020 / Accepted: 15 April 2022 / Published online: 12 May 2022 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2022

Abstract

The problem of determining whether a graph contains a Hamiltonian cycle is difficult but has been well-studied. A related question asks when is a graph, embeddable on a surface *S*, a subgraph of a Hamiltonian graph which is also embeddable on *S*? In particular, if a graph has genus *g*, is it a subgraph of a Hamiltonian graph of genus *g*? We answer this question for all complete graphs and complete *m*-partite graphs of genus 0 and 1.

Keywords Book thickness · Hamiltonian graphs · Genus

Mathematics Subject Classification 05C38 · 05C45

1 Background and definitions

Let K_n denote the complete graph on *n* vertices and $K_{r_1,r_2,...,r_m}$, $m \geq 1$, denote the complete *m*-partite graph. We will assume $r_1 \ge r_2 \ge \cdots \ge r_{m-1} \ge r_m \ge 1$. The join of two graphs, *G* and *H*, is the graph obtained by taking disjoint copies of *G* and *H* and connecting every vertex of *G* to every vertex of *H*. Note that K_{r_1,r_2,\dots,r_m} can be though of as the join of the complements of the complete graphs, $K_{r_1}, K_{r_2}, \ldots, K_{r_m}$. A graph is embeddable in a surface *S* if it can be drawn on this surface without edges crossing. If we let S_h denote the sphere with *h* handles, the (orientable) genus *g* of a graph *G* is the smallest value of *h* for which *G* can be embedded in S_h . In particular, genus 0 graphs can be embedded in the plane and genus 1 graphs can be embedded on a torus. It is known that the genus of K_n , where $n \geq 1$, is given by $\lceil (n-3)(n-4)/12 \rceil$ and the genus of $K_{m,n}$ is given by $\lceil (m-2)(n-2)/4 \rceil$ [\[3](#page-6-0),pages 118–119]. Euler's formula for graphs embeddable on an orientable surface of genus *g* is given by $v - e + f = 2 - 2g$, where *v* is the number of vertices, *e* is the number of edges, and *f* is the number of faces in a drawing without crossings [\[3,](#page-6-0)page 103].

A Hamiltonian graph is one which contains a simple cycle that visits every vertex exactly once. We expand upon the notion of a subhamiltonian graph given in [\[4\]](#page-6-1), which describes such a graph as one that is a subgraph of a planar Hamiltonian graph. Here we define an S_h

B Thomas McKenzie mckenzie@gonzaga.edu Shannon Overbay overbay@gonzaga.edu

¹ Gonzaga University, Spokane, WA, USA

subhamiltonian graph as one that is a subgraph of a Hamiltonian graph embeddable in *Sh*. Of course, one can always add edges to make a graph Hamiltonian, but the interesting question is when can this be done without increasing the genus of the augmented graph. We provide a partial answer to this question for graphs of genus 0 and 1. In particular, we will show that all complete graphs and complete *k*-partite graphs of genus 0 and 1 have this property.

2 Subhamiltonian planar graphs

To understand the planar case, we appeal to a structure called a book (see [\[1,](#page-6-2) [4,](#page-6-1) [5](#page-6-3)]). An *n*-book consists of *n* half planes joined together at a common line, called the spine. To embed a graph in a book, the vertices are placed along the spine and each edge of the graph is embedded on a single page so that no two edges cross each other. The book thickness of a graph *G* is the smallest *n* for which *G* admits an *n*-book embedding. If the vertices are placed in the order v_1, v_2, \ldots, v_m along the spine, we may add any missing edges of the form $\{v_k, v_{k+1}\}\$, $k = 1, 2, \ldots, m-1$, and the edge $\{v_1, v_m\}$ onto any page of the book without creating edge crossings. So, with respect to the book structure, all graphs that are embedded in a *n*-page book are subgraphs of Hamiltonian *n*-page embeddable graphs. With this representation, it is clear that all two-page embeddable graphs are S_0 subhamiltonian. Furthermore, if a graph is S_0 subhamiltonian, one can draw the graph in the plane and trace a Hamiltonian cycle (adding edges, if needed), through the vertices, without causing crossings. This Hamiltonian cycle induces a two-page book embedding in which the edges interior to the cycle form one page, the edges outside the cycle form a second page, and the edges along the cycle can be placed on either page. Now the following result (see $[1, 5]$ $[1, 5]$ $[1, 5]$ $[1, 5]$) is clear.

Theorem 1 *A graph G is S*⁰ *subhamiltonian if and only if it is embeddable in a 2-page book.*

We note that not all planar graphs are S_0 subhamiltonian. In particular, the Goldner–Harary graph is the smallest maximal planar graph that does not contain a Hamiltonian cycle. Since it is maximal, any edges added to form a Hamiltonian cycle would increase the genus (see [\[1](#page-6-2)]). This graph has 11 vertices and is the smallest example of such a graph. Hence, all planar graphs with fewer than 11 vertices are *S*⁰ subhamiltonian. Some planar graphs are *S*⁰ subhamiltonian and some are not. Yannakakis [\[7](#page-6-4), [8](#page-6-5)] showed that all planar graphs can be embedded in a four-page book. So, the planar graphs that are not S_0 subhamiltonian would be those planar graphs with book thickness 3 or 4. There are numerous known families of planar graphs with book thickness 1 or 2. Trees, square grids, planar Hamiltonian graphs, planar bipartite graphs, and all planar triangle-free graphs are S_0 subhamiltonian [\[4\]](#page-6-1).

Theorem 2 *All planar complete graphs and complete m-partite graphs are S*⁰ *subhamiltonian.*

Proof As noted earlier, the genus of K_n , where $n \geq 1$, is given by $\lceil (n-3)(n-4)/12 \rceil$. Thus, K_n is planar only for $n = 1, 2, 3, 4$. We note that if *G* is S_0 subhamiltonian, then so is any subgraph of *G*. As one can easily check, *K*⁴ is planar and Hamiltonian. Hence, *K*1*, K*2*,* and K_3 are also S_0 subhamiltonian.

Similarly, since the genus of $K_{m,n}$ is given by $\lceil (m-2)(n-2)/4 \rceil$, it follows that the graphs $K_{m,1}$ and $K_{m,2}$ are planar and bipartite for all $m \geq 1$. Since $K_{3,3}$ is non-planar, it follows that all complete planar bipartite graphs are *S*⁰ subhamiltonian. The set of complete planar tripartite graphs consists of $K_{q,1,1}(q \geq 1)$, $K_{2,2,1}$, and $K_{2,2,2}$, since all others would contain a $K_{3,3}$ subgraph. As one can easily check, the graph $K_{2,2,2}$ is planar and Hamiltonian. Hence, it is S_0 subhamiltonian, as is its subgraph, $K_{2,2,1}$. When $q \geq 3$, the graph $K_{q,1,1}$ is not Hamiltonian. However, we see that it is planar and subhamiltonian for all $q \ge 1$ via the following two-page book embedding. Let $\{a_1, a_2, \ldots, a_q\}$, $\{b\}$, and $\{c\}$ be the vertex sets of $K_{a,1,1}$. Now position the vertices along the spine in the order $a_1, a_2, \ldots, a_a, b, c$. Edges of the form $\{a_i, b\}$, where $i = 1, 2, \ldots, q$ can be embedded on the first page and those of the form $\{a_i, c\}$, where $i = 1, 2, \ldots, q$ can be embedded on the second page without edge crossings. Finally, the edge ${b, c}$ can be embedded on either of the two pages. Hence, all planar tripartite graphs are *S*⁰ subhamiltonian. The only complete planar multipartite graphs with four parts are $K_{1,1,1,1} = K_4$ and $K_{2,1,1,1}$, since all others would contain a $K_{3,3}$ subgraph. We note that $K_{2,1,1,1}$ is planar and Hamiltonian, so both graphs are S_0 subhamiltonian. There are no planar multipartite graphs with five or more parts, since such graphs would contain a K_5 subgraph. Hence, all planar complete graphs and complete *m*-partite graphs are S_0 subhamiltonian. This completes the proof. \square

3 Subhamiltonian toroidal graphs

For the toroidal case, we appeal to the notion of a torus book (see [\[6\]](#page-6-6)). An *n*-page torus book is formed by taking the equator of a torus as the spine and nested torus shells, joined together at the spine, as the pages. The torus-book thickness of a graph is the least number of pages needed to embed a graph *G* so that the vertices of *G* lie on the spine and each edge of *G* lies on a single page so that no two edges cross. It is clear that any graph that is one-page torus-book embeddable would also be *S*¹ subhamiltonian via completing the Hamiltonian cycle along the spine, appending any missing edges. Also, any Hamiltonian toroidal graph would be *S*¹ subhamiltonian, but not necessarily with the vertices lined up along the equator. As in the planar case, there are maximal non-Hamiltonian toroidal graphs. Such graphs can be formed by repeated stellations of the faces of graphs embedded on a torus, as was done for planar graphs in $[1]$. Thus not all genus 1 graphs will be S_1 subhamiltonian. We will show that all complete graphs and complete *m*-partite graphs are not only *S*¹ subhamiltonian, but are embeddable in a one-page torus book with the Hamiltonian cycle along the spine.

Via the genus formula $g = [(n-3)(n-4)/12]$ for complete graphs, we see that K_5 , K_6 , and $K₇$ are the only complete graphs of genus 1. Since these graphs are embeddable on a torus and are Hamiltonian, they are all necessarily S_1 subhamiltonian. In Fig. [1,](#page-3-0) we give an embedding of a K_7 in a single torus page, so the desired Hamiltonian cycle can be expressed along the spine of this one-page torus book. By deleting one or two vertices of *K*7, we attain one-page torus book embeddings of K_6 and K_5 .

Using the genus formula $g = \left[\frac{m-2}{n-2}\right]$ for $K_{m,n}$, we see that the complete bipartite graphs of genus 1 are: $K_{3,3}$, $K_{4,3}$, $K_{5,3}$, $K_{6,3}$, and $K_{4,4}$. Each of these graphs is a subgraph of $K_{6,1,1,1}$ or $K_{4,1,1,1,1}$. We give one-page torus book embeddings of these graphs in Figs. [3](#page-4-0) and [6.](#page-6-7) Hence, all bipartite graphs of genus 1 are *S*¹ subhamiltonian. In the absence of general formulas for the genus of *m*-partite graphs when $m \geq 3$, we provide the following lemma.

Lemma 1 *If either* K_n *or* $K_{r_1,r_2,...,r_m}$ *, where* $r_1 \geq r_2 \geq \cdots \geq r_m \geq 1$ *, is toroidal, then it* must be a subgraph of K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, $K_{4,1,1,1,1}$, or $K_{q,1,1}(q \ge 1)$.

Proof The largest complete toroidal graph is K_7 . Hence, K_n is toroidal for all $n \le 7$.

Now we will consider toroidal complete *m*-partite graphs $K_{r_1,r_2,...,r_m}$, where $r_1 \geq r_2 \geq$ $\cdots \geq r_m \geq 1$ and $m \geq 1$. Note that in the case where $m = 1$, the graph contains r_1

$$
Fig. 1 K_7
$$

vertices and no edges, so it is subgraph of the planar graph $K_{q,1,1}$. So, we will assume that $m \geq 2$. Furthermore, by the genus formula for bipartite graphs, $K_{7,3}$ and $K_{5,4}$ have genus 2. Hence, we seek graphs that do not contain either of these as subgraphs. We will proceed by considering the possible values for r_1 , the largest of the r_i values. Also, Euler's formula yields a maximum edge bound of 3*v* for simple toroidal graphs with *v* vertices.

Case 1: $r_1 \geq 7$

Then $r_2 + r_3 + \cdots + r_m < 3$, otherwise the graph contains a $K_{7,3}$ subgraph. Hence, the only possibilities are $K_{r_1,1}, K_{r_1,2}$, and $K_{r_1,1,1}$. These are all contained within $K_{q,1,1}$, which is planar.

Case 2: $r_1 = 5$ or $r_1 = 6$

Then $r_2 + r_3 + \cdots + r_m < 4$, otherwise the graph contains a $K_{5,4}$ subgraph. All cases that satisfy these conditions are subgraphs of $K_{6,1,1,1}$.

Case 3: $r_1 = 4$

Then $r_2 + r_3 + \cdots + r_m < 5$, otherwise the graph contains a $K_{5,4}$ subgraph. All cases that satisfy these conditions are subgraphs of *K*4*,*1*,*1*,*1*,*1.

Case 4: $r_1 = 3$

Then $r_2 + r_3 + \cdots + r_m < 7$, otherwise the graph contains a $K_{7,3}$ subgraph. We now consider the case where $m \ge 6$ and $r_2 + r_3 + \cdots + r_m \le 6$. Any such complete multipartite graph would contain a *K*3*,*1*,*1*,*1*,*1*,*¹ subgraph. However, using Euler's result that the sum of the degrees is twice the number of edges [\[3](#page-6-0)], we see that this graph has $(3 \times 5 + 5 \times 7)/2 = 25$ edges, which violates the $3v = 3 \times 8 = 24$ edge bound for simple toroidal graphs. Hence, $m \le 5$. Suppose that $m = 5$. Then we must have $r_1 + r_5 \ge 4$, which forces $r_2 + r_3 + r_4 \le 4$, otherwise we will have a *K*5*,*⁴ subgraph. The largest possible remaining graph meeting these conditions is $K_{3,2,1,1,1}$. Now suppose that $m = 4$. By a similar argument, we must have *r*₂ + *r*₃ ≤ 4. One possibility is *K*₃,3,1,1</sub> ⊆ *K*₃,2,1,1,1. The next possibility is *K*_{3,2,2,2}, which is not toroidal since it contains a $K_{5,4}$ subgraph. The remaining graphs with $m = 4$ are contained within $K_{3,2,2,1} \subseteq K_{3,2,1,1,1}$. Now, if we let $m \leq 3$, the largest possibility is $K_{3,3,3}$.

Case 5: $r_1 = 2$

Suppose $m \ge 7$. Then the graph will contain a $K_{2,1,1,1,1,1,1}$ subgraph. But, this graph contains the subgraph $K_{2,2,1,1,1,1}$, which is not toroidal since it has $(4 \times 6 + 4 \times 7)/2 = 26$

Fig. 2 *K*3*,*3*,*3

Fig. 3 *K*6*,*1*,*1*,*1

edges, violating the $3v = 3 \times 8 = 24$ toroidal edge bound. So, if $m = 6$, the only possible graph is $K_{2,1,1,1,1,1} \subseteq K_7$. Now suppose $m = 5$. The graph $K_{2,2,2,1,1}$ has $(6 \times 6 + 2 \times 7)/2 =$ 25 edges, exceeding the $3v = 3 \times 8 = 24$ toroidal edge bound. The next smallest graph is $K_{2,2,1,1,1} \subseteq K_7$. If $m \leq 4$, all remaining graphs are subgraphs of $K_{2,2,2,2,2}$.

Case 6: $r_1 = 1$.

If *m* \geq 8, then the graph contains a K_8 subgraph and is not toroidal. Hence, *m* \leq 7. The uph $K_{1,1,1,1,1,1} = K_7$. graph $K_{1,1,1,1,1,1,1,1} = K_7$.

Lemma 2 The graphs K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, $K_{4,1,1,1,1}$, and $K_{q,1,1}(q \ge 1)$ *all embeddable in a one-page torus book.*

Proof The graph $K_{q,1,1}(q \geq 1)$ is planar and embeddable in a two-page book. A two-page book is clearly contained in a one page torus book, so this embedding yields a one-page torus book embedding, as well (with no edges wrapping around the torus).

Figures [1,](#page-3-0) [2,](#page-4-1) [3,](#page-4-0) [4,](#page-5-0) [5](#page-5-1) and [6](#page-6-7) give one-page torus book embeddings of K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, *<u>K*₂,2,2,2^{*,*} *K*₃,2_{*,*1}*,*₁*,*1*,*1*,*¹*,*₁*,*₁*,*₁*,*₁*,*₁*,*₁*,*₁*,*₁*,*¹*.*¹</u>

Note that all $K_{q,1,1}(q \ge 1)$ are planar, whereas K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, and $K_{4,1,1,1,1}$, are non-planar since each of these graphs contains a K_5 or $K_{3,3}$ subgraph.

Fig. 5 *K*3*,*2*,*1*,*1*,*1

Since each of these graphs is embeddable in a one-page torus book, by adding any missing edges along the spine we see that these graphs are all subgraphs of toroidal Hamiltonian graphs. The graphs K_7 , $K_{3,3,3}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, and $K_{4,1,1,1,1}$ already contain Hamiltonian cycles, so they are naturally *S*₁ subhamiltonian. However, $K_{6,1,1,1}$ and $K_{q,1,1}$, $q \geq 3$ are not Hamiltonian, so we must add edges to attain the desired Hamiltonian cycle. As a planar graph, $K_{q,1,1}$ is S_0 subhamiltonian and the non-planar graph $K_{6,1,1,1}$ is S_1 subhamiltonian.

In fact, every complete graph and complete *m*-partite graph of genus one is a subgraph of one of the six toroidal K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, or $K_{4,1,1,1,1}$. The following theorem gives a complete listing of all complete and complete m -partite S_1 subhamiltonian graphs.

Theorem 3 *The following is a complete list of all 35 S*¹ *subhamiltonian complete and complete m-partite graphs. 3*

Fig. 6 *K*4*,*1*,*1*,*1*,*1

- 1. *Two parts: K*3*,*3*, K*4*,*3*, K*5*,*3*, K*6*,*3*, K*4*,*⁴
- 2. Three parts: $K_{3,2,1}$, $K_{4,2,1}$, $K_{5,2,1}$, $K_{6,2,1}$, $K_{5,2,3}$, $K_{4,2,2}$, $K_{3,3,1}$, $K_{4,3,1}$, $K_{3,3,2}$, $K_{3,3,3}$
- 3. Four parts: $K_{3,1,1,1}$, $K_{4,1,1,1}$, $K_{5,1,1,1}$, $K_{6,1,1,1}$, $K_{2,2,1,1}$, $K_{3,2,1,1}$, $K_{4,2,1,1}$, $K_{2,2,2,1}$, *K*3*,*2*,*2*,*1*, K*2*,*2*,*2*,*2*, K*3*,*3*,*1*,*¹
- 4. Five parts: $K_{1,1,1,1,1} = K_5, K_{2,1,1,1,1}, K_{3,1,1,1,1}, K_{4,1,1,1,1}, K_{2,2,1,1,1}, K_{3,2,1,1,1}$
- 5. *Six parts:* $K_{1,1,1,1,1,1} = K_6, K_{2,1,1,1,1,1}$
- 6. *Seven parts:* $K_{1,1,1,1,1,1,1} = K_7$

Proof The 35 listed graphs are non-planar since all but $K_{1,1,1,1,1} = K_5$ contain a $K_{3,3}$ subgraph and K_5 is non-planar. Furthermore, one may easily check that each of the 35 graphs is a subgraph of at least one of K_7 , $K_{3,3,3}$, $K_{6,1,1,1}$, $K_{2,2,2,2}$, $K_{3,2,1,1,1}$, or $K_{4,1,1,1,1}$. \Box

Graphs such as K_n ($n \geq 3$), the *n*-dimensional cube graph ($n \geq 2$), and the bipartite graph $K_{n,n}$ ($n \geq 2$) of genus *g* are Hamiltonian and will necessarily be S_g subhamiltonian. This will also be true for any other genus *g* graphs that contain Hamiltonian cycles. However, it is not clear which non-Hamiltonian genus *g* graphs also have this property.

References

1. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Combin. Theory Ser. B **27**, 320–331 (1979)

2. Endo, T.: The pagenumber of toroidal graphs is at most seven. Discrete Math. **175**, 87–96 (1997)

- 3. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
- 4. Kainen, P.C., Overbay, S.: Book embeddings of graphs and a theorem of Whitney, Tech. Report GUGU-2/25/03. <http://www.georgetown.edu/faculty/kainen/pbip3.pdf>
- 5. Ollmann, L.T.: On the book thicknesses of various graphs. Proc. 4th southeastern conf. on combinatorics. Graph Theory Comput. **8**, 459 (1973)
- 6. Overbay, S.: Embedding graphs in cylinder and torus books. J. Combin. Math. Combin. Comput. **91**, 299–313 (2014)
- 7. Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. Proc. 18th Annual ACM Symposium on Theory of Comput., pp. 104–108 (1986)
- 8. Yannakakis, M.: Planar graphs that need four pages. J. Combin. Theory Ser. B **145**, 241–263 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.